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Abstract

Modern commodity devices are nowadays equipped with a

plethora of heterogeneous devices serving di�erent purposes.

Being able to exploit such heterogeneous hardware accel-

erators to their full potential is of paramount importance

in the pursuit of higher performance and energy e�ciency.

Towards these objectives, the reduction of idle time of each

device as well as the concurrent program execution across

di�erent accelerators can lead to better scalability within the

computing platform.

In this work, we propose a novel approach for enabling a

Java-based heterogeneousmanaged runtime to automatically

and e�ciently deploy multiple tasks on multiple devices.

We extend TornadoVM with parallel execution of bytecode

interpreters to dynamically and concurrently manage and

execute arbitrary tasks across multiple OpenCL-compatible

devices. In addition, in order to achieve an e�cient device-

task allocation, we employ a machine learning approach

with a multiple-classi�cation architecture of Extra-Trees-

Classi�ers. Our proposed solution has been evaluated over a

suite of 12 applications split into three di�erent groups. Our

experimental results showcase performance improvements

up 83% compared to all tasks running on the single best

device, while reaching up to 91% of the oracle performance.
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1 Introduction

High demand for increased computational capabilities and

power e�ciency has resulted in commodity devices to be

equipped with a diverse set of heterogeneous hardware.

Desktops, laptops, and smartphones have embraced hetero-

geneity throughmulti-core CPUs, energy-e�cient integrated

GPUs, and powerful discrete GPUs. Consequently, the pres-

ence of such hardware has made parallel programming con-

structs, such as OpenCL [49], OneAPI [30], and CUDA [14]

the new norm. Such frameworks support asynchronous data-

driven programming models that enable both data parallel

and task parallel paradigms of computation for implement-

ing high performance parallel applications.

To ease the transition towards those programming para-

digms, a substantial amount of research has focused on mak-

ing high-level programming abstractions widely available.

For instance, TVM [10] is a �exible machine learning com-

piler framework for CPUs, GPUs and machine learning ac-

celerators, while Halide [1] is a programming language for

image processing pipelines on CPUs, GPUs, and FPGAs. In

addition, approaches like IBM’s J9 [29] with GPU support,

StreamIT [28, 50], Aparapi [4] and TornadoVM [17] allow

Java programs to execute on heterogeneous hardware. How-

ever, although the aforementioned solutions aim at closing
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Figure 1. Overview of OpenCL execution modes (Out-of-order on Single Device vs In-order on Multiple Devices)

the programmability gap, they tend to focus on single de-

vice execution and utilization. Since the availability of mul-

tiple devices within a computing platform has become the

new norm, heterogeneous managed runtimes [11, 36] and

high-level programming frameworks need to also be able to

schedule, orchestrate and scale-up the executed programs

on a large number of diverse hardware without depending

on the user’s expertise.

In this work, we introduce a Multiple-Tasks on Multiple-

Devices (MTMD) mechanism which allows seamless concur-

rent heterogeneous execution of Java programs. Our con-

tribution lies in the design, implementation, and evaluation

of a new scalable on multiple devices and modular system

that employs custom parallel bytecode interpreters that are

capable of orchestrating parallel execution on multiple de-

vices, while using intelligent task scheduling across mul-

tiple hardware accelerators. The framework is built upon

TornadoVM [12, 17] that allows Java programs to leverage

heterogeneity by dynamically compiling them to OpenCL

and orchestrating execution.

Our proposed system leverages and extends the virtual-

ization layer of TornadoVM by decomposing and executing

applications at the task-level granularity into blocks of in-

structions for scheduling (bytecodes for orchestrating the

execution). To perform this decomposition, our system au-

tomatically performs data dependency analysis and it gen-

erates a set of blocks of bytecodes for enabling concurrent

execution on heterogeneous devices. Each individual avail-

able device is assigned a system thread that runs an instance

of the interpreter that executes the generated bytecodes.

Since concurrency does not implicitly guarantee the e�cient

allocation of tasks to devices, we employ a machine learning

(ML) based scheduling approach for dynamically selecting

which task will run on which device. To achieve that, pro-

gram features are extracted through the compiler graph and

passed onto a pre-trained multiple classi�er system that se-

lects the target device among CPUs, integrated GPUs, and

discrete GPUs. The combination of parallel bytecode exe-

cution, concurrent deployment of execution contexts at the

task-level granularity, and intelligent mapping of tasks onto

the available devices, results in the seamless and concurrent

execution of multiple-tasks on multiple-devices.

In detail, this work makes the following contributions:

• It introduces a novel mechanism for enabling Multiple-

Tasks Multiple-Devices (MTMD) execution for Java

programs on heterogeneous devices.

• It presents a static code feature extractor from a com-

piler Intermediate Representation (IR) for training our

ML-based scheduling model.

• It introduces a multiple-classi�er system to allocate

tasks onto a device selected among CPUs, integrated

GPUs, and discrete GPUs.

• It evaluates the proposed approach across twelve ap-

plications scheduled in three groups for concurrent

execution, with up to 83% performance improvement

against the best single device, and up to 91% of the

Oracle performance.

2 Background

2.1 OpenCL Execution Modes

OpenCL [49] is one of the �rst standards for programming

heterogeneous platforms by o�ering a uniform Application

Programming Interface (API) and device platform abstrac-

tion that allows all di�erent types of devices to be pro-

grammed in the same portable way. Commodity devices,

like personal computers, can be equipped with a variety of

OpenCL-compatible devices, ranging from multi-core CPUs

to high-performing discrete GPUs, and FPGAs. By employing

OpenCL, developers can harness the computational capabili-

ties of such hardware accelerators to exploit the attributes

of their programs, such as task and instruction-level paral-

lelism.

Throughout the years, the OpenCL standard has been ex-

tended to better utilize the niche features of modern hetero-

geneous devices. Part of OpenCL’s optimization process was

the introduction of di�erent execution modes both for single

and multiple device con�gurations. Figure 1 exempli�es the
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three currently supported execution modes of OpenCL: a) in-

order single-device execution, b) out-of-order singe-device

execution, and c) in-order multiple-devices execution.

When utilizing in-order single-device execution, as shown

in Figure 1a, developers can o�oad parts of their programs

for acceleration on a single OpenCL-compatible device. In

addition, in this mode, data copying between the host and

the device never overlaps with the execution of the code (or

kernel) on the device. This results in a strictly sequential

in-order execution mode in which the device can remain

idle between the intervals of data copying and execution.

