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Multiple Testing and Error Control in
Gaussian Graphical Model Selection
Mathias Drton and Michael D. Perlman

Abstract. Graphical models provide a framework for exploration of mul-
tivariate dependence patterns. The connection between graph and statistical
model is made by identifying the vertices of the graph with the observed
variables and translating the pattern of edges in the graph into a pattern of
conditional independences that is imposed on the variables’ joint distribu-
tion. Focusing on Gaussian models, we review classical graphical models.
For these models the defining conditional independences are equivalent to
vanishing of certain (partial) correlation coefficients associated with individ-
ual edges that are absent from the graph. Hence, Gaussian graphical model
selection can be performed by multiple testing of hypotheses about vanishing
(partial) correlation coefficients. We show and exemplify how this approach
allows one to perform model selection while controlling error rates for incor-
rect edge inclusion.

Key words and phrases: Acyclic directed graph, Bayesian network, bidi-
rected graph, chain graph, concentration graph, covariance graph, DAG,
graphical model, multiple testing, undirected graph.

1. INTRODUCTION

Many models from multivariate statistics are spec-
ified by combining hypotheses of (conditional) inde-
pendence with particular distributional assumptions.
In order to represent such models in a way that is
easy to visualize and communicate, it is natural to
draw a graph with one vertex for each variable and
an edge between any two variables that exhibit a de-
sired type of dependence. In graphical modeling (Cox
and Wermuth, 1996; Edwards, 2000; Lauritzen, 1996;
Whittaker, 1990; Studený, 2005), a rigorous version of
this idea is used to associate a statistical model with
a graph. Via so-called Markov properties, the pattern
of edges in the graph is translated into conditional
independence statements, which are then imposed on
the joint distribution of the variables that are identi-
fied with the graph’s vertices. In this process, differ-
ent graphs with different types of edges have been
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equipped with different Markov properties. For ex-
ample, graphs with undirected edges have been given
an interpretation that requires two variables that are
not joined by an edge to be conditionally independent
given all other variables. Markov chains, Markov ran-
dom fields and certain types of hierarchical log-linear
models are examples of models that can be represented
in this way. Graphs with directed edges have been used
to encode dependence structures that arise from cause-
effect relationships among variables (Lauritzen, 2001;
Pearl, 2000; Spirtes, Glymour and Scheines, 2000),
and the associated directed graphical models are also
known as Bayesian networks. Other types of graphs,
sometimes featuring different types of edges simulta-
neously, have been used to represent other dependence
structures. We note that in graphs featuring directed
edges, directed cycles, which at an intuitive level cor-
respond to feedback loops, are typically forbidden.

Much of the success of graphical models in appli-
cations, such as the classic application in probabilistic
expert systems (Cowell et al., 1999), is due to favorable
computational properties. The independences imposed
on the distributions in a graphical model typically in-
duce factorizations of joint densities into smaller, more
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tractable pieces. The graphical representation of the
model then helps to organize computations with these
pieces in order to solve statistical inference problems
efficiently (Jordan, 2004). In fact, the models are some-
times defined as families of distributions with densities
factoring according to a given graph (see, e.g., Jensen,
2001). Conditional independences are then viewed as
consequences of such density factorization.

Recently, graphical models have been applied fre-
quently to the analysis of biological data (see, e.g.,
Beerenwinkel and Drton, 2007; Jojic et al., 2004;
Lauritzen and Sheehan, 2003; McAuliffe, Pachter and
Jordan, 2004). In particular, the abundance of gene ex-
pression data from microarray experiments has stim-
ulated work on exploratory data analysis focusing on
model selection. In the graphical context, this amounts
to selection of the underlying graph which may re-
veal aspects of the network regulating the expression
of the genes under study; see Butte et al. (2000),
Castelo and Roverato (2006), Dobra et al. (2004),
Magwene and Kim (2004), Li and Gui (2006), de la
Fuente et al. (2004), Matsuno et al. (2006), Wille et al.
(2004), Schäfer and Strimmer (2005) and the review
by Friedman (2004).

Three approaches to graphical model selection are
commonly taken. The constraint-based approach,
which has a long history, is the simplest and employs
statistical tests of the model-defining conditional in-
dependence hypotheses (Wermuth, 1976; Badsberg,
1992; Edwards and Havránek, 1985, 1987; Kreiner,
1987; Smith, 1992; Spirtes, Glymour and Scheines,
2000; Drton and Perlman, 2004). A second method
is a score-based search in which models are se-
lected by searching through the space of underlying
graphs and maximizing a goodness-of-fit score such
as the Bayesian Information Criterion (BIC) (Schwarz,
1978). The search is often done greedily by defining
a neighborhood structure for graphs and terminating
with a graph for which no neighboring graph achieves
a higher score. While moving in the space of undi-
rected graphs is straightforward by single-edge addi-
tions and deletions, this is less simple for graphs with
directed edges due to the acyclicity conditions that
are usually imposed (see, e.g., Chickering, 2002). Fi-
nally, the methodologically most demanding approach
to model selection is the Bayesian approach. It re-
quires specification of appropriate prior distributions
(Dawid and Lauritzen, 1993; Roverato, 2002; Roverato
and Consonni, 2004; Atay-Kayis and Massam, 2005)
and computation of/sampling from the resulting pos-
terior distribution on the space of models. Bayesian

model determination has been studied for undirected
and directed graphs (Cooper and Herskovits, 1992;
Madigan and Raftery, 1994; Heckerman, Geiger and
Chickering, 1995; Giudici and Green, 1999; Consonni
and Leucari, 2001; Dellaportas, Giudici and Roberts,
2003).

In this paper we consider Gaussian graphical models,
which are used in particular for analysis of the con-
tinuous gene expression measurements. In Section 2
we review Gaussian graphical models based on undi-
rected, bidirected and acyclic directed graphs. The lat-
ter graphs are also known as acyclic digraphs, directed
acyclic graphs or, in short, DAGs. We also comment
on other graphs that have been used to represent sta-
tistical models. Many of these induce Gaussian mod-
els that are fully specified by a pairwise Markov prop-
erty that associates one conditional independence state-
ment with each pair of vertices that are nonadjacent,
that is, not joined by an edge. For some graphs, such
as undirected and bidirected ones, the conditioning set
in such a pairwise conditional independence statement
does not depend on the structure of the graph, which
is important in our subsequent approach to the model
selection problem in which the graph is unknown. For
other types of graphs, the same may hold only if a pri-
ori information is available that allows one to restrict
attention to a restricted subset of graphs. For example,
for DAGs, this a priori information may take the form
of a total order among the variables, which determines
the orientation of any directed edge that is deemed to
be present in the graph.

