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The advantages of usingmultiple surrogates for approximation and reduction of helicopter vibration are studied.

Multiple approximation methods, including a weighted-average approach, are considered so that pitfalls associated

with only using a single best surrogate for the rotor blade vibration-reduction problem are avoided. A vibration

objective function corresponding to a flight condition in which blade–vortex interaction causes high levels of

vibration is considered. The design variables consist of cross-sectional dimensions of the structural member of the

blade and nonstructural masses. The optimized designs are compared with a baseline design resembling a

Messerschmitt–Bölkow–Blohm BO-105 blade. The results indicate that at relatively little additional cost compared

with optimizing a single surrogate, multiple surrogates can be used to locate various reduced-vibration designs that

would be overlooked if only a single approximationmethod was employed, and themost accurate surrogate may not

lead to the best design.

Nomenclature

Cdf = flat-plate drag coefficient
Cd0 = blade-profile drag coefficient
CW = helicopter weight coefficient
c = blade chord
D = vector of design variables
d1, d2 = user-defined parameters used in weighted-

average surrogate construction
E = Young’s modulus
Eavg = average of the global error metrics for all

surrogates
Ei = global error metric corresponding to the

ith surrogate
F4X , F4Y , F4Z = 4=rev hub shears, nondimensionalized by

m0�
2R2

F̂4X , F̂4Y , F̂4Z = surrogates for the nondimensional 4=rev
hub shears

GMSEi = generalized mean square error
corresponding to the ith surrogate

f�x� = assumed polynomials that account for the
global behavior in kriging

g�D� = constraints
h = height of the blade cross section
J = objective function
Ĵ = surrogate objective function
JP = mass polar moment of inertia of the rotor
M4X, M4Y , M4Z = 4=rev hub moments, nondimensionalized

by m0�
2R3

M̂4X , M̂4Y , M̂4Z = surrogates for the nondimensional 4=rev
hub moments

mns = nonstructural mass located at the elastic
axis

m0 = baseline mass per unit length
Nb = number of rotor blades
Nc = number of behavior constraints
Ndv = number of design variables
NRBF = number of radial basis functions

associated with radial basis neural
networks

Nsm = number of surrogate models
Nsp = number of sample points
Ntp = number of test points
R = blade radius
t1, t2, t3 = thicknesses of the blade cross section
wi = weight coefficient corresponding to the ith

surrogate
wpoly, wkrg, wRBNN = weight coefficients corresponding to each

surrogate
x
�i� = ith sample point

x1, x2 = cross-sectional dimensions
XFA, ZFA = longitudinal and vertical offsets between

rotor hub and helicopter aerodynamic
center

XFC, ZFC = longitudinal and vertical offsets between
rotor hub and helicopter center of gravity

Presented as Paper 1898 at the 48th AIAA/ASME/ASCHE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Honolulu, HI,
23–26 April 2007; received 6 August 2008; accepted for publication 20
August 2008. Copyright © 2008 byB. Glaz, T. Goel, L. Liu, P. P. Friedmann,
and R. T. Haftka. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 0001-1452/09 $10.00 in correspondence with
the CCC.

∗Postdoctoral Researcher, Department of Aerospace Engineering.
Member AIAA.

†Department of Mechanical and Aerospace Engineering; currently
Scientist, Livermore Software Technology Corporation. Member AIAA.

‡Postdoctoral Researcher,Department ofAerospaceEngineering.Member
AIAA.

§François-Xavier Bagnoud Professor, Department of Aerospace Engineer-
ing. Fellow AIAA.

¶Distinguished Professor, Department of Mechanical and Aerospace
Engineering. Fellow AIAA.

AIAA JOURNAL
Vol. 47, No. 1, January 2009

271

http://dx.doi.org/10.2514/1.40291


�y = factor used to normalize errors
y�x� = unknown function to be approximated
ŷ�x� = approximation of y�x�
y�i� = output response at x�i�

Z�x� = realization of a stochastic process in
kriging

�d = flight descent angle
�i = weight associated with the ith radial basis

function in radial basis neural networks
�p = blade precone angle
�0, �i, �ij = fitting coefficients in polynomial

regression
" = absolute percent error of surrogate

predictions
�pr = approximation error in polynomial

regression
�k, !k = real and imaginary parts of �k

�pt = blade built-in pretwist angle
�k = hover-stability eigenvalue for kth mode
� = advance ratio
� = Poisson’s ratio
	filler = material density for nonstructural filler

mass
	struct = material density for the structural member

of the blade

 = rotor solidity

allowable = allowable blade stress

xx, 
x�, 
x� = blade stresses

Y = yield stresses
� = parameter that controls the radius of

influence for each neuron in radial basis
neural networks

RBNN = radial basis functions used in radial basis
neural networks

� = rotor angular speed
!F1, !L1, !T1 = fundamental rotating-flap, lead-lag, and

torsional frequencies per revolution
!L, !U = lower and upper bounds for frequency

constraints per revolution

I. Introduction

V IBRATION is one of the most critical concerns in the design of
modern rotorcraft. Stricter demands for enhanced performance,

comfort, and customer acceptance require designs with reduced
vibration levels. In helicopters, the dominant source of vibrations is
the rotor, which transfers vibrations to the rotor hub and fuselage at
harmonics that are predominantly integermultiples ofNb=rev, where
Nb is the number of blades.

During the last 25 years, two principal approaches to vibration
reduction have emerged. The first approach is passive and uses
structural/multidisciplinary optimization for reducing vibrations [1–
3]. The second approach uses active controlmethods [4]. The passive
approach is used by blade designers to improve the vibration
characteristics of the rotor. On the other hand, the active approach is
still considered to be a research topic that is slowly approaching
implementation. This study is aimed at the passive approach, in
which the vibration-reduction problem is formulated as a
mathematical optimization problem subject to appropriate
constraints. The objective function consists of a suitable combination
of theNb=rev hub shears and moments that are computed from an
aeroelastic response code; constraints are specified on blade stability
margins, frequencies, blade geometry, autorotational properties, and
blade stresses. The design variables can be dimensions of the blade
cross section, mass and stiffness distributions along the span, or
geometrical parameters that define advance geometry tips. Typical
levels of vibration reduction achieved with passive approaches have
been in the range of 30–60% relative to a baseline design.

