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Summary. We present a new method for estimating the frequencies of  the 
Earth’s free oscillations. This method is an extension of the techniques of 
Thomson (1982) for finding the harmonic components of a time series. 
Optimal tapers for reducing the spectral leakage of decaying sinusoids 
immersed in white noise are derived. Multiplying the data by the best K 
tapers creates K time series. A decaying sinusoid model is fit t o  the K time 
series by a least squares procedure. A statistical F-test is performed to test the 
fit of  the decaying sinusoid model, and thus determine the probability that 
there are coherent oscillationsin the data. The F-test is performed at a number 
of chosen frequencies, producing a measure of the certainty that there is a 
decaying sinusoid at each frequency. We compare this method with the con- 
ventional technique employing a discrete Fourier transform of a cosine-tapered 
time-series. The multiple-taper method is found to  be a more sensitive detector 
of decaying sinusoids in a time series contaminated by white noise. 

Key words: multiple-taper, free oscillations, spectral analysis 

1 Introduction 

The free oscillations of the Earth appear as decaying sinusoids in the records of instruments 
in the available low-frequency seismic arrays (International Deployment of Accelerometers, 
hereafter referred to  as IDA, and Global Digital Seismic Network, hereafter referred to as 
GDSN) (Agnew zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer al. 1976; Engdahl, Peterson & Orsini 1982). Information about the 
structure of the Earth can be inferred from the frequencies, decay rates and amplitudes of 
these oscillations. 

Conventionally, these characteristics of the decaying sinusoids are estimated from a direct 
spectral estimate of the data using a cosine taper (Harris 1978; Dahlen 1982; Lindberg 1986), 
or by producing spherical harmonic-weighted sums of the direct spectral estimates made 
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f rom each station’s record (‘stacking’ or ‘stripping’) (Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski 1975). There are 
several difficulties with using a single cosine-taper in the harmonic analysis of free oscillations. 
The time series analysed in free oscillation studies are non-stationary; they are also contami- 
nated with noise. The cosine taper is symmetric and appropriate for stationary time-series; it 
is not a good taper for minimizing the spectral leakage of decaying sinusoids immersed in 
noise. The cosine taper also discards much of the data at  the ends of the time series, parti- 
cularly at the beginning where the signal-to-noise ratios of the free oscillation records are 
large. This is not desirable. In addition, applying a cosine taper to reduce spectral leakage is 
purchased with greatly increased variance (e.g. figs 7 and 8 of Dahlen 1982). Use of the 
cosine taper roughly doubles the variance, or equivalently, halves statistical efficiency of the 
estimate (Jones 1962). Another drawback of a cosine-taper direct spectral estimate is that it 
does not discriminate between oscillations of constant phase and frequency (harmonic 
oscillations) and broad distributions of spectral energy caused by other processes. 

To overcome these problems, we have developed a method of harmonic analysis for 
decaying sinusoids immersed in stationary white noise based on the methods developed by 
Thomson (1 982). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA set of several ‘optimal’ tapers is created, each one designed to minimize 
the spectral leakage of decaying sinusoids immersed in white noise, while maintaining a large 
value for the ratio of tapered signal energy t o  tapered noise energy. Multiplying the data by 
each taper in turn creates several time series. Taking the discrete Fourier transform of these 
time series yields several complex eigenspectra (called eigencoefficients by Thomson 1982). 
A decaying sinusoid model is fit by a least-squares procedure to these complex eigenspectra. 
The least-squares procedure produces an estimate of the initial amplitude of any decaying 
sinusoids in the data. The fit of the decaying sinusoid model at  any given frequency is tested 
using a statistical F-test. This gives a quantitative measure of the confidence that a phase- 
coherent decaying sinusoid is present in the data at  any given frequency. 

The multiple-taper method utilizes more of the data than the cosine-taper direct spectral 
estimate, and, as shown in Section 4 and the appendix, is a more sensitive detector of free 
oscillations in a seismic record. In one example, the five singlets of oSz could be detected in a 
single record of the 1977 Sumbawa event, with measured frequencies in good agreement 
with those reported by Buland, Berger & Gilbert (1979), who used a six-station global array 
stack. Only two of the singlet lines are visible in the conventional direct spectral estimate 
employing a cosine taper. 

The multiple-taper technique for free-oscillation analysis is described in the following 
sections. Section 2 introduces the functionals which are optimized to  yield a family of 
spectral leakage-suppressing eigentapers appropriate for an oscillation with a given attenua- 
tion rate. Functionals for decaying sinusoids in time series with and without white noise are 
discussed. Section 3 introduces the statistical F-test for detection of decaying sinusoids. In 
Section 4 we present a number of frequency measurements of isolated free oscillations using 
IDA network data. Our conclusions are summarized in Section 5. An error analysis of  the 
method is included in the appendix. Readers interested primarily in the examples are 
directed to Section 4. To implement the technique on a computer one needs to  solve (2.19) 
to  design the tapers, apply (3.15) to  estimate the decaying sinusoid amplitudes as a function 
of frequency, and compute (3.28) 10 produce an F-test plot to test for the existence of 
decaying sinusoids at  any given frequency. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPark, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. R. Liridberg and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. J. Thornson 

2 Optimal data tapers for decaying signals 

In this section we adapt the methods described in a series of five papers by Slepian, Landau 
and Pollak (Slepian & Pollak 1961 ; Landau & Pollak 1961,1962;  Slepian 1964,1978). Their 
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work involved a set of  time-limited functions whose spectral energy is optimally concen- 
trated within a given frequency band. These functions have been employed to design optimal 
tapers for the analysis of stationary processes (Thomson 1982). We have extended Thomson’s 
work to produce tapers for the harmonic analysis of exponentially decaying signals. For 
signals that decay exponentially with time, we obtain an optimization equation from which 
one can find the data taper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwo with optimal resistance to  spectral leakage from outside a 
frequency band of chosen width. Solving the optimization equation, one discovers that there 
exists a family of data tapers {w, ( t ) ,  w,( t ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . ., w k -  ( t ) }  with good spectral-leakage 
resistance. We refer t o  the members of this family as eigentapers. ‘These tapers are eigen- 
vectors of a Toeplitz matrix whose elements are values taken by the function sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx/x. In the 
next section we produce several spectra from a single record multiplied by each of the 
eigentapers in turn. and we show how these spectra can be combined t o  provide useful 
information. 

An important factor in the analysis of low-frequency seismic data is the presence of 
stationary white noise in the records. This was recognized by Dahlen (1982); the presence of 
stationary noise determined the optimal time-series length for estimation of parameters in 
Dahlen’s analysis. In his work, however, the taper shapes were held fixed. In this study, we 
extend the methods of  Thomson (1982) to derive optimal taper shapes for any length time 
series, characterized by a parameter depending on the signal-to-noise ratio at  the start of the 
seismic record. These ‘noise-cognizant’ tapers have less resistance to  spectral leakage than 
those designed using a procedure that ignores stationary noise. In the appendix we show how 
noise-cognizant tapers improve the sensitivity of the eigentaper analysis if stationary noise is 
present in the data. 

2A D E C A Y I N G  S I G N A L  W I T H  N O  N O I S E  

Consider first a signal x ( t )  that consists of a sum of decaying sinusoids uncorrupted by noise. 
Then one can represent 

x ( t ) =  Cp iexp ( iw i r -a i t ) ;  t >  0,  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi is the complex amplitude of the j t h  decaying sinusoid, which has angular frequency 
wi and decay rate ai. In practice, one cannot measure x ( t ) ,  but only the N discrete numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x (to). x ( t J ,  . . ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( tN - l). Assume that to  = 0, and the time between samples A t =  ti+ - ti is 
a constant, which we scale to  be unity. I f  At = 1 ,  then the Nyquist frequency fNyquist = %, 
and the angular frequency w = 2nf is defined on its principal domain (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIT, IT]. Tapering the 
time series ( x  (f)}Y=>’ consists of multiplying it by a real valued sequence {w  ( t ) } g o  (the 
taper). Taking the discrete Fourier transform of the tapered signal {x ( t )  w(t))Y=>’ yields 
the function 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N-1 

y ( w )  = exp (- iwt )w( t )x  ( t ) .  
t = o  

This sum may be quickly computed using the Fast Fourier Transform (FFT) algorithm 
(Cooley & Tukey 1965; Brigham 1974). A traditional estimate of the energy content of x ( t )  

as a function of frequency is given by 1 y (w) Jz, where { w (t)} ;=>’ is a conventional taper 
(Hann, Hamming, Blackman-Harris, Morse no. 2 ,  etc.; Harris 1978 describes many of the 
popular tapers). The finite length of the time series makes a boxcar taper implicit if w ( f ) E  1 
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758 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in (2.1). One wishes to choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w(t)}y=;l t o  facilitate determination of the frequency 
content of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t). 

T h e  primary purpose of a data taper is t o  minimize spectral leakage. That is, the spectral 
component o f  a tapered signal a t  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcj should have minimal energy contribution 
from outside the interval (6 - 52, cj + a), where 0 < 252 < 2n is a chosen bandwidth. One 
must also prevent the energy at  Q from the leaking out to affect parts of the spectrum at 
other frequencies. Suppose that x ( t )  consists of only one decaying sinusoid in (cj - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52, 
cj + a), with frequency 6. The tapered signal {w ( t ) p  exp( ic j t -  at)}y=%' should have as 
much of its energy as possible in (cj - 52, LJ t R) relative to  its total energy, which covers 
the entire band (-n, n). One chooses a taper {w (t)} ;=<' to maximize the functional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPark, C. R. Lindberg and D. J. Thomson 

(2.2) 

where y (a) is the discrete Fourier transform of {x ( t )  w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t)}y=;l: 

v ( o ) = p  C exp(-iwt)exp(i;t)w(t)exp(-af) 

(Slepian 1983 describes how maximizing a similar functional yields solutions to  the concen- 
tration problem, which is important in electrical engineering.) Since our time signal is limited 
to [ O ,  N ~ 11, there is no  way to confine completely the energy of its frequency transform 
to (Gj -- !2, Q + R). Therefore, the value fwil l always be less than unity. 