When the absence of edges corresponds to pairwise
conditional independence statements, model selection
can be performed by testing each conditional indepen-
dence statement individually. By translating the pat-
tern of rejected hypotheses into a graph, one obtains
a constraint-based model selection method in which
error rates for incorrect edge inclusion can be con-
trolled when the multiple testing problem is addressed
appropriately. Traditionally, such multiple testing ap-
proaches are deemed to be not very powerful (Smith,
1992), and instead, classical constraint-based methods
use sequential tests in schemes such as, for example,
stepwise forward/backward selection. Such sequential
procedures may possess greater power for determining
the true graph, but the link between the significance
level of individual hypothesis tests and overall error
properties of the resulting model selection procedure
is generally not clear. However, in light of recent ad-
vances in multiple testing, it seems worthwhile to re-
visit the multiple testing approach to graphical model
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selection. The recent progress not only provides more
powerful multiple testing procedures but also allows
one to control different types of error rates such as
(generalized) family-wise error rate, tail probability of
the proportion of false positives and false discovery
rate (Sections 3.3 and 3.4). We illustrate the method-
ology in examples of exploratory data analysis (Sec-
tion 4), in which the multiple testing approach allows
us to identify the most important features of the ob-
served correlation structure. Before concluding in Sec-
tion 6, we show how prior knowledge about the ab-
sence or presence of certain edges can be exploited in
order to test fewer and possibly simpler hypotheses in
the model selection procedure (Section 5).

2. GAUSSIAN GRAPHICAL MODELS

Let Y = (Y1, . . . , Yp)t ∈ Rp be a random vector dis-
tributed according to the multivariate normal distribu-
tion Np(μ,�). It is assumed throughout that the co-
variance matrix � is nonsingular. Let G = (V ,E) be a
graph with vertex set V = {1, . . . , p} and edge set E.
The connection between graph and statistical model is
made by identifying the vertices V of the graph G with
the variables Y1, . . . , Yp . Then the edge set E induces
conditional independences via so-called Markov prop-
erties. In order to be able to represent different types
of dependence patterns, different types of graphs have
been equipped with different Markov properties.

2.1 Undirected Graphical Models

Let G = (V ,E) be an undirected graph, that is, all
edges in the graph are undirected edges i — j . The
pairwise undirected Markov property of G associates
the conditional independence

Yi ⊥⊥ Yj | YV \{i,j}(2.1)

with all pairs (i, j), 1 ≤ i < j ≤ p, for which the
edge i — j is absent from G. For example, the pair-
wise Markov property for the undirected graph in Fig-
ure 1(a) specifies that Y1 ⊥⊥ Y3 | (Y2, Y4), Y1 ⊥⊥ Y4 |
(Y2, Y3) and Y2 ⊥⊥ Y3 | (Y1, Y4). The Gaussian graphi-
cal model N(G) associated with the undirected graph

G is defined as the family of all p-variate normal dis-
tributions Np(μ,�) that obey the conditional inde-
pendence restrictions (2.1) obtained from the pairwise
Markov property. Since the random vector Y is distrib-
uted according to the multivariate normal distribution
Np(μ,�), we have the equivalence

Yi ⊥⊥ Yj | YV \{i,j} ⇐⇒ ρij ·V \{i,j} = 0,(2.2)

where ρij ·V \{i,j} denotes the ij th partial correlation,
that is, the correlation between Yi and Yj in their con-
ditional distribution given YV \{i,j}. This partial corre-
lation can be expressed in terms of the elements of the
concentration ≡ precision matrix �−1 = {σ ij },

ρij ·V \{i,j} = −σ ij

√
σ iiσ jj

;(2.3)

compare Lauritzen (1996, page 130).
The model N(G) has also been called a covariance

selection model (Dempster, 1972) and a concentra-
tion graph model (Cox and Wermuth, 1996). The latter
name reflects the fact that N(G) can easily be parame-
trized using the concentration matrix �−1. Gaussian
undirected graphical models are regular exponential
families with well-developed statistical methodology
(Edwards, 2000; Lauritzen, 1996; Whittaker, 1990).

Let Y be a random vector whose joint distribution
Np(μ,�) is in the model N(G). By definition the
pairwise conditional independences (2.1) hold among
the components of Y . However, these generally imply
other independence relations. For example, if G is the
graph from Figure 1(a), then the implied independence
relations include

Y1 ⊥⊥ Y3 | Y4(2.4)

and

Y1 ⊥⊥ (Y3, Y4) | Y2.(2.5)

One of the benefits of representing the statistical model
graphically is that all such independence consequences
can be read off the graph using a criterion known as
the global Markov property. This criterion is based on

FIG. 1. (a) An undirected graph, (b) a bidirected graph and (c) an acyclic directed graph (DAG).
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paths in the graph, where a path is defined as a se-
quence of distinct vertices such that any two consec-
utive vertices in that sequence are joined by an edge.
For disjoint subsets A, B and C of the vertex set V , the
global undirected Markov property of G states that

YA ⊥⊥ YB | YC(2.6)

if there does not exist a path in the graph that leads
from a vertex in A to a vertex in B and has no nonend-
point vertex in C. In other words, the set of vertices C

separates the vertices in A from those in B . Note that C

may be the empty set, in which case conditional inde-
pendence given Y∅ is understood to be marginal inde-
pendence of YA and YB . In the graph from Figure 1(a),
there is no path from vertex 1 to vertex 3 (or 4) that
does not go through vertex 2, which yields (2.5); (2.4)
is obtained similarly.

The conditional independence statements (2.1) are
saturated in the sense that they involve all the variables
at hand. At the other end of the spectrum of pairwise in-
dependence statements is marginal independence, the
graphical representation of which we discuss next.

2.2 Bidirected Graphical Models

Let G = (V ,E) be a bidirected graph with edges
drawn as i ←→ j . The pairwise bidirected Markov
property of G associates the marginal independence

Yi ⊥⊥ Yj(2.7)

with all pairs (i, j), 1 ≤ i < j ≤ p, for which the edge
i ←→ j is absent from G. The graph in Figure 1(b),
for example, leads to Y1 ⊥⊥ Y3, Y1 ⊥⊥ Y4 and Y2 ⊥⊥ Y3.
The Gaussian graphical model N(G) associated with
the bidirected graph G is defined as the family of
all p-variate normal distributions Np(μ,�) that sat-
isfy the marginal independence restrictions (2.7). Ob-
viously, under multivariate normality,

Yi ⊥⊥ Yj ⇐⇒ ρij = 0,(2.8)

where

ρij = σij√
σiiσjj

(2.9)

denotes the ij th correlation, that is, the correlation be-
tween Yi and Yj .

The model N(G) has also been called a covariance
graph model (Cox and Wermuth, 1996). We note that
Cox and Wermuth (1993, 1996) and some other au-
thors have used dashed instead of bidirected edges.
Gaussian bidirected graphical models are curved ex-
ponential families, and the development of theory

and methodology for these models is still in progress
(Chaudhuri, Drton and Richardson, 2007; Kauermann,
1996; Wermuth, Cox and Marchetti, 2006).