Because of the complex rotary-wing aerodynamic environment,
the aeroelastic response simulations needed for vibratory-load
calculations are computationally expensive. Therefore, numerous

evaluations of the vibration objective function are costly.
Consequently, direct combination of the objective function
generated by an aeroelastic response simulation with traditional
optimization algorithms is computationally very expensive.
Moreover, traditional optimization search algorithms can converge
to local optima, which are known to occur in this class of problems.

To overcome these obstacles, global approximation concepts have
been used [5–7]. A typical approach when using approximation, or
surrogate methods, is to assess the performance of various surrogate
models and then select the one that appears to be most accurate. This
method was recently applied to the helicopter vibration-reduction
problem in [8], in which second-order polynomial response surfaces,
radial basis function interpolation, and kriging were considered for
construction of the vibratory-hub-load surrogates. The study was
based on a comprehensive helicopter simulation code that uses
advanced modeling techniques such as free-wake modeling.
Seventeen design variables were used to characterize the blade’s
spanwise mass and stiffness distributions, including blade cross-
sectional dimensions and nonstructural masses. For the cases
considered, the results showed that the kriging surrogate was
generally the most accurate global approximation method and led to
the best designs. However, no single approximation method
distinguished itself as the best for all cases.

Most research dealing with surrogate modeling has been
concerned with selecting a single approximation method among
different approaches. However, the choice of the best surrogate
model is determined by a number of factors, and once selected, the
choice of the best approximation method is seldom reviewed. These
factors include the number of points used to construct the surrogate
model (sampling density), the scheme used to select points (design of
experiments), and parameters/nature of the surrogate model.
Different surrogate models have been shown to perform well under
different conditions and for different objectives. For instance, the
most accurate approximation method may not necessarily lead to the
best design. Thus, a single approximation method has not
distinguished itself as the most suitable for engineering applications.

As an alternative to seeking the best approximation method, there
has been recent work on the collaborative use of an ensemble of
surrogates [9–11]. Use of multiple surrogates is motivated by our
inability to find a unique solution to the nonlinear inverse problem of
identifying the model from a limited set of data [5] and essentially
serves as an approach to account for the uncertainty in the choice of
the appropriate approximation methods. Typically, the cost of
obtaining fitting data required for developing surrogates is high. So it
is desirable to extract as much information as possible from the data.
Although selecting the fitting parameters may require substantial
effort for certain approximation methods, surrogates can often be
constructed without significant expense, compared with the cost of
acquiring data. Therefore, the use of an ensemble of surrogates can
prove to be a relatively inexpensive method of distilling correct
trends from the data while protecting against poor surrogate models.
In addition, using multiple surrogates decreases the likelihood of
overlooking promising regions in the design space, because different
approximation methods may favor different designs.

The objectives of this paper are to demonstrate the advantages of
using multiple surrogates, which results in little additional cost
comparedwith using only one approximationmethod, alongwith the
applicability of such methods to the helicopter vibration-reduction
problem. Furthermore, pitfalls associated with using a single
approximation method are exemplified using the rotor blade
vibration-reduction problem.

II. Overview of the Aeroelastic Response
and Stability Analysis

The simulation code used in this study is based on a
comprehensive aeroelastic analysis code [12–14]. The aeroelastic
response analysis can represent the behavior of hingeless rotor
blades, as shown in Fig. 1, with actively controlled flaps. The key
ingredients of the aeroelastic response analysis are 1) the structural
dynamic model, 2) the unsteady aerodynamic model, and 3) a
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coupled trim/aeroelastic response procedure that is required for the
computation of the steady-state blade response. The aeroelastic
response analysis and overviews of the blade stress calculations and
aeroelastic stability in hover analysis are described next.

A. Structural Dynamic Model

The structural dynamic model is based on an analysis developed
by Yuan and Friedmann [12,15] that is capable of modeling
composite blades with transverse shear deformations, cross-
sectional warping, and swept tips. This study is limited to the
behavior of isotropic blades with spanwise-varying properties. The
equations of motion are formulated using a finite element
discretization of Hamilton’s principle, with the assumption that the
blade undergoesmoderate deflections. The beam typefinite elements
used for the discretization have 23 nodal degrees of freedom.Normal
modes are used to reduce the number of structural degrees of
freedom. In this study, 8modes are used: the first 3 flapmodes, first 2
lead-lag modes, first 2 torsional modes, and first axial mode.

B. Aerodynamic Model

The attached-flow blade-section aerodynamics are calculated
using a rational function approach (RFA) [13]. The RFA approach is
a two-dimensional unsteady time-domain theory that accounts for
compressibility as well as variations in the oncoming flow velocity.
This two-dimensional aerodynamic model is linked to an enhanced
free-wake model that provides a nonuniform inflow distribution at
closely spaced azimuthal steps [16,17]. Although the simulation
code can also account for dynamic stall at high advance ratios,
dynamic stall was not considered in this paper because the vibration
levels being approximated are those due to blade–vortex interaction
(BVI), which occurs at low advance ratios.

C. Coupled Trim/Aeroelastic Response

The combined structural and aerodynamic equations form a
system of coupled ordinary differential equations that are cast into
first-order state-variable form and integrated in the time domain
using the Adams–Bashforth predictor–corrector algorithm [18]. A
propulsive-trim procedure, in which six equilibrium equations (three
forces and three moments) are enforced, is used in this study. The
trim equations are solved in a coupled manner with the aeroelastic
equations of motion. The vibratory-hub shears and moments are
found by integrating the distributed inertial and aerodynamic loads
over the entire blade span in the rotating frame, then transforming
these loads to the hub-fixed nonrotating system and summing the
contributions from each blade [15]. In the process, cancellation of
various terms occurs and the primary components of the hub shears
and moments have a frequency of Nb=rev, which is known as the
blade passage frequency.

D. Blade Stresses

The procedure for calculating stresses is as follows:

1) For a given azimuth angle, the displacements at any spanwise
location are calculated by the aeroelastic response code.

2) The displacements are then substituted into the nonlinear strain-
displacement relations [15], giving the strains at any spanwise
location.

3) Stresses are calculated from the stress–strain relations.
This calculation gives the blade stresses at any spanwise location

and at any azimuth angle.

E. Aeroelastic Stability in Hover

The process for determining the hover stability of the blade is
based on the method used in [15] and is described next:

1) The nonlinear static equilibrium solution of the blade is found
for a given pitch setting and uniform inflow by solving a set of
nonlinear algebraic equations. Note that uniform inflow is used only
in the hover-stability calculation. The forward-flight analysis
employs a free-wake model for inflow calculation.