To mitigate the introduction of idle cycles, OpenCL intro-

duced the out-of-order execution mode (Figure 1b) in which

developers can overlap data copying and kernel execution.

In this mode, although a single-device is still utilized, the

idle cycles are greatly reduced by simultaneously copying

data between the host and device, while executing code on

the accelerator. Finally, the last execution mode of OpenCL

regards the multi-devices execution, as shown in Figure 1c.

In this mode, developers can build multiple-contexts (one per

device) and utilize more than one accelerator from within

their programs. This mode supports only in-order execution

that again results in idle cycles between the di�erent devices.

To address the limitations and the idle-cycles introduced

by the multi-devices in-order execution mode of OpenCL,

a number of frameworks has been proposed. For instance,

VirtCL [53], SnuCL [34], PySchedCL [21], FluidiCL [42], Mul-

tiCL [2], EngineCL [39] and SOCL [26] focus on single or

multi-task level scheduling for standalone or partitioned

OpenCL applications. A common denominator of all afore-

mentioned frameworks is the fact that they solely focus on

non-managed applications, thereby leaving the area of man-

aged languages unexplored. Exploiting multi-device concur-

rency and scalability via managed programming languages

poses signi�cant challenges due to the multi-level compi-

lation approach of current frameworks, while creating fur-

ther research opportunities due to the dynamic nature of

managed languages and platforms. In this work, we explore

multi-device concurrency and intelligent device selection

in the context of managed languages by prototyping our

proposed solution in the context of TornadoVM [12, 17].

2.2 TornadoVM

TornadoVM [12, 17] is a plug-in to OpenJDK and GraalVM

that allows programmers to automatically accelerate Java

programs on heterogeneous hardware. TornadoVM can tar-

get OpenCL-compatible devices and it runs on multi-core

CPUs, dedicated GPUs (NVIDIA, AMD), integrated GPUs

(Intel HD Graphics and ARMMali), and FPGAs (Intel and Xil-

inx) [43, 44]. TornadoVM currently allows users to compose

groups (called TaskSchedules) of multiple-tasks that can exe-

cute on hardware accelerators. However, these TaskSchedules

Listing 1. Example of the TornadoVM Task Parallel API for

TaskSchedule with multiple Tasks

1 TaskSchedule filter = new TaskSchedule("blur")

2 .task("red", BlurFilter::compute, redFilter, image)

3 .task("green", BlurFilter::compute, greenFilter, image)

4 .task("blue", BlurFilter::compute, blueFilter, image)

5 .streamOut(redFilter, greenFilter, blueFilter)

6 .execute()

can only target a single heterogeneous device, without al-

lowing di�erent tasks within a task-schedule to execute con-

currently on various accelerators.

As an example, we implemented and evaluated a Blur �lter

application on TornadoVM. Listing 1 shows that the work-

load consists of three kernels, each operating independently

on an RGB pixel of the input image. We evaluated the Blur

�lter application on commodity hardware equipped with

three OpenCL-compatible devices: 1) a multi-core CPU (Intel

Core i7-9750H), 2) an integrated GPU (Intel UHD Graphics

630), and 3) a discrete GPU (NVIDIA GeForce GTX 1650).

Since TornadoVM can only schedule all tasks within a

TaskSchedule to execute on a single device, optimization

opportunity is missed due to the lack of concurrency and

under-utilization of the available devices in our experimental

setup. Figure 2 depicts the evaluation results from running

the Blur �lter with two data sizes (1K and 4K images) across

the three di�erent devices: 1) running all tasks on the CPU,

2) running all tasks on the integrated GPU, and 3) running

all tasks on the discrete GPU.

Figure 2. Achieved speedups against sequential Java for a

CPU, an integrated GPU and a discrete GPU.

As shown in Figure 2, running all tasks on the discrete GPU

yields the best performance for the Blur �lter application

up to 3.15G . However, since the tasks are executed in-order,

both the integrated GPU and the CPU remain idle without

exploiting the potential performance through multi-device

execution. To enable concurrent execution by allowing tasks

within a TaskSchedule to execute on di�erent devices simul-

taneously, we introduce the Multiple-Task Multiple-Device

(MTMD) concurrent interpreter and execution mode in Tor-

nadoVM as explained in the following section.
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Figure 3. High-level overview of the components added and modi�ed to the original TornadoVM to enable MTMD execution.

3 Multiple-Tasks on Multiple-Devices

To enable the Multiple Tasks Multiple Devices(MTMD) ex-

ecution mode in TornadoVM, numerous key components

have been modi�ed or introduced. Figure 3 outlines both the

original TornadoVM software stack (at the top), as well as

the proposed modi�cations for enabling MTMD (bottom). As

shown in Figure 3a, TornadoVM utilizes its own API to cre-

ate TaskSchedules which are consequently parsed to create

data�ow graphs that contain the various tasks. The graph is

then analyzed and optimized during runtime and, in turn, a

number of TornadoVM-speci�c bytecodes are generated. In

the original TornadoVM, all the bytecodes that correspond

to all the tasks of a particular TaskSchedule are enqueued

in a single-context bu�er, and are consequently dispatched

for execution by a single instance of the execution engine.

Therefore, all bytecodes, and consequently, all tasks of a

TaskSchedule can only run on a single device at a time.

As shown in Figure 3b, to enable concurrent execution in

TornadoVM, several components has been modi�ed (light

blue) or introduced (dark blue):

1. The Task Dataflow Analyzer and Graph Optimizer

components, which are responsible for analyzing the

dependencies between tasks and optimizing the graph,

before scheduling them onto the devices, have been

modi�ed to enable concurrent execution.

2. The Context Allocator component that creates groups

of dependent tasks has been introduced.

3. The Context Scheduler component that schedules

dependent task groups onto devices has been also in-

troduced.

4. The Multi-Context Bytecode Generator, which is

an extension of the TornadoVMbytecode generator [17],

is responsible for generating bytecodes for multiple

target devices concurrently instead of a single one.

5. The Multi-Context Dispatcher has been introduced

to assign bytecodes that belong to a task group to a par-

ticular execution engine instance for execution. The ex-

ecution instances are implemented as a thread-pool

of execution engines that run the TornadoVM inter-

preter with each one being responsible for executing

a single context on a single device.

The following subsections describe in detail the aforemen-

tioned components.