The duality between saturated pairwise conditional
independence and marginal independence leads to a
nice duality between the global Markov properties for
undirected and bidirected Gaussian graphical models.
Let A, B and C be disjoint subsets of the vertex set V .
The global bidirected Markov property for the graph G

states that

YA ⊥⊥ YB | YC(2.10)

if there does not exist a path in the graph that leads
from a vertex in A to a vertex in B and has every
nonendpoint vertex on the path in C. In the graph
from Figure 1(b), it holds that Y1 ⊥⊥ Y3 | Y2 because
the unique path from vertex 1 to vertex 3 contains
the vertex 4 that is not in the conditioning set {2}.
For background regarding the Markov properties of
bidirected graphs see Pearl and Wermuth (1994),
Kauermann (1996), Banerjee and Richardson (2003)
and Richardson (2003).

Both undirected and bidirected graphs have edges
without directionality, and any two vertices are either
joined by an edge or not. Consequently, in each case
there exists a unique complete graph, that is, a graph
in which all vertices are joined by an edge. Moreover,
the conditioning sets in the pairwise conditional inde-
pendences (2.2) and (2.8) do not depend on the struc-
ture of the graph. For the acyclic directed graphs intro-
duced next this is no longer true. Since a directed edge
between two vertices i and j may be either i −→ j

or i ←− j , there no longer exists a unique complete
graph, and the conditioning set in pairwise indepen-
dence statements associated with missing edges will
depend on certain higher-order aspects of the graph.

2.3 Directed Graphical Models

A graph with directed edges i −→ j is called acyclic
if it contains no directed cycles. A directed cycle is
a path of the form i −→ · · · −→ i. In the literature,
the term directed acyclic graph is often used to refer to
these graphs. While this is somewhat imprecise termi-
nology, it yields the popular acronym “DAG,” which
we also use here.

Let G = (V ,E) be an acyclic directed graph/DAG.
The directed edges in E define a partial ordering �
of the vertices V = {1, . . . , p} in which i � j if i = j

or there is a directed path i −→ · · · −→ j from i to
j in G. Not all pairs of vertices must be comparable
with respect to this partial ordering. For example, in
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the graph in Figure 1(c), vertices 2 and 3 are incom-
parable. However, the partial order can always be ex-
tended (possibly nonuniquely) to a total order � under
which i ≤ j whenever i � j . (This may require renum-
bering the vertices.) Such a numbering is called a well-
numbering or topological ordering of the vertex set V .
In the example, the vertex set is well-numbered, but
exchanging vertex numbers 2 and 3 also yields a well-
numbering. In the sequel, we assume that the vertex set
V is well-numbered.

The well-numbered pairwise directed Markov prop-
erty of G associates the conditional independence

Yi ⊥⊥ Yj | Y{1,...,j}\{i,j}(2.11)

with all pairs (i, j), 1 ≤ i < j ≤ p, for which the edge
i −→ j is absent from G; compare, for example, (7.2)
in Edwards (2000) and (2.5) in Drton and Perlman
(2007). Note that the well-numbering and the assumed
order i < j preclude the existence of the edge i ←− j .
In the example of Figure 1(c), (2.11) specifies that
Y1 ⊥⊥ Y3 | Y2, Y2 ⊥⊥ Y3 | Y1 and Y1 ⊥⊥ Y4 | (Y2, Y3).
The Gaussian graphical model N(G) associated with
the DAG G is defined as the family of all p-variate nor-
mal distributions Np(μ,�) that obey the restrictions
(2.11).

The conditional independences (2.11) defining the
model N(G) associated with a DAG G may at first
sight appear to have a less clear interpretation than the
ones associated with undirected or bidirected graphs.
However, perhaps even the contrary is true, as the
model N(G) based on the DAG G exhibits a depen-
dence structure that can be expected if the (directed)
edges in G represent cause-effect relationships. Think-
ing in this causal fashion, if there is no edge be-
tween vertices i and j , then Yi is not an immediate
cause of Yj . Hence, if we condition on the variables
Y{1,...,j }\{i,j}, which include all immediate (or direct)
causes of Yj , then Yi should have no effect on Yj as
stated in (2.11).

Since we assume that Y follows a multivariate nor-
mal distribution Np(μ,�), it holds that

Yi ⊥⊥ Yj | Y{1,...,j }\{i,j}
(2.12)

⇐⇒ ρij ·{1,...,j}\{i,j} = 0,

where for C ⊆ V \ {i, j} we define ρij ·C to be the par-
tial correlation of Yi and Yj given YC . Clearly ρij ·C is
a function of the (C ∪ {i, j}) × (C ∪ {i, j}) submatrix
of �; compare (2.3).

The model N(G) can be shown to correspond to a
system of linear regressions. For each variable Yi there

is one linear regression in which Yi is the response vari-
able and variables Yj with j −→ i in G are the covari-
ates (Wermuth, 1980; Andersson and Perlman, 1998).
It can be shown that the set of covariance matrices giv-
ing rise to distributions in N(G) can be parametrized in
terms of regression coefficients and residual variances,
which constitute the factors of a Choleski decomposi-
tion of �−1.

The definition of N(G) does not depend on the
choice of the underlying well-numbering, which is not
unique in general. This follows because a multivari-
ate normal distribution exhibits the conditional inde-
pendences (2.11) stated by the well-numbered pair-
wise directed Markov property if and only if it obeys
the conditional independences stated by the more ex-
haustive global directed Markov property, which does
not depend on the choice of the well-numbering; see,
for example, Cowell et al. (1999, Theorem 5.14), and
Drton and Perlman (2007, Appendix A, Theorem 3).
The global directed Markov property for a DAG can be
formulated in two equivalent ways (Lauritzen, 1996).
One way uses a connection to undirected graphs and
their Markov properties via what is known as moral-
ization, which involves path separation in certain aug-
mented subgraphs of the DAG. The other, which we
detail next, is based on the so-called d-separation crite-
rion which can be applied in the original DAG, but in-
volves an extended definition of separation in the DAG.