N-1 

t = o  

We expand the numerator of (2.2) 

N-1 

x C exp (iws) w (s) exp (- as) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s=  0 

and use Parseval's theorem to expand the denominator 

N-1 

d w l y ( o )  1 2 =  2 n l p  t z  2 w(t)  exp ( -2a t )  w( t )  
t =  0 

SO that  (2.2) becomes dependent entirely on w (0), w (  l), . . ., w ( N  - 1) and simple functions. 
Define the N-vector w = [w (0), w (l), . . ., w (N - l ) ] ,  the matrix A with elements 

sin 52 (1 - rn) 

n(1- rn) 
Alrn = exp(-a(Zt rn) ) ;  1 , m = 0 ,  I ,..., N - 1  

and the diagonal matrix B, where Bl ,  = 61, exp (- 2al); 1, m = 0,  1, . . ., N - 1 .  (The symbol 
6& is the Kronecker delta function; 6,b = 1 if a = b, and 0 otherwise.) Then equation (2.2) 
can be written as 

w - A * w  

w - B - w  
f (w) = (2.5) 
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Multiple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA759 

To find the taper that optimizes the functional set the variation o f f  with respect t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
equal t o  zero 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sf(w;  h) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - f (w + Eh) = 0 

de I L  
for all N-vectors h (Goldstein 1980, chapter 2; Smith 1974). Some algebra leads to the 
eigenvalue problem 

A - w -  h B - w = O ,  (2.6) 

where A,  B are N x  N real symmetric matrices and the eigenvalue 

A =  f (w).  

The eigenvalue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is always less than unity, as can be seen from (2.2). The fractional 
spectral leakage of the signal at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi3 outside the frequency band (i3 ~ R, i3 t R) is 1 ~ X. The 
taper w o =  [wo(0 ) ,  wo(l). . . ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwo(N - I ) ]  corresponding to the largest eigenvalue Xo is the 
optimal taper for minimizing spectral leakage. The taper wo has roughly the same shape as 
other popular tapers such as the Hann and Blackman-Harris tapers. (The taper wo corres- 
ponds to the solid curve labelled ‘0’ in Figs 1 and 2.) The largest eigenvalue Xo is almost 1; 
one finds that Ao= 1 - (2.9 x lo-’’) for NR = 8n. Moreover, there are several eigenvalues in 
the descending family Xo> Al > Xz > . . . > AN - that are very close to  ho and hence close to 
unity. The associated eigenvectors wo, w l ,  w2, . . .. wN- form a sequence of ‘eigentapers’, 
the first few of which possess good spectral leakage resistance. 

Let the decay rate a = 0 in (2.6), noting that A and B depend on a. Then (2.6) becomes 
equation (2.9) of Thonison (1982); its solutions are optimal tapers for concentrating the 
energy of nondecaying sinusoids. As discussed by Slepian (1978) and Thomson (198?), the 

4n-prolate tapers: a=O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 0.4 0.6 0.8 1 .o 
scaled t ime 

Figure 1. The five lowest-order eigentaper solutions to (2.6) when decay rate a = 0. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’n = 8n. The 
solid black line is the optimal taper. Higher order tapers are successively more oscillatory. 
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160 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
solutions t o  (2.6) when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 are the discrete zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWn prolate spheroidal sequences 
{uJk)(N,  W ) }  E<', where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW =  Q/2n and k is an integer. If a # 0, the solutions to  (2.6) are the 
eigentapers wk(r)  = u $ ~ ) ( N ,  ~ ? / 2 n )  exp (cut); r = 0 ,  I ,  . . ., N - I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA spectral estimate using 
these tapers is similar to the 'analytic continuation' of the DFT discussed in Buland & 
Gilbert (1978). In much of the following, the time-bandwidth product P = N - W = NQ/2n= 4. 
(In Slepian 1978, 1983, the parameter c = 71 - P  is used.) P is usually taken to be an integer, 
bu t  this convention is not required. 

The {ufk'(N, W)}r=V=,' sequences have several properties that are shared with the 
decaying-signal eigentapers { w k  ( t ) }  ?=>I. For example, both possess an orthogonality 
property: 

J.  Park, C. R. Lindberg and D. J. Thomson 

(2.7) 
t =  o t =  0 

The tapers { W k ( t ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr=i' sample that part of the signal that decays as exp (- at)  in an ortho- 
gonal manner. Figure 1 shows the five lowest-order eigentapers w k  (1)  = uJk)(N, W = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4/w; 
r = 0 ,  1, . . ., N - 1 for a stationary signal ( a  = 0). The zeroth-order taper {wo(t)}p=>' is a 4~ 
prolate taper. Note that the higher-order eigentapers are negative in some places and they 
weight the data more heavily near the ends of the record. Figure 2 shows eigentapers for a 
signal that decays by exp (- nB), where p = cuT/n = 1 .O Q-cycles, during the record length 
T = NAr. [One Q-cycle refers to  the time required for Q oscillations of  the harmonic signal. 
This notation was introduced b y  Dahlen (1982). One Q-cycle is equivalent t o  an amplitude 
decay of exp (-n) = 1/23]. Note the increasing amplitude towards the end of the record, as 
the tapers try to amplify the decaying signal. The tapers { W k ( t ) } r = < '  produce the 

25 

20 

15 

10 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

-5 

-10 

decaying sinusoid tapers ,9= 1 ClN=87~ 
I 

0.0 0.2 0.4 0.6 0.8 1 .o 
scoled time 

Figure 2. The five lowest-order eigentapers for a decaying sinusoid that decays by esp  (- n) during the 
record. Multiplying a decaying sinusoid by these tapers will concentrate its energy in a frequency band of 
width 2n = 16n/N. The taper amplitudes increase exponentially towards the end of the record to 
compensate for the signal's decay. 
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Multiple-taper spectral analysis: I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA761 

unwelcome result of amplifying the late record noise as well, so that while the signal power 
remains constant with time in the tapered record, the noise power increases exponentially. 
In the next subsection we will show how noise-cognizant eigentapers weight the later data 
more soberly. 

Substituting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{vik)(fv, W)exp (at)}?=<' for {Wk( t ) }y=> '  in (2.5) and using the definition 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, one can show that the discrete prolate spheroidal sequences and the sequences 
{ w k  (t)}?=;' have the same eigenvalues h k  for any value of  the decay rate a. Therefore, the 
kth prolate taper and the k th decaying sinusoid eigentaper have the same fractional spectral 
leakage for a given value of f '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= !2N/2n. The 2 N W  lowest-order eigenvalues h k  of (2.6) are of 
order unity, and rapidly drop off thereafter (Slepian 1983). For example, 4n-prolate sequences 
have eight order-unity eigenvalues, one per Rayleigh frequency spacing (2n/N) in the central 
region (& - 8n/N, & + 8n/N. Values of Xk are given in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 for some examples of  P n  
prolate tapers . 

The amplitudes of the frequency transforms 

of the five lowest-order 4n-prolate eigentapers are shown in Fig. 3 over a wide range of 
frequencies. (Here, record length T = N . )  Substituting {u , ( k ) (N ,  W)exp(crt)}?=>' for 

[ W k ( t ) } t = o  in (2 .8 ) ,  one finds that the functions @ k ( w )  are independent of decay rate. 
Figure 3 shows the excellent leakage rejection properties of the eigentapers. There is a sharp 
band-edge at frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 8n/T Note sidelobe height increases as the order of the 
taper increases, but remains 30-40dB below the height of the central region even for the 
fifth taper. Figure 4 is an expansion of  the central peak region displaying both real and 
imaginary components of the same five eigentaper transforms @k(<w). The plots of the 
central region show that each @k((w) samples the central band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-a, a) in a different 
manner. The eigentaper transforms i?k (w)  become increasingly more oscillatory with 
increasing order. The @ k ( w )  are orthogonal, both within the central band 

N-1  . 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Eigenvalues hk for lowest-order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPn prolate tapers. 

P k  1Ak P k  

1 0 0.189 3 0 1 . 3 4 8 ~  lo-' 
1 0.2504 1 9 . 2 4 5 ~  lod 
2 0.7564 2 3 . 8 5 0 ~  104 

3 5 . 0 8 6 ~  
4 5 . 3 8 6 ~  lo-' 

2 0 5.725 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10" 4 0 2 . 9 4 6 ~  10-l' 
1 2 . 4 3 8 ~  IK3 1 2 . 7 6 8 ~ 1 0 ~  
2 4.061 x 10-2 2 1.210x 10" 
3 0.2783 3 4 . 2 4 5 ~  I O - ~  
4 0.7253 4 5 . 8 9 9 ~  104 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 7 . 4 9 6 ~  
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762 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 
f requency(un i ts  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f  wR) * 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Frequency-transform amplitudes of the five lowest-order 471 prolate eigentapers. The frequency 
transforms are independent of decay rate by (2.8). The sidelobes are lowest for the optimal eigentaper, 
and increase in height for higher order eigentapers. The abscissa is in units of WR = 2n/T, where T is the 
record length. There is a sharp bandedge at  frequency w = 4 w ~ .  

using (2.6) through (2.8), and over the entire discrete Fourier transform frequency band 

(2.10) 

by (2.7). In (2.3) and (2.10), the asterisk denotes complex conjugation. 
Unfortunately, these tapers are only suitable for the analysis of  noise-free records, but 

low frequency seismic data are noisy. In the next section, tapers designed to analyse noisy 
records are discussed. 

2B D E C A Y I N G  S I G N A L  I N  W H I T E  NOISE 

Low-trequency seismic records can be modelled as a sum of decaying free oscillations 
immersed in noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x ( t )  = C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm exp (iw,t - a,t) + n (t): t > 0, 

m 
(2.1 1) 

where, as before, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, a,  and p m  are the frequency, decay rate and complex amplitude of 
the mth free oscillation. with onset at  t = 0, and n ( t )  is a realization of a noise process. The 
sum over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn extends in principle over the countably infinite elastic-gravitational free oscilla- 
tions, but can be taken as finite in a record from a band-limited seismic instrument. We will 
assume throughout that PI ( t )  is a realization of a stationary, zero-mean. white noise process. 
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zeroth o rder  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtoDer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMultiple-taper spectral analysis: I 

f i r s t  order tape r  

, >  
, I  I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-2 

-4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-6  

-4  3 - 2  1 c  1 2  3 4 

second o r d e r  t o p e r  

-4 -3 -2 - 1  0 1 2 3 4 

t h i r d  o rder  toper  

4 . 3 - 7 - 1  0 1 7 3 4 

f c u r t h  o rder  taper 

I ,  

- 6 1 ,  I 1 I 1 I ': I , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 4 - 2  2 1 0  1 2 .3 4 

f reqbency(uni ts of wd) 

763 

- 4  -3  . 2  -: 0 1 2 3 4  
f req ~1 ency( u nits o f  LU*) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Expansion of central peak region of the five eigentaper frequency transforms of Fig. 3. The solid 
line is the real part; the dorted line is the imaginary part. The central peak region is increasingly more 
oscillatory for higher-order eigentapers. 

In practice, the spectrum of seismic noise does not vary much over the 
frequency band of interest (Agnew & Berger 1978). 

