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MULTIPLE SYMMETRIC POSITIVE SOLUTIONS
FOR A SECOND ORDER BOUNDARY VALUE PROBLEM

JOHNNY HENDERSON AND H. B. THOMPSON

(Communicated by Hal L. Smith)

Abstract. For the second order boundary value problem, y′′ + f(y) = 0,
0 ≤ t ≤ 1, y(0) = 0 = y(1), where f : R → [0, ∞), growth conditions are
imposed on f which yield the existence of at least three symmetric positive
solutions.

1. Introduction

In this paper, we are concerned with the existence of multiple solutions for the
second order boundary value problem

y′′ + f(y) = 0, 0 ≤ t ≤ 1,(1.1)

y(0) = 0 = y(1),(1.2)

where f : R→ [0, ∞) is continuous. A solution y ∈ C(2)[0, 1] of (1.1), (1.2) is both
nonnegative and concave on [0, 1]. We will impose growth conditions of f which
ensure the existence of at least three symmetric positive solutions of (1.1), (1.2).

Our results can be thought of as an extension of those by Avery [2], Leggett
and Williams [6], and Guo and Lakshmikantham [4], in which they obtained three
positive solutions of (1.1), (1.2). Our ability to obtain symmetric solutions arises
from the symmetry of an associated Green’s function.

Other attention has been given to triple solutions in the paper by Anderson [1] for
three-point boundary value problems for third order equations, as well as in the pa-
per by Henderson and Thompson [5] for certain two-point boundary value problems
for n-th order equations. Each of the papers [1], [2] and [5] makes an application of
a fixed point theorem by Leggett-Williams [6], which they developed using the fixed
point index in order Banach spaces. Leggett-Williams [6] applied their fixed point
theorem to prove the existence of three positive solutions for Hammerstein integral

equations of the form, y =
∫

Ω

G(x, s)f(s, y(s))ds, Ω ⊂ Rn, by making use of suit-

able inequalities they imposed on the kernel G and on f . Sun and Sun [7] gave an
extension of the Leggett-Williams fixed point theorem for multiple fixed points, and
then Avery and Peterson [3] applied the Sun-Sun extension to obtain three positive
solutions of boundary value problems for second order difference equations.
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In Section 2, we provide some background results, and we state the Leggett-
Williams fixed point theorem. Then, in Section 3, we impose growth conditions on
f which allow us to apply the Leggett-Williams fixed point theorem in obtaining
three symmetric positive solutions of (1.1), (1.2).

2. Some background definitions and results

In this section, we provide some background material from the theory of cones
in Banach spaces, in order that this paper be self-contained. We also state a fixed
point theorem due to Leggett and Williams [6] for multiple fixed points of a cone
preserving operator.

If P ⊂ B is a cone, we denote the order induced by P on B by ≤P.

Definition. A map α is said to be a nonnegative continuous concave functional on
P if α : P→ [0, ∞) is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y),(2.1)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Definition. For numbers 0 < a < b and α a nonnegative continuous concave
functional on P, define convex sets Pr and P(α, a, b) respectively by

Pr = {y ∈ P | ‖y‖ < r}
and

P(α, a, b) = {y ∈ P | a ≤ α(y), ‖y‖ ≤ b}.

In obtaining multiple symmetric positive solutions of (1.1), (1.2), the following
fixed point theorem of Leggett and Williams will be fundamental.

Theorem 2.1. Let A : Pc → Pc be completely continuous and α be a nonnegative
continuous concave functional on P such that α(y) ≤ ‖y‖, for all y ∈ Pc. Suppose
there exist 0 < a < b < d ≤ c such that
(C1) {y ∈ P(α, b, d) | α(y) > b} 6= ∅ and α(Ay) > b, for y ∈ P(α, b, d),
(C2) ‖Ay‖ < a, for ‖y‖ ≤ a, and
(C3) α(Ay) > b, for y ∈ P(α, b, c) with ‖Ay‖ > d.
Then A has at least three fixed points, y1, y2 and y3 satisfying

‖y1‖ < a, b < α(y2), and ‖y3‖ > a with α(y3) < b.