2) The governing system of ordinary differential equations is
linearized about the static equilibrium solution by writing
perturbation equations and neglecting second-order-and-higher
terms in the perturbed quantities. The linearized equations are
rewritten in first-order state-variable form.

3) The real parts of the eigenvalues of the first-order state-variable
matrix, �k � �k � i!k, determine the stability of the system. If
�k � 0 for all k, the system is stable.

For this study, the linearization process from [15] is modified to
account for the aerodynamic states introduced by the RFAmodel [8].

III. Formulation of the Blade Optimization Problem

The formulation of the blade optimization problem in forward
flight consists of several ingredients: the objective function, design
variables, and constraints. The mathematical formulation of the
optimization is stated as follows. Find the vector of design variables
D that minimizes the objective function [i.e., J�D� ! min], where
the objective function consists of a combination of the Nb=rev
oscillatory-hub shears and moments. For a four-bladed rotor, the
objective function is given by

J� KS

�����������������������������������������������������

�F4X�
2 � �F4Y�

2 � �F4Z�
2

p

� KM

���������������������������������������������������������

�M4X�
2 � �M4Y�

2 � �M4Z�
2

p

(1)

where KS and KM are appropriately selected weighting factors.
The vector of design variablesD consists of the thicknesses t1, t2,

and t3 and the nonstructural mass mns located at the shear center,
which are specified at several spanwise locations and shown inFig. 2.
The three thickness design variables were defined at the 0, 25, 50, 75,
and 100% stations, and the nonstructural mass design variable was
defined at the 68 and 100% blade stations, resulting in a total of 17
design variables. These two blade stations were chosen for the
nonstructural mass because previous studies have shown that
nonstructural masses are most effective for vibration reduction when
they are distributed over the outboard one-third of the blade [19,20].
The cross-sectional variables were assumed to vary linearly between
stations. The nonstructuralmass at the elastic axis inboard of the 68%
station was set to zero. The design variables have side constraints to
prevent them from reaching impractical values; these are stated as

        Coupled

Flap-Lag-Torsion

       Dynamics

Swashplate

Rotor Hub

Pitch Link

Fig. 1 Helicopter rotor blade with trailing-edge flaps.

x1

x

c

2

t1

t 2

t 3

m filler

h = 0.12c
mns

Fig. 2 Simplified model of the blade structural member.
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D
�L�
j � D � D

�U�
j ; j� 1; 2; . . . ; Ndv (2)

In addition, four types of behavior constraints, given by

gi�D� � 0; i� 1; 2; . . . ; Nc (3)

are placed on the blade design. The first behavior constraints are
frequency-placement constraints, which are prescribed upper and
lower bounds on the fundamental flap, lag, and torsional frequencies
of the blade. The frequency-placement constraints on the
fundamental flap frequency are written as

gflap�D� �
!F1

!U

� 1 � 0 (4)

and

gflap�D� � 1 �
!F1

!L

� 0 (5)

where !U and !L are the prescribed upper and lower bounds on the
fundamental flap frequency. Similar constraints are placed on the lag
and torsional frequencies (i.e., glag and gtorsion). In addition, all blade
frequenciesmust differ from integermultiples of the angular velocity
(1=rev, 2=rev, 3=rev, etc.) to avoid undesirable resonances.

Another behavior constraint is an autorotational constraint, which
ensures that mass redistributions produced during the optimization
do not degrade the autorotational properties of the rotor. Although
there are several indices that can be used to represent the
autorotational properties of the blade, the one used in this study is to
require that the mass polar moment of inertia of the rotor be at least
90% of its baseline value. Mathematically, this is expressed as

ga�D� � 1 �
JP

0:9JP0
� 0 (6)

where JP is the mass polar moment of inertia of the rotor when it is
spinning about the shaft, and JP0 is the baseline value.

The third behavior constraints are aeroelastic stability-margin
constraints, expressed mathematically as

gk�D� � �k � ��k�min � 0; k� 1; 2; . . . ; Nm (7)

where Nm is the number of normal modes, �k is the real part of the
hover eigenvalue for the kth mode, and ��k�min is the minimum
acceptable damping level for the kthmode. It should be noted that the
most critical modes for stability are usually the first and second lag
modes.

The final behavior constraint is a stress constraint obtained by
substituting the blade stresses into von Mises’ criterion, which is
expressed mathematically as

2
2
xx � 6�
2

x� � 
2
x��

6
�

2
allowable

3
� 0 (8)

where 
xx, 
x�, and 
x� are the axial and shear stresses, and 
allowable is
the material yield stress divided by a factor of safety. At discrete
values of the azimuth angle, Eq. (8) is evaluated at spanwise locations
corresponding to the finite element nodes. The maximum evaluation
of Eq. (8) is used for the constraint and is given as

gs�D� �max

�

2
2
xx � 6�
2

x� � 
2
x��

6
�

2
allowable

3

�

� 0 (9)

wheremax� � denotes the maximum value of Eq. (8) over each set of
azimuth angle and blade station at which it is evaluated. Therefore,
the stress constraint is enforced at the blade station and azimuth angle
at which the stress condition is most critical. The stress margin is
given by

1 �

��������������������������������������


2
xx � 3�
2

x� � 
2
x��

q


allowable
(10)

A stress margin <0 would correspond to a design that violates the
stress constraint.

IV. Global Approximation Methods (Surrogates)

To conduct a global search of the design space in a reasonable
amount of time, it is necessary to use global approximation, or
surrogate methods, in which the true objective function and
expensive constraints are replaced with smooth functional
relationships that can be evaluated quickly. To construct the
surrogates, the objective function and constraints must first be
evaluated over a set of design points. The surrogate is then generated
byfitting the initial design points. Although function evaluations that
come from the expensive helicopter simulations are needed to form
the approximation, the initial investment of computer time is
significantly less compared with global searches using non-
surrogate-based optimization methods. Once the surrogates have
been obtained, they are used to replace the more expensive true
objective function and constraints in the search for the optimum.

The surrogate vibration objective function can be generated in two
ways:

1) The underlying responses [i.e., the vibratory-hub shears and
moments in Eq. (1)] are replaced by surrogates that are used to build
the surrogate objective function as in Eq. (11).