We determine optimal data tapers in this case using an extension of the variational forma- 
lism described above. In particular, we wish to  balance the need to  concentrate as 
much of the spectral energy of the signal as possible into a region of bandwidth 2G against 
the desire to retain a high ratio of tapered signal power to tapered noise power. The 
exponential asymmetry of the decaying signal tapers { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw k  (t)} E;' will increase the 
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764 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
amplitude of stationary noise in the later part of the record. This will degrade the quality of 
the spectral estimate considerably unless the ratio of tapered signal to tapered noise is 
constrained t o  have a reasonable value. 

Assume that in the interval (0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2 + R) the record zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t )  is composed of the signal, a 
single decaying sinusoid, plus white noise n ( t ) :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. Park, C. R. Lindberg and D. J. Thomson 

x ( t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp exp (iQt - at) + n (t). (2.12) 

Suppose also that we have discrete samples of x ( t )  

{ x ( t ) ) ;  t = 0 , 1 , 2  , . _ . ,  N - l  

so that  the angular frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw E(- n, n]. We want to choose our taper { w  (t)}$J=,' so that 
the energy of  the tapered signal 

(2.13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w ( t> p exp (icjr - a t ) }  :=%' 

in (0 -- a, 0 + R) relative to its total energy is maximized, but now with a constraint: the 
ratio of the tapered signal power to  tapered noise power in (0 - 52, 0 + a) has a fixed value. 

The  discrete Fourier transform of the tapered noise is 

N - 1 

f =  0 
m (0) = C n ( t )  exp (- iwt)  w (t) .  (2.14) 

A measure of  the expected energy of  the tapered noise at  frequency w is 

(7.15) 

where 0 denotes expectation value and u% is the noise variance. The expected power of the 
noise in the tapered record in (12 - 0. c2 + R) is 

(2.16) 

We generalize (2.5) in order to constrain the ratio of tapered signal t o  tapered noise 
within the frequency band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a - R, 0 + R). We now wish to  maximize the functional 

(2.17) 

with respect t o  w, where w, A and B are as defined in Section 2A. The second term in 
equation (2.17) represents the ratio of tapered signal power to tapered noise power; 7)  is a 
Lagrange multiplier. In the limit of very large signal-to-noise ratio, i.e., as (I /J I')i(u&) +m, 

one expects 7) t o  tend to  zero. In principle q is determined from the constraint equation; in 
practice we determine its value empirically. The condition Sf(w; R, q)  = 0 leads to a non- 
linear equation for the tapers w which maximize (2.17). This non-linear equation can be 
solved approximately (Lindberg 1986). 

Alternatively, we can minimize the functional 

w . B * w  W ' W  

w * A - w  w * A - w  
f(w; R. v) =-+v ~___ (2.18) 
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Multiple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 765 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(F. Gilbert, private communcation). Solving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASf"= 0 leads t o  the equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x'B' .  W ,  

where B' = B + u1, I being the N x N identity matrix and 

(2.19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A' = [ ?(w; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, u)]- '  

The eigenvectors which correspond t o  the largest eigenvalues X' of (2.19) will minimize ?. 
Given the decay rate (Y and the noise-weighting parameter v,  (2.19) can be solved for eigen- 

tapers { w k ( f ;  0, v > }  ?=;''. When v =  0 ,  the elements of the kth taper w k ( t ;  /3, 0 )  = wk(r) ;  

t = 0.  2 ,  . , ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - 1 and the tapers reduce to  those of Section 2A. The fraction of tapered 
signal power that remains in the frequency band ( L j  - s2, cj + S2)  is 

(wk A * wk)/(wk ' B ' wk) = Xk (2.20) 

which can be calculated from the eigenvectors and eigenvalues of (2.19). We have found it 
helpful to think of the Xk as 'bandwidth retention factors'. 

We used EISPACK subroutines (Smith et al. 1976) to  solve (2.19) for its largest eigen- 
values X; and associated eigenvectors. We normalized the tapers { W k ( t ;  0. u)}y=V_' so that 

(2.21) 

Rather than solve an eigenvalue problem for every data series length. (2.19) was solved for 
N =  128 and the tapers for other values of N were found using spline interpolation. This 
approach takes advantage of the asymptotic relations between the discrete and continuous- 
time tapers described in Slepian (1978). Tests using these interpolated tapers showed 
negligible degradation of spectral leakage properties relative t o  exact solutions for N> 128. 
For N <  128, (2.19) should be solved directly (A. Chave, private communication), but such 
short time series are rare in free oscillation work. The taper transforms are computed from 
the interpolated tapers using an FF'I' after padding the tapers with zeroes until their lengths 
were a power of two. 

The preceding argument shows that v is a complicated function of the signal-to-noise ratio. 
For large signal-to-noise-ratios IpI*/o%, v will be very small, B'= B, and the solution of 
(2.19) is not very different from the solution of (2.6). For smaller signal-to-noise ratios, one 
expects that the optimal tapers will have a v of finite size. One could pick an incorrect value 
of v for a particular signal-to-noise ratio, but then the tapers would not perform optimally. 
Useful values are best determined by experiment. We will show in the appendix that using 
eigentapers having larger values of v results in a marked improvement in the detection 
capability of the multiple-taper algorithm. 

Some examples of noise-cognizant eigentapers are exhibited in Fig. 5 for the case v = 0.01, 
/3 = 0.6, and R N =  8n. Note the strong asymmetry of the tapers, with a strong emphasis on 
data in the earlier section of the record where instantaneous signal-to-noise ratio is greater. 
The height of the taper's main peak increases with increasing order to compensate for the 
decay of the signal, as shown in Fig. 2. Figure 6 shows tapers which were designed with 
u =  0.1, 0 = 0.6, and RN= 8n. The preference for the early part of the record is more drastic. 
resulting in significant weighting at  the onset of the time series. Here the variational principle 
minimizing (2.18) has sacrificed resistance to  spectral leakage in order to raise the ratio of 
tapered signal t o  tapered noise. Figure 7 displays eigentapers designed with u = 0.001, 
0 = 0.2, and S2N = 8n. These eigentapers are for a series containing sinusoids that only decay 
slightly in a more favourable signal-to-noise environment. Asymmetrical weighting remains 
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766 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 0 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 -  

6 -  

4 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 -  

--2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPark, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. R. Lindberg and D. J. Thomson 

noise-cognizant tapers: p=.S v=.Ol 

- 

0.0 9.2 0.4 0.6 0.8 1 .0 
scaled time 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Optimal eigentapers for an exponentially decaying sinusoid iminerscd in white noise. The 
sinusoid i a  aasumcd to decay by exp (-- 0.6n) during the record. The noise parameter 11 i \  chosen according 
to the signal-to-noise ratio o f  the data. The tapers sample the front of the record where the signal-to-noise 
ratio is largest. and increase in amplitude towards the end of the record to compensate for the signal's 
decay 

6 

5 

4 

3 

2 

1 

0 

- 1  

-2 

noise-cognizant tapers: p=.6 v = . l  

,,' ': . .  
, I 

0.0 0.2 0.4 0.6 0.8 1 .o 
scaled time 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Sequence of' optimal tapers for an exponentially decaying sinusoid immersed in white noise. 
l h e s e  tapers are designed for a lower signal-to-noise ratio than those of Fie. 5, and have a larger noise 
parameter v. These tapers sample the data less heavily in the latter part of thc record where the signal is 
obscured by noise, compared to the tapers in Fig. 5. 
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767 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 0.4 0.6 0.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .o  
scaled time 

Figure 7. Set of optimal eigentapers for a decaying m u w i d  containinated by additive white noi\c. Com- 
pared with the tapers if Figs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 6. these eipentapcrs are designed for records with a larger \ignal-to- 
noise ratio, and a ainusoid that decays less. 

noise-cognizant tapers: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp=.6  v=.O1 

0 4 8 1 2  1 6  
frequency(units of  wR) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Amplitude o t  the five lowest-order noise-cognizant eipentapers with decay parauictcr 0 = 0.6, 
noise parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0.01 and time-bandwidth product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN6L = Xn. The abscissa is in uni ts  of W R  = 2rr/T. 

There is a sharp bandedge at frequency w = 4WR = 8n/T Note that the plot ih of absolute magnitude, not 
power, so the first sidelobes are 20-30 dB down. 
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768 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPark, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. R. Lindberg and D. J. Thomson 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Eigenvalues hk' and bandwidth retention factors hk for lowest order noise- 
cognizant optimal tapers. 

v =O.Ol.fl=O.6 v=O.l,fl=0.6 v=0.001,fl=0.2 v=O.Ol.fl=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k ;It' 

0 0.962301 0.99869 0.73574 0.98905 0.99729 0.99997 0.94592 0.99682 
1 0.940787 0.99760 0.63985 0.98003 0.9%76 0.99995 0.89435 0.99227 
2 0.910363 0.99619 0.53070 0.96888 0.99614 0.99993 0.80953 0.98428 
3 0.867487 0.99361 0.41590 0.95026 0.99542 0.99990 0.68406 0.96699 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 0.808944 0.99006 0.30618 0.92719 0.99458 0.99975 0.52440 0.93826 
5 0.732283 0.98339 0.21 152 0.89053 0.98934 0.99469 0.35619 0.88398 

Values of the eigenvalues2,' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand the bandwidth retention factors for time-bandwidth product f)N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=&I 

and various values of the decay pnrameterfl and the noise parameter v .  Note that the bandwidth retention 
parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, are close u, 1 for small k. and are succeedingly smaller for higher order tapers. The lowest 
order eigentapen have the smallesl fractional leakage 1 -kk ;  higher order eigentapen suffer from succes- 
sively greater spectral leakage. 

evident. Table 2 shows values of  hi  and h k  for tapers { w k ( t ;  (3, v)}?&' for a selection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 and u values. The eigenvalues X i  drop rapidly from unity with increasing k. The bandwidth 
retention factors hk remain relatively constant among eigentapers of fixed (3 and v. This 
behaviour can be observed qualitatively in the Fig. 8 plots of the amplitudes of the frequency 
transforms ciik(w;(3, v) of the tapers { w k ( t ;  0, u)}?=<' 

(2.22) 

for 0 = 0.6, v =  0.01. and ClN= 8n. The five lowest order eigentapers have sidelobes of 
comparable height. Enlargements of the central peak regions are shown in Fig. 9. 