Consider a path consisting of the vertices i0, i1, . . . ,

im. A nonendpoint vertex ik , 1 ≤ k ≤ m − 1, on a path
is said to be a collider if the preceding and succeed-
ing edges both have an arrowhead at ik , that is, the
configuration ik−1 −→ ik ←− ik+1 occurs in the path.
A nonendpoint vertex which is not a collider is said to
be a noncollider. Two vertices i and j are d-separated
given a (possibly empty) set C (i, j /∈ C) if every path
between i and j is blocked relative to C, that is, there
is either (i) a noncollider in C, or (ii) a collider c /∈ C

such that there is no vertex c̄ ∈ C with c −→ · · · −→ c̄

in G. If A, B and C are disjoint subsets of the vertex
set V , then A and B are said to be d-separated given C

if every pair of vertices (i, j) with i ∈ A and j ∈ B is
d-separated given C. The global directed Markov prop-
erty of the DAG G states that

YA ⊥⊥ YB | YC(2.13)

whenever A and B are d-separated given C.
In the graph in Figure 1(c), the global Markov prop-

erty implies that (Y1, Y2) ⊥⊥ Y3 because the unique
path from vertex 2 to vertex 3 contains the vertex 4,
which is a collider that trivially satisfies property (ii)
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above because the conditioning set C is empty. In this
example, it also holds that Y1 ⊥⊥ (Y3, Y4) | Y2 because
vertex 2 is a noncollider on the unique path from ver-
tex 1 to vertex 3 (and 4, resp.), and the conditioning set
contains this noncollider.

A difficulty in working with DAGs is the fact that
two different DAGs can induce the same statisti-
cal model, in which case the two graphs are called
Markov equivalent. A characterization of this equiv-
alence can be found in Andersson, Madigan and Perl-
man (1997). However, if two different DAGs share a
well-numbering, then they must induce different sta-
tistical models, which can be derived, for example,
from Lemma 3.2 in Andersson, Madigan and Perlman
(1997).

2.4 Related Models With Graphical Representation

Many other models considered in the literature ben-
efit from a graphical representation. Most closely con-
nected to the models discussed above are chain graph
models. A chain graph is a hybrid graph featuring both
directed and undirected edges. The name “chain graph”
reflects the fact that the vertex set of these graphs can
be partitioned into ordered blocks such that edges be-
tween vertices in the same block are undirected, and
edges between vertices in different blocks are directed,
pointing from the lower-ordered block to the higher-
ordered block.

Two alternative Markov properties for chain graphs
have been thoroughly studied in the literature: the LWF
Markov property of Lauritzen and Wermuth (1989)
and Frydenberg (1990), and the more recent AMP
Markov property of Andersson, Madigan and Perlman
(2001). Results on Markov equivalence and general-
izations of the d-separation criterion can be found in
Studený and Bouckaert (1998), Studený and Rover-
ato (2006), Andersson and Perlman (2006) and Levitz,
Perlman and Madigan (2001). Statistical inference for
Gaussian chain graph models is discussed, for exam-
ple, in Lauritzen (1996) and Drton and Eichler (2006).
We note that chain graphs with bidirected instead of
undirected edges can also be considered; see, for ex-
ample, Wermuth and Cox (2004) where dashed edges
are used in place of bidirected ones.

Another class of graphical models are based on the
ancestral graphs of Richardson and Spirtes (2002).
These graphs may include undirected, directed and
bidirected edges (although the undirected edges do not
occur in an essential way) and permit one to represent
all independence structures that may arise from a DAG

model under conditioning and marginalization. Ances-
tral graphs are also related to path diagram/structural
equation models that are popular in econometrics and
the social sciences; see, for example, Koster (1999).
Finally, graphs have also been used to represent time
series and stochastic process models (Dahlhaus, 2000;
Dahlhaus and Eichler, 2003; Eichler, 2007; Fried and
Didelez, 2003; Didelez, 2007).

3. MODEL SELECTION BY MULTIPLE TESTING

Let Y (1), . . . , Y (n) be a sample from a multivariate
normal distribution Np(μ,�) in a Gaussian graphical
model N(G), where G = (V ,E) is an unknown undi-
rected, bidirected or acyclic directed graph. The sample
information can be summarized by the sufficient statis-
tics, which are the sample mean vector

Ȳ = 1

n

n∑
m=1

Y (m) ∈ RV(3.1)

and the sample covariance matrix

S = 1

n − 1

n∑
m=1

(
Y (m) − Ȳ

)(
Y (m) − Ȳ

)t
(3.2)

∈ RV ×V .

The problem we consider here is the recovery of the un-
known graph underlying the assumed Gaussian graph-
ical model. This is a problem of model selection. We
note that in this paper we consider the case where
the sample size is moderate to large compared to the
number of variables. More precisely, we assume that
n ≥ p + 1 in order to guarantee (almost sure) posi-
tive definiteness of the sample covariance matrix S. For
work on problems in which the sample size is small
compared to the number of variables, see, for exam-
ple, Jones et al. (2005) or Meinshausen and Bühlmann
(2006), where sparsity restrictions are imposed on the
unknown graph.

3.1 Model Selection and Hypotheses of Vanishing
Partial Correlations

As presented in Section 2, Gaussian graphical mod-
els can be defined by pairwise conditional indepen-
dence hypotheses or equivalently by vanishing of par-
tial correlations. This suggests that we can perform
model selection, that is, recover the graph G, by con-
sidering the p(p − 1)/2 testing problems

Hij :ρij ·C(i,j) = 0 vs. Kij :ρij ·C(i,j) �= 0
(3.3)

(1 ≤ i < j ≤ p).
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For undirected graphs, (2.2) dictates choosing C(i,

j) = V \ {i, j}, and for bidirected graphs we choose
C(i, j) = ∅ in accordance with (2.8). For DAGs,
(2.12) leads to the choice C(i, j) = {1, . . . , j} \ {i, j},
which, however, is valid only under the assumption that
the vertex set V = {1, . . . , p} is well-numbered for the
unknown true DAG.

Thus in order to be able to select a DAG via the
testing problems (3.3), we must restrict attention to
the situation where we have a priori information about
a well-numbering of the vertex set of the unknown
DAG. We then select a graph from the set of DAGs
for which the specified numbering of the variables is
a well-numbering. In an application, a priori informa-
tion about temporal or causal orderings of the vari-
ables can yield a known well-numbering. For example,
Spirtes, Glymour and Scheines (2000, Example 5.8.1)
analyze data on publishing productivity among acad-
emics, which involve seven variables that obey a clear
temporal order. In many other applications such a total
order among the variables may not be available. How-
ever, as we mention in Section 6, a partial order is suffi-
cient for selection of a chain graph (recall Section 2.4).

If in the true graph G there is an edge between ver-
tices i and j , then hypothesis Hij is false and the alter-
native Kij is true. Consequently, if we have performed
the p(p − 1)/2 tests of the hypotheses in (3.3), then
we can select a graph by drawing an edge between i

and j if and only if the hypothesis Hij is rejected. Let
α ∈ (0,1) be the significance level employed, and let
πij be the p-value of the test of hypothesis Hij in (3.3).
Then the graph Ĝ(α) that is selected at level α has the
adjacency matrix Â(α) = (âij (α)) ∈ Rp×p with entries

âij (α) =
{

1, if πij ≤ α,
0, if πij > α.(3.4)

In the sequel we will focus on addressing the issue of
multiple testing in this approach, which leads to model
selection procedures in which overall error rates (with
respect to false inclusion of edges) can be controlled.

