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Abstract Surrogate models are commonly used to re-
place expensive simulations of engineering problems.
Frequently, a single surrogate is chosen based on past
experience. This approach has generated a collection
of papers comparing the performance of individual
surrogates. Previous work has also shown that fitting
multiple surrogates and picking one based on cross-
validation errors (PRESS in particular) is a good strat-
egy, and that cross-validation errors may also be used to
create a weighted surrogate. In this paper, we discussed
how PRESS (obtained either from the leave-one-out
or from the k-fold strategies) is employed to estimate
the RMS error, and whether to use the best PRESS
solution or a weighted surrogate when a single surro-
gate is needed. We also studied the minimization of the
integrated square error as a way to compute the weights
of the weighted average surrogate. We found that it
pays to generate a large set of different surrogates and
then use PRESS as a criterion for selection. We found
that (1) in general, PRESS is good for filtering out
inaccurate surrogates; and (2) with sufficient number
of points, PRESS may identify the best surrogate of
the set. Hence the use of cross-validation errors for
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choosing a surrogate and for calculating the weights of
weighted surrogates becomes more attractive in high
dimensions (when a large number of points is naturally
required). However, it appears that the potential gains
from using weighted surrogates diminish substantially
in high dimensions. We also examined the utility of using
all the surrogates for forming the weighted surrogates
versus using a subset of the most accurate ones. This
decision is shown to depend on the weighting scheme.
Finally, we also found that PRESS as obtained through
the k-fold strategy successfully estimates the RMSE.

Keywords Multiple surrogate models · Weighted
average surrogates · Cross-validation errors ·
Prediction sum of squares

1 Introduction

Despite advances in computer throughput, the compu-
tational cost of complex high-fidelity engineering simu-
lations often makes it impractical to rely exclusively on
simulation for design optimization (Jin et al. 2001). In
addition, these advances do not seem to affect the time
for a state-of-the-art simulation, but instead to be used
to add complexity to the modeling (Venkataraman and
Haftka 2004). To reduce the computational cost, surro-
gate models, also known as meta-models, are often used
in place of the actual simulation models. With advances
in computer throughput, the cost of fitting a given
surrogate drops in relation to the cost of simulations.
Consequently more sophisticated and more expensive
surrogates have become popular. Surrogates such as
radial basis neural networks (Smith 1993; Cheng and
Titterington 1994), kriging models (Sacks et al. 1989;
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Lophaven et al. 2002) support vector regression (Smola
and Scholkopf 2004; Clarke et al. 2005) that require
optimization in the fitting process, increasingly replace
the traditional polynomial response surfaces (Box et al.
1978; Myers and Montgomery 1995) that only require
the solution of a system of linear equations.

It is difficult to predict the performance of a surro-
gate for a new problem. In most of the cases, the prac-
tice is to use a surrogate model of preference based on
past experience. Alternatively, the generation of large
and diverse set of surrogates reduces the chances of
using poorly fitted surrogates. Zerpa et al. (2005) used
multiple surrogates for optimization of an alkaline–
surfactant–polymer flooding processes incorporating
a local weighted average model of the individual
surrogates. Goel et al. (2007) explored different ap-
proaches in which the weights associated with each
surrogate model are determined based on the global
cross-validation error measure called prediction sum
of squares (PRESS). Acar and Rais-Rohani (2008)
discussed variations in the choice weights using cross-
validation errors, and studied weight selection via
optimization. PRESS can also be used to identify the
surrogate most likely to be the most accurate. Lin et al.
(2002) and Meckesheimer et al. (2002) presented an
investigation on the use of cross-validation for RMSE
estimation.

The objectives of this paper are: (1) investigate the
effectiveness of PRESS for selecting the best surrogate
in a diverse set; and (2) explore two weighting schemes
based on minimization of the mean integrated square
error and their potential to improve upon the best
PRESS surrogate. The rest of the paper is organized
as follows. Sections 2 and 3 present the methodology
of the investigation. Section 4 defines the numerical
experiments used for the investigation and Section 5
presents results and discussion. Finally, the paper is
closed by recapitulating salient points and concluding
remarks. Three appendices present (1) an overview
of the used surrogate modeling techniques; (2) basic
concepts about boxplots; and (3) how reducing the cost
of PRESS computation in kriging affects the accuracy
of the RMSE estimation.

2 Background

Surrogates are fitted to function values at p points,
which are known as the design of experiments (DOE).
The accuracy of the surrogates is then evaluated on the
entire domain, with one of the main error metrics being
the root mean square error (RMSE).

2.1 Root mean square error

We denote by y(x) the actual simulation at the point
x = [

x1 x2 . . . xndv

]T
, and by e (x) = y (x) − ŷ (x) the

error associated with the prediction of the surro-
gate model, ŷ (x). The actual root mean square error
(RMSE) in the design domain with volume V is given
by:

RMSEactual =
√

1

V

∫

V
e2 (x) dx . (1)

In this paper, when we check the accuracy of a sur-
rogate, we compute the RMSE by Monte Carlo integra-
tion at a large number of ptest test points:

RMSE =
√√
√
√ 1

ptest

ptest∑

i=1

e2
i , (2)

where ei = yi − ŷi is the error associated with the pre-
diction, ŷi, compared to the actual simulation, yi, in the
i-th test point.

We use five different Latin hypercube designs
(Mckay et al. 1979), created by the MATLAB Latin
hypercube function lhsdesign, set with the “maxmin”
option with ten iterations. The RMSE is taken as the
mean of the values for the five designs, and the un-
certainty about this value is approximately standard
deviation divided by

√
5.1

For comparing surrogates based on the data only at
the p points of the design of experiments (DOE), we
use cross-validation errors.

2.2 Cross-validation errors

A cross-validation error is the error at a data point
when the surrogate is fitted to a subset of the data
points not including that point. When the surrogate is
fitted to all the other p − 1 points, (so-called leave-one-
out strategy), we obtain the vector of cross-validation
errors, ẽ. This vector is also known as the PRESS vector
(PRESS stands for prediction sum of squares). Figure 1
illustrates the cross-validation errors for a polynomial
response surface and kriging surrogates.