Because A and 3' are symmetric, the orthogonality condition (2.9) remains valid for 
noise-cognizant tapers, using (2.2 1). However, as the noise-cognizant tapers { w k  ( t ;  0, v)j;"=,' 
satisfy (2.2 1 )  and not (2.7), the frequency-domain orthogonality relation (2.10) does not 

Table 3. Elements of matrix D for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.6, nN= 8n and 
u = 0.01. 

k' 
~ ~~ 

k 0 1 2 3 4 

0 0.98151 4.00183 0.00218 4.00235 0.00227 
1 4.00183 0.97130 -0.00352 0.00415 -0.00445 
2 0.00218 4.00352 0.95658 -0.00620 0.00719 
3 4.00235 0.00415 -0.00620 0.93560 -0.01043 
4 0.00227 -0.00445 0.00719 4.01043 0.90638 

forp =0.6, ZW = &r, and v = 0.1 

k' 

k 0 1 2 3 4 

0 0.86278 -0.01271 4.01358 0.01261 0.00995 
1 4.01271 0.80917 0,02210 4.12322 -0.02143 
2 -0.01358 0.02210 0.74322 4.03364 4.03440 
3 0.01261 -0.02322 4.03364 0.66634 0.04693 
4 0.00995 4.02143 4.03440 0.04693 0.58231 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/9
1
/3

/7
5
5
/6

4
1
4
8
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Multiple-taper spectral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanalysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA769 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zero th  o rder  taper  

I 

f i r s t  order taper  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-4 -3  -2 - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 2 3 4 

second order  taper  

-4 -3  -2 - 1  0 1 7 3 4 

t h i rd  order taper 

- 4  -3  --2 - 1  0 1 2 .3 4 

f ou r th  order  taper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4 -3  -2 - 1  0 1 2 3 4 

frequency(units of wR) 

-4 -3 -2 - 1  0 1 2 3 4 

frequency(units of w R )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 9. Expansion of the central peak region of the frequency transform amplitudes of the five lowest 
order eigentapers of Fig. 8. The solid line is the real part of the frequency transform; the dashed line is the 
imaginary part of the transform. 

hold. In its place we have 

J - l l  t =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

(2.23) 

for k, k ' ~ ( 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,  . . ., K - 1). The matrix D is diagonally.dominant for small v .  Table 3 lists 
the elements of D for the five lowest order eigentapers with SIN = 8n, (3 = 0.6, and v =  0.01 
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770 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.1. The magnitude of the off-diagonal elements of D indicate the departure from 
orthogonality of the frequency transforms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqk (w ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. v) over (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71. T I .  

We have required that our data tapers possess certain desirable properties. We want them 
t o  have the ability t o  concentrate most of a decaying sinusoid’s energy into a given fre- 
quency band. balanced against the capacity to  maintain a high signal-to-noise ratio for the 
tapered data in the frequency domain. This leads to a variational calculus problem, whose 
solutions are a family of data tapers. These tapers provide a method of  orthogonally 
sampling a decaying sinusoid. in both the time and frequency domains. By sampling a decay- 
ing sinusoid repeatedly in different ways. one can obtain superior estimates of its frequency 
and amplitude. Simple techniques to do  this. based on those outlined by Thomson (1982). 
are the subject of the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPark, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. R.  Lindbergand D. J.  Thonison 

3 Harmonic analysis 

An iniportant part of long-period seismic data analysis is the detection of decaying sinusoids 
in the data and the measurement of their frequencies and amplitudes. The estimation of 
decay rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQI is also important: we plan to address this problem in later work. In the follow- 
ing i t  is assunied that the Q of the decaying oscillation is known o r  has been approximated 
by some method (e.g. Riedesel et al. 1980). 

The spectra of low-frequency seismic time-series consist of harmonic ‘lines’ which have 
been broadened by decay, and a continuous background spectrum. The decay-broadened 
‘lines’ are treated as signal, whereas the continuous spectrum is considered to  be noise. This 
sets free oscillation data analysis apart from many familial- problems in seismic spectral 
estimation. e.g. finding the frequency content of body waves, o r  earthquakes in the near 
field. The spectra in those cases are predominantly continuous. There are methods of multi- 
taper spectrum analysis that are useful for spectra which do not have harmonic line com- 
ponents (e.g. Thompson 1982; Park. Lindberg & Vernon. in press; Lindberg, Vernon & Park, 
unpublished manuscript ). 

The most straightforward method of detecting line components in low-frequency data is 
to measure obvious spectral peaks in a discrete Fourier transform of the data. If one tapers 
the time series in a prudent fashion. as indicated in Dahlen (1982), this approach is adequate 
for well-excited oscillations generated by large earthquakes (ML zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 7). Unfortunately. most of 
these well-excited oscillations are surface-wave-equivalent fundamental modes which by 
themselves allow poor depth resolution. The modes most useful for enhancing the resolution 
at depth (e.g. the overtone oscillations that correspond to  PKP, PKIKP, SKS etc. motion) are 
excited only by very large or very deep earthquake sources. Even then, their spectral peaks 
may not protrude substantially above the background noise. Masters & Gilbert (1981) show 
a typical example of this problem in the presumed identification of  two inner-core oscilla- 
tions. ‘The use of spherical harmonic stacking of records from a global array (Gilbert & 
Backus 196.5: Gilbert & Dziewonski 1975; Buland. Berger & Gilbert 1979) can aid mode 
identification greatly, especially in the case of closely spaced spectral lines caused by 
splitting of a free oscillation into individual singlets. However, it is difficult t o  identify 
decaying sinusoids in a low signal-to-noise environment using conventional methods of 
spectral estimation. 

In the following we propose a method that is designed to yield a quantitative measure of 
the certainty that there is a decaying sinusoid at any given frequency. The novelty of our 
algorithm resides in the additional information obtained by sampling the data with more 
than one taper and the introduction of a statistical theory based on an F-test to detect 
harmonic spectral components and reject continuous. random-phase noise. 
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Multiple-taper spectral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanalysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 771 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1 R E G R E S S I O N  A N A L Y S I S  

Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( t )  is a record consisting of noise and a number of decaying sinusoids. one of 
which has frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcj. Then one can write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x ( t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp exp (icjt - a t )  t e ( ~ r ) .  (3.1) 

where p is a complex amplitude, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is a decay rate, and e ( t )  is an error term. The error term 
consists of orher decaying sinusoids and noise. For a sufficiently small value of s1, x ( t )  
contains only the single decaying sinusoid p exp (i&t -- at) in the frequency interval 

(LJ s1, LJ + a). This decaying sinusoid represents a deterministic signal in the record x ( r ) ,  
and one can use the method of least squares to estimate its amplitude p .  

We assume in the following that there is not more than one decaying sinusoid in the 
frequency interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cj - s1. LI + Q). This is often not true in practice. but in many applica- 
tions the various singlets of free oscillation niultiplets are observed to combine into a signal 
that is well approxirnated by a single resonance. Also. the least-squares procedure can be 
generalized to  the case of  two or more decaying sinusoids in a frequency interval of width 
2!2 (Thomson 1982). 

As we have indicated, it is important t o  taper the data. IJsing the optimal tapers of 
Section 2 ,  we multiply the data by each taper { w k ( t ;  (3. v)}?=<O', k =  0. 1 ,  2 ,  . . .. K - I .  in 
turn. We pick only a small number (fo of data tapers because higher order tapers have 
successively poorer leakage resistance. In the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0 the tapers up to order K = N .  Cl/.rr 
have good spectral leakage resistance; higher-order tapers exhibit vastly poorer performance 
(Slepian 1978). This is evident from the behaviour of the eigenvalues Xk  appearing in Table I .  
In the case v ZO. we choose the K noise-cognizant tapers with the largest bandwidth 
retention factors. Usually K < N Q / n  in this case. We show how we choose K in Section 4. 

Multiplying the data { x (t)}Y=;' by the K eigentapers (wk ( t ;  /3, v)) ;&' one obtains K 

time series: 

( W k ( t ; P , V ) X ( t ) ) ~ ~ < ' ; k = O ,  1, . . . ,  K - I .  

From equation (3.1) 

e ( r ) W k ( t ; P , v ) = X ( f ) W k ( t ; P , v )  pp&'l,(f;fi,v) exp( ic j t  - a t > ;  f = 0 .  1 ,  ..., N-1. 

( 3 - 2 )  

(3.3) 

Take the discrete Fourier transform of both sides of (3.2): 

ek (w> = Yk (w )  - p mk (w -- b; f l ,  v), 

where 

ek (a) = 1 e ( I )  wk ( t ;  0, u)  exp (- iwt) 
N-1  

t = o  

N - l  

y k  (w> = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (t) wk (t; P ,  V )  exp (- jut) 

and i?k(w;P, v) is defined in equation (2.22). Because of the leakage resistance of the tapers, 
the e k ( a )  are approximately the complex eigenspectra of the noise in (LI - s1. cj t a). 

We would like to make an estimate f i  of the amplitude 1.1 of a decaying sinusoid of fre- 
quency LI. To do  this, a least-squares procedure is performed. At each frequency w, the 
complex eigenspectra yk (o), k = 0, 1 ,  . . ., K - I ,  are taken to be the dependent variables, 

t = O  
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172 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the parameter to be estimated, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmk(u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv), k = 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  . . ., K - I ,  are the 
independent variables. By the Gauss-Markov theorem, to produce a minimum variance 
estimate of f i  that is unbiased at the decaying sinusoid's true fiequency using least squares, 
the random variables yk((lS) must be statistically uncorrelated (Bickel & Doksum 1977. 
ch. 7: Luenberger 1969. ch. 4; Tukey 1975). However, the Y k ( u )  are not necessarily 
uncorrelated random variables: 

J. Park, C. R .  Lindberg and D. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThomson 

c o v  [ y k ( W ) ,  y k ' ( W ) ]  = (Yk  (a)yg ' (W))  - (yk(W))(,vkllk'(u))* 

will not vanish unless 
H for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl = 0.6, RN = 871, and v = 0.01 and v = 0.1 are shown in Table 4. 

there exists a lower triangular matrix G with positive diagonal entries such that 

= v = O and k # k'. For fl = v = 0 ,  Hkk'  = t i , , ' .  Elements of the matrix 

Since H is synimetric and positive definite, it has a Cholesky decomposition. That is. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H = GGT (3.5) 

where the superscript T denotes matrix transpose (Golub & VanLoan 1983). 

using the matrix G-' as follows: 
Transform the complex eigenspectra y k ( u )  arid the independent variables @k ( w ;  0, v) 

uk' ( t ;  P.  V )  = (G- ' )k 'k  "k P> v )  

zk '  (W ) = (G-')k' k Y k  ( W )  