3. Multiple symmetric positive solutions

In this section, we will impose growth conditions on f which allow us to apply
Theorem 2.1 in regard to obtaining three symmetric positive solutions of (1.1) (1.2).
We will apply Theorem 2.1 in conjunction with a completely continuous operator
whose kernel G(t, s) is the Green’s function for

− y′′ = 0,(3.1)

satisfying (1.2). In particular,

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

(3.2)
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We will make use of various properties of G(t, s) which include

0 < G(t, s) ≤ G(s, s) = s(1− s), 0 < t, s < 1,(3.3)

G(t, s) ≥ 1
4
G(s, s) =

1
4
s(1− s), 1

4
≤ t ≤ 3

4
, 0 ≤ s ≤ 1,(3.4)

max
0≤t≤1

∫ 1

0

G(t, s)ds =
1
8
,(3.5)

min
1
4≤t≤

3
4

∫ 3
4

1
4

G(t, s)ds =
∫ 3

4

1
4

G(
1
4
, s)ds =

1
16
, and(3.6)

min
0≤r≤1

G(1
4 , r)

G(1
2 , r)

=
1
2
.(3.7)

Next, let B = C[0, 1] be endowed with the maximum norm, ‖y‖ = max
0≤t≤1

|y(t)|,
and the ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, 1]. Let the cone P ⊂ B of
symmetric, positive functions in B define this ordering so that

P = {y ∈ B | y is concave, symmetric and nonnegative valued on [0, 1]}.

Finally, let the nonnegative continuous concave functional α : P → [0,∞) be
defined by

α(y) = min
1
4≤t≤

3
4

y(t), y ∈ P.(3.8)

We observe here that, for each y ∈ P,

α(y) = y(
1
4

) ≤ y(
1
2

) = ‖y‖ ,(3.9)

and also that y ∈ B is a solution of (1.1), (1.2) if and only if

y(t) =
∫ 1

0

G(t, s)f(y(s))ds, 0 ≤ t ≤ 1.(3.10)

We now present our result of the paper.

Theorem 3.1. Let 0 < a < b < c/2, and suppose f satisfies

(i) f(w) < 8a, for 0 ≤ w ≤ a,
(ii) f(w) ≥ 16b, for b ≤ w ≤ 2b, and
(iii) f(w) ≤ 8c, for 0 ≤ w ≤ c.

Then, the boundary value problem (1.1), (1.2) has three symmetric positive solutions
y1, y2 and y3 satisfying ‖y1‖ < a, b < α(y2), and ‖y3‖ > a with α(y3) < b.

Proof. We begin by defining a completely continuous operator A : B→ B by

Ay(t) =
∫ 1

0

G(t, s)f(y(s))ds.

We seek fixed points of A which satisfy the conclusion of the theorem. We note first,
if y ∈ P, then from properties of G(t, s), Ay(t) ≥ 0 and (Ay)′′(t) = −f(y(t)) ≤ 0,
0 ≤ t ≤ 1, and Ay(t) = Ay(1 − t), 0 ≤ t ≤ 1

2 , and consequently, Ay ∈ P; that is,
A : P→ P.
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We now show that the conditions of Theorem 2.1 are satisfied. We noted in (3.9)
that α(y) ≤ ‖y‖, for all y ∈ P. Now choose y ∈ Pc. Then ‖y‖ ≤ c and assumption
(iii) yields f(y(s)) ≤ 8c, 0 ≤ s ≤ 1. Thus, from (3.5)

‖Ay‖ = max
0≤t≤1

∫ 1

0

G(t, s)f(y(s))ds

≤ max
0≤t≤1

∫ 1

0

G(t, s)8c ds

= c.

Hence, A : Pc → Pc. In a similar vein, fulfillment of condition (C2) of Theorem
2.1 is completed. That is, if y ∈ Pa, then assumption (i) yields f(y(s)) < 8a,
0 ≤ s ≤ 1, from which we obtain, as in the argument above, that A : Pa → Pa.