2) The overall output J is approximated directly.
Six responses need to be approximated in the first approach, and

one response needs to be approximated in the second approach. Both
methods were considered in this study:

Ĵ� KS

�����������������������������������������������������

�F̂4X�
2 � �F̂4Y�

2 � �F̂4Z�
2

q

� KM

���������������������������������������������������������

�M̂4X�
2 � �M̂4Y�

2 � �M̂4Z�
2

q

(11)

The stress constraint is the only constraint that requires a forward-
flight simulation and is therefore the only computationally expensive
constraint. Consequently, a surrogate constraint is used in place of
Eq. (9) during optimization. Descriptions of the methods for
constructing the global approximations are given next.

A. Design of Computer Experiments

The space-filling [7] design of computer experiment employed in
this study is optimal Latin hypercube (OLH) sampling, which is a
commonly used method. The OLH algorithm from the iSIGHT
software package is used [21–23]. Methods for fitting the data points
in the OLH are described next.

B. Polynomial Response Surfaces

Suppose that a deterministic function of Ndv design variables
needs to be approximated and has been evaluated at Nsp sample

points. Sample point i is denoted as x�i� � �x
�i�
1 ; . . . ; x

�i�
Ndv

� and the

associated response is given by yi � y�x�i�� for i� 1; . . . ; Nsp. Note

that x�i� is a scaled version ofD such that its elements vary between 0
and 1. A polynomial regression approximation to y�x� can bewritten
as

y�x� � ŷ�x� � �pr (12)

where ŷ�x� is the function chosen to approximate the true response
y�x�, and �pr is the error associated with the approximation. It is
important to note that the errors are assumed to be independent; that
is, the errors at two points close together will not necessarily be close.
This assumption will be revisited when considering kriging. In this
study, second-order polynomials are used for ŷ�x�. The least-squares
regression approximation is given as [24]

ŷ poly � �0 �
X

Ndv

i�1

�ixi �
X

Ndv

i�1

X

Ndv

j�1;i<j

�ijxixj �
X

Ndv

i�1

�iix
2
i (13)

In addition to Eq. (13), a reduced-term polynomial surrogate in
which statistically insignificant terms are removed is considered. The
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reduced-term polynomial is obtained by sequentially removing
coefficientswith t statistics less than 1 from the full-term polynomial.

C. Kriging Surrogates

Kriging is based on the fundamental assumption that errors are
correlated, which is in contrast to the assumption of independent or
uncorrelated errors made in polynomial regression. This implies that
one assumes that the errors at two points close together will be close.
In fact, the assumption that the errors are uncorrelated is only
appropriate when the sources of error are random, such as in the case
of measurement error or noise. In the case of deterministic computer
simulations, there is no source of random error. Therefore, it is more
reasonable to assume that the error terms will be correlated and the
closer that two points are to each other, the higher this correlationwill
be.

In kriging, the unknown function y�x� is assumed to be of the form

y�x� � f�x� � Z�x� (14)

where f�x� is an assumed function (usually polynomial form), and
Z�x� is a realization of a stochastic (random) process that is assumed
to be Gaussian [25]. The function f�x� can be thought of as a global
approximation of y�x�, and Z�x� accounts for local deviations that
ensure that the kriging model interpolates the data points exactly. In
this study, Z�x� is based on Gaussian spatial correlation functions,
and f�x� is assumed to be a linear polynomial. Maximum likelihood
estimation is used to select the fitting parameters [26,27]. The kriging
surrogates were created with a freely available MATLAB kriging
toolbox [28].

D. Radial Basis Neural Networks

Radial basis neural networks (RBNNs) approximate a function as
a weighted sum of radial basis functions, also known as neurons:

ŷ RBNN �
X

NRBF

i�1

�iRBNN�x� (15)

where RBNN�x� is the response of the radial basis function at x, and
�i is theweight associatedwith the radial basis function. In this study,
the MATLAB routine newrb is used to construct the RBNN.
Gaussian functions given by Eq. (16) are used for the neurons:

RBNN��� � exp���2� (16)

In this case, the dummy variable � would be ��kx � x
�i�k�, where

kx � x
�i�k is the Euclidean distance between two vectors. The

parameter � is inversely related to the user-defined spread parameter,
which controls the radius of influence for each neuron. Specifically,
the radius of influence is the distance at which the output of a neuron
reaches a certain small value corresponding to half of the spread
parameter. A high spread would cause the neuron responses to be
smooth, and a low spread would result in highly nonlinear responses.
The spread is set to 0.5 in this study. The number of radial basis
functions and associated weights are determined by satisfying the
user-defined error goal for the mean square error in the
approximation. The goal parameter is set to the square of 5% of
the mean response in this study.

E. Weighted-Average Surrogates

Once the individual surrogates have been generated, an extra
model can be constructed with little additional expense, compared
with the cost of generating the fitting data. The additional surrogate is
based on the weighted-average approach implemented in [10], in
which it was shown that the weighted-average surrogate protected
against theworst individual surrogatewhile performing aswell as the
best for a number of analytical and applied problems. The weighted-
average surrogate is formulated as a weighted sum of the three
individual approximation methods; that is,

ŷWTA � wpolyŷpoly � wkrgŷkrg � wRBNNŷRBNN (17)

where wpoly, wkrg, and wRBNN are the weights associated with each
surrogate. The weights are calculated in such a way that they
1) reflect the confidence in each individual surrogate and 2) filter out
adverse effects associated with individual surrogates that represent
the sample data well, but predict poorly at designs that are not
included in the sample data. Furthermore, the weights in Eq. (17) are
constrained to sum to 1 so that if all of the individual surrogates give
the same output at some input, then the weighted surrogate will also
recover this output. A weight scheme that satisfies these issues is
given next [10]:

wi �
w	

i
PNsm

i w	
i

(18)

where

w	
i � �Ei � d1Eavg�

d2 ; d1 < 1; d2 < 0 (19)

Eavg �
X

Nsm

i

Ei=Nsm (20)

andNsm is the number of surrogate models. Theweights are based on
a global-data-based error measure for each surrogate, denoted by Ei.
In this study, the generalized mean square error (GMSE) based on
leave-one-out cross validation is used as the error measure, and thus

Ei �
����������������

GMSEi

p

(21)