Table 4. Elements of matrix H for p = 0.6, nN = 8n and u = 0.01 

k' 

k 0 1 2 3 4 

0 1.84870 0.18322 4.21788 0.23523 4.22668 
1 0.18322 2.86999 0.35164 4.41490 0.44470 
2 4.21788 0.35164 4.34203 0.61999 4.71893 
3 0.23523 4.41490 0.61999 6.44037 1.04331 
4 4.22668 0.44470 4.71893 1.04331 9.36201 

forD=O.6, RN =&. andv =0.1 

k 0 1 2 3 4 

0 1.37223 0.12714 0.13583 4.12606 4.09953 
1 0.12714 1.90834 -0.22102 0.23223 0.21434 
2 0.13583 4.22102 2.56776 0.33639 0.34401 

4 -0.09953 0.21434 0.34401 4.46931 4.17692 
3 4.12606 0.23223 0.33639 3.33664 -0.46931 
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Multiple-taper spectral analysis: I 773 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
svhere U k ( t ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu), z k ( w j ) .  Vk(wj;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  u )  and gk'(wj) are the transformed tapers, the trans- 
formed complex eigenspectra, the transformed independent variables, and the transformed 
errors respectively. We employ the Einstein summation convention in (3.6) and hereafter, 
summing repeated indices over the range 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, . . ., K - 1 .  From (3.3), 

g k ( U ) = Z k ( w ) - f i v k ( w -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv). (3.7) 

The transformed complex eigenspectra t k  (w )  are uncorrelated, as 

cov [ z k ( w ) ,  z k ' ( w ) ]  = ( z k ( w ) z z ( o ) )  - ( z k ( o ) ) ( z k ' ( w ) ) *  

= (G- ' )k l  cOv [y l (w) ,  y m  (w) ]  (G- ' )k ' rn  

(3.8) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2  6 
N kk' 

by (3.4) and (3.5). 

sinusoid of frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcj is 
A measure of the error in assuming that the record x ( t )  consists of a single decaying 

Perform a least squares procedure; solve 

___- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0  
aM(0) 

a&* 

for f i .  Then (3.10) becomes 

Note that is actually a function of the frequency cj: 

(3.9) 

(3.10) 

(3.1 1) 

(3.12) 

One can determine z k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) at a set of discrete frequencies wj;  j = 0,  1, 2 ,  . . ., J - 1, called 
bin frequencies, by applying an FFT to the tapered data. The data can be padded with 
zeroes to interpolate the spectrum. (Note that this 'interpolation' adds no extra information.) 
To estimate the amplitude 3 of the proposed signal at each discrete bin frequency, set 
w = & = o j ; j =  O , l ,  ..., J-1 in(3.12).Then 

(3.13) 
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774 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Substituting for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzk(cd) in (3.13), it is seen that this 'pointwise regression' formula for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 is 

equivalent t o  a Fourier transform of the time series zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ x ( t ) } F = > l  with a hybrid taper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ w( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ;  0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv)} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy=>' given by the formula 

J. Park, C. R. Lindberg and D. J. Thomson 

k = O  
iu ( t ;  0, v) = ; t = O , 1 ,  ..., N - l  (3.14) 

( V z  (0;  0, v) = Vk(O; 0, v) since {w,(t; p,v) }~=V_O'  is a real-valued sequence.) Note that 
{ ~ ( ( t ;  0, v)}K>' is not optimal in the sense of (2 19). 

In terms of the complex eigenspectra and taper frequency transforms: 

(3.15) 

When 0 = v = 0 ,  H = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  and (3.1 5 )  reduces to equation ( 1  3.5) of Thomson ( I  982). 
If v = 0 (i.e. tapers designed without provision for stationary background noise) or 0 = 0 

(tapers designed for non-decaying signals), &(O; v ,  0) = vk(O; 0,p) = 0 for odd k ,  since in 
both cases the gk reduce to the transforms of discrete prolate spheroidal sequences. In these 
instances the pointwise regression technique ignores the odd order tapers completely in 
constructing f i .  

BY (3.81, 

K - 1  
I Vk(0; 8, v) I2Var [ z k ( w j ) ]  

k = O  
Var [ f i (w f ) ]  = ~- 

/ K - I  

The variance of the estimated amplitude increases with increasing noise amplitude. 
If there is no decaying sinusoid at frequency wi, one would expect f i  to be small.How- 

ever, this is not the best criterion for deciding if there is a decaying sinusoid at  frequency w,. 
The sinusoid may be present, but  it may have a very small amplitude. Also, the least squares 
procedure may yield a large value for f i  at some frequency, but a decaying sinusoid may not 
be a good way to characterize the data at  that frequency. A method of evaluating the fit of 
our decaying sinusoid model t o  the data is needed. 

3.2 T E S T I N G  T H E  F I T  O F  T H E  M O D E L  T O  T H E  D A T A  

A common technique for assessing the fit of a least-squares estimate is t o  perform a statistical 
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Multiple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA775 

F-test (eg.  Wonnacott zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Wonnacott 1981). An F-statistic is roughly the ratio 

-- variance explained by the model 

unexplained variance 
(3.17) 

The random variable Ffol lows the 6’-distribution, which has been tabulated (e.g. Abramowitz 
& Stegun 1965). We use the 6’-test to compare the fit of  the data t o  a decaying sinusoid 
model. 

Suppose that the record zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (t) consists zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsolely of zero-mean stationary Gaussian white noise 
n ( t ) .  For free oscillation data, we have found that it is a reasonable approximation to  say 
the background noise is Gaussian white noise and almost stationary. This can be demon- 
strated by generating ordered value plots of the data, as in Fig. 10 [Wilk & Gnanadesiken 
(1968) contains details on ordered value, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP - P plotting of data]. 

As before, one estimates the complex amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp of a decaying sinusoid of frequency ij 
by fitting the model f i  j i j k ( w  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, v )  to the random variables 

N - l  

Y k ( W )  = wk(t;O. v) exp(-zwt)n(t) ;  k =  0 ,  1, .  . ., K -1 
t = o  

(3.18) 

There is a finite probability that a decaying sinusoid model will fit the complex eigenspectra 
of the noise (3.18) at some frequency. The chance that this will happen is a measure of  the 
confidence that a true decaying sinusoid exists at  that frequency. 

When no  harmonic signal is present, the expected value of each transformed complex 
eigenspectrum vanishes: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( Z k ( W j ) )  = 0. (3.19) 

However, the presence of noise, or signal, may cause any given transformed complex eigen- 
spectrum z k ( w j )  t o  be non-zero at some frequencies. This departure of z k ( w j )  from its 
expected value may be partly ‘explained’ by the linear regression analysis. Using the estimated 
value f i  (mi)  from (3.13), the estimated value of z k ( w j )  is 

i k ( a j )  = f i(wj) V k ( 0 ;  0, v ) .  (3.20) 

The deviation of  Z k ( w j )  from ( z k ( c d j ) )  may be decomposed into an ‘explained’ deviation, 
[ i k ( w j )  - ( z k ( c d j ) ) ]  and an ‘unexplained’ deviation, [ Z k ( w j )  - zk(w j ) ] :  

[ z k ( w j )  ’- ( z k ( w j ) ) ]  = [ i k ( a j )  - ( z k ( a j ) ) ]  + [ Z k ( W j )  - i k ( a j ) ] .  

Or, summing over k ,  and noting that (zk(&+)) = 0 

(3.21) 

K - 1  K - 1  K - 1  c z k ( w j )  = i k ( a j )  + c [ z k ( a j )  - i k ( O j ) l  
k = O  k =  0 k = O  

The same equality holds when one takes the modulus squared of the deviations: 

K - 1  K - l  K - I  

k = O  k =  0 k =  0 
2 I z k ( w j ) / ’ =  2 I f k ( ( W j ) l z t  c I z k ( w j ) - i k ( 0 j ) 1 2  

(3.22) 

(3.23) 

by multiplying (3.21) by its complex conjugate, and then summing over k. Substituting for 
i k ( w j ) ,  (3.23) becomes 

K - 1  K - 1  K - 1  

k = O  k = O  k = O  
2 I z k ( w j ) 1 2 = / f i ( 0 j ) 1 2  c I v k ( o : p , v ) 1 2 t  I z k ( w j ) - f i ( w j ) ~ ~ ( ( o ; ( 3 , v ) 1 2  (3.24) 
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776 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Park, C. R. Lindberg and D. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThomson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 (a/) + $ (ail, 
defining 

K - 1  

c$(wi)- Izk(wj)I' 
k = O  

(3 .25)  

where c$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ai) is the total sample variance of the z k ( u j ) ,  0 (aj) is the sample variance explained 
by the decaying sinusoid hypothesis, and $ (aj) is the residual, or unexplained sample 
variance. 

We formulate a test to reject the null hypothesis that I.( = 0. Consider the random variable 
p formed by taking the ratio of the explained sample variance to  the unexplained sample 
variance. Then 

k = O  - - (3 .26)  

If there is a decaying sinusoid at frequency ai, the denominator $(aj) will be small, and 
thus the function ?(ai) will be large. By chance, sometimes a decaying sinusoid model will 
fit the time series {n(t)}Y=;' reasonably well at some frequency. The probability of this 
happening can be calculated. Therefore, one can describe quantitatively the confidence that 
there is a true signal at a given frequency. 

We need to know how the random variable F(ai) is related to the F-distribution. In 
Lindberg (1986) it is shown that 

(3 .27)  

follows an F-distribution with 2 and (2K - 2 )  degrees of freedom. Therefore, the chance 
that the random variable 
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Multiple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA777 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P-P plot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu- .01 

0 0  0 4  0 H 
sorn2le qLc- !  I(:'; 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. Ordered value, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-  P plot of 675 independent values of the ratio F(wi) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.28) using 
synthetic stationary Gaussian white noise as input data. The cumulative probability distribution of the 
ordered observations F(I) < F(2) < . . . < F(675) is plotted on the ordinant against sample quantiles on the 
abscissa. The i th  point is plotted as the ordered pair [ ( j / 6 7 5 ) ,  F ( j ) ] .  The graph is almost a straight line, 
demonstrating that the ratio F(wj) follows an F-distribution for Gaussian white noise input data. 

takes on a particular value at some frequency due to random noise can be found using 
standard tables of the F-distribution (e.g. Abramowitz & Stegun 1965). 

Figure 10 is an ordered value, or P - P plot (Wilk & Gnanadesikan 1968) of 675 indepen- 
dent values of the random variable F(oi) generated from a synthetic record of Gaussian 
white noise. If the sample followed an F-distribution exactly, the ordered value plot would 
lie on a straight line connecting the points (0, 0) and (1,  1). The departure of the ordered 
value plot from a straight diagonal line is not significant at the 95 per cent confidence level, 
using a Kolmogorov-Smirnov test for goodness of fit (Bickel & Doksum 1977). This demon- 
strates graphically that the ratio F ( o i )  follows an F-distribution when the data consist of 
Gaussian white noise. 