To fulfill property (C1) of Theorem 2.1, we note that x(t) = 2b, 0 ≤ t ≤ 1, is
a member of P(α, b, 2b) and α(x) = α(2b) > b, and so {y ∈ P(α, b, 2b) | α(y) >
b} 6= ∅. In addition, if we choose y ∈ P(α, b, 2b), then α(y) = y(1

4 ) ≥ b, and so
b ≤ y(s) ≤ 2b, 1

4 ≤ s ≤ 3
4 . Thus, for any y ∈ P(α, b, 2b), assumption (ii) yields

f(y(s)) ≥ 16b 1
4 ≤ s ≤

3
4 , and consequently, from (3.6)

α(Ay) = min
1
4≤t≤

3
4

Ay(t)

=
∫ 1

0

G(
1
4
, s)f(y(s))ds

>

∫ 3
4

1
4

G(
1
4
, s)f(y(s))ds

≥
∫ 3

4

1
4

G(
1
4
, s)16bds

= b.

Hence, condition (C1) of Theorem 2.1 is satisfied. We finally exhibit that (C3)
of Theorem 2.1 is also satisfied. (In particular, we show, if y ∈ P(α, b, c) and
‖Ay‖ > 2b, then α(Ay) > b). Thus, we choose y ∈ P(α, b, c) such that ‖Ay‖ > 2b.
Then, from (3.7),

α(Ay) = Ay(
1
4

)

=
∫ 1

0

G(
1
4
, s)f(y(s))ds

=
∫ 1

0

G(1
4 , s)

G(1
2 , s)

G(
1
2
, s)f(y(s))ds

≥ min
0≤r≤1

G(1
4 , r)

G(1
2 , r)

∫ 1

0

G(
1
2
, s)f(y(s))ds

=
1
2
Ay(

1
2

)

=
1
2
‖Ay‖

> b,
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and (C3) of Theorem 2.1 is satisfied. Hence, an application of Theorem 2.1 com-
pletes the proof.

4. Extensions to higher even order problems

We conclude this work by extending the results of Section 3 in obtaining three
symmetric positive solutions for the boundary value problem,

(−1)my(2m) − f(y) = 0, 0 ≤ t ≤ 1,(4.1)

y(2i)(0) = 0 = y(2i)(1), 0 ≤ i ≤ m− 1,(4.2)

where f : R→ [0,∞) is continuous. Again, we will apply Theorem 2.1. We remark
that, if y ∈ C(2m)[0, 1] is a solution of (4.1), (4.2), then y is both nonnegative and
concave on [0,1].

In this context, Theorem 2.1 will be applied in conjunction with a completely
continuous operator whose whose kernel is the Green’s function for

(−1)my(2m) = 0(4.3)

satisfying (4.2). With G(t, s) defined by (3.2), define

G1(t, s) = G(t, s),(4.4)

and for 2 ≤ j ≤ m, iteratively define

Gj(t, s) =
∫ 1

0

G(t, r)Gj−1(r, s)dr.(4.5)

Then, Gm(t, s) is the Green’s function for (4.3), (4.2).
Let

0 < e < 1
2 , km =

(
max

0≤t≤1

∫ t

0

Gm(t, s)ds
)−1

=
(∫ 1

0

Gm(
1
2
, s)ds

)−1

, lme =
(

min
e≤t≤1−e

∫ 1−e

e

Gm(t, s)ds
)−1

=
(∫ 1−e

e

Gm(e, s)ds
)−1

and

Cme = max
0≤t≤1

Gm(1
2 , t)

Gm(e, t)
.

Let the Banach space B, cone P ⊂ B and concave functional α : P → [0,∞) be
as in Section 3. Let A : B→ B be defined by

Ay(t) =
∫ 1

0

Gm(t, s)f(y(s))ds.