3.1 Task Data�ow Analyzer and Graph Optimizer

As shown in the example of Listing 1, a TaskSchedule in

TornadoVM can be composed of multiple tasks that may

have data dependencies between them; i.e., the output of one

task can be the input to another. Since developers can com-

pose arbitrary TaskSchedules, the presence or the absence

of dependencies between tasks is not guaranteed. Due to this

fact, the original TornadoVM could only use a single device

to execute a complete TaskSchedule. In order to enable con-

current execution of arbitrary tasks on di�erent devices, we

modi�ed the Task Data�ow Analyzer and Graph Optimizer

to extract inter-task dependencies.

While analyzing the tasks of a TaskSchedule, TornadoVM

generates Java bytecodes for each task which are then trans-

formed into a compiler graph based on the Intermediate Rep-

resentation (IR) of the TornadoVM compiler. The data�ow

analysis phase has been implemented as a compiler phase

in the JIT Compiler. This phase detects the input and out-

put arguments of the original tasks (Java methods). After

the dependencies are identi�ed, the task dependency graph
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Listing 2. Example of TaskSchedule with multiple indepen-

dent tasks.

1 TaskSchedule graph = new TaskSchedule("workload")

2 .task("t0",DFT::dft, inReal,inImag,outReal,outImag)

3 .task("t1",Blackscholes::bs,input,callPrice,putPrice)

4 .task("t2",MM::mm, matrixA, matrixB, matrixC, mmSize)

5 .streamOut(outReal,outImag,callPrice,putPrice,matrixC)

6 .execute();

is traversed in order to create a map of their accessibility

within the di�erent tasks of a TaskSchedule. Then, each in-

put/output argument of each task is marked as READ, WRITE

or READ_WRITE and stored as task meta-data information.

This process is completed when the last task of the input

TaskSchedule has been analyzed and evaluated correctly.

At the end of the data�ow analysis phase, the captured

meta-data are used to create a Direct Acyclic Graph (DAG)

of the intra-TaskSchedule dependencies. This information

is used at a later stage for scheduling dependent tasks on the

same device in order to avoid costly data copying of interim

variables between devices. In contrast, independent tasks

are grouped and scheduled independently for concurrent

execution across numerous hardware accelerators.

In order to avoid tasks that are sharing read-only parame-

ters to be grouped together, we implemented an optimization

at the Graph Optimizer phase. The proposed optimization

tackles READ-only dependencies between tasks by duplicat-

ing the READ-only parameters between tasks. In this way,

tasks become independent and can be executed concurrently.

3.2 Context Allocator and Scheduler

Based on the task meta-data derived from the data�ow anal-

ysis and optimization phases, tasks can be grouped together

or stay independent. Each group of a single task or multiple

tasks will then be assigned to a device for execution via a

device context. The notion of the context is to de�ne an

independent computational entity (a single task or a depen-

dent task-group) that can target a device. As soon as contexts

are de�ned, they also lock the allocated devices.

At this point, the scheduling of tasks on devices happens

statically without taking into account speci�c task charac-

teristics, such as memory accesses, parallel dimensions and

single or double precision operations. Tasks are assigned

onto the available devices in a First Come First Served

order and they are inferred in the order they are attached

on the Taskschedule. In addition, devices are ordered based

on their characteristics and computational capabilities. In

Section 4.4, we discuss in depth how we augment this sched-

uling approach by introducing predictive modeling based on

the method features.

3.3 Multi-Context Bytecode Generator

Previous steps helped to reduce the computational granu-

larity of a TaskSchedule to multiple contexts consisting of

single or multiple inter-dependent tasks. At this point of

execution, TornadoVM creates internal TornadoVM-speci�c

bytecodes [17] that orchestrate the execution, the synchro-

nization, and the data exchanges between the host and de-

vices. The purpose of this extra virtualization layer is to

abstract away from developers all the mechanics and details

of hardware acceleration and kernel o�oading. In the origi-

nal TornadoVM, since tasks within a TaskSchedule could all

execute on a single device, the bytecode generator creates

single-context bytecodes destined to execute in-order on a

particular device.

To exploit concurrent execution on devices, we augmented

the existing virtualization layer to embed device selection

control at the task-level (rather than in the original TaskSch-

edule level).

Listing 2 showcases three applications using the Tornado-

VM API, and grouped as independent tasks of the same

TaskSchedule. These tasks are DFT, BlackScholes and Ma-

trix Multiplication (MM). Initially, the dependency analysis

marked them as independent and during context allocation

with FCFS scheduling, all tasks have been assigned to the

available devices.

As tasks are independent, the introduced multi-context

bytecode generator generates three independent sets of byte-

codes. Listings 3, 4 and 5 correspond to the generated multi-

context bytecodes for tasks t0, t1, and t2, respectively.

The bytecodes of each context are assigned to a separate

device (if three are present) awaiting interpretation and exe-

cution by TornadoVM.

3.4 Thread-Pool of Execution Engines

In order to execute themulti-context bytecodes introduced in

this work in parallel, we introduce a scalable thread-pool of

execution engines. Each of the execution engines is responsi-

ble for interpreting the bytecodes corresponding to a context

assigned to a speci�c device, as shown in Figure 3b. These

bytecodes can contain up to several tasks with or without

dependencies among them.

Each of the execution engines deploys an isolated instance

of the interpreter per device that executes the multi-context

bytecodes assigned to it. At this stage, following the orig-

inal TornadoVM execution �ow, tasks can be dynamically

compiled to OpenCL and the execution engines can access bi-

naries from a global code cache. The interpreter itself can be

JIT compiled by the underlying JVM (e.g., Oracle HotSpot) to

improve performance. Note that the TornadoVM bytecodes

only orchestrate the execution between the accelerators and

the host machine and do not perform the actual computation.

The latter is achieved by executing the generated OpenCL

code via the device driver.