4 Data examples 

'We illustrate the multiple-taper algorithm with two examples of decaying oscillations immersed 
in white noise. In the first, we analyse a synthetic IDA record in which the signal-to-noise 
power ratio is known a priori. In the second, we study a 340-hr record of the 1977 Sumbawa 
event from IDA station NNA (NaBa, Peru). Spectral estimates made by taking the DFT of 
cosine-tapered data are compared to results produced by the multiple taper technique. We 
find the multipleeigentaper algorithm is superior for detecting low-amplitude decaying 
sinusoids in noise. 

We have focused our attention on the gravest observed seismic free oscillation, the 
spheroidal multiplet J2.  (J1 has lower frequency, but this oscillation of the inner core has 
not yet been conclusively observed.) The multiplet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoSz consists of five decaying sinusoids 
at distinct frequencies. These 'singlets' are labelled by an azimuthal order number 
m E {- 2, - 1, 0, 1 ,  2) .  The five singlet frequencies of this oscillation are widely split by the 
rotation of the Earth, so much so that the magnitude of the quadratic second-order Coriolis 
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778 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
splitting is roughly 60 per cent that of the quadratic splitting caused by the Earth's hydro- 
static ellipticity (Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sailor 1979). The singlet frequencies have been measured by 
Buland zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1979) from spherical harmonic stacks of six 150-hr IDA records of the 1977 
Sumbawa event. The multiplet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0S2 is difficult to measure as it is excited by only the very 
largest earthquakes. Even for the Sumbawa event, the signal-to-noise ratio is not large. Also, 
some singlets have very small amptitudes at some stations because of the dependence of  
singlet amplitude on latitude. As a result, no  more than two or three of the five singlet 
resonance functions can be seen in any of the conventional amplitude spectra of records 
f rom the seven IDA stations existing at that time. 

We constructed a 300-hr synthetic IDA record from CMO (College, Alaska) using a source 
located in Oaxaca, Mexico. The five singlets of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS2,  split by rotation and ellipticity, were 
included in the seismogram (see Park & Gilbert (1986) for an outline of the computation 
procedure). Gaussian white noise was added to the record with amplitude scaled so that 
NI p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI2/uk = 73 for the m = 0 singlet oscillation, NI p I2/u& = 22.5 for the m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 singlets. 
and NIp ( ' / o&=  3.6 for the m = _+ 2 singlets. The record was sampled at 160s intervals to 
produce a time series of 6750 points. We analysed the record with five eigentapers with 
ClN= 8n, 0 = 0.6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0.01 t o  produce amplitude estimates p ( w )  and an F-test of the fit of 
h(o) to the complex eigenspectra. Five tapers were chosen because the five lowest order 
eigentapers with ChV = 8n, 0 = 0.6 and v = 0.01 have fractional leakage of 0.01 or less (Table 
2) .  We also produced a spectral estimate using a cosine taper for comparison, According to 
arguments outlined in the appendix, (F) should be near the 9 9  per cent confidence level for 
the m = f 1 lines and considerably greater for the m = 0 line. The m = * 2 lines have 
( F )  = 2.25, but large random fluctuations in F a r e  possible. 

The spectral estimate using a cosine taper Iyc(w) 1 is compared with the multitaper ampli- 
tude estimate I f i (w)  1 in Fig. 1 1 .  We graph the frequency band 280 < j <  340pHz containing 
the five singlets of 0S2 and no  other known seismic free oscillation. The ordinate scales of 
the plots d o  not match because yc(w) is an estimated amplitude spectrum and P ( o )  is the 
amplitude of  a presumed harmonic signal at  t = 0. Many features of the plots are similar, 
however, because both represent discrete Fourier transforms of tapered data [/i (0) corres- 
ponds to the DFT of  the data times a hybrid taper as shown in (3.13)-~(3.14)]. The m = -  2, 
0 and 1 singlets, having frequencies given in Table 5, are readily discernible. The prominence 
of the m = - 2 singlet is puzzling in light of its low input-amplitude. The m = - 1 singlet 
appears to  be obscured somewhat by noise interference. 

The F-test of the fit of O(w) to the complex eigenspectra is graphed in Fig. 12. All five 
singlets of oS2 are observable with better than 95 per cent detection confidence. Their 
measured frequencies are given in Table 5,  along with estimates of  the expected errors in the 

J.  Park, C. R. Lindberg and D. J .  Thomson 

Table 5. Frequencies of ,S, in synthetic record. 

Singlet Azimuthal Order m 

Input Singlets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2 -1 0 1 2 

Input Frequency (mHz) .299800 .304615 .309337 .313874 .318226 
Input Phase -85" -133" -2.7" 126' 72" 

F -Test Results 

Frequency (mHz) .29973 .30436 .309356 .31371 .31889 
FrequencyUnwrtainty .00022 .ooO34 .oooO74 .ooO18 .00035 
Phase -74" -118" -1.5" 148" 87" 
F -value 5.5 13.? 86.0 66.6 5.9 
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Multiple-taper spectral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanalysis: I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n Spectral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEstimate 
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Figure 11. (a) Amplitude of a spectral estimate using a cosine taper Iyc (w) I for a synthetic record of ,S2. 
(b) The function I b ( w )  1, where f i  (w) is the estimated complex amplitude of a decaying sinusoid in a 
synthetic record of ,S,  using five eigentapers with parameters nN = 8n,  p = 0.6 and IJ = 0.01. In both (a) 
and (b), three of the five singlets of , S ,  are visible. The true positions of the input singlets are marked. 

frequencies produced by the method described in the appendix. The most poorly fit 
frequency observation is within 20 of the true value. Note the rough equivalence of theF-test 
values for the m = k 2 singlet lines. The amplitude of the m = - 2 singlet in Fig. 1 1  is 
enhanced by noise fluctuations, but the noise contribution has incoherent phase, causing the 
m = - 2 F-test value t o  fall relative to  that of neighbouring oscillation peaks. On the other 
hand, an apparent noise-minimum at the frequency of m = + 2 single-line allows its small 
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780 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Park, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. R.  Lindberg and D. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThomson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

99% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConfidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.7R .30 ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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VI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 0  
a, 

I 
L 

- 

+ 

c 

20 

F-test of f i t  of Estimated 

Amplitude to Eigenspectra 

:::.;:_ 3 4  
1 1  

.32  

f requency (mHz) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 12. F-test values resulting from a test of the fit of estimated amplitude b(w)  to the eigenspectra 
obtained using five eigentapers with parameters nN = 8n ,  D = 0.6, and v = 0.Od. The data is a synthetic 
record of o S 2 ;  i t  consists of five decaying sinusoids whose frequencies are listed in Table 5. All five have 
peaks above the 95 per cent confidence level. The function IE(w) l  is plotted in Fig. l l b .  The value 
F = 3.11 corresponds to  the 90 per cent confidence level, F = 4.46 is the 95 per cent confidence level. and 
F = 8.65 is the 99 per cent level. The true positions of the input singlets are marked. 

amplitude to  be detectable in the plot of the F-test. Note also that the F-test has peaks at 
frequency values not associated with oSz singlets. These are caused by random statistical 
fluctuations. The frequency band shown contains 65 independent frequency samples. There- 
fore, one would expect that due to  randomness, roughly three values of the F-test in 
Fig. 12 would protrude above F = 4.5, the 95 per cent confidence level for the F-distribution. 

We also took 340 hr of vertical IDA gravimeter data from station NNA, starting 8.5 hr 
after the onset of the Sumbawa event. This record is relatively complete, with only two data 
gaps of roughly 2.5 hr each at 95  and 275 hr into the record. Time series points falling in the 
gaps were assigned the value zero. The data were sampled at 2 0 s  intervals. We low-pass 
filtered and decimated the record so that it contained 7668 points taken at 160 s intervals. 
Aftershocks that did not visibly affect the instrument in a non-linear manner were retained, 
as their effect on the spectrum in the vicinity of oS2 is small. Sections exhibiting non-linear 
seismometer response contribute significant energy at low frequencies, and so these were 
removed. 

We had to know roughly the Q s  of the singlets of oSz to apply our procedure. The 
Q -  560 value for oSz given by the model of Masters & Gilbert (1983) corresponds to 
0 = 0.68. Chao & Gilbert (1980) estimate that the m = 2 singlet of oSz has a Q of 415, the 
m = 0 singlet has a Q of 609 and the m = 2 singlet has a Q of 509. The Q measurement 
reported by Hansen & Schnapp (1982) leads to a decay parameter of 0 = 0.84. We analysed 
the record with a set of five eigentapers having parameters SZN = 8n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0.01 and 0 = 0.65. 

The function 1$(w) I obtained using the eigentapers is plotted in Fig. 13b, and the ampli- 
tude of the spectral estimate using the cosine taper ly,(w)I is presented in Fig. 13a. Again, 
we graph the frequency band 280< f <  340pHz. Spectra were calculated at frequencies 
separated by 0.163pHz using the DFT. Table 6 lists the frequency estimates of the five 
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Figure 13. (a) Amplitude of a spectral estimate using a cosine taper for a time series of the Sumbawa 
event recorded at  IDA station NNA. We plot the frequency band 2 8 0 < f < 3 4 0 p H z  containing the five 
,S, singlets. Only two of the singlets are observable. (b)  Amplitude of the function ( w )  for a time series 
of the Sumbawa event recorded at IDA station NNA. We plot the frequency band 2 8 0 < f <  340pHz 
containing the five ,S, singlets, but again only two singlets are visible. The positions of the five singlets as 
determined by stacking are indicated. 

singlets of oS2 made by Buland e t  al. (1979); these frequencies are marked in Fig. 13a and b. 
Only the m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 lines are clearly visible in Fig. 13a and b. Candidates for the other singlet 
resonances are evident but d o  not protrude significantly above the apparent ambient noise 
level. 

Figure 14 is a graph of the F-test of the fit of f i  (a) t o  the complex eigenspectra. There are 
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30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

four peaks above the 95 per cent detection confidence level in Fig. 14 which correspond t o  
singlets of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,,S2. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = - 1 singlet appears to be contaminated by noise, resulting in a low, 
asymmetric variance-ratio peak. The estimated frequencies of all five lines. and their asso- 
ciated uncertainties, are listed in Table 6. The discrepancy between the m = - 1 frequency 
estimate and that of Buland et al. (1979) is another indicator of the noise contamination of 
the m =- 1 singlet. The other peaks in Fig. 14 above the 95 per cent confidence level are most 
likely due to random fluctuations. 