The RMSE is estimated from the PRESS vector:

PRESSRMS =
√

1

p
ẽT ẽ. (3)

1We performed a comparison with the RMSE computation using
the whole set of points. We found that the uncertainty can be also
adequately estimated from the standard deviation of the entire
set divided by the square root of the number of points.
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Fig. 1 The cross-validation error (CVE) at the third point of
the DOE is exemplified by fitting a polynomial response surface
(PRS) and kriging model (KRG) to five data points of the
function sin(x). After repeating this process for all p points, the
square root of the mean square error is used as an estimator of
the RMSE

The leave-one-out strategy is computationally expen-
sive for large number of points. We then use a varia-
tion of the k-fold strategy (Kohavi 1995) to overcome
this problem. According to the classical k-fold strat-
egy, after dividing the available data (p points) into
p/k clusters, each fold is constructed using a point
randomly selected (without replacement) from each of
the clusters. Of the k folds, a single fold is retained
as the validation data for testing the model, and the
remaining k − 1 folds are used as training data. The
cross-validation process is then repeated k times with
each of the k folds used exactly once as validation data.
Note that k-fold turns out to be the leave-one-out when
k = p. We implemented the strategy by: (1) extracting
p/k points of the set using a “maximin” criterion (max-
imization of the minimum inter-distance); (2) removing
these points from the set and repeating step (1) with
the remaining points. Each set of extracted points is
used for validation and the remaining for fitting. This
process is repeated k times, each of it with a different
validation set. The k-fold strategy is that it can be ap-
plied to any surrogate technique. For KRG models, less
computationally expensive way of computing PRESS is
to freeze the correlation parameters to their value for
the original surrogate. We have studied this approach
and the results (shown in Appendix 3) show that there
is substantial loss of correlation between PRESSRMS

and RMSE.

3 Ensemble of surrogates

3.1 Selection based on PRESS

Since PRESSRMS is an estimator of the RMSE, one
possible way of using multiple surrogates is to select

the model with best (i.e., smallest) PRESS value (Best-
PRESS surrogate). Because the quality of fit depends
on the data points, the BestPRESS surrogate may vary
from DOE to DOE. This strategy may include surro-
gates based on the same methodology, such as different
instances of kriging (e.g., kriging models with differ-
ent regression and/or correlation functions). The main
benefit from a diverse and large set is the increasing
chance of avoiding (1) poorly fitted surrogates and (2)
DOE dependence of the performance of individual sur-
rogates. Obviously, the success when using BestPRESS
relies on the diversity of the set of surrogates and on the
quality of the PRESS estimator.

3.2 Weighted average surrogate

Alternatively, a weighted average surrogate (WAS)
intends to take advantage of n surrogates in the hope of
canceling errors in prediction through proper weighting
selection in the linear combination of the models:

ŷWAS (x) =
n∑

i=1

wi (x) ŷi (x) = wT (x) ŷ (x) , (4)

n∑

i=1

wi (x) = 1Tw (x) = 1 , (5)

where ŷWAS (x) is the predicted response by the WAS
model, wi(x) is the weight associated with the ith surro-
gate at x, and ŷi (x) is the predicted response by the ith
surrogate. Furthermore, so that if all surrogates provide
the same prediction, so would ŷWAS (x).

The weights and the predicted responses can be
written in the vector form as w(x) and ŷ (x). In this
work we study weight selection based on PRESS, which
is a global measure, so w (x)= w, ∀x.

In a specific DOE, when considering a set of sur-
rogates, if not all are used, we assume surrogates are
added to the ensemble one at a time based on the
rank given by the PRESSRMS. Then, the first one to be
picked is the BestPRESS.

3.2.1 Heuristic computation of the weights

Goel et al. (2007) proposed a heuristic scheme for
calculation of the weights, namely the PRESS weighted
average surrogate (PWS). In PWS, the weights are
computed as:

wi = w∗
i

n∑

j=1
w∗

j

, w∗
i = (

Ei + αEavg
)β ,

Eavg = 1

n

n∑

i=1

Ei , β < 0, α < 1, (6)

where Ei is given by the PRESSRMS of the ith surrogate.
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The two parameters α and β, control the importance
of averaging and importance of individual PRESS, re-
spectively. Goel et al. (2007) suggested α = 0.05 and
β = −1.

3.2.2 Computation of the weights for minimum RMSE

Using an ensemble of neural networks, Bishop (1995)
proposed a weighted average surrogate obtained by
approximating the covariance between surrogates from
residuals at training or test points. Here, as in Acar and
Rais-Rohani (2008), we opt instead for basing Bishop’s
approach on minimizing the mean square error (MSE):

MSEWAS = 1

V

∫

V
e2

WAS (x) dx = wTCw , (7)

where eWAS (x) = y (x) − ŷWAS (x) is the error associ-
ated with the prediction of the WAS model, and the
integral, taken over the domain of interest, permits the
calculation of the elements of C as:

cij = 1

V

∫

V
ei (x) e j (x) dx , (8)

where ei(x) and e j(x) are the errors associated with
the prediction given by the surrogate model i and j,
respectively.

C plays the same role as the covariance matrix in
Bishop’s formulation. However, we approximate C by
using the vectors of cross-validation errors, ẽ,

cij � 1

p
ẽT

i ẽ j , (9)

where p is the number of data points and the sub-
indexes i and j indicate different surrogate models.