Details on how the GMSE is determined are given in [10]. In
Eq. (19), d1 and d2 are user-defined parameters that control the
relative influence of the individual surrogate errorEi and the average
of the individual errors Eavg on the weight. Small values of d1 and
large negative values of d2 result in high weights for the best
individual surrogate, which satisfies the first goal mentioned
previously for determining the weights. Large values of d1 and small
negative values of d2 result in more emphasis on the average of the
error, whichwould protect against surrogates thatmay predict well at
sample data points, but predict poorly at unsampled locations in the
design space. Based on a parametric study conducted in [10], setting
d1 � 0:05 and d2 ��1, or d1 � 0:5, d2 ��1 has little effect on the
weights. Because similar behavior was observed in this study, the
results are presented for d1 � 0:05 and d2 ��1. Note that the
intuitive property that the higher the error, the lower the weight
corresponding to a surrogate is recovered because d2 < 0. It is worth
noting that the optimal settings of d1 and d2 as well as the optimal
choice of surrogates for use in the weighted-average approach are
important issues that are the subject of ongoing research beyond the
scope of this paper.

V. Results

This section presents accuracy measures of the approximation
methods that have been described and vibration-reduction results
using the surrogate objective functions. The helicopter configuration
used in all computations is given in Table 1. The simulations are
conducted at an advance ratio of 0.15 and descent angle of 6.5 deg,
where high vibration levels due to strong BVI are encountered.
Optimization results are comparedwith a baseline design resembling
a Messerschmitt–Bölkow–Blohm (MBB) BO-105 blade. Figure 3
illustrates the geometrical data needed for the propulsive-trim
calculation used in this study.

In addition to the information provided in Table 1, additional
information is needed for the fixed cross-sectional parameters,
objective function, constraints, and finite element discretization of
the blade. The material properties and the chordwise locations of the
vertical walls are given in Table 2.

The weighting factors in the objective function, KS and KM, are
selected to be 1. These weighting factors result in an objective
function that represents the sum of the 4=rev oscillatory-hub shear
resultant and the 4=rev oscillatory-hub moment resultant in the hub-
fixed nonrotating frame. For this study, the following side constraints
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are enforced:

1:0 mm � t1 � 8:0 mm (22)

1:0 mm � t2; t3 � 12:0 mm (23)

0:0 � mns=m0 � 0:25 (24)

The upper and lower bounds used for the frequency-placement
constraints, per revolution, are given next:

0:60 � !L1 � 0:80 (25)

1:05 � !F1 � 1:20 (26)

2:50 � !T1 � 6:50 (27)

In the aeroelastic stability constraints given by Eq. (7), the minimum
acceptable damping for all modes, ��k�min, is chosen to be 0.01.
Additionally, the constraints are modified for the second lag mode,
which can sometimes be slightly unstable. To prevent this situation, a
small amount of structural damping is added to this mode. For this
study, 0.5% structural damping is added to stabilize the second lag
mode of the baseline blade. For the stress constraint, a factor of safety
of 1.5 is used. The rotor blade was discretized into the 6 finite
elements, shown in Fig. 4.

In this study, two sets of fitting points are used to build the
surrogates: a 300-point OLH and a 500-point OLH. From the 300-
point OLH, 283 points had converged-trim solutions and were used
to build the surrogates, whereas out of the 500-pointOLH, 484 points
had converged-trim solutions. One of the advantages of surrogate-
based optimization with the design of computer experiments is that
each simulation corresponding to a design point in the OLH can be
run independently of the others, and therefore the simulations can be
run in parallel. The helicopter simulations were run on a Linux
cluster of 1.8–2.4 GHzOpteron processors. Using 40 processors, the

283-point data set required 53 h to generate, and the 484-point data
set needed 82 h.

The fitting times associated with each of the approximation
methods considered in this study are presented in Table 3. Note that
the abbreviation (red) indicates the use of reduced-term polynomial
surrogates. The individual surrogates were generated on 3.2 GHz
Xeon processors, and the 40 processors from the Linux cluster were
used to generate the weighted-average models. The leave-one-out
cross-validation error needed to generate the weighted models is
suitable for parallel computation because the error at left-out points
can be calculated independently of the errors at the other points.
These results demonstrate that constructing the surrogates in this
study, including weighted-average models, required little additional
time, compared with the time needed to generate the fitting data.

A. Weighted-Average Surrogate Construction

The weight coefficients necessary to define the weighted-average
surrogates are given in Tables 4 and 5. The weight coefficients
obtained when using the full-term polynomial response surface are
given in Table 4. Generally, the kriging surrogate has the highest
weight for all responses and both sample sizes in Table 4. When the
reduced-term polynomial is used in place of the full-term
polynomial, as shown in Table 5, the polynomial is weighted the
most for all responses and sample sizes. The RBNNgenerally has the
lowest weight. Because the RBNN corresponds to the highest leave-
one-out cross-validation errors, their responses are themost sensitive
to the individual data points used to fit the model. This suggests that
the poor performance of the RBNN is due to overfitting of the data.

B. Surrogate Accuracy Results

The predictive capabilities of the individual andweighted-average
surrogates were quantified using a set of data points not included in
the construction of the surrogates. The predicted responses from the
surrogates were then compared with the actual responses at the test
points. The test points came from a 200-pointOLH, ofwhich 197 had
converged-trim solutions. None of the blade designs from the 197
test pointswere coincidentwith the blade designs from the twoOLHs
used to create the surrogates. Using the test points, the absolute
percent error is given by

Table 1 Rotor and helicopter parameters

Dimensional data

R� 4:91 m �� 425 rpm
m0 � 5:57 kg=m

Nondimensional data

Nb � 4 c� 0:05498R
�p � 0:0 deg Cd0 � 0:01
�pt � 0 deg �d � 6:5 deg
�� 0:15 CW � 0:005

 � 0:07 Cdf � 0:01
XFA � 0:0 ZFA � 0:3
XFC � 0:0 ZFC � 0:3
MBB BO-105 baseline fundamental frequencies

!L1 � 0:729 !F1 � 1:125
!T1 � 3:263 ——

Table 2 Fixed parameters defining the blade

cross section

Parameters Values

Aluminum material properties

E 70.7 GPa
v 0.33
	struct 2700 kg=m3


Y 324 MPa
Nonstructural filler mass density

	filler 237:4 kg=m3

Locations of the vertical walls

x1 65.4 mm
x2 111.6 mm
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Z
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Z
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Fig. 3 Helicopter in forward flight.
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"i �
jy�i� � ŷ�i�j

�y
(28)

where y�i� is the actual response computed by the helicopter
simulation, and ŷ�i� is the response predicted by the surrogate at the
ith test point. For the vibratory-load errors, �y is the mean of the
absolute values of the responses from the 197 test points, and for the
errors in the surrogate stress constraint,

�y�

2
allowable

3
(29)

Based on Eq. (28), the average error is

"avg �

PNtp

i�1 "i

Ntp

(30)

where Ntp is the number of test points. The average percent error is
representative of the surrogate’s predictive capability over the entire
design space, because all 197 test points are included.