Then an application of Theorem 2.1 yields the following result

Theorem 4.1. Let 0 < a < b < K−1c and suppose f satisfies
(i) 0 ≤ f(w) < kma for 0 ≤ w ≤ a,
(ii) f(w) ≥ lmeb for b ≤ w ≤ Kb,
(iii) 0 ≤ f(w) ≤ kmC for 0 ≤ w ≤ c.

If K ≥ Cme, then the boundary value problem (4.1), (4.2) has three symmetric
positive solutions y1, y2 and y3 satisfying ‖y1‖ < a, b < α(y2), and ‖y3‖ > a with
α(y3) < b.
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Proof. The argument is similar to that in the proof of Theorem 3.1 except we apply
Theorem 2.1 with d = Kb.

Remarks. 1. Theorem 3.1 corresponds to the special case m = 1, e = 1
4 of

Theorem 4.1.
2. Theorem 3.1 improves on Theorem 7 of Avery [2] by requiring f(w) ≥ 16b

holds on [b, 2b] rather than on the longer interval [b, 4b].
3. Similarly, Theorem 3.1 improves on Theorem 3 of Henderson and Thompson

[5] by requiring f(w) ≥ 16b holds on [b, 2b] rather than on the longer interval
[b, 4b].

4. Theorem 3.1 requires c > 2b which is an improvement over Theorem 3 of [5]
which requires c > 4b.

5. Set lm = min
0<e< 1

2

lme = lme∗. This is the smallest lower bound f(w) must

satisfy in order to guarantee solutions exist using our Theorem 4.1. That the
minimum is obtained can be seen as follows:

(i) lme =
(

min
e≤t≤1−e

∫ 1−e

e

Gm(t, s)ds
)−1

is a continuous function of e,

(ii) Gm(t, s) is a increasing function of t on [0, 1/2] by (4.5) since G(t, s) is a
increasing function of t on [0, 1/2] and Gm−1(t, s) is nonnegative,

(iii) lme → ∞ as e → 0+, since G(0, s) = 0 so that Gm(0, s) = 0, and hence∫ 1

0 Gm(0, s)ds = 0, and
(iv) lme →∞ as e→ (1/2)−, since

∫ 0

0 Gm(t, s)ds = 0.

6. Since Cme = max
0≤t≤1

Gm(1
2 , t)

Gm(e, t)
and Gm(l, t) is an increasing function of l on

[0, 1/2] for each t in [0, 1], it follows that Cme∗ = max
e∗≤e≤1/2

Cme. Thus, if we

set e = e∗ so that lm = lme∗ is the smallest lower bound f(w) must satisfy,
then the trade off is that the smallest constant K we require in our Theorem
4.1, Cme∗, is maximised; if we choose e ∈ (0, e∗), then there is ē ∈ (e∗, 1/2)
such that lmē = lme and we can use K = Cmē ≤ Cme∗ in Theorem 4.1. In
particular, if we choose e = e∗, then the smallest interval on which the lower
bound lm is required on f(w), [b, Cme∗b], is maximised and the smallest lower
bound we require on c, Cme∗b, is maximised.

The constants km, lme and Cme are not easy to compute explicitly. We can
estimate these using the following estimates:

0 < Gm(t, s) ≤ 1
6m−1

s(1− s), 0 < t, s < 1

Gm(t, s) ≥ 11m−1

27m−53m−1
s(1− s), 1

4
≤ t ≤ 3

4
, 0 ≤ s ≤ 1.

From these estimates it follows that km ≥ 6m, lm 1
4
≤ 27m3m

11m and Cm 1
4
≤ 26m−4

11m−1 .
These estimates are good for m = 1 but are not very good for m > 1. It follows
that in Theorem 4.1 we may replace (i), (ii) and (iii) by

(i)′ 0 ≤ f(w) < 6ma for 0 ≤ w ≤ a,
(ii)′ f(w) ≥ 27m3m

11m b for b ≤ w ≤ 26m−4

11m−1 b,
(iii)′ 0 ≤ f(w) ≤ 6mc for 0 ≤ w ≤ c where 0 < a < b < 11m−1

26m−4 c.
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