Given the C matrix, the optimal weighted surrogate
(OWS) is obtained from minimization of the MSE as:

min
w

MSEWAS = wTCw , (10)

subject to:

1Tw = 1 . (11)

The solution is obtained using Lagrange multipliers,
as:

w = C−11
1TC−11

. (12)

The solution may include negative weights as well as
weights larger than one. Allowing this freedom was
found to amplify errors coming from the approxima-
tion of C matrix (9). One way to enforce positivity is

to solve (12) using only the diagonal elements of C,
which are more accurately approximated than the off-
diagonal terms. We denote this approach OWSdiag. It
is worth observing that when α = 0 and β = −2, PWS
gives the same weights of OWSdiag. We also studied
the possibility of adding the constraint wi ≥ 0 to the
optimization problem; however it was not sufficient to
overcome the effect of poor approximations of the C
matrix. OWS is recommended for the cases when an
accurate approximation of C is available and OWSdiag

for a less accurate one.
Either when employing BestPRESS or one of the

above mentioned WAS schemes, the computational
cost of using an ensemble of surrogates depends on
the calculation of the cross-validation errors. Since each
surrogate of the ensemble is fit as many times as the
number of points in the data set, the larger the set the
higher the cost.

3.2.3 Should we use all surrogates?

When forming a weighted surrogate, we may use all m
surrogates we have created; or alternatively, we may
use just a subset of the n best ones (n ≤ m). With an
exact C matrix, there is no reason not to use them all.
However, with the approximation of (9), it is possible
that adding inaccurate surrogates will lead to loss of
accuracy. When we use a partial set, we will add the
surrogates according to the rank given by PRESSRMS.
BestPRESS (surrogate with lowest PRESSRMS) is the
first one to be picked; which corresponds to n = 1.
When the worst PRESSRMS-ranked surrogate is added
to the ensemble, n = m.

This can be shown to be the best approach with an
exact over diagonal C matrix.

Note that when n < m (i.e., not all surrogates are
used) it is expected that the set of surrogates in the
ensemble can change with the DOE, since the per-
formance of individual surrogates may vary from one
DOE to another.

3.2.4 Combining accuracy and diversity

For both selection and combination, the best case sce-
nario would be to have a set of surrogates that are
different in terms of prediction values

(
ŷ (x)

)
but similar

in terms of prediction accuracy (RMSE). This would
increase the chance that WAS would allow error can-
cellation. In the present work, even though we gener-
ated a substantial number of surrogates with different
statistical models, loss functions, and shape functions,
we usually missed this goal. That is, comparably ac-
curate surrogates were often highly correlated. Future
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Table 2 Selection of surrogates according to different criteria

Surrogate Definition

BestRMSE Most accurate surrogate for a given DOE (basis of comparison for all other surrogates).
BestPRESS Surrogate with lowest PRESSRMS for a given DOE.
PWS Weighted surrogate with heuristic computation of weights.
OWSideal Most accurate weighted surrogate based on the true C matrix. Depending on the surrogate selection, OWSideal may be

less accurate than BestRMSE.
OWS Weighted surrogate based on an approximation of the C matrix using cross-validation errors.
OWSdiag Weighted surrogate based on the main diagonal elements of the approximated C matrix (using cross-validation errors).

BestRMSE and OWSideal are defined based on testing points; all others are obtained using data points

research may need to consider the problem of how to
generate a better set of basic surrogates.

4 Numerical experiments

4.1 Basic surrogates and derived surrogates

Table 1 gives details about the 24 different basic surro-
gates used during the investigation (see Appendix 1 for
a short theoretical review). The toolbox of Lophaven
et al. (2002), the native neural networks Matlab toolbox
(Mathworks contributors 2004), and the code devel-
oped by Gunn (1997) were used to execute the KRG,
RBNN, and SVR algorithms, respectively. The SUR-
ROGATES toolbox of Viana and Goel (2007) is used
to execute the PRS and WAS algorithms and also for
an easy manipulation of all these different codes.

No attempt was made to improve the predictions of
any surrogate by fine tuning their respective parameters
(such as the initial θ parameter in kriging models).

Table 2 summarizes the surrogates that can be
selected from the set using different criteria. These
include the best choice of surrogate that would be
selected if we had perfect knowledge of the function
(BestRMSE), the surrogate selected based on the low-
est PRESS error (BestPRESS), as well as the various
weighted surrogates. Of these, the ideal weighted sur-
rogate has weights based on perfect knowledge, and it
provides a bound to the gains possible by using WAS.

4.2 Performance measures

The numerical experiments are intended to (1) mea-
sure how efficient is PRESSRMS as an estimator of
the RMSE (and consequently, how good is PRESSRMS

for identifying the surrogate with the smallest RMSE),
and (2) explore how much the RMSE can be further
reduced by the WAS. The first objective is quantified
by comparing the correlation between PRESSRMS and
RMSE across the 24 surrogates. For both objectives,
we compare each basic surrogate, BestPRESS, and

WAS model with the best surrogate of the set in a spe-
cific DOE (BestRMSE). We define %difference such
as the percent gain by choosing a specific model over
BestRMSE:

%difference = 100
RMSEBestRMSE − RMSESurr

RMSEBestRMSE
. (13)

where RMSEBestRMSE is the RMSE of the best sur-
rogate of that specific DOE (i.e., BestRMSE) and
RMSESurr is the RMSE of the surrogate we are inter-
ested in (it can be either a single or a WAS model).
When %difference > 0 there is a gain in using the spe-
cific surrogate, and when %difference < 0 there is a loss.