The average errors are given in Fig. 5 for 7 responses: the 6
underlying hub shears andmoments and the stress constraint. For the
283-point sample set, the kriging surrogate has the lowest average
error of the individual surrogates for each response. In contrast, the
polynomials correspond to the lowest average errors for some
responses based on the 484-point sample set. So the choice of the best
surrogate in terms of approximating over the entire design space is
dependent on the sample size for the responses considered in this
study. If onewere to only use krigingwith larger sample sets (e.g., the
484 fitting points) because it was the most accurate method with 283

points, instead of continuing to use multiple surrogates, then inferior
results would be obtained. Furthermore, given that constructing
various surrogates is relatively inexpensive, there is no penalty
associated with taking advantage of multiple approximation
methods, even those that may have performed poorly under certain
circumstances.

Among the individual surrogates for the 7 responses shown in
Fig. 5, the lowest average errors range from 2–53% for the 283-point
sample set. In comparison, the errors of the weighted-average
surrogates range from 2–53% and always correspond to lower errors
than theworst approximationmethod. These results demonstrate that
the weighted-average surrogates performed as well as the best
individual surrogates for the responses considered in this study.

The errors in the surrogate objective function are given in Fig. 6 for
both methods of forming the approximate objective function. A
comparison of the errors in Figs. 5 and 6 with the weight coefficients
in Tables 4 and 5 shows that the surrogate with the lowest cross-
validation error (and hence the highest weight) is not necessarily the
most accurate when using test points to measure error. For example,
consider the case of approximating the overall objective function
directly. The results in Table 5 indicate that reduced-term
polynomials are more accurate than kriging surrogates when using
the GMSE as the global error measure. However, Fig. 6 shows that
the kriging surrogates are more accurate than the reduced-term
polynomials in terms of the average error based on test points. This
example illustrates a potential downside associated with attempting
to identify the most accurate individual surrogate for a given
application: the most accurate approximation method may be
dependent on the metric used to quantify error.

It is interesting to note that increasing the sample size from 283 to
484 generally had little effect on the accuracy of the surrogates. This
indicates that for the 17-dimensional design space, increasing the
number of fitting points from 283 to 484 was not sufficient to
significantly enhance the surrogates’ predictions for the responses
considered in this study.

C. Optimization Results

Optimization results based on surrogate objective-functions and
constraints are presented in this section. Optimization of the
surrogate objective functions was conducted with the multi-island
genetic algorithm in iSIGHT [29]. The genetic algorithm was set to
run for 200,000 total objective-function evaluations. Optimization of
each surrogate objective function was conducted simultaneously
because they can be optimized in parallel.

Table 6 gives the optimization results when using the underlying
hub shears and moments to build the surrogate objective function.
Note that vibration-reduction results are presented relative to the

Table 3 Fitting times associated with the approximation methods

Surrogate sample sizea Fitting time

Polynomial 283 <1 s
Polynomial (red) 283 <1 s
Kriging 283 15–20 s
RBNN 283 30–50 s
Weighted average 283 7–10 min.
Weighted average (red) 283 7–10 min.
Polynomial 484 <1 s
Polynomial (red) 484 1–2 s
Kriging 484 50 s–1 min.
RBNN 484 1.5–2 min.
Weighted average 484 30–40 min.
Weighted average (red) 484 30–40 min.

aThe 283 and 484 sample points required 53 and 82 h to generate, respectively.

Table 4 Weight coefficients for the weighted-average surrogates with full-term polynomials

Weight coefficient Sample size F4X F4Y F4Z M4X M4Y M4Z J Stress constraint

wpoly 283 0.407 0.395 0.322 0.374 0.306 0.291 0.333 0.353
wkrg 283 0.478 0.473 0.458 0.460 0.449 0.412 0.461 0.443
wRBNN 283 0.115 0.132 0.219 0.167 0.245 0.297 0.206 0.205
wpoly 484 0.422 0.436 0.360 0.378 0.340 0.333 0.379 0.400
wkrg 484 0.449 0.422 0.425 0.448 0.405 0.381 0.419 0.424
wRBNN 484 0.129 0.142 0.215 0.175 0.255 0.286 0.203 0.176

Table 5 Weight coefficients for the weighted-average surrogates with reduced-term polynomials

Weight coefficient Sample size F4X F4Y F4Z M4X M4Y M4Z J Stress constraint

wpoly 283 0.497 0.493 0.431 0.472 0.406 0.401 0.443 0.433
wkrg 283 0.406 0.396 0.385 0.388 0.385 0.349 0.385 0.388
wRBNN 283 0.097 0.110 0.183 0.140 0.209 0.250 0.172 0.179
wpoly 484 0.465 0.474 0.409 0.427 0.384 0.377 0.424 0.436
wkrg 484 0.415 0.394 0.393 0.413 0.378 0.356 0.388 0.399
wRBNN 484 0.120 0.132 0.199 0.161 0.238 0.267 0.188 0.165
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vibration levels of a baseline design resembling a MBB BO-105
blade. For the 283-point sample set, the reduced-term polynomial
produced the best design, with a 67.3% vibration reduction, and for
484 points, kriging produced the best design,with a 68.7% reduction.
Thus, the best individual surrogate for optimization differed with the
sample size in this study.

The average of the Euclidean distances between all of the designs
in Table 6 corresponding to 283 sample points is equal to 40% of the
distance between the two furthest corners of the design space. The
maximum andminimum distances among the optimal designs are 56

and 13% of the distance between the two furthest corners,
respectively. Similarly, for the 484-point sample set, the average,
maximum, and minimum Euclidean distances relative to the
maximum dimension of the design space are 33, 53, and 8%,
respectively. These results indicate that optimization of the various
surrogates led to designs in different regions of the design space.