We remark that testing the hypotheses in (3.3) is also
the first step in stepwise model selection procedures
(Edwards, 2000, Section 6.1; also see Section 3.1).
In backward stepwise selection, for example, each hy-
pothesis in (3.3) is tested individually at a fixed sig-
nificance level α. The largest of the p-values for the
hypotheses that are not rejected is determined and the
associated edge is removed from the graph. In the next
step the remaining edges/hypotheses are tested again
in the reduced graph, also at level α. The procedure
stops if all remaining hypotheses are rejected at level α.

While retesting in a reduced graph allows one to take
advantage of sparsity of the graph, which induces inde-
pendence features and may allow for more efficient pa-
rameter estimation and testing, the “overall error prop-
erties [of such stepwise selection procedures] are not
related in any clear way to the error levels of the indi-
vidual tests” (Edwards, 2000, page 158).

3.2 Sample Partial Correlations

A natural test statistic for testing hypothesis
Hij :ρij ·C(i,j) = 0 is the sample partial correlation
rij ·C(i,j), that is, the partial correlation computed from
the sample covariance matrix S; recall (2.3). The mar-
ginal distribution of rij ·C(i,j) has the same form as
the distribution of the ordinary sample correlation rij ,
but with the parameter ρij replaced by ρij ·C(i,j) and
the sample size n reduced to nC(i,j) = n − |C(i, j)|
(Anderson, 2003, Theorem 4.3.5). The marginal distri-
bution of the sample correlation rij takes on a simple
form if the ith and j th components of the normal ran-
dom vector from which it is derived are independent.

PROPOSITION 1. If the true correlation ρij is zero,

then
√

n − 2 · rij /
√

1 − r2
ij has a t-distribution with

n − 2 degrees of freedom.

In the noncentral case, ρij �= 0, the exact distribu-
tion of rij can be described using hypergeometric func-
tions, but it is simpler to work with Fisher’s variance-
stabilizing z-transform.

PROPOSITION 2. Let

z : (−1,1) → R, r �→ 1

2
ln

(
1 + r

1 − r

)

be the z-transform. An accurate normal approximation
to the distribution of zij = z(rij ) can be obtained from
the fact that

√
n − 3 (zij − ζij )

d→ N (0,1) as n → ∞,

where ζij = z(ρij ). Note that ζij = 0 if and only if
ρij = 0.

Concerning finite-sample properties, little is lost by
working with the normal approximation to Fisher’s z,
as this approximation is accurate even for moderate
sample size (Anderson, 2003, Section 4.2.3). At the
same time much convenience is gained because of the
variance-stabilizing property of the z-transform and the
fact that the joint distribution of z-transformed sample
correlations is easily deduced from that of the untrans-
formed sample correlations; compare Proposition 5 be-
low.



MULTIPLE TESTING AND GRAPHICAL MODEL SELECTION 437

A sample partial correlation rij ·C(i,j) is a smooth
function of the sample covariance matrix S. The ran-
dom matrix (n − 1)S has a Wishart distribution with
n − 1 degrees of freedom and scale parameter ma-
trix �. The asymptotic normal distribution of both S

and S−1 can be described using Isserlis matrices (Olkin
and Siotani, 1976; Roverato and Whittaker, 1998).

PROPOSITION 3. Let Iss(�) be the Isserlis matrix
of �, that is, the p(p + 1)/2 ×p(p + 1)/2-matrix with
entries

Iss(�)ij,uv = σiuσjv + σivσju,

1 ≤ i ≤ j ≤ p,1 ≤ u ≤ v ≤ p.

Then
√

n(S − �)
n→∞−→d Np(p+1)/2(0, Iss(�)),

and
√

n(S−1 − �−1)
n→∞−→d Np(p+1)/2(0, Iss(�−1)).

Using the delta method (van der Vaart, 1998), the
joint asymptotic normal distribution of the vector of
sample partial correlations r = (rij ·C(i,j) | 1 ≤ i < j ≤
p) can be derived. For ordinary correlations, for which
C(i, j) = ∅ for all 1 ≤ i < j ≤ p, and saturated par-
tial correlations with C(i, j) = V \ {i, j} for all 1 ≤
i < j ≤ p, the following result is quickly obtained
using software for symbolic computation. The state-
ment about ordinary correlations goes back to Aitkin
(1969, 1971) and Olkin and Siotani (1976).

PROPOSITION 4. The vector of ordinary correla-
tions is asymptotically normal,

√
n(r − ρ)

n→∞−→d Np(p−1)/2(0,�),

with ρ = (ρij | 1 ≤ i < j ≤ p) and the asymptotic co-
variance matrix � = (ωij,k
) given by

ωij,ij = [1 − (ρij )
2]2,

ωij,i
 = −1
2ρijρi
[1 − (ρij )

2 − (ρi
)
2 − (ρj
)

2]
+ ρj
[1 − (ρij )

2 − (ρi
)
2],

ωij,k
 = 1
2ρijρk
[(ρik)

2 + (ρi
)
2 + (ρjk)

2 + (ρj
)
2)]

+ ρikρj
 + ρi
ρjk − ρikρjkρk


− ρijρikρi
 − ρijρjkρj
 − ρi
ρj
ρk
.

The same result holds for the vector of saturated partial
correlations rij ·V \{i,j} if we replace all ρij by ρij ·V \{i,j}
in the above formulas, where, for more accurate nor-
mal approximation, the sample size n should also be
replaced by nV \{i,j} = n − p − 2.

For small number of variables p, asymptotic co-
variance matrices for vectors of partial correlations
rij ·{1,...,j}\{i,j}, as required for DAG selection, can be
computed using software for symbolic computation,
but we are not aware of any general formulas in the
literature.

By again applying the delta method, the following
result is obtained:

PROPOSITION 5. The asymptotic covariance ma-
trix of the vector of z-transformed partial correlations
zij ·C(i,j) = z(rij ·C(i,j)) is the correlation matrix of the
asymptotic covariance matrix � of the vector of un-
transformed partial correlations rij ·C(i,j).

With these preliminaries we can now turn to the
problem of error control in the multiple testing prob-
lem (3.3), which we formulate in terms of p-values.

3.3 Controlling Family-Wise Error Rate

A multiple testing procedure for problem (3.3) is
said to control the family-wise error rate (FWER) at
level α ∈ (0,1) if for any underlying multivariate nor-
mal distribution Np(μ,�), the probability of rejecting
one or more null hypotheses Hij incorrectly is smaller
than or equal to α. If a multiple testing procedure con-
trols the FWER at level α, then its (simultaneous) p-
values {πij | 1 ≤ i < j ≤ p} have the property

ProbNp(μ,�)(∃ij :πij ≤ α but Hij is true)

= ProbNp(μ,�)(∃ij : edge i — j included

when actually absent) ≤ α.