For each basic surrogate and also for BestPRESS,
it is expected that %difference ≤ 0, which means that
there may be losses and the best case scenario is when
one of the basic surrogates (hopefully BestPRESS) coin-
cides with BestRMSE. When considering BestPRESS,
the smaller the loss the better is the ability of PRESSRMS

to select the best surrogate of the set. For the WAS, in
a particular DOE, we add surrogates according to the
rank given by the PRESSRMS value (i.e., we always start
from BestPRESS). Thus, the %difference may start
negative, and as we increase the number of surrogates

Table 3 Parameters used in Hartman function

Hartman3 B =

⎡

⎢⎢
⎣

3.0 10.0 30.0
0.1 10.0 35.0
3.0 10.0 30.0
0.1 10.0 35.0

⎤

⎥⎥
⎦

D =

⎡

⎢
⎢
⎣

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

⎤

⎥
⎥
⎦

Hartman6 B =

⎡

⎢
⎢
⎣

10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0
17.0 8.0 0.05 10.0 0.1 14.0

⎤

⎥
⎥
⎦

D =

⎡

⎢⎢
⎣

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎤

⎥⎥
⎦
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Table 4 Specifications for the DOEs, and test points for the test
functions

Test problem No. of No. of points No. of points
design for fitting for test (in each
variables of the 5 DOEs)

Branin–Hoo 2 12, 20, and 42 2,000
Camelback 2 12 2,000
Hartman3 3 20 2,000
Hartman6 6 56 2,000
Extended Rosenbrock 9 110 and 220 2,500
Dixon–Price 12 182 4,000

in the ensemble, it is expected that %difference turns
to positive, which express the potential of WAS to be
better than the best surrogate of the set.

4.3 Test functions

To test the effectiveness of the various approaches,
we employ a set of analytical functions widely used as
benchmark problems in optimization (e.g. Dixon and
Szegö 1978; Lee 2007). These are:

1. Branin–Hoo function (two variables):

y (x) =
(

x2 − 5.1x2
1

4π2
+ 5x1

π
− 6

)2

+ 10

(
1 − 1

8π

)
cos (x1) + 10 ,

− 5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15 . (14)

2. Camelback function (two variables):

y (x) =
(

x 4
1

3
− 2.1x2

1 + 4

)
x2

1

+ x1x2 + (
4x2

2 − 4
)

x2
2 ,

− 3 ≤ x1 ≤ 3, − 2 ≤ x2 ≤ 2 . (15)

3. Hartman functions (three and six variables):

y (x) = −
q∑

i=1

ai exp

⎛

⎝−
m∑

j=1

bij
(
x j − dij

)2

⎞

⎠ ,

0 ≤ x j ≤ 1 , j = 1, 2, . . . , m. (16)

We use two instances: Hartman3 (m = 3) and
Hartman6 (m = 6), with 3 and with 6 variables, respec-
tively. For both q = 4 and a = [

1.0 1.2 3.0 3.2
]
. Other

parameters are given in Table 3.

4. Extended Rosenbrock function (nine variables):

y (x) =
m−1∑

i=1

[
(1 − xi)

2 + 100
(
xi+1 − x2

i

)2
]

,

− 5 ≤ xi ≤ 10 , i = 1, 2, . . . , m = 9.

(17)

Fig. 2 Plot of test functions.
See Appendix 2 for details
about boxplots

  

(a) Branin-Hoo (b) Camelback (c)Hartman3

 
(d) Hartman6 (e) Extended Rosenbrock (f)Dixon-Price
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5. Dixon–Price function (12 variables):

y (x) = (x1 − 1)2 +
m∑

i=2

i
[
2x2

i − xi−1
]2

,

− 10 ≤ xi ≤ 10 , i = 1, 2, . . . , m = 12.

(18)

As stated before, the quality of fit depends on the
training data (function values at DOE). As a conse-
quence, performance measures may vary from DOE
to DOE. Thus, for all test problems, a set of 100 dif-
ferent DOEs were used as a way of averaging out the
DOE dependence of the results. They were created
by the MATLAB Latin hypercube function lhsdesign,
set with the “maxmin” option with 1,000 iterations.
Table 4 shows details about the data set generated

for each test function. Naturally, the number of points
used to fit surrogates increase with dimensionality. We
also use the Branin–Hoo and the extended Rosenbrock
functions to investigate what happens in low-and high-
dimensions, respectively, if we can afford more points.
For the computation of the cross-validation errors, in
most cases we use the leave-one-out strategy (k = p
in the k-fold strategy, see Section 2). However, for the
Dixon–Price function, due to the high cost of the leave-
one-out strategy for the 24 surrogates for all 100 DOEs;
we adopted the k-fold strategy with k = 14, instead.
This means that the surrogate is fitted 14 times, each
time with 13 points left out (that is to the remaining
169 points). For all problems, we use five different
Latin hypercube designs for evaluating the accuracy
of the surrogate by Monte Carlo integration of the
RMSE. These DOEs are also created by the MATLAB

(a) Branin-Hoo, 12 points. (b) Branin-Hoo, 20 points.

(c) Branin-Hoo, 42 points.

(d) Camelback, 12 points. (e) Hartman3, 20 points.

Fig. 3 Boxplot of the correlation coefficient between the vectors
of PRESSRMS and RMSE (24 surrogates each) for the low-
dimensional problems (this coefficient is computed for all 100
DOEs). In parenthesis, it is the median, mean, and standard
deviation of the correlation coefficient, respectively. PRESSRMS
is calculated via k-fold strategy (which reduces to the leave-one-

out strategy when k is equal to the number of points used for
fitting). It can be seen that except when we use the smallest
value of k, there is no significant disadvantage comparing the
k-fold and the leave-one-out strategies. See Appendix 2 for
details about boxplots
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Latin hypercube function lhsdesign, but set with the
“maxmin” option with ten iterations. The RMSE is
taken as the mean of the values for the five DOEs

Figure 2 illustrates the complexity of the problems.
For the two-dimensional cases, plots using the test points
reveal the presence of high gradients. For all other
cases, the test points were used to obtain box plots of
the functions, which show variation in the values of the
functions by more than one order of magnitude.