Because optimization was conducted in parallel, 7 h were needed
to optimize all objective functions corresponding to 283 sample
points in Table 6. In comparison, optimization of a single surrogate
required at least 3 h. So optimization of all surrogates required 4

Fig. 5 Average errors of the underlying vibratory loads and stress constraint (Poly. denotes the polynomial, KRG denotes kriging, and Wtd. Avg.

denotes the weighted average).

Fig. 6 Average errors in the surrogate objective function.

Table 6 Optimization results using surrogate underlying responses

Surrogate Sample sizea Optimization time, h Predicted reduction Actual reduction Actual stress margin !L1 !F1 !T1

Polynomial 283 3 100.0% 66.4% 0.017 0.671 1.062 5.036
Polynomial (red) 283 3 100.0% 67.3% 0.014 0.641 1.059 4.679
Kriging 283 3.5 94.2% 59.0% 0.008 0.613 1.059 4.176
RBNN 283 5 94.9% 53.7% 0.016 0.624 1.059 4.334
Weighted average 283 7 95.4% 61.3% 0.003 0.601 1.055 4.285
Weighted average (red) 283 7 96.7% 63.9% 0.008 0.604 1.057 4.120
Polynomial 484 3 100.0% 58.9% 0.006 0.608 1.056 3.958
Polynomial (red) 484 3 100.0% 62.2% 0.007 0.603 1.056 3.919
Kriging 484 4 87.0% 68.7% 0.008 0.621 1.058 4.560
RBNN 484 5 98.7% 52.4% 0.006 0.603 1.056 4.018
Weighted average 484 8 88.3% 68.1% 0.003 0.618 1.059 3.866
Weighted average (red) 484 8 89.5% 70.2% 0.003 0.615 1.059 3.796

aThe 283 and 484 sample points required 53 and 82 h to generate, respectively.
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additional hours, which is relatively insignificant compared with the
53 h needed to generate the 283 sample points. Similar results for the
484-point sample set are clear from Table 6.

Optimization results corresponding to direct approximation of the
overall objective function are provided in Table 7. The average,
maximum, and minimum Euclidean distances relative to the
maximum dimension of the design space are 33, 51, and 18%,
respectively, for the 283-point data set and 33, 43, and 18%,
respectively, for the 484-point sample set. The full-term polynomials
led to the most vibration reduction among the individual surrogates
based on the 283 sample points, but led to the worst design with the
484 fitting points. The RBNN, which is the least accurate surrogate,
led to the best design for the 484-point sample set. These results
represent extreme examples in the sense that the best individual
surrogate for one sample set is the worst surrogate for another sample
set, and the least accurate surrogate led to the best design in one
instance. Thus, optimizing the least accurate surrogate proved to be
beneficial. Because it is relatively inexpensive to optimize the
surrogates, there is no downside to considering all available
surrogates for optimization, including the approximation method
that performs the worst under some circumstances. Furthermore, the
weighted-average surrogates led to the lowest-vibration designs in
Tables 6 and 7. Therefore, it was beneficial to optimize the weighted-
average models, because they located promising designs that were
overlooked by the individual surrogates.

The different fundamental blade frequencies presented in Tables 6
and 7, along with the Euclidean distances between optimum designs,
demonstrate that optimization of multiple surrogates was useful for
locating distinct reduced-vibration designs. In addition to employing
multiple approximation methods, considering both methods of
constructing the surrogate objective function resulted in additional

Table 7 Optimization results when directly approximating the objective function

Surrogate Sample size Optimization time, h Predicted reduction Actual reduction Actual stress margin !L1 !F1 !T1

Polynomial 283 2 394.4% 64.4% 0.005 0.610 1.058 4.330
Polynomial (red) 283 2 512.3% 60.1% 0.005 0.605 1.057 4.231
Kriging 283 2 120.0% 54.1% 0.006 0.600 1.055 4.252
RBNN 283 4 93.9% 57.4% 0.009 0.602 1.055 4.420
Weighted average 283 4 234.9% 70.5% 0.008 0.604 1.055 4.538
Weighted average (red) 283 4 221.7% 65.0% 0.000 0.604 1.059 3.871
Polynomial 484 2 222.4% 45.0% 0.001 0.627 1.060 3.960
Polynomial (red) 484 2 207.1% 50.0% 0.000 0.600 1.058 3.710
Kriging 484 2 145.1% 55.8% 0.000 0.606 1.057 3.981
RBNN 484 4 97.4% 67.5% 0.000 0.631 1.057 4.670
Weighted average 484 4 116.7% 67.6% 0.010 0.620 1.057 4.602
Weighted average (red) 484 4 129.2% 58.8% 0.008 0.625 1.056 4.380

Table 8 Predicted vibration reduction and stress margins by each of the surrogates when directly approximating the objective function

Predicted reduction and stress margin

Optimum Sample
size

With
polynomial

With polynomial
(red)

With kriging With RBNN With weighted
average

With weighted average
(red)

Polynomial 283 394% (0.0147) 341% (0.0080) 99%
(0.0761)

91% (0.0001) 196% (0.0383) 205% (0.0324)

Polynomial (red) 283 571%
(�0:0002)

512% (0.0001) 115%
(0.0083)

94%
(�0:0191)

262% (�0:0003) 287% (�0:0002)

Kriging 283 298%
(�0:0180)

283% (�0:0098) 120%
(0.0840)

91% (0.0005) 173% (0.0298) 187% (0.0275)

RBNN 283 427%
(�0:0515)

300% (�0:0482) 90%
(0.1141)

94% (0.0001) 203% (0.0295) 184% (0.0207)

Weighted average 283 484%
(�0:0263)

417% (�0:0640) 119%
(0.0407)

93% (0.0000) 235% (0.0083) 247% (�0:0130)

Weighted average
(red)

283 387% (0.0464) 378% (0.0435) 99%
(0.0620)

92% (0.0002) 193% (0.0436) 222% (0.0427)

Polynomial 484 222% (0.0076) 200% (0.0077) 72%
(0.0074)

93%
(�0:0386)

133% (�0:0007) 130% (�0:0002)

Polynomial (red) 484 215% (0.0047) 207% (0.0045) 82%
(0.0056)

93%
(�0:0379)

135% (�0:0025) 137% (�0:0022)

Kriging 484 108% (0.0001) 104% (0.0003) 145%
(0.0068)