Another bene�t of reducing the granularity of the execu-

tion from a TaskSchedule to smaller groups of tasks compos-

ing a context, is the ability to increase the resiliency of the
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Listing 3. Bytecodes for t0 (DFT)
1 BEGIN <0> / / New con t e x t [ d e v i c e 0 ]

2 COPY_IN <0 , b i1 , in > / / Cop ies < in >

3 COPY_IN <0 , b i2 , in > / / Cop ies < in >

4 COPY_IN <0 , b i3 , in > / / Cop ies < in >

5 COPY_IN <0 , b i4 , in > / / Cop ies < in >

6 LAUNCH <0 , b i5 , @dft , in , temp>

7 COPY_OUT_BLOCK <0 , b i6 , out > / / C−out

8 COPY_OUT_BLOCK <0 , b i7 , out > / / C−out

9 END <0> / / Ends c on t e x t

Listing 4. Bytecodes for t1 (BlackScholes)
1 BEGIN <1> / / New con t e x t [ d e v i c e 1 ]

2 COPY_IN <1 , b i1 , in > / / Cop ies < in >

3 ALLOC <1 , b i2 , out > / / A l l o c a t e s <out >

4 ALLOC <1 , b i3 , out > / / A l l o c a t e s <out >

5 LAUNCH <1 , b i4 , @bs , temp , out >

6 COPY_OUT_BLOCK <1 , b i5 , out > / / C−out

7 COPY_OUT_BLOCK <1 , b i6 , out > / / C−out

8 END <1> / / Ends c on t e x t

9 −−−

Listing 5. Bytecodes for t2 (MM)
1 BEGIN <2> / / New con t e x t [ d e v i c e 2 ]

2 COPY_IN <2 , b i1 , in > / / Cop ies < in >

3 COPY_IN <2 , b i2 , in > / / Cop ies < in >

4 COPY_IN <2 , b i3 , in > / / Cop ies < in >

5 LAUNCH <2 , b i4 , @mm, in , temp>

6 COPY_OUT_BLOCK <2 , b i5 , out > / / C−out

7 END <2> / / Ends c on t e x t

8 −−−

9 −−−

Figure 4. Concurrency limits

execution by enabling fault tolerance which in turn reduces

the cost of re-execution.

3.5 Discussion

In order to assess the performance bene�ts of enabling scal-

able execution across devices within the same compute sys-

tem, we revisited the Blur �lter application of Listing 1. In

our revised experiments, we enabled the concurrent execu-

tion of the independent tasks of the Blur �lter application

using the First-Come-First-Serve (FCFS) scheduling scheme.

Figure 4 adds three additional data points to Figure 2 which

correspond to three additional execution scenarios: a) In or-

der execution of all tasks on the CPU, integrated GPU (IGPU),

and discrete GPU (grey bar), b) Concurrent execution of all

tasks across all devices (�rst running on the CPU, second on

the IGPU, and third on the discrete GPU - orange bar), and

c) Concurrent execution of all tasks across two devices (�rst

two on the discrete GPU, and third on the IGPU - red bar).

As shown in Figure 4, the additional execution scenarios

can in�uence dramatically the performance which can be up

to 2x higher compared to running the whole TaskSchedule

on the same device. However, the problem of statically de-

ciding which policy to employ for scheduling �ne-grained

tasks across the available accelerators is very challenging,

due to the diverse characteristics and performance of each

task. To enable e�cient scheduling that takes into consid-

eration both device availability, the potential of concurrent

execution, and code characteristics, we employ a ML-based

scheduling technique described in the next section.

4 Prediction Based Scheduling for MTMD

Section 3 outlined the required runtime support for a het-

erogeneous managed runtime to e�ciently handle the or-

chestration of dispatching multiple tasks on multiple devices

concurrently. However, to fully utilize the capabilities of

such a system and be able to perform an e�cient task/de-

vice allocation, in terms of performance, a fast and accurate

scheduling policy is required. To that end, we integrated a

ML model, trained to perform device-task allocation, that

governs our scheduling policy.

A decisive factor in our scheduling strategy is the detec-

tion of the best computing device for a given task in terms

of performance. Our study focuses on commodity personal

computers, due to the wide set of heterogeneous hardware

available. This includes a CPU, an Integrated GPU and Dis-

crete GPUs. To train the ML-model, we extract a set of fea-

tures describing an application from the compiler IR (Graal

IR [15]) before generating the OpenCL kernel for a given task.

Graal IR is in a graph form, and represents Sea of Nodes [13]

(control �ow and data �ow). Consequently, we use aMultiple-

Classi�er-System (MCS) to determine the optimal mapping.

Each component of this system is a tree-based two-class clas-

si�er, trained to compute the probability at which a speci�c

task will exhibit speed-up when executed on one device over

another. The �nal decision is made through the conjugation

of the output probabilities of the aforementioned learners.

The following subsections describe in detail the components

of the proposed ML-based scheduling policy for MTMD.

4.1 Feature Extraction

Being able to extract meaningful application characteristics

is a crucial factor for e�ectively predicting which task will

perform better across di�erent devices. Prior work, discussed

in detail in Section 6, proposed methodologies for extract-

ing code features directly from OpenCL kernels. Such an

approach is not suitable for our work due to the two-stage

compilation that TornadoVM employs (from Java to OpenCL

C, and from OpenCL C to binary code). Hence, we perform

feature extraction from the compiler IR graph during JIT

compilation, ensuring that su�cient information is captured

for characterizing the behavior of both the Java and the

auto-generated OpenCL programs.

When a task is assigned to a TaskSchedule, Java byte-

codes are transformed to the compiler’s IR and that stage

we extract the code features. This is achieved by adding

a Feature extraction phase in the TornadoVM JIT com-

piler to obtain the number and type of operations based on

individual nodes. The design choice of obtaining features

directly from the IR, and before code generation, adds modu-

larity to our system since it can cater other backend or pure
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Figure 5. O�ine training process and Online device allocation based on pre-trained model.

x86 execution through Java. The extracted code features are

later combined with runtime information regarding the in-

put/output data sizes, number of threads to be deployed, and

inter-task dependencies.

4.2 Feature Selection

The initial feature set consists of 26 distinct features which

are pre-processed and combined in order to construct new

features that have greater predictive ability than the initial

ones. During this process the feature set is further expanded

to also include interaction features, i.e., features that are

computed as the pairwise product of the existing ones. Fur-

thermore, features that are the most relevant to each other

(e.g., float_math_function, integer_math_function) are

grouped together.

Upon completion of the feature engineering process, the

dimensionality of the data is increased considerably. In such

cases, it is bene�cial to select only those features that are con-

sidered to be the key attributes for the model. This enables

the learning algorithm (discussed in Section 4.4) to focus

only on the most important variables. Also, this allows us to

avoid modelling any underlying noise in the data induced by

irrelevant features. The criterion that was used to compute

the features’ importance is the Gini importance [16]. Based

on this criterion, the ten features that in�uence more the �-

nal outcome per classi�er are depicted in the Hinton diagram

of Figure 6. The sizes of the squares represent the magnitude

of the value; i.e., the corresponding Gini importance of each

feature.