Since control is achieved at all multivariate normal dis-
tributions, that is, at all patterns of true null hypothe-
ses, this is sometimes referred to as “strong control”
(Dudoit, Shaffer and Boldrick, 2003). For the graph se-
lected according to (3.4), this means that with probabil-
ity at most α the selected graph Ĝ(α) is not a subgraph
of the true graph G,

ProbG

(
Ĝ(α) � G

) ≤ α.(3.5)

(By definition, a subgraph of G contains no edges
that are absent in G.) The notation ProbG in (3.5) de-
notes any probability calculation under a distribution
Np(μ,�) ∈ N(G).

In (3.5), the error with respect to incorrect edge in-
clusion is controlled in finite samples. Sometimes it
may, however, only be feasible to achieve asymptotic
control of the form

lim sup
n→∞

ProbNp(μ,�)(∃ij :πij ≤ α but Hij is true) ≤ α,
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and hence,

lim sup
n→∞

ProbG

(
Ĝ(α) � G

) ≤ α.(3.6)

In particular, when using z-transformed correlations
and normal approximations to their distributions, one
may only hope to achieve asymptotic control given
by (3.6). But the concept of asymptotic control is also
central to recently introduced multiple testing proce-
dures that employ consistent estimates of the joint dis-
tribution of the test statistics (see Section 3.3.2).

Any model selection procedure that asymptotically
controls FWER at fixed significance level α, that is,
satisfies (3.6), is (1 − α)-consistent in the following
sense. Let Gfaithful = Gfaithful(�) be the graph that
has the fewest edges among all graphs G′ for which
the data-generating distribution Np(μ,�) is in N(G′).
The definition of Gfaithful is straightforward for undi-
rected and bidirected graphs. For DAGs, recall that we
assume to know a well-numbering of the variables a
priori, in which case Gfaithful is again well defined. The
distribution Np(μ,�) is pairwise faithful to Gfaithful
in the sense that ρij ·C(i,j) = ρij ·C(i,j)(�) = 0 if and
only if the edge between vertices i and j is absent from
Gfaithful. Then it can be shown that

lim inf
n→∞ ProbNp(μ,�)

(
Ĝ(α) = Gfaithful

) ≥ 1 − α;(3.7)

compare Drton and Perlman [2004, (2.18)]. This means
that the selection procedure identifies Gfaithful with as-
ymptotic probability at least (1 − α). Moreover, if the
sample size n can be chosen large enough, then the
asymptotic probability ProbNp(μ,�)(Ĝ(α) �= Gfaithful)

can be made arbitrarily small by choosing α arbitrar-
ily small [Drton and Perlman, 2004, (2.19)–(2.21)]. In
this sense the procedure is fully consistent. However,
the choice of n depends on α as well as on �.

The above notion of faithfulness is defined with re-
spect to the pairwise Markov property. In other con-
texts (e.g., Spirtes, Glymour and Scheines, 2000; Wille
and Bühlmann, 2006; Becker, Geiger and Meek, 2000),
the stronger condition of faithfulness with respect to
the global Markov property is considered. A distribu-
tion is globally faithful to a graph G if it exhibits a con-
ditional independence YA ⊥⊥ YB | YC if and only if the
sets A, B and C fulfill the graphical separation prop-
erty used in the definition of the global Markov prop-
erty. However, while every multivariate normal distri-
bution is pairwise faithful to some graph in the con-
sidered class of graphs, it is easy to see that there exist
normal distributions that are not globally faithful to any

graph in the class. For example, consider the centered
trivariate normal distribution with covariance matrix

� =
⎛
⎝ 2 1 0

1 2 1
0 1 1

⎞
⎠

�⇒ �−1 =
⎛
⎝ 1 −1 1

−1 2 −2
1 −2 3

⎞
⎠ .

Choosing the context of undirected graphs, we see that
this distribution is pairwise but not globally faithful to
the complete graph, since σ13 = 0 implies Y1 ⊥⊥ Y3.

3.3.1 Multiple testing procedures using the mar-
ginal distributions of the sample correlations. Classi-
cal generally applicable multiple testing procedures are
based on the marginal distributions of the test statistics
alone. When testing Hij :ρij ·C(i,j) = 0 via the normal
approximation to the z-transformed sample partial cor-
relation zij ·C(i,j) given in Proposition 2, we obtain the
unadjusted p-value

πij = 2
[
1 − �

(√
nC(i,j) − 3 · ∣∣zij ·C(i,j)

∣∣)],(3.8)

where � is the cumulative distribution function of the
standard normal distribution N (0,1). These p-values
can now be adjusted to achieve FWER control (3.6) in
the selection of the graph Ĝ(α) defined in (3.4).

The Bonferroni p-values

πBonf
ij = min

{(
p

2

)
πij ,1

}
, 1 ≤ i < j ≤ p,(3.9)

are the simplest such adjusted p-values. An easy, more
powerful adjustment is obtained by the step-down
method of Holm (1979). In this method the p-values
πij in (3.8) are ordered as π1↑ ≤ π2↑ ≤ · · · and the
ordered adjusted p-values are obtained as

π
Bonf,Step
a↑

= max
b=1,...,a

[
min

{((
p

2

)
− b + 1

)
πb↑,1

}]
,(3.10)

1 ≤ a ≤ (p
2

)
.

The adjusted p-value π
Bonf,Step
a↑ is then associated with

the hypothesis Hij that gave rise to the ath smallest
unadjusted p-value. Note that if the original p-values
in (3.8) were computed using the t-transform in Propo-
sition 1 instead of Fisher’s z-transform, then both these
p-value adjustments would provably achieve finite-
sample error control (3.5).

A more powerful procedure than Bonferroni is ob-
tained by applying Šidák’s inequality (Šidák, 1967) to



MULTIPLE TESTING AND GRAPHICAL MODEL SELECTION 439

the joint asymptotic normal distribution of the vector
of transformed sample partial correlation coefficients
zij ·C(i,j). The inequality yields the p-values

πSidak
ij = 1 − (1 − πij )

(p
2), 1 ≤ i < j ≤ p,(3.11)

where again πij is given by (3.8). The p-values πSidak
ij ,

which appear in Drton and Perlman [2004, (2.9)], can
in turn be improved in a step-down approach to

π
Sidak,Step
a↑ = max

b=1,...,a

[
1 − (

1 − πb↑
)((p

2)−b+1)]
,

(3.12)
1 ≤ a ≤ (p

2

)
.

As in the case of the Bonferroni-adjusted p-values, the
index a↑ refers to the ath smallest p-value and the or-
dered adjusted p-value π

Sidak,Step
a↑ is to be associated

with the hypothesis Hij that gave rise to the ath small-
est unadjusted p-value. Both sets of p-values, πSidak

ij

and π
Sidak,Step
ij , define a graph Ĝ(α) that satisfies (3.6).