90%
(�0:0426)

120% (�0:0044) 118% (�0:0043)

RBNN 484 48%
(�0:0149)

37% (�0:0012) 104%
(0.1076)

97% (0.0004) 81% (0.0380) 75% (0.0410)

Weighted average 484 154%
(�0:0286)

146% (�0:0223) 102%
(0.0625)

78% (0.0060) 117% (0.0152) 116% (0.0154)

Weighted average
(red)

484 185%
(�0:0002)

185% (0.0005) 86%
(0.0045)

91%
(�0:0108)

124% (�0:0001) 129% (0.0002)
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reduced-vibration designs. For instance, the best design associated
with constructing the surrogate objective function from the
underlying responses corresponds to a 70.2% vibration reduction,
and the best design from direct approximation results in a 70.5%
reduction. The differences in the fundamental frequencies in Tables 6

and 7 demonstrate that these are two distinct designs, even though
they correspond to similar levels of vibration reduction. Thus, given
that the 24 surrogate objective functions in Tables 6 and 7 were
optimized simultaneously using parallel computation, a multiple-
surrogate approach was an inexpensive and effective method for
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Fig. 8 Surrogate objective-function contours plotted in a plane defined by the optimum designs corresponding to full-term polynomials, kriging, and
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locating various candidate designs. Using multiple surrogates
decreases the likelihood of overlooking promising designs, because
different surrogates may favor different regions of the design space.

Although all of the optimum designs in Tables 6 and 7 are
different, they all result in significant reduction of the vertical shear
F4Z, which is the primary mechanism for reducing the objective
function corresponding to the BVI flight condition. This is illustrated
in Fig. 7, in which the best and worst designs from Tables 6 and 7
(70.5 and 45.0% vibration reduction, respectively) are compared
with the MBB BO-105 baseline vibratory loads. These two designs
reduce the vertical shear by 74 and 41%.Although the other vibratory
loads are also reduced, the vertical shear is the largest and therefore
its reduction is the most critical for minimizing the objective
function. Furthermore, all of the designs inTables 6 and 7 correspond
to stress margins less than 0.02, which indicates that the stresses in
the optimal blades are relatively close to the allowable stress.
Because blade designs corresponding to significant vibration
reduction that lie near the allowable-stress boundary were located, it
was felt that iterative search methods such as those based on a trust-
region strategy [30] or uncertainty in the surrogates [31] were not
worth the additional cost.

The significant differences in predicted and actual amounts of
vibration reduction in Tables 6 and 7 indicate that the surrogates are
inaccurate at their respective optimal designs. Furthermore, the
surrogates were susceptible to predicting impractical amounts of
vibration reduction (i.e.,
 100%). Thus, it was especially critical for
this problem to conduct simulations at each optimal design to obtain
the actual amount of reduction. Even though they were not accurate
everywhere in the design space, the surrogates still led to reduced-
vibration designs.

To illustrate the effects of errors in the individual surrogate
constraints on optimization results, the predicted vibration
reductions from each surrogate at all of the optimal designs from
Table 7 are given in Table 8, along with predicted stress margins in
parentheses. Although all surrogates predict that each optimal design
is a reduced-vibration design, some designs were missed due to
errors in the surrogate constraints. For example, among the
individual approximation methods based on 283 sample points, the
full-term polynomial-surrogate objective function predicts that the
optimum design corresponding to the RBNN results in a 427%
reduction, which is superior to the 394% predicted reduction
corresponding to its own optimum. However, as indicated by the
stress margin, the full-term polynomial-surrogate stress constraint
incorrectly predicts that the RBNN optimum design is infeasible.
Therefore, errors in the polynomial-surrogate constraint led away
from a design that was predicted to correspond to a better objective-
function value. Figure 8, which illustrates this result using the
visualization method introduced in [32], provides contour plots of
the approximate objective functions plotted in a plane defined by
three of the optimal designs from the individual surrogates. The
minima returned by the full-term polynomial, kriging, and RBNN
surrogates are shown as (0,0), (0,1), and (1,0) and define the
endpoints on the plane. Circles representing evaluations of the
surrogate stress constraint over various designs in the plane are
superimposed on the contour plots. For example, Fig. 8a shows that
the full-term polynomial predicts that the RBNN optimum
corresponds to a superior objective-function value compared with
its own optimum. However, Fig. 8a also shows that this design
violates the polynomial-surrogate stress constraint.

Table 8 and Fig. 8 also illustrate how the errors in the surrogate
objective functions may lead to inferior designs. For example, the
kriging-surrogate stress constraint based on 283 sample points
correctly predicts that the full-term polynomial design, which is
superior to the kriging optimum in terms of actual vibration
reduction, is feasible. However, the kriging-surrogate objective
function predicts that the superior design corresponds to a 99%
vibration reduction, while predicting a 120% reduction for the
inferior kriging optimum. Therefore, the kriging-surrogate objective
function led to an inferior design, compared with the full-term
polynomial, because it incorrectly predicted that the kriging
optimum was better than the full-term polynomial optimum.

VI. Conclusions

The results in this paper demonstrate the advantages of employing
multiple surrogates as a relatively inexpensivemethod for fully using
expensive sample data. Furthermore, some pitfalls associated with
identifying a single surrogate for accurate predictions and/or
optimization were exemplified using the rotor blade vibration-
reduction problem. The results illustrated that all available surrogates
should be optimized, even those that perform poorly under certain
circumstances, because there is relatively little cost in doing so. The
principal results from this study are summarized next.

1) The rotor blade vibration-reduction problem was illustrative of
applications in which there is no single best approximation method.
The results indicated that the most accurate approximation method
was dependent on sample size and the metric used to quantify error,
whereas the best surrogate for optimization differed with sample
size.

2) Themost accurate approximationmethod did not always lead to
the best design. In fact, the radial basis neural network, whichwas the
least accurate approximationmethod, led to the best design among all
of the individual surrogates when directly approximating the
objective function.

3) Optimization of multiple surrogates, including the weighted-
average models, was an effective method for locating reduced-
vibration blade designs that would have been overlooked if only a
single surrogate was employed. Generating the fitting data required
52–82 h of computation and creating all of the surrogates required
less than 1 h, and 8 h was needed to optimize all of the surrogates
based on 200,000 objective-function evaluations each. Feasible
designs ranging from a 45–70.5% vibration reduction were located.
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