4.3 Training Dataset

The dataset consists of static code features of various kernels,

as well as their execution times on the three available devices,

i.e, CPU, IGPU, GPU. Based on these timings the following

ratios are computed: ��%*4G42DC8>=C8<4

�%*4G42DC8>=C8<4
, �%*4G42DC8>=C8<4

�%*4G42DC8>=C8<4
and

�%*4G42DC8>=C8<4

��%*4G42DC8>=C8<4
.

The time ratios are then turned into binary target variables

indicating whether the speci�c task has speedup on a given

Figure 6. Feature importance for classi�ers: 1) IGPU vs GPU,

2) GPU vs CPU and 3) GPU vs IGPU. Squares are representing

the impact of the feature in the �nal decision (large squares

have the most in�uence).

device. More speci�cally, ratios lower than 1.0 indicate slow-

down and so they are mapped to 0, while ratios above the

same threshold correspond to speed up, and consequently

are mapped to 1. Each of these binary variables will serve as

the target for a classi�er in our multiple-classi�er-system.

Regarding the speci�c program selection, we used kernels

from the benchmark suite and examples that already exist

in the TornadoVM repository. Figure 5a showcases the of-

�ine process for collecting the data and training our model.

As we opt-in for feature extraction through the IR (gener-

ated from the original Java methods), we trained our model

purely with Java benchmarks compatible with TornadoVM.

Hand-tuned OpenCL programs will result in a di�erent per-

formance pattern compared to the OpenCL automatically

generated from Java. Thus, extending the training set with

benchmark suites purely written in OpenCL will negatively

in�uence or bias the accuracy of our predictor. We execute

these programs for various input con�gurations, depend-

ing on their computational intensity, on an Intel CPU, an

Intel HD Graphics and an Nvidia GTX 1650. For each indi-

vidual data point (i.e., application’s features, input size and

achieved speedup) we use the existing pro�ling infrastruc-

ture to extract all pro�ling-events at the OpenCL side, as

well as runtime dynamic information and overheads present
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Table 1. Scheduling device selection truth table.

Classi�er Target

DeviceIGPU vs CPU GPU vs CPU GPU vs IGPU

0 0 0/1 CPU

1 0 0/1 IGPU

0 1 0/1 GPU

1 1 0 IGPU

1 1 1 GPU

in the Java side. Overall, we train our ML model with more

than 200 data points.

4.4 Machine Learning Architecture

Our ML architecture consists of the training model and three

di�erent classi�ers running in parallel.

TrainingModel:Our trainingmodel uses three Extremely

Randomized Trees (ExtraTrees) [20] classi�ers. Each classi-

�er produces a speedup probability for each task between

the following pairs: IGPU\CPU (1st classi�er), GPU\CPU

(2nd classi�er) and GPU\IGPU (3d classi�er). Among the

available tree-based algorithms, such as Decision Trees, Ran-

dom Forest and Extremely Randomized Trees, the latter was

selected due to its ability to better handle over�tting. The

hyper-parameters of the model (i.e., estimators, maximum

depth) were optimized by searching over a grid of trials and

the combination that yielded the best cross validation score

(10-fold) was retained. Moreover, by investigating the train-

ing dataset for each classi�er, it was found that the datasets

of the �rst and the second classi�ers, were highly imbal-

anced, i.e., the target classes were unequally represented and

thus the models would ignore, and in turn, underperform

on the minority class. To tackle this issue, the SMOTE algo-

rithm [9] was used which upsamples the minority class by

synthesizing new examples.

1st Classi�er: The chosen ExtraTrees classi�er, i.e., the

one that yielded the best cross-validation score, �ts 100 es-

timators with maximum depth set to 50. The �rst level of

prediction considers only the IGPU and the CPU and at-

tempts to determine the most suitable device between them

for a given task. The output of the model is the probability

at which the given task will have speedup when executed

on the IGPU instead of the CPU. By selecting an appropriate

threshold, the probabilistic output can then be interpreted

as class labels, i.e., IGPU or CPU.

For this selection, the Receiver Operating Curve (ROC)[7]

and the Precision-Recall Curve[6] were plotted for various

candidate thresholds in order to better understand the trade-

o� in performance at the various levels. Given the imbal-

anced nature of our dataset, we optimized for F1-score, i.e.,

the harmonic mean of precision and recall, instead of ac-

curacy, since the former serves as a better measure of the

incorrectly classi�ed cases. For the �rst classi�er, the optimal

threshold was determined to be around 0.2 resulting in 0.95

F1-score on the held-out dataset.

Table 2. Experimental Testbed.

Hardware

Processor Intel Core i7-9750H CPU @ 2.60GHz

Cores 6 (12 HyperThreads)

RAM 32GB

Integrated-GPU Intel UHD Graphics 630

Discrete GPU NVIDIA GeForce GTX 1650 (Turing)

4GB GDDR5, 896 CUDA Cores

So�ware

Operating System Ubuntu 20.04 (Kernel 5.4.0-52-generic)

OpenCL (CPU) 2.1 Device Version

OpenCL (IGPU) 2.1 Device Version

OpenCL (GPU) 1.2 Device Version

CUDA Driver 450.80.02

TornadoVM v0.7

JVM OpenJDK 1.8.0_262 with JVMCI

Java Heap -Xmx22G -Xms22G

2nd Classi�er: For the second classi�er, the optimal per-

formance was achieved by �tting 500 estimators with maxi-

mum depth set to 10. In a similar way, the second classi�er

is trained to distinguish between tasks based on their rel-

ative performance on either the discrete GPU or the CPU.

Again, the probabilistic output is turned into a class label,

i.e., GPU or CPU. The optimal threshold is determined to be

approximately 0.6 with 0.96 F1-score on the held-out dataset.

3rd Classi�er: Lastly, the third ExtraTrees classi�er �ts

50 estimators while the maximum depth is set to 50. The

third classi�er aims to select between IGPU and GPU. With

the same process, the best threshold is de�ned around 0.6

resulting to 0.91 F1-score on the held-out dataset.