In the above examples, we knew (approximately) the frequencies of the decaying oscilla- 
tions and that they had large enough amplitude to  be detectable. To be useful, the multi- 
taper detection algorithm for decaying sinusoids should yield comparable results when either 
or both of the above conditions are not satisfied. Given the known frequencies of the gravest 
seismic oscillations, one could use the algorithm to search for so-called 'silent' events ( e g  
Kanamori & Cipar 1974), whose existence is still controversial. In the more conservative 
enterprise of expanding and refining the free-oscillation data set in order to  constrain deep 
Earth structure more reliably, the eigentaper algorithm offers hope of retrieving more zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 F-test o f  f i t  o f  Estimated 

Amplitude to Eigenspectra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 6. Frequencies of ,S, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN N A  record of Sumbawa event. 

Singlet Azimuthal Order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

F -Test Results -2 -1 0 1 2 

Frequency (mHz) ,29988 .30526 ,30918 .31423 .31830 
FrequencyUncertainty .0027 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.00060 .OOO41 .00016 .ooO13 
Phase -134" -48' -43" 142" 10" 
F -Value 31.7 4.2 5.0 30.0 20.5 

P) 
3 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
> 

- 

c 
v) 
W 

I 
c 

LL 
10 

From Buland er al. (1979) 

Frequency (rnHz) .3OO010 .304799 .309490 ,314000 ,318499 

- 

Figure 14. F-test for the estimated amplitude ( w )  plotted in Fig. 13a. The time series being analysed is a 
record of Sumbawa event from IDA station NNA. We plot the frequency band 2 8 0 < f <  340p  Hz 
containing the five ,S, singlets. Four of the singlets have F-test peaks corresponding to  greater than 95 per 
cent confidence of detection. The positions of the five singlets as determined by stacking are indicated. 
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Multiple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA783 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
marginally observable modes than are accessible using single-taper algorithms. Care must be 
exercised that peaks in the F-test due to random noise are not misidentified as seismic free- 
oscillations. T o  this end, quantitative comparison of more than one seismic record is 
essential. This has been done by combining the standard techniques of stacking and stripping 
of low-frequency seismic records (Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski 197.5) with the multitaper algorithm. 
This is discussed in Part I1 of this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Summary 

We have described a variational procedure for determining tapers that optimally resist 
spectral leakage from outside a frequency region of bandwidth 2R for exponentially decay- 
ing sinusoids contaminated by white noise. Multiplying the data by these tapers creates a 
number of time series. A decaying sinusoid model is fitted to the discrete Fourier transforms 
of the tapered data series a t  each frequency of interest (equation 3.1 5). The fit of this model 
to the data is tested at each frequency using a statistical F-test (equation 3.28). This gives a 
quantitative measure of the chance that there is a decaying sinusoid at  any given frequency 
in the data. We have shown that this procedure is a sensitive detector of decaying harmonic 
lines in free oscillation data. 

In Part I1 of this paper, we shall present a number of extensions to  the multiple-taper 
method of harmonic analysis. We shall explain how the technique has been modified to 
estimate the harmonic components of records containing gaps. We discuss how sinusoids at  
frequencies between the discrete FFT bin frequencies can be detected, and how this method 
can be combined with conventional multi-station stacking procedures. The resolution of  
closely spaced harmonic lines is treated. Subsequently, we plan to introduce algorithms for 
finding the decay rates of free oscillations, as well as their frequencies. 
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Appendix: error estimation 

The methods of Section 3 can be used to obtain estimates of the complex amplitude and the 
frequency of a decaying sinusoid in a time series. Random noise can cause the estimated 
amplitude and estimated frequency to deviate from the true values. This appendix outlines 
methods for calculating the expected size of these deviations. 

A1 Estimated amplitude 

First, consider the estimated amplitude p ( & ) .  It is a statistical estimator of the true ampli- 
tude p .  The utility of f i  as an estimator can be gauged by its bias ( f i )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg and its mean square 
error ( 1  f i  - p 1 2 ) .  Let the data x ( t )  be zero mean white noise n ( f )  plus a decaying sinusoid 
with frequency wT.  Then 

x ( t )  = n ( t )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-1 exp ( i w T t  - at); t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  1 ,  . . ., N ~ I (A.1) 

where p is the true complex amplitude, a is the true decay rate, and ( n  ( f ) n * ( i ) ) =  u$,,,. 
We also assume that ( n  ( t ) n  (f)) = 0 .  [This is justified as only the real part of the n ( t )  is 
actually measured, leaving us free to  define its imaginary part. Miller (1974, p. 41) gives 
further details.] The k th  transformed complex eigenspectrum of the data is 

zk (w)  = (G- l  ) k l y l  
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786 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Park, C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Lindberg and D. J. Thomson 

When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= w T ,  ( i i ( w T ) ) = p ,  so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  is unbiased a t  the true frequency w T .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt other fre- 

The mean square error of 3 is constant at all frequencies, and using (A.6),  is 
quencies f i  is a biased estimator of p.  

P 

A 2  Frequency estimates 

Now consider the estimation of the true frequency wT. The true frequency can be estimated 
from ( 1 )  the frequencies of  peaks in the modulus of the estimated amplitude 10 1 2 ,  ( 2 )  
minima in the unexplained sample variance $ (mi) introduced in (3.25), or (3) peaks in the 
random variable F(w,) = (K  -1) 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a,)/$ ($i).  These all provide approximately unbiased 
estimates of the true frequency wT, and their mean square errors can be computed, as 
shown below. 

A2.1 F R E Q U E N C I E S  E S T I M A T E D  F R O M  P E A K S  I N  I f i 1 2  
The function 1 /.i(w) l 2  achieves a peak at  frequency W e ,  where 

d 
0 = e’(w,) = - I /.i (w)I2 P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjdw 
In a neighbourhood of the true frequency wT 

0 = e’(u0) z e ’ ( W T )  + ( 0 6  ~ W T ) e ” ( a T ) .  (A .9)  

Taking expectation values of both sides, and assuming that (we - OT)  and e”(w,) are 
uncorrelated: 

- (e ’ (WT))  
(we - O T )  Zz 

( e ” ( w T ) )  . 

Define the matrix MG) with elements 

d A ) = ( m - l ) i ;  m , l = O , 1 , 2  ,..., N - I ,  

where j is an integer, and the vector 8 with elements 

K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  

(A. lO) 

(A.11) 

, N - l .  (A.12) 

Then some algebra shows that 

= - i l  p 1 2 p i  M ( * )  - c = 0 

as M(’) is antisymmetric, and 

( @ “ ( W T ) )  = - p I I.1 I 2 V  ’ M(2) ’ d .  

(A.13) 

(A. 14) 
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Multiple-taper spectral analysis: I 787 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Therefore, from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A.IO), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- W T ) =  0 and we is an unbiased estimator of wT. To find the 
mean square error of we, square both sides of (A.9) and take expected values: 

(A. 15) 

Using the relation 

(A.17) 

and 

( [el‘ ( o ~ > ] ~ )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs has components 

sr = [u(t)  exp (at)]’; 

aiid r has components 

rt = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(M(’). v)t]2; 

For sufficiently large initial signal-to-noise ratios, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp I ’ / U & S  1, and 

s - M ( ~ ) .  s t ~ U & I  p i2 s - r + I p - M ( ~ )  - +j2 1, (A.18) 

t = 0 ,  1,  . . . , N  - 1 (A.19) 

t = 0, 1, . . . , N  - I .  (A.20) 

(A.21) 

The mean-square error of the estimator we decreases as the signal-to-noise ratio increases 
Figure A1 is a plot of the estimated rms misfit of we, defined by 

- 
(we - WT)rms=J((wg - OT)’) 

as a function of initial signal-to-noise ratio for tapers with parameters /I = 0.6, 1.05 and 
Y =  O , O . O l ,  0.1,  1 using (A.15). The misfit is plotted on the ordinate as a fraction of the 
Rayleigh frequency = 2n/T, where T = NAt .  The parameter N (  /A 1’/& is plotted on the 
abscissa. One expects frequency uncertainty to increase rapidly with decreasing signal-to- 
noise ratio, but  for NI p [’/a&< 10, the estimated frequency uncertainty in Fig. A l  is essen- 
tially constant. This is because relation (A.15) ceases to be a good approximation at low 
signal-to-noise ratios, where the first-order expansion (A.9) fails t o  hold, and (we - wT) and 
0” ( w ~ )  are correlated. The solid curve corresponds to v = 0; larger values of v correspond to 
succeedingly finer dashed curves. The rms misfit (we - w ~ ) ~ ~  tends to  decrease with 
decreasing values of  v (except for /I = 1.05 and NI p I’/o&> 80). 
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f requency uncer to ln ty  
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 35 

3 
i 0.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 

," 0 20 
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0.10 

0 45 
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(0 35 
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' 0 s o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3' 
0 25 

0.20 

0.15 

f requency uncer to ln ty  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v =  1 

p -  1 05 
v=o.1  ----.__ 

1 oo 10' 1 0 2  
" P 2/0,21 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1 (a. b). Estimated rms misfit of estimated frequency wo to true frequency WT as a function of 
N I p l '/ u;V for tapers with a N  = 8n. 0 = 0.6, 1.05 and u = 0, 0.01. 0.1 and 1. The curves are meaningless 
for N I ~1 IZ/o;ir< 10 because ( A . 1 5 )  fails to be a good approximation. Uncertainty decreases with decreas- 
ing values of noise parameter IJ (except for p = 1.05 and N I p I2 /o&> 80). Uncertainty decreases with 
increasing signal-to-noise ratio. 

A2.2 F R E Q U E N C I E S  E S T I M A T E D  F R O M  M I N I M A  IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(a) 

Another estimator of the true frequency wT is m i ,  the frequency of a minimum in the 
unexplained sample variance defined by 

= 0 

The frequency w+ is also an unbiased estimator of aT, as 

(A.22) 
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Mulriple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA89 

The result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A.22) can be obtained using (3.25) and (A.13): 

K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - 1 N - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k = O  f = O  t ' = O  

- - ~ i I I.( I' C C C ( t  - t') u k ( t ) u k ( t ' )  exp [ -a ( t  t r')] = 0.  (A.23) 

Also, 

C j / " ( w ~ ) ) =  - l / . ~ l ~ f ~ ( M ( ~ ) * I ' ( ' ) ) >  0, 

where the matrix Yo') has components 

rfl' ( I )  - - [ U k ( t ) % ( f ' )  I v k ( o ; f i , ~ ) 1 2 s , s , ' ] ' ;  r, t '=  0, 1, . , N -  1 (A 25) 

and f r  denotes the trace operation on matrices. Define also the matrix r"p>ul with com- 
ponents 

r:yJ = r$) exp (- p r )  exp ( - v t ' ) ;  

Then the mean square error of estimator wi can be approximated as 

( A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14) 

K 1  

k = O  

t, t' = 0. I ,  . . ., N - I .  (A  3 6 )  

(A.27) 

(A.3X) 

N - 1  

ratio increases, ( (w, ~ wT) ' )  becomes smaller. Graphs of ( w ~  - O T ) ~ ~ ~ =  

have the same shape as the plots of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q - o ~ ) ~ ~ ~  in Fig. A l ,  but 
(w, - w ~ ) ~ ~ ~  is 10--25 per cent larger than (we - w ~ ) ~ ~ ~  for a given signal-to-noise ratio. 
Fcr example, if I.1 = u  = 0 andNIp12 /  u%= 10, (we - WT)rms = 0 .1360~ ,  and (U, - wT)rms 

=0.1650R. 