3.3.2 Multiple testing procedures using the joint
distribution of the sample correlations. Westfall and
Young (1993) describe multiple testing methods that
can improve upon the marginal distribution-based pro-
cedures from Section 3.3.1 by exploiting possible de-
pendences among the test statistics used to test the indi-
vidual hypotheses. However, these methods cannot be
applied to testing of correlations, as the required condi-
tion known as “subset-pivotality” is not satisfied in this
context (Westfall and Young, 1993, page 43). A way
around this condition was found recently by Pollard
and van der Laan (2004), Dudoit, van der Laan and
Pollard (2004) and van der Laan, Dudoit and Pollard
(2004b), who describe how a consistent estimate of the
asymptotic joint multivariate normal distribution of the
test statistics can indeed be used for a valid p-value ad-
justment. We now detail this approach in our context.

For sample size n tending to infinity, our vector of
test statistics z = (zij ·C(i,j) | 1 ≤ i < j ≤ p) has a mul-
tivariate normal limiting distribution which can be de-
rived from that of r = (rij ·C(i,j) | 1 ≤ i < j ≤ p) using
Proposition 5. We obtain the normal approximations

r
·∼ Np(p−1)/2(ρ,N−1�N−t ) �⇒

(3.13)
z

·∼ Np(p−1)/2
(
ζ,N−1 Corr(�)N−t ),

where ρ = (ρij ·C(i,j) | 1 ≤ i < j ≤ p), ζ is the
component-wise z-transform of ρ, and N is the di-
agonal matrix with diagonal entries

√
nC(i,j) − 3. Re-

call that for undirected and bidirected graphs with
C(i, j) = V \ {i, j} and C(i, j) = ∅, respectively,

Proposition 3 yields the asymptotic covariance ma-
trix �, whereas for DAGs with C(i, j) = {1, . . . , j} \
{i, j} no general formula for the asymptotic covariance
matrix seems to be available.

The asymptotic covariance matrix � does involve
unknown quantities derived from the covariance ma-
trix � of our observed random vectors. Plugging in the
corresponding expression formed from the sample co-
variance matrix S, we obtain a consistent estimator �̂.
We can then determine the so-called max-T adjusted
p-values

πmax
ij = ProbN (0,N−1 Corr(�̂)N−t )(

max
1≤u<v≤p

|Zuv| ≥ |zij ·C(i,j)|
)
,(3.14)

1 ≤ i < j ≤ p.

These probabilities can be computed by Monte Carlo
simulation drawing the vector Z = (Zuv) from N (0,

N−1 Corr(�̂)N−t ). A step-down max-T procedure is
also available. It is based on ordering the zij ·C(i,j) as
|z1↓| ≥ |z2↓| ≥ · · · and yields the adjusted p-values

π
max,Step
a↑ = max

b=1,...,a
ProbN (0,N−1 Corr(�̂)N−t )

(
max

b=a,...,(p
2)

|Zb↓| ≥ |za↓|
)
,(3.15)

1 ≤ a ≤ (p
2

)
.

[Note that since the asymptotic marginal distributions
of the z-transformed partial correlations z(rij ·C(i,j))

are identical, all being standard normal, the min-P
adjustment is identical to the max-T adjustment; see
Dudoit, Shaffer and Boldrick, 2003.]

Both the single-step p-values πmax
ij and the less con-

servative step-down p-values π
max,Step
ij define a graph

Ĝ(α) for which the condition (3.6) for asymptotic con-
trol of the FWER holds (Pollard and van der Laan,
2004; Dudoit, van der Laan and 2004; van der Laan,
Dudoit and Pollard 2004b). In fact, it follows from the
general results in van der Laan, Dudoit and Pollard
(2004b) that the step-down p-values π

max,Step
ij yield a

graph Ĝ(α) satisfying

lim
n→∞ ProbG

(
Ĝ(α) � G

) = α.(3.16)

In other words, the asymptotic error control is not con-
servative but exact.

The simulations summarized in Figure 2 show that
the step-down max-T adjustment method based
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FIG. 2. Simulated family-wise error rates for false edge inclusion in undirected graph model selection. The multiple testing procedures
were set up to control the family-wise error rate at level α = 0.1 and 10,000 samples were drawn from a multivariate normal distribution for
p = 7 variables; sample size varied from n = 25 to n = 500. In the normal distribution, nine partial correlations were nonzero with values
in [0.2,0.55].

on (3.15) does indeed provide the most exact error con-
trol for false edge inclusion. However, the step-down
procedures based on marginal distributions may still
be useful if, for large number of variables p, the Monte
Carlo computation needed to compute the max-T ad-
justed p-values becomes too time-consuming.

3.4 Alternative Error Rates

In multiple testing-based graphical model selection,
controlling the FWER amounts to controlling the prob-
ability that a single one of the edges included in the se-
lected graph is incorrect. This is clearly a very stringent
requirement. Alternatively, other less demanding error
rates can be controlled, of which we now discuss the
three most popular ones; see Dudoit, van der Laan and
Pollard (2004), Romano and Wolf (2005) and van der
Laan, Dudoit and Pollard (2004a, 2004b) for recent
surveys of the relevant literature.

One relaxation consists of controlling the general-
ized family-wise error rate (GFWER), which is defined
with respect to a chosen nonnegative integer k. This
generalization is based on the probability of the event
that at most k of the true null hypotheses are incor-
rectly rejected. In our graphical model selection con-
text, if a multiple testing procedure is set up to con-
trol the k-GFWER at level α ∈ (0,1), and its adjusted

p-values are used to select a graph Ĝ(α), then it holds
that

ProbG

(
Ĝ(α) contains k + 1 or more

(3.17)
edges that are not present in G

) ≤ α.

For k = 0, (3.17) reduces to (3.5), that is, control of the
traditional FWER.

In some contexts, one may be willing to live with a
larger number of erroneous edge inclusion decisions if
the selected graph is less sparse. This can be achieved
by controlling the tail probability of the proportion of
false positives, also known as false discovery propor-
tion. Here a fraction λ ∈ [0,1) is chosen and the prob-
ability of the event that more than a proportion λ of
the rejected hypotheses are incorrectly rejected is to
be controlled. In the present context, control of the tail
probability of the proportion of false positives (TPPFP)
at level α allows us to select a graph Ĝ(α) with the
property that

ProbG(More than 100λ% of the edges
(3.18)

in Ĝ(α) are not present in G) ≤ α.

For λ = 0, (3.18) reduces to (3.5).
Of a somewhat different nature is the false discov-

ery rate (FDR), which is defined in terms of the expec-
tation of the proportion of false positives. Controlling
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the FDR at level α allows us to select a graph Ĝ(α)

such that the proportion of incorrect edges among all
the edges of Ĝ(α) is smaller than α in expectation,
that is,

EG

[
#edges incorrectly included in Ĝ(α)

#edges included in Ĝ(α)

]

(3.19)
≤ α.