4.5 On-Line Scheduling

Figure 5b outlines the on-line scheduling process that per-

forms the inference using the trained model. During run-

time, the trained ML model is invoked along with a JSON

�le that contains the features of a task eligible to run on

the system. Note that the time for the model inference does

not exceed 60 ms. These features consist of inputs to the

multiple-classi�er-system which outputs the three afore-

mentioned probabilities. By setting the thresholds discussed

in Section 5.3, we convert the probabilities into class labels,

i.e., 0 for slowdown and 1 for speedup. The �nal decision was

taken by using the truth table presented in Table 1. Speci�-

cally, the following scenarios are considered for each task:

• Schedule on CPU: If predicted to have slowdown on

both IGPU and GPU compared to CPU.

• Schedule on IGPU: a) If predicted to have slowdown

on GPU and speedup on IGPU compared to CPU, or

b) if predicted to have speedup on IGPU and GPU

compared to CPU and on IGPU compared to GPU.

• Schedule on GPU: a) If predicted to have slowdown

on IGPU and speedup on GPU compared to CPU, or

b) if predicted to have speedup on IGPU and GPU

compared to CPU and on GPU compared to IGPU.
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Table 3. The Applications.
Group Application Description

DFT [22] Hierarchical mixed radix FFT algorithms for both power-of-two and non-power-of-two sizes.

1 Black-Scholes [23] Option pricing using the Black-Scholes merton process.

Matrix Multiplication [51] Matrix multiplication on square matrices.

NBody [46] Particle simulations.

MonteCarlo [47] Monte Carlo simulation for option pricing models.

2 RenderTrack [38] Parallel kernel for image decomposition that contains multiple control �ow operations.

Mandelbrot [27] Iterative function applied in a large set of points.

Hilbert Matrix [41] Dense matrix computation on a square matrix.

Matrix Transpose [51] Matrix transpose operation on a square matrix.

B&W Filter [31] A �lter that converts an RGB image to Grayscale.

3 Convolution [3] A two dimensional process of adding each element of an image to its local neighbors.

Euler Method [18] A �rst-order numerical procedure for solving ordinary di�erential equations (ODEs).

Table 4. The input data sizes for each application (task) in three di�erent ranges: small, medium and large.
DFT BS MM NBody MC RT Mandelbrot Hilbert MT B&W Conv Euler

Low 1024 65536 65536 1024 65536 262144 262144 65536 65536 1K img 16384 512

Medium 16384 524288 262144 2048 524288 1048576 1048576 262144 262144 2K img 262144 1024

Large 65536 1048576 1048576 8192 1048576 16777216 4194304 1048576 1048576 4K img 1048576 4096

5 Evaluation

This section presents the experimental evaluation of the

proposed MTMD mechanism that enables the seamless and

concurrent execution of multiple tasks on multiple hardware

accelerators. We �rst describe the experimental setup and

the methodology, as well as the applications used to assess

the performance. Finally, we present and discuss the results

on concurrent device execution and scheduling.

5.1 Experimental Setup and Methodology

To assess the performance, we used an experimental setup

equipped with an Intel CPU, an Intel integrated GPU and

a discrete Nvidia GPU. Essentially, this con�guration cor-

responds to a commodity machine with a high compute

capacity, which can be seamlessly utilized by a Java appli-

cation via the MTMD execution mode. Table 2 outlines the

hardware and software characteristics of our testbed.

Regarding the experimental methodology, we follow the

approach outline in [19]. Initially, we perform a warm-up

phase for every application to stabilize the performance of

the JVM. The warm-up phase ensures that the Java code

of each application is JIT-compiled, and in our case 100 it-

erations was a su�cient number to achieve this. Once the

warm-up phase is complete, we run each application for 10

consequent times and we report the mean of the obtained

total execution times, including the time spent for the model

inference.

5.1.1 Applications and Input sizes. To evaluate the pro-

posed MTMD mechanism we use twelve applications that

can be classi�ed as compute intensive, memory intensive and

control-�ow intensive. Our goal has been to assess MTMD

by running all the applications concurrently. However, the

inability of TornadoVM to support data transfers, from the

host to the various devices, of sizes over 1 GB, led us to

split our total workload of twelve applications into three

groups (Groups 1 to 3), as shown in Table 3. Each group

has a randomly assigned number of applications that can be

concurrently executed for di�erent input data sizes (small,

medium and large). Table 4 presents the input data sizes for

each application.

5.1.2 Scheduling Strategies. For a full coverage of the

evaluation of the MTMD mechanism, we employ the follow-

ing scheduling policies:

1. Dynamic Recon�guration (DynRec) [17]: This is

the o�cial scheduling policy supported by TornadoVM,

in which it examines all the viable con�gurations ex-

haustively. Thus, tasks have to be executed serially on

all devices to select the highest performing one After

the exhaustive execution is performed, TornadoVM

stores the winning device and uses it again for further

invocations of the same code. However, slight changes

to the executed code or input data sizes will trigger

again the exhaustive execution.

2. First-Come-First-Served (FCFS): Tasks are scheduled

to run on devices following the order that the Tornado-

VM system discovers the device drivers. Tasks will be

allocated to devices in the order that they arrive with

respect in the order that OpenCL device drivers are

discovered by the system.

3. GPU-Priority (gpuprio): Tasks are scheduled to run

on devices following a score that ranks the devices

based on their compute capabilities, in our system

the discrete GPU is the one with the highest compute

capabilities.
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(a) Small Sizes. (b) Medium Sizes. (c) Large Sizes.

Figure 7. Achieved speedups for each group of applications and size con�gurations against the baseline Dynamic Re-

con�guration (DynRec) for consecutive execution. Each bar presents the following policies: ML-based MTMD (mtmd-ml),

First-Come-First-Served fcfs, GPU Priority (gpuprio), and CPU Exclusion (cpuex).

4. CPU-Exclusion (cpuex): Tasks are scheduled to run

on devices (except CPUs) following the order that the

TornadoVM system discovers the OpenCL device dri-

vers.

5. ML-based MTMD (mtmd-ml): Tasks are scheduled

and dispatched to run on devices with respect to our

proposed ML-based scheduler (discussed in Section 4).

6. Oracle: This scheduling strategy presents the device-

task allocation that o�ers the best performance. This

strategy is obtained by o�ine exhaustive exploration

of the complete optimization space.

The Dynamic Recon�guration policy is the only policy that

requires all the tasks within a TaskSchedule to be executed

on a single device due to the Single-context Dispatcher in

the original TornadoVM system (Figure 3a). On the contrary,

the remaining scheduling policies exploit the MTMD mech-

anism and can operate concurrently on multiple devices.