A2.3 F R E Q U E N C I E S  E S T I M A T E D  F R O M  P E A K S  I N  F ( w )  

The true frequency wT can also be estimated from the frequencies wF of peaks in the F-test 
curve defined by F'(w,) = 0. As before, t o  first-order in (aF - w T ) ,  assuming ( w ~  - OT)  
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790 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and F " ( u T )  are uncorrelated: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPark, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. R.  Lindberg and D. J. Thomson 

(F" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ) ) 

( F " ( w ~ ) ) '  
(wF - - 

By zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.27), 

(A.3 1)  

$ 2 ( ~ ) F ' ( ~ )  = ( K  - 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 0 ' ( W >  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(a> - 0 (0) $'(0>l. (A.32) 

Assume that $' and F', 0' and $. and 0 and $'are uncorrelatedat wT. Then, the expectation 
value of the right hand side of (A.32) vanishes at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo = w T .  But. 

SO (F ' (wT) )  = 0. As @'(aT)) < 0, wF is an unbiased estimator of WT by (A.3 1).  

$ (WF) in power series about their extrema to  second-order in ( W F  - we) and (WF - wu; ): 

F(WF) = (A.33) 

and 

The frequency wF can be expressed in terms of 0 0  and w+. Expanding 0 ( w F )  and 

( K  - 1) [0 (we) + ?h (OF - ~ e ) ~ 0 " ( w e ) ]  

$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(at$) ' '/4 ( O F  - W$ >2$"(w+) 

from (A.33). Substitute (A.33) in (A.34) and let 

- me) ( ~ u ;  +we) OF = ij -___ 

so that wF = w$ when 3 = 1, and up = oe when 3 = - 1. Then Lj satisfies 

3 2 - 2 ( a + b ) i j - ( I + 2 b - 2 a ) = 0 ,  

where 

2 2 

- 20 (we) 

2$ (WqJ 

(a+ - wd2$" (w4, '  

a =  
(W+ - o 6 " 9 " ( u O )  

b =  

The two solutions of  the quadratic equation (A.36) are 

ij+ = (a + b)  2 dc+ b)' f 2b + 1 - 2a. 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

The solution 3, is spurious because { 3, I + 00 as a or b -+ M, and truncated Taylor heries 
expansions in (A.33) and (A.34) are invalid for large values of G. The second solution G.. is 
constrained so that 13- { < 1 ,  and corresponds to  OF lying between we and a+. 

As W F  is a weighted average of we and w+ , one might expect W F  t o  be a more accurate 
estimator of the true frequency wT. This hope is dampened when one realizes that the 
deviations of we and W+ from the true frequency wT are strongly positively correlated. 
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Multiple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA701 

The correlation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa@ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwri, can be estimated as 

(A.38) 

(A.30) 

(A.40) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaci) has elements 

@) = MI;',))D(k) exp (ak)u(I)  exp (al) .  

Using these equations one finds that the cross-correlation of us and wri, is almost unity. 
For example, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0 and NIp I2 /a ;=  10, ((00 - w T ) ( w $  - w T ) )  = 0.922. Any averag- 
ing of the two estimators and wi will not result in an estimator which has significantly 
less error associated with it. 

Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A.34), one can see that for large values of F, WF = o$. Therefore, we estimate the 
errors in the frequencies of the F-test peaks using equation (A.27). 

k ,  I = 0, 1,2, . . ., N - 1 

A3 Detection sensitivity 

It is useful t o  know the sensitivity of the F-test t o  the presence of a decaying sinusoid of 
frequency wT.  The signal-to-noise ratio required for detection of a sinusoid a t  a given con- 
fidence level can be calculated. Suppose that the time series is given by (A,]), with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp either 
purely real or purely imaginary. It can be shown that at  frequency oT the random variable 
F defined in (3.28) follows a noncentral F-distribution with noncentrality parameter 

(Kendall & Stuart 1979). The expected value of F ( q )  is 

(Kendall & Stuart 1979, p. 279). 

(A.41) 

(A.42) 

In Fig. A2, (F(aT)) is plotted as a function of signal-to-noise ratio for sets of five tapers 
with parameters L2N = 8n, 0 = 0.6, 1.05 and v = 0, 0.01, 0.1, and 1. For a given signal-to- 
noise ratio, the expected value of the F-test grows with increasing v, reaching a maximum 
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792 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Park, C. R. Lindberg and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThomson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtest expectation vs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinitiol signal-to-noise power rat io 

/' ,+ 

I ,+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

F test expectation vs. initiol signal-to-noise power rat io 

/' /+ 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

I l l  I I I 1  I l l l l  I I I l l l l l l  I 

100 10; 

F test  expectation v s  tnitlol s ignal - to  noise power ro t io  
I 

t- 

A 
11 
V 

10' 

Figure A2 (a, h). Expected vdue of the F-test at the true frequency WT as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN I I'/ufv for 
five tapers with RN = 8n, p = 0.6 and p = 1.05, and u = 0, 0.01, 0.1 and 1. Larger values of u are plotted 
with increasingly shorter dashes. The 99 per cent confidence level for an F-distributed random variable 
with 2 and 8 degrees of freedom ( F  = 8.65) is shown. For a given initial signal-to-noise ratio, ( F )  increases 
as u increases. Therefore, it is easier to detect a decaying sinusoid using tapers designed with large values 
of the noise parameter u. 

when v = 1. Suppose one wants to detect a decaying sinusoid at the 99 per cent confidence 
level. To d o  this using tapers which have 0 = 0.6 and u = 0 requires a 25 per cent higher 
signal-to-noise ratio than performing the analysis with tapers which have parameters /3 = 0.6 
and v = 0.1. Using tapers with /3 = 1.05 and Y = 0, a 125 per cent larger value of I p 1 2 / &  is 
required than employing tapers designed with 0 = 1.05 and v = 0.1. There is a tradeoff 
between detection capability (Fig. A2) and frequency uncertainty (Fig. Al) ,  but tapers 
designed with 0.01 5 v 5 1 provide reasonable performance in both areas. 

For comparison, consider the spectral estimate obtained by taking the discrete Fourier 
transform of a time series which has been multiplied by a cosine taper. A cosine taper 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/9
1
/3

/7
5
5
/6

4
1
4
8
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Multiple-taper spectral analysis: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

w,(t) is defined by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is chosen so that 

N - 1  c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[w,(t)12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. 
t =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

A direct estimate of the spectrum of the d a t a x  (t) is ly,(w) 1 2 ,  where 

y , (w)=  C e x p ( - i o t ) w , ( t ) x ( t ) .  

The peak frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, defined by 

N - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t =  0 

793 

(A.43) 

(A.44) 

(A.45) 

is taken as the estimator of the true frequency wT of a sinusoidal signal in the data. As 
before, w, is an unbiased estimator of wT, and it has mean-square error 

(A.46) 

Expressions for the expectations on the right-hand side of (A.46) are identical to (A.17) and 
(A.18) with w, ( t )  exp (-cut) replacing B ( t j ,  and p = 1 .  

For data consisting onlyof Gaussian white noise, 2 Iy,(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi2/cr& is x2 distributed with two 
degrees of freedom, and there is a probability of  0.01 that 2 Iy,(o) I2/&will reach or exceed 
9.21 (Abramowitz & Stegun 1965). If J y , ( ~ ) 1 ~  exceeds the value 9.21 &/2 at some 
frequency, then one is more than 99 per cent confident that a signal exists at  that frequency. 
It is easy to show that, for the time series (A. l ) ,  

so that 

N - 1  
N l p 1 2 / u k g  3.6N( w,( t )exp(-at )  

‘ f = o  

(A.47) 

(A.48) 

is the value of the initial signal-to-noise power ratio associated with 9 9  per cent detection 
confidence at  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwT. 

Suppose one wants to detect a decaying sinusoid with decay parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 0.6 (or decay 
rate a =  0.6r /T)  at the 9 9  per cent confidence level. Using the spectral estimate 
I y,(w) 1 2 ,  a value of NI 1-1 1 2 / &  of approximately 32 is required, whereas using an F-test and 
five tapers for 0 = 0.6, v = 0.1, N I P  (’/a& = 23.5 corresponds to  detection at the 9 9  per cent 
confidence level. If the decaying sinusoid has a decay parameter of 0 = 1.05, an initial signal- 
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794 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to-noise ratio of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12/ok zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 104 is needed for 99 per cent confidence level detection using 
the spectral estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{y,(w)1’, but N I p { 2 / &  only needs to  be 38 when the multitaper 
method is applied, using five tapers with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 1.05 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0.1. In this case. the multitaper 
approach is 274 per cent more efficient then the cosine-taper spectral method. 

Clearly, the spectral estimate ly,(w) 1’ is a less sensitive detector of decaying sinusoids in 
a time series than the multitaper method. Much of this discrepancy in detection ability is 
due to the eigentaper’s preferential weighting of the start of the record where the signal-to- 
noise ratio is greater. Also, more information is extracted from a given time-series by apply- 
ing several tapers; the extra degrees of  freedom allow a better-constrained least-squares f i t  of 
the decaying sinusoid model to the data. Another advantage of the niultiple-taper technique 
is that it allows one to discriminate between signals which are truly harmonic, and those 
which have time varying phases; conventional spectral estimates employing single tapers do  
not.  

The variance of the random variable F ( u T )  can also be expressed in terms of the non- 
centrality parameter y defined in (A.41); 

J. Park, C. R. Lindberg and D. J. Thomson 

(A.49) 

when the data are given by ( A . l ) ,  and p is purely real or purely imaginary. The height of an 
F-test peak is not very well determined; d v a r  [F (WT) ]  > %(F(wT)) when K = 5 for values 
of F above the 90 per cent detection threshold. 
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