5 Results and discussion

We begin with a short study on the use of the k-fold
strategy. When the number of folds is small, the accu-
racy of the surrogate fit by omitting this fold can be
much poorer than that of the original surrogate, so that
PRESSRMS is likely to be much larger than RMSE.
Since we mostly used a number of points which is twice
that of the polynomial coefficients, two folds would fit
a polynomial with the same number of points as the
number of coefficients, which is likely to be much less
accurate than using all the points. So in this study,
we varied the values of k, starting from the smallest
value of k that divides the p points into more than
two folds For example, if p = 12, this value is k =
3 (which generates folds of four points each). Then
we use all possible values of k up to p (when the

k-fold turns into the leave-one-out strategy). Due to
the computational cost of the PRESS errors, we divided
the test problems into two sets:

1. Low-dimensional problems (Branin–Hoo, Camel-
back and Hartman3). We compute the correlations
between RMSE and PRESSRMS for different k val-
ues. For a given DOE, the correlation is computed
between the vectors of RMSE and PRESSRMS val-
ues for the different surrogates. The correlation
measures the ability of PRESS to substitute for the
exact RMSE for choosing the best surrogate (the
closer the correlation is to 1 the better). This is
repeated for all DOEs.

2. High-dimensional problems (Hartman6, extended
Rosenbrock, and Dixon–Price). The cost of per-
forming PRESS for several k values is high. To
keep low computational cost, we do the study only
for the least expensive surrogate, i.e., the PRS
(degree = 2) and we calculate the ratio between
PRESSRMS and RMSE for each DOE (the closer
the ratio is to 1 the better).

Figure 3 shows that in low-dimensions the use of the
k-fold does not drastically affect the correlation be-
tween RMSE and PRESSRMS; even though the smallest
value of k always presents the worst correlation coeffi-
cient between PRESSRMS and RMSE. It means that the

(a) Hartman6, 56 points (b) Extended Rosenbrock, 110 points

(c) Extended Rosenbrock, 220 points (d) Dixon-Price, 182 points

Fig. 4 Boxplot of the PRESSRMS/RMSE ratio for PRS (degree =
2) for the low-dimensional problems (this ratio is computed
for all 100 DOEs). PRESSRMS is calculated via k-fold strategy
(which equals to the leave-one-out strategy when k is equal to
the number of points used for fitting). In parenthesis, it is the me-

dian, mean, and standard deviation of the ratio, respectively. As
expected, the ratio becomes better as k approaches the number
of points. In these cases, it does not pay much to perform more
than 30 fits for the cross-validations (i.e. k > 30). See Appendix 2
for details about boxplots
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(a) Branin-Hoo, 12 Points (b) Branin-Hoo, 20 Points (c) Branin-Hoo, 42 Points 

(d) Camelback, 12 Points (e) Hartman3, 20 Points (f) Hartman6, 56 Pints 

o

(g) Extended Rosenbrock, 110 Points (h) Extended Rosenbrock, 220 Points (i)Dixon-Price, 182 Points  

Fig. 5 Correlation between PRESSRMS and RMSE. In a given DOE, the correlation is computed between the sets of PRESSRMS
values and RMSE. The correlation appears to improve with the number of points

Fig. 6 Frequency of success
in selecting BestRMSE
(out of 100 experiments).
The success of using PRESS
for surrogates selection
increases with the number
of points
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poor correlation has to do with the number of points
used to fit the set of surrogates. This is clearly seen
in the Branin–Hoo example, Fig. 3a–c, where more
points improve the correlation. Figure 4 illustrates that
in high-dimensions, an increasing of the value of k im-
proves the quality of the information given by the cross-
validation errors. The best scenario is when k = p.
However, the ratio seems to be acceptable when the
each fold has around 10% of the p points (i.e., k = 8
when p = 56; k = 11 when p = 110; and k = 14 when
p = 182). This agrees with Meckesheimer et al. (2002).

Back to the discussion about PRESSRMS as a cri-
terion for surrogate selection, Table 5 shows the fre-

quency of best RMSE and the PRESSRMS for each of
the surrogates in all test problems. It can be observed
that the best surrogate depends (1) on the problem,
i.e. no single surrogate or even modeling technique is
always the best; and (2) on the DOE, i.e. for the same
problem, the surrogate that performs the best can vary
from DOE to DOE. In addition, as the number of
points increases, there is a better agreement between
RMSE and PRESSRMS. Particularly, the top three sur-
rogates (bold face in Table 5) are identified better.
However, for the Branin–Hoo problem, we note dete-
rioration in identifying the best surrogate when going
from 20 to 42 points. This is because for high density of

Table 6 %difference in the RMSE, defined in (13), of the best three basic surrogates (according to how often they have the best
PRESSRMS, see Table 5) and BestPRESS for each test problem

Problem Surrogate Freq. of best PRESSRMS Median Mean SD

Branin–Hoo (12 points) 9 19 −3 −21 36
17 32 −18 −27 33
20 18 −17 −19 18
BestPRESS – −26 −43 55

Branin–Hoo (20 points) 2 79 0 −13 31
4 9 −14 −29 55
9 5 −152 −189 148
BestPRESS – −3 −31 61

Branin–Hoo (42 points) 2 31 −12 −26 57
4 28 −3 −21 56
6 41 −21 −42 55
BestPRESS – −18 −37 51

Camelback (12 points) 1 15 −40 −42 30
7 18 −8 −12 13
9 11 −24 −31 25
BestPRESS – −29 −35 29

Hartman3 (20 points) 2 11 −12 −22 26
8 31 −5 −33 206
18 13 −23 −26 17
BestPRESS – −21 −28 31

Hartman6 (56 points) 17 18 −7.9 −10.2 9.7
18 53 −0.1 −1.7 2.6
20 9 −3.5 −4.0 3.4
BestPRESS – −1.9 −5.2 8.2

Extended Rosenbrock (110 points) 5 32 −0.09 −0.47 0.85
6 41 0.00 −0.19 1.02
7 23 −0.13 −0.52 0.94
BestPRESS – −0.02 −1.03 4.15

Extended Rosenbrock (220 points) 5 39 −1.28 −3.55 7.85
6 26 −2.10 −6.55 15.11
22 14 −3.75 −9.19 17.54
BestPRESS – −2.80 −7.17 16.49

Dixon–Price (182 points) 5 21 0.00 0.00 0.00
6 40 0.00 −0.01 0.05
7 39 0.00 0.00 0.00
BestPRESS – 0.00 0.00 0.03

For the basic surrogates, the numbers indicate the identity as in Table 1. The negative sign of %difference indicates a loss in terms of
RMSE for the specific surrogate compared with the best surrogate. The loss decreases with increasing number of points. At low number
of points, BestPRESS may not be even as good as the third best surrogate. In high dimension, BestPRESS is as good as the best of
the three



Multiple surrogates: how cross-validation errors can help us to obtain the best predictor 451

points, the trend for kriging becomes less important, so
surrogates 2, 4, and 6 have very similar performance. In
addition, for KRG surrogates in high dimensions, the
correlation model is less important since points are so
sparse, hence several almost identical surrogates.