Additionally, note that the Dynamic Recon�guration and the

Oracle scheduling policies are used mainly to set the peak

performance for the consecutive (single-context) and the

concurrent (multi-context) executions of the experimental

benchmarks, as they introduce a signi�cant cost that makes

them unsuitable for real-time execution.

5.2 Performance Evaluation of MTMD

This section is split into two parts. Section 5.2.1 discusses

the performance of all scheduling policies that operate with

the MTMD execution mode against the best consecutive

execution policy which is Dynamic Recon�guration. On the

other hand, Section 5.2.2 compares the MTMD scheduling

policies against Oracle, the best concurrent execution policy.

5.2.1 Relative Performance vs Best Consecutive. Fig-

ure 7 compares the performance of the fcfs, gpuprio, cpuex

andmtmd-ml policies against DynRec for di�erent data sizes

(small, medium, large). We use the DynRec policy as base-

line as it results in the best execution plan for consecutive

execution. The highest performance increase for each data

size is observed for the mtmd-ml policy at 1.83G (Figure 7a -

Group-3), 1.27G ( Figure 7b - Group-2), and 1.37G (Figure 7c -

Group-3) for small, medium and large sizes, respectively.

As shown in Figure 7, the mtmd-ml policy exhibits the

higher performance across all data sizes and all groups of

applications. The reason is that this policy leverages the ML

trained model to capture a large space of factors that can

in�uence performance. In addition, there are cases that the

consecutive execution on a single device (DynRec - baseline)

results in higher performance than the concurrent execution

on multiple devices with fcfs, gpuprio, or cpuex. For instance,

Figure 7a shows that the applications in Group-1 can run sig-

ni�cantly faster when they are executed consecutively on the

Nvidia GPU rather than being concurrently executed across

all available devices. The reason is that each application in

Group-1 (i.e., DFT, BlackScholes and Matrix Multiplication)

is compute intensive and performs an order of magnitude

faster on the Nvidia GPU than the other devices. Thus, the

fcfs, gpuprio, or cpuex concurrent scheduling policies fail to

outperform the baseline for these cases. On the contrary,

mtmd-ml can achieve the performance of the baseline, as it

accounts the single-context scenario during the training of

the ML model. The only case that the mtmd-ml policy per-

forms lower than the baseline is the medium size for Group-3

(Figure 7b). In this case, the trained ML model mispredicts

and schedules the execution of the most compute intensive

task (i.e., NBody) in the small GPU (Intel UHD Graphics 630).

Section 5.3 discusses the performance and precision analysis

of our trained model in more detail.

Additionally, the remaining policies (gpuprio, fcfs and

cpuex) show a diverse performance behavior for the three

groups of applications when running on the same data sizes.

This indicates that the diversity across the applications that

belong in the same group is high, and therefore, some of

them can perform better in a GPU, while others can perform

better in a CPU. For instance, Group-1 shows that the base-

line outperforms all the remaining policies (i.e., gpuprio, fcfs

and cpuex). The reason is that the applications in this group
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Figure 8. Comparison of the MTMD scheduling policies

against the Oracle (peak performance).

are all compute intensive and achieve high speedups when

they are executed on the discrete GPU.

Group-2 exhibits higher performance than the baseline

when the applications in this group are executed exclusively

on the same GPUs (cpuex - orange bars), reaching up to

1.13G for medium size (Figure 7b). On the other hand, the

performance of the gpuprio, fcfs and cpuex policies when

running Group-3 is at the same range. In particular, a 0.08G

performance di�erence is noted between gpuprio and cpuex

for small size (Figure 7a), while a 0.17G di�erence is observed

between fcfs and gpuprio/cpuex for large sizes (Figure 7c).

However, for medium sizes, fcfs achieves the highest perfor-

mance among the MTMD policies, indicating that the GPUs

are not the most suitable devices to execute for this range.

Finally, it is shown that the MTMD concurrent execution

in conjunction with the ML-based scheduling policy (mtmd-

ml) can increase the performance up to 83% compared to the

consecutive execution (DynRec).

5.2.2 Relative Performance vsBestConcurrent. To as-

sess the performance of theMTMD scheduling policies against

the maximum performance that can be achieved, we decided

to expand our experiments with an Oracle implementation.

Therefore, we evaluate the mtmd-ml, fcfs, gpuprio and cpuex

policies against the Oracle policy. Oracle represents the peak

performance that can be achieved, as it is derived from the

exhaustive exploration of all possible concurrent execution

plans of each group of benchmarks on the available hard-

ware devices. Note that the diversity across the applications,

along with the various data sizes, increases the exploration

space signi�cantly, and therefore, the decision of the Oracle

policy may not be pragmatic for real applications. In fact,

the execution of the applications in Group-2 for the large

sizes takes 4.5 hours. Nonetheless, Oracle is the best baseline

to compare the performance of the MTMD policies in terms

of the concurrent execution.

The left side of Figure 8 presents the comparative evalua-

tion of the MTMD policies against Oracle for small, medium

and large data sizes, while the right side depicts their geomet-

ric mean. As Figure 8 shows,mtmd-ml is the best performing

policy reaching up to 91% of the Oracle’s performance in

average, followed by cpuex (39%) and fcfs (36%). The lowest

average performance is observed for the gpuprio policy, due

to the low performance of GPUs when running for small and

medium data sizes.

5.3 Analysis of the MTMD ML Model

This section presents an analysis of the performance and

successful task-device allocation of the trained MTMD ma-

chine learning model. In particular, we use the area under the

ROC curve (AUC) and the F1-score as metrics for performance

evaluation. The AUC is calculated as the integral of the ROC

with respect to the false positive rate over [0, 1]. In essence,

high AUC indicates better prediction of the model.

Figure 9 presents the obtainedAUC for the three classi�ers

that we used in our model, as introduced in Section 4.4. In

particular, the micro-average ROC that classi�es the execu-

tion between two di�erent types of devices is 0.94 (Figure 9a),

0.97 (Figure 9b) and 0.82 (Figure 9c) for the �rst, second and

third classi�er, respectively. Based on this metric, the second

classi�er (GPU-CPU) has the best performance, followed by

the �rst (IGPU-CPU) and the third (GPU-IGPU) classi�ers.

This behavior is also veri�ed by closely investigating the

confusion matrices in Table 5, which shows that the third

classi�er mispredicted the IGPU over the GPU in four out of

31 times. In fact, this is the cause of the misprediction that

resulted in the low performance of Group-3 when mtmd-ml

was used (Figure 7b), as the model decided to use the Intel

Integrated GPU instead of the Nvidia GPU.