Figure 5 shows histograms of the correlations be-
tween RMSE and PRESSRMS. Figure 6 complements
Fig. 5 and shows that as the number of points increases,
there is a better agreement between the selections
given by RMSE and PRESSRMS. Particularly, the top
three surrogates are identified better. For the extended
Rosenbrock with 220 points, the number of surrogates
that are almost equally accurate is larger than 3. This

explains why the number of times that BestRMSE
is within the best 3 PRESS-ranked surrogates drops
when compared to the case with 110 points. Altogether,
when there are few points (low-dimensional problems,
i.e., two and three variables), PRESSRMS is good for
filtering out bad surrogates; when there are more points
(high-dimensional problems, i.e., six, nine and 12 vari-
ables) and PRESSRMS can also identify the subset of the
best surrogates.

Table 6 provides the mean, median and standard
deviation of the %difference in the RMSE for the best
three surrogates and BestPRESS. Since a single fixed
surrogate cannot beat the best surrogate of the set

(a)OWS      for Branin-Hoo, 12 Points ideal (b) OWSideal for Extended Rosenbrock, 110 Points

(c) OWSideal for all test problems (using all 24 surrogates)

(d) Median of the %difference of WAS for Branin-Hoo, 12 Points (e) Median of the %difference of WAS for Extended Rosenbrock, 110 Points

Fig. 7 %difference in the RMSE, defined in (13), when using
weighted average surrogates. a, b illustrates the effect of adding
surrogates to the ensemble (picked one at a time according
to the PRESSRMS ranking) for the Branin–Hoo and Extended
Rosenbrock functions (best cases in low and high dimensions,
respectively). c shows that the gain in using OWSideal decreases
to around 10% for problems in high-dimension (BH, CB, H3,
H6, ER, and DP are the initials of the test problem and in

parenthesis it is the number of points on the DOEs). For d, e, in
parenthesis, it is the median and standard deviation when using
5 surrogates (after which there is no improvement in practice).
While in theory the surrogate with best RMSE (BestRMSE)
can be beaten (OWSideal), in practice, the quality of information
given by the cross-validation errors makes it very difficult in low
dimensions. In high dimension the quality permits gain, but it is
very limited. See Appendix 2 for details about boxplots
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(which in fact varies from DOE to DOE), there cannot
be any gain. As the loss approaches zero, BestPRESS
becomes more reliable in selecting the best surrogate
of the set, instead of being a hedge against selecting
an inaccurate surrogate. It can be observed that: (1) in
low dimensions, the poor quality of information given
by PRESSRMS makes some surrogates outperform
BestPRESS (i.e., %difference closer to zero, or smaller
loss); and (2) in high dimension, the quality of informa-
tion given by PRESSRMS is better and as a consequence,
BestPRESS becomes hard to beat. For Dixon–Price for
example, the best three surrogates practically coincide
with BestPRESS, so the %difference is close to zero
for them.

Next, we study if we can do any better by using a
weighted average surrogate rather than BestPRESS.
For a given DOE, surrogates are added according to
rank based on PRESSRMS. We start the study consid-
ering best possible performance of OWS, i.e., based
on exact computation of the C matrix (which may not
be possible in real world applications, but it is easy to
compute in our set of analytical functions). Figure 7a, b
exemplify what ideally happens with the %difference
in the RMSE as we add surrogates to the WAS for
the Branin–Hoo and Extended Rosenbrock functions
fitted with 12 and 110 points, respectively. It is seen
that we can potentially gain by adding more surrogates,
but even the ideal potential gain levels off after a
while. Disappointingly, Fig. 7c shows that the maximum
possible gain decreases with dimensionality. Keeping
the Branin–Hoo and extended Rosenbrock functions,
Fig. 7d, e compare the ideal gain with the gain obtained
with information based on cross-validation errors. It
can be observed that while in theory (that is with
OWSideal), BestPRESS as well as the surrogate with
best RMSE (BestRMSE) can be beaten, in practice
none of the WAS schemes is able to substantially
improve the results of BestPRESS, i.e., more than 10%
gain. In both low and high-dimensions, the best sce-
nario is given by OWSdiag, which appears to tolerate
well the use of a large number of surrogates. PWS is not
able to handle the addition of poorly fitted surrogates.
For this reason, the remainder of the paper does not
include PWS. OWS is unstable in low dimensions while
presenting small gains and the risk of losses in high
dimensions.

Table 7 summarizes the information about the %dif-
ference in the RMSE for all test problems. It is then
clear that in low-dimension very little can be done to
improve BestPRESS (see mean and median). For the
high-dimensional problems, OWSdiag seems to handle
the uncertainty on the cross-validation errors better
than OWS. However, the gains are limited to between T
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(a) Branin-Hoo, 12 Points (b) Branin-Hoo, 20 Points

(c) Branin-Hoo, 42 Points

(d) Extended Rosenbrock, 110 Points (e) Extended Rosenbrock, 220 Points

Fig. 8 %difference in the RMSE, defined in (13), for the overall
best six surrogates and BestPRESS. In parenthesis, it is the me-
dian, mean, and standard deviation. Values closer to zero indicate

better fits. Numbers on the abscissa indicate the surrogate num-
ber in Table 1. It can be seen that BestPRESS has performance
comparable with the best three surrogates of the set

10% and 20%. As noted earlier, the behavior for the
Branin–Hoo function when going from 12 to 42 points
is anomalous because surrogates 2, 4 and 6 become very
similar and dependent on the DOE. While PRESS is
less reliable in identifying the most accurate surrogate,
this is less important, because as can be seen from Fig. 8,
the differences are miniscule for these surrogates. The
results of BestPRESS for the extended Rosenbrock
function shown in Table 7 are also counter-intuitive.
Figure 8 shows that unlike the case of 220 points, for 110
points the first three surrogates are equally much better
than the remaining surrogates. This makes selection
less risky for 110 points.