However, the overall decision of the model is not severely

in�uenced as the �nal outcome on which device to exe-

cute is taken based on the combination of all classi�ers.

Finally, based on the confusion matrices (Table 5), the F1-

score (i.e., the harmonic mean of precision and recall), was

computed for each classi�er using the following formula:

6(G) =
)%

)%+ 1

2
(�%+�# )

. The �nal F1-scores are 0.95, 0.96 and

0.91 for the �rst, second and third classi�er, respectively.

6 Related Work

We have classi�ed the related work in the following groups.

The �rst group discusses works that apply non-predictive

task scheduling, while the second discusses predictive task

scheduling. The �nal group elaborates on works that allow

single tasks on multiple devices.

Non-MLMulti-Task Scheduling:Manyworks focusing

on single or multi-task scheduling for standalone or parti-

tioned OpenCL applications, such as VirtCL [53], SnuCL [34],

PySchedCL [21], FluidiCL [42], MultiCL [2], EngineCL [39]

and SOCL [26]. Our prime di�erence is that we exploit this

opportunity of concurrent execution on heterogeneous hard-

ware for Java, seamlessly.

Parravicini et al. [45] use the GrCUDA polyglot API and

employ a custom scheduling approach to allow multiple

polyglot tasks to be scheduled on a single GPU at runtime.
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(a) Classi�er One (b) Classi�er Two (c) Classi�er Three

Figure 9. O�ine training process and Online device allocation based on pre-trained model.

Table 5. The confusion matrix of each classi�er.

Classi�er One
Actual Actual

IGPU (1) CPU (0)

Predicted IGPU (1) 28 1

Predicted CPU (0) 1 6

Classi�er Two
Actual Actual

GPU (1) CPU (0)

Predicted GPU (1) 31 0

Predicted CPU (0) 2 3

Classi�er Three
Actual Actual

GPU (1) IGPU (0)

Predicted GPU (1) 27 1

Predicted IGPU (0) 4 4

This work exploits pace-sharing and overlaps the time spent

in transferring data with the execution, if possible. Our work

focuses on scheduling multiple tasks into multiple devices

from di�erent vendors, although it can be used to schedule

concurrently on a single device.

ML-based Multi-Task Scheduling: Troodon [33] is a

load-balancing scheduling heuristic that classi�es OpenCL

applications as suitable for CPU or GPU execution, based

on a speedup predictor. The Qilin [37] compiler uses o�ine

pro�ling to create a regression model for predicting the exe-

cution time of input applications. Ogilvie et al. [40] introduce

a low-cost predictive model for the automatic construction of

heuristics that reduce the training overhead for execution on

CPU-GPU equipped platform. Furthermore, Grewe et al. [25]

leverages predictive modelling to in�uence the OpenCL code

generation from OpenMP programs when speedups are pre-

dicted. Additionally, Chen et al. [10] combine generic search

with learning and benchmarking to �nd good scheduling

methods for execution on heterogeneous hardware, includ-

ing CPUs, server GPUs, mobile GPUs, and FPGA-based ac-

celerators. However, the supported scheduling mechanism

is semi-automated, as the search space must be manually

de�ned by a programmer for each algorithm similar to a

template. Wen et al. [52] show that the concurrent execu-

tion of OpenCL kernels can increase the GPU utilization and

improve performance. This is achieved by applying a deci-

sion tree based prediction model to determine whether an

application kernel should be scheduled individually or along

with other kernels. Baldini et al. [5] use existing OpenMP

applications and supervised learning to predict the potential

GPU execution speedup among di�erent vendors. Brown

et al. [8] present a model that allows to get accurate predic-

tions of speedups using a small set of features, while also

being portable portability across Nvidia GPUs with di�erent

capabilities. Adams et al. [1] propose a novel scheduling al-

gorithm for the Halide programming language that targets

image processing pipelines. Their model combines symbolic

analysis with machine learning to predict performance.

Single Task Scheduling on Multiple-Devices: Other

studies have combined predictive modelling and scheduling

for single task/application partitioning onto multiple devices.

Ko�er et al. [35] use an Arti�cial Neural Network to dynami-

cally partition a given task in two parts, one that operates on

a CPU and a second that operates on a GPU. This partition is

done through the Insieme [32] that transforms the code from

single kernel into multiple kernels. Grewe et al. [24] present

a system that combines a two-level predictor with supervised

learning models (i.e., Support Vector Machines) to partition

tasks for hybrid CPU-GPU execution based on their static

code features. Also, Singh et al. [48] present a runtime system

that performs energy e�cient mapping and repartitioning

of threads of each application between CPU and GPU of an

MPSoC, while taking into account the execution time.

The main di�erentiation point of our work with prior

is that we enable the seamless and intelligent mapping of

multiple tasks onto multiple devices from Java. Therefore,

programmers can remain oblivious of the actual hardware

device that their programs will run, while leveraging a pre-

dictive machine learning model that can e�ectively schedule

the execution on the most suitable device based on knowl-

edge extracted from the Graal IR.

7 Conclusions

In this work, we presented a Multiple-Tasks on Multiple-

Devices (MTMD)mechanism capable of performing seamless

concurrent heterogeneous execution of Java programs. We
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implemented this mechanism by extending the virtualization

layer of TornadoVM along with additional components for

task dependency extraction. Besides, we used code features

extracted directly from the compiler’s IR as well as a custom

ML-architecture to predict the device allocation with the

highest projected speedup. To the best of our knowledge,

this is the �rst paper that allows concurrent heterogeneous

execution for programs purely written in Java.

Besides, we have presented a scalable and modular system

that employs custom parallel bytecode interpreters that can

utilize multiple devices, while using intelligent resource allo-

cation. Also, we introduced an online scheduling approach

based on a ML-architecture of multiple classi�ers, while us-

ing code features collected at compile and at run time.

We evaluated our mechanism with ML-based schedul-

ing against the best single device and various concurrent

scheduling policies. Our approach exhibits performance im-

provements of up to 83% compared to the best single device

while reaching up to 91% of the oracle performance.

For future work, we plan to extend our ML-architecture to

be able to make decisions among di�erent compiler backends

(e.g., PTX, SPIR-V, x86) to ensure optimal device and architec-

ture allocation for each application. Therefore, in the future

we expect our system to be able to seamlessly o�oad work-

loads concurrently on multiple devices, while leveraging the

optimal programming construct for each architecture.
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