6 Conclusions

In this paper, we have explored the use of multiple sur-
rogates for the minimum RMSE in meta-modeling. We
explored (1) the generation of a large set of surrogates
and the use of PRESS errors as a criterion for surrogate

selection; and (2) a weighted average surrogate based
on the minimization of the integrated square error
(in contrast to heuristic schemes).

The study allows the conclusion that the benefits of
both strategies depend on dimensionality and number
of points:

• With sufficient number of points, PRESSRMS be-
comes very good for ranking the surrogates accord-
ing to prediction accuracy. In general, PRESSRMS is
good for filtering out inaccurate surrogates, and as
the number of points increases PRESSRMS can also
identify the best surrogate of the set (or another
equally accurate surrogate).

• As the dimension increases the possible gains from
a weighted surrogate diminish even though our
ability to approximate the ideal weights improves.
In the two dimensional problems, OWSideal pre-
sented a median gain of 60%; while in practice,
there was a loss of 25% and no improvement over
BestPRESS. For the extended Rosenbrock func-
tion (nine variables), OWSideal presented a median
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gain of 20%; while in practice, there was a gain of
just 6% (for both OWSdiag and OWS; however, the
former presents better performance when consider-
ing the mean and standard deviation).

Therefore, we can say that using multiple surrogates
and PRESSRMS for identifying the best surrogate is
a good strategy that becomes ever more useful with
increasing number of points. On the other hand, the use
of weighted average surrogate does not seem to have
the potential of substantial error reductions even with
large number of points that improve our ability to
approximate the ideal weighted surrogate.

Additionally, we can point out the following findings:

• For large number of points, PRESSRMS as obtained
through the k-fold strategy successfully estimates
the RMSE (as shown in Fig. 5i). In the set of
test problems, there is very little improvement
when performing more than 30 fits for the cross-
validations (i.e. k > 30).

• At high point density (possible in low dimensions)
the choice of the trend function (or regression func-
tion as it is also sometimes called) for kriging is not
important. At very low point density (characteris-
tic of high dimensions) the choice of correlation
function is not important. Both situations lead to
the emergence of multiple almost identical kriging
surrogates.

• When using a WAS, OWSdiag seems to be the best
choice, unless the large number of points allows
the use of OWS. In the cases that we have stud-
ied, OWSdiag was able to stabilize the addition of
lousy surrogates up to the point of using all created
surrogates.

• While we have been able to generate a large num-
ber of diverse surrogates, we were less successful
in generating a substantial number of diverse sur-
rogates with comparable high accuracy. This chal-
lenge is left for future research.
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Appendix 1. Surrogate modeling techniques

The principal features of the surrogate modeling tech-
niques used in this study are described in the following
sections.

1.1 Kriging (KRG)

KRG is named after the pioneering work of the South
African mining engineer D.G. Krige. It estimates the
value of a function as a combination of a known func-
tion fi(x) (e. g., a linear model such as a polyno-
mial trend) and departures (representing low and high
frequency variation components, respectively) of the
form:

ŷ (x) =
m∑

i=1

βi fi (x) + z (x) , (19)

where z(x) is assumed to be a realization of a stochastic
process Z (x) with mean zero, process variance σ 2, and
spatial covariance function given by:

cov
(
Z (xi) , Z

(
x j
)) = σ 2 R

(
xi, x j

)
, (20)

where R(xi, x j) is the correlation between xi and x j.
The conventional KRG models interpolate training

data. This is an important characteristic when dealing
with noisy data. In addition, KRG is a flexible tech-
nique since different instances can be created by choos-
ing different pairs of fi(x) and correlation functions.
Finally, complexity and the lack of commercial software
may hinder this technique from popularity in the near
term (Simpson et al. 1998).

The Matlab code developed by Lophaven et al.
(2002) was used to execute the KRG algorithm. More
details about KRG are provided in Sacks et al. (1989),
Simpson et al. (1998) and Lophaven et al. (2002).

1.2 Polynomial response surface (PRS)

The PRS approximation is one of the most well estab-
lished meta-modeling techniques. In PRS modeling, a
polynomial function is used to approximate the actual
function. A second-order polynomial model can be
expressed as:

ŷ (x) = β0 +
m∑

i=1

βixi +
m∑

i=1

m∑

j=1

βijxix j , (21)

The set of coefficients can be obtained by least
squares and according to the PRS theory are unbiased
and have minimum variance. Another characteristic is
that it is possible to identify the significance of dif-
ferent design factors directly from the coefficients in
the normalized regression model (in practice, using
t-statistics). In spite of the advantages, there is always a
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Fig. 9 Radial basis neural
network architecture

drawback when applying PRS to model highly nonlin-
ear functions. Even though higher-order polynomials
can be used, it may be difficult to take sufficient sample
data to estimate all of the coefficients in the polynomial
equation.

See Box et al. (1978) and Myers and Montgomery
(1995) for more details about PRS.

1.3 Radial basis neural networks (RBNN)

RBNN is an artificial neural network which uses radial
basis functions as transfer functions. RBNN consist of
two layers: a hidden radial basis layer and an output
linear layer, as shown in Fig. 9. The output of the
network is thus:

ŷ (x) =
N∑

i=1

aiρ (x, ci) , (22)

where N is the number of neurons in the hidden layer,
ci is the center vector for neuron i, and ai are the weights
of the linear output neuron. The norm is typically taken
to be the Euclidean distance and the basis function is
taken to be the following:

ρ (x, ci) = exp
(−β ‖x − ci‖2

)
, (23)

where exp (·) is the exponential function.
RBNN may require more neurons than standard

feedforward/backpropagation networks, but often they

can be designed in a fraction of the time it takes to train
standard feedforward networks. A crucial drawback for
some applications is the need of many training points.

The native neural networks Matlab toolbox (Math-
works contributors 2004) was used to execute the RBNN
algorithm. RBNN is comprehensively presented in
Smith (1993) and Cheng and Titterington (1994).

1.4 Support vector regression (SVR)

SVR is a particular implementation of support vector
machines (SVM). In SVR, the aim is to find ŷ (x) that
has at most a deviation of magnitude ε from each of
the training data. Mathematically, the SVR model is
given by:

ŷ (x) =
p∑

i=1

(
ai − a∗

i

)
K (xi, x) + b , (24)

where K(xi,x) is the so-called kernel function, xi are
different points of the original DOE and x is the point
of the design space in which the surrogate is evaluated.
Parameters ai, a∗

i , and b are obtained during the fit-
ting process.. Table 8 lists the kernel functions used in
this work.

During the fitting process, SVR minimizes an up-
per bound on the expected risk unlike empirical risk
minimization techniques, which minimize the error on
the training data. This is done by using alternative loss
functions. Figure 10 shows two of the most common
possible loss functions. Figure 10a corresponds to the
conventional least squares error criterion. Figure 10b
illustrates the loss function used in this work, which is
given by the following equation:

Loss (x) =
{

ε, if
∣
∣y (x) − ŷ (x)

∣
∣ ≤ ε

∣∣y (x) − ŷ (x)
∣∣ , otherwise

. (25)

Table 8 Example of kernel
functions Gaussian radial basis function (GRBF) K

(
x, x′) = exp

(
−‖x−x′‖2

2σ 2

)

Exponential radial basis function (ERBF) K
(
x, x′) = exp

(
−‖x−x′‖

2σ 2

)

Splines
K
(
x, x′) = 1 + 〈

x, x′〉+
1
2

〈
x, x′〉min

(
x, x′)− 1

6

(
min

(
x, x′))3

Anova-spline (Anova)

K
(
x, x′) = ∏

i
Ki
(
xi, x′

i

)

Ki
(
xi, x′

i

) = 1 + xix′
i + (

xix′
i

)2 +
(
xix′

i

)2 min
(
xi, x′

i

)− xix′
i

(
xi + x′

i

) (
min

(
xi, x′

i

))2 +
1
3

(
x2

i + 4xix′
i + x′

i
2
) (

min
(
xi, x′

i

))3 +
− 1

2

(
xi + x′

i

) (
min

(
xi, x′

i

))4 +
1
5

(
min

(
xi, x′

i

))5



456 F.A.C. Viana et al.

(a) Quadratic (b) e - insensitive

Fig. 10 Loss functions

The implication is that in SVR the goal is to find a
function that has at most ε deviation from the training
data. In other words, the errors are considered zero as
long as they are less than ε.

Besides ε, the fitting the SVR model has a regulariza-
tion parameter, C. Parameter C determines the compro-
mise between the complexity and the degree to which
deviations larger than ε are tolerated in the optimiza-
tion formulation. If C is too large, the tolerance is small
and the tendency is to have the most possible complex
SVR model. An open issue in SVR is the choice of the
values of parameters for both kernel and loss functions.

The Matlab code developed by Gunn (1997) was
used to execute the SVR algorithm. To learn more
about SVR see Gunn (1997), Clarke et al. (2005) and
Smola and Scholkopf (2004).

Finally, SURROGATES ToolBox is used for an
easy manipulation of all these different models.
SURROGATES ToolBox, developed by Viana and
Goel (2007), integrates several open-source tools pro-
viding a general-purpose MATLAB library of multidi-
mensional function approximation methods.

Appendix 2. Box plots

In a box plot, the box is defined by lines at the lower
quartile (25%), median (50%), and upper quartile
(75%) values. Lines extend from each end of the box
and outliers show the coverage of the rest of the data.
Lines are plotted at a distance of 1.5 times the inter-
quartile range in each direction or the limit of the data,
if the limit of the data falls within 1.5 times the inter-
quartile range. Outliers are data with values beyond the
ends of the lines by placing a “+” sign for each point.

Appendix 3. Reducing the costs of PRESS
computation in kriging

As the number of point increases, the computation of
PRESS via the leave-one-out approach may become
prohibitive. One way to tackle this issue is to use the
k-fold strategy (see section about cross-validation er-
rors). However, for kriging, another alternative is to
avoid the costly estimation of the correlation parame-
ters and keep them the same as those found for the
model fit to all data. We used the extended Rosenbrock
function to study the potential of the second approach.

Figure 11a shows the correlation coefficient between
the vector of PRESSRMS, obtained with repeated com-
putation of the correlation parameters, and RMSE,
but only for the KRG models (total of six, shown in
Table 1). Figure 11b shows the same plot but with
correlation parameters kept the same as for the original
fit (avoiding the costly optimization). Finally, Fig. 11c

 
(a) Correlation between PRESSRMS 
and RMSE for the leave-one-out with 
computation of correlation 
coefficients. 

(b) Correlation between PRESSRMS 
and RMSE for the leave-one-out with 
frozen computation of correlation 
coefficients. 

(c) Ratio of computational time of 
PRESS computation with frozen 
correlation parameters (t) to repeated 
computation of correlations (T). 

Fig. 11 Performance of PRESS computation: work horse versus freezing correlation parameters. t and T have mean values of 23 and
850 s, respectively. Savings in time may hurt the correlation with the RMSE
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compares computational times. It can be seen that the
savings in time may hurt the correlation with RMSE.
Ultimately, this would also translate in poorer data for
the computation of the weights in a WAS strategy.
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