A number of methods for control of GFWER and
TPPFP have been described in the literature and can
be applied for graphical model selection. Perhaps the
simplest methods are the augmentation methods of
van der Laan, Dudoit and Pollard (2004a). The idea
there is to first determine the hypotheses rejected in
FWER control and then reject additional hypotheses.
For k-GFWER control one simply rejects k additional
hypotheses from the most significant not already re-
jected ones. For λ-TPPFP control the augmentation
method proceeds similarly with the number of addi-
tionally rejected hypotheses determined from the pa-
rameter λ and the number of hypotheses already re-
jected in FWER control. While simple and asymptoti-
cally exact if used in conjunction with the asymptot-
ically exact max-T step-down procedure for FWER
control [cf. (3.16)], the augmentation methods may
sometimes be outperformed by methods that address
the respective generalized error rate directly and not
via FWER control; see Romano and Wolf (2005), who
survey such methods that can be designed to employ
either the joint distribution of the test statistics or only
their marginals.

For control of the FDR, the original step-up method
of Benjamini and Hochberg (1995) is not generally
applicable in our context as it requires the test sta-
tistics to exhibit a form of dependence termed “posi-
tive regression dependency” (Benjamini and Yekutieli,
2001). A generally valid method is obtained by intro-
ducing a log-term as penalty in the step-up method
(Benjamini and Yekutieli, 2001). Alternatively, van der
Laan, Dudoit and Pollard (2004a) proposed a method
for FDR control that is derived from TPPFP control.

4. APPLICATION TO GENE EXPRESSION DATA

In this section, we demonstrate multiple testing-
based graphical model selection using data from n =
118 microarray experiments collected and analyzed
by Wille et al. (2004); see also Wille and Bühlmann
(2006). The experiments measure gene expression in
Arabidopsis thaliana, and for our purposes we focus

on p = 13 genes from the initial part of the MEP path-
way, which is one of the two pathways that received
special attention in Wille et al. (2004). We select graph-
ical models by multiple testing in order to discover the
key features of the correlation structure among the con-
sidered gene expression measurements. Revealing such
key features is important if the goal of the analysis is
to generate scientific hypotheses about the interplay
of genes in a gene regulatory network. First, in Sec-
tion 4.1, we will select different types of graphs with
the goal of emphasizing how different graphs capture
different types of dependence. Then, in Section 4.2, we
give a simple example of the use of alternative error
rates.

4.1 Selecting Different Graphs

In order to select an undirected graph we apply a
multiple testing procedure to the testing problem (3.3)
with C(i, j) = V \ {i, j}. Applying the step-down
max-T procedure from Section 3.3.2 to control the
classical FWER at simultaneous significance level
α = 0.15, we select the undirected graph depicted in
Figure 3, which has 16 edges. Control of the FWER
allows us to state that we are 85% confident that all
the edges in this graph are also present in the true
graph. In this example, the step-down max-T proce-
dure is indeed the most powerful of the procedures de-
scribed in Sections 3.3.1 and 3.3.2. For example, if
i = DXPS1 and j = GPPS, then π

max,Step
ij = 0.066 but

πBonf
ij = 0.099.
The undirected graph in Figure 3 shows some of the

features of larger graphs shown in Wille et al. (2004),
but there are also differences. Note, however, that the
graphical modeling approach in Wille et al. (2004) is
different from any of the approaches described here
in that only conditional independences involving three
variables are considered.

Next we select a bidirected graph by testing (3.3)
with C(i, j) = ∅. Using again the step-down max-T
procedure with simultaneous significance level α =
0.15, we select the bidirected graph in Figure 3. The
selected bidirected graph features 30 edges. As for
the selection of the undirected graph, the step-down
max-T procedure provides the most powerful method
for FWER control. Use of any of the other multiple
testing procedures from Sections 3.3.1 and 3.3.2 results
in the selection of a graph with 28 or 29 edges. The two
graphs in Figure 3 have some common edges but many
adjacencies are different, which is a reflection of the
fact that large correlations are not necessarily associ-
ated with large partial correlations and vice versa. The
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FIG. 3. An undirected and a bidirected graph selected by controlling FWER at α = 0.1 with the step-down max-T procedure.

two correlation measures quantify very different types
of dependence.

The vertical placement of the vertices in the graphs
in Figure 3 reflects a partial order among the con-
sidered genes that is based on the genes’ role in
the metabolic network (Wille et al., 2004, Figure 2).
In order to illustrate selection of a DAG, we refine
this partial order to a total order in which DXPS1 <

DXPS2 < DXPS3 < DXR < · · · < IPPI1 < GPPS <

PPDS1 < PPDS2. We then test the hypotheses (3.3)
with C(i, j) = {1, . . . , j} \ {i, j}, where the indices i

and j refer to the rank of a gene in the total order.
Since the asymptotic covariance matrix of the sample
partial correlations used to test these hypotheses is un-
known, we use the step-down p-values π

Sidak,Step
ij to

control FWER at level α = 0.15. (Note, however, that
bootstrap-based methods can be used to estimate the
unknown joint distribution of the test statistics non-
parametrically; compare Dudoit et al., 2004; van der
Laan, Dudoit and Pollard, 2004a, 2004b; Romano and
Wolf, 2005.) The selected DAG, depicted on the left in
Figure 4, has 19 edges. Among the three graphs we
selected, this DAG best reflects the structure of the
metabolic network formed by the considered genes;
recall, however, that we used the structure of the
metabolic network to form a well-numbering of the
variables. We remark that a strict causal interpreta-
tion of this DAG (compare Section 2.3) would rest

on the assumption that there are no hidden/unobserved
causes.

4.2 Alternative Error Rates

In order to convey how more liberal error rates al-
low for the inclusion of additional edges, we consider
the selection of DAGs under control of GFWER and
TPPFP. Since we have already computed p-values for
FWER control, the augmentation methods of van der
Laan et al. (2004a) can be readily applied.

For control of the k-GFWER, we simply determine
the k smallest of the FWER p-values that are associ-
ated with hypotheses not rejected by the FWER con-
trolling procedure. We then reject the k hypotheses
corresponding to these p-values. Choosing k = 5 and
keeping the simultaneous significance level α = 0.15
used above, we select the DAG with 24 edges shown
on the right-hand side in Figure 4. Due to the GFWER
control we can state that we are 85% confident that at
most five edges in this graph are not present in the true
underlying graph. (We remark that a simple, more di-
rect step-down approach to GFWER control described
in Lehmann and Romano, 2005, Theorem 2.2, leads to
the same DAG.)

TPPFP control by augmentation proceeds again by
rejecting additional hypotheses not yet rejected by the
procedure for FWER control. Keeping with α = 0.15
and choosing the proportion λ = 0.22, the λ-TPPFP
control by augmentation again yields the graph on the
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FIG. 4. Two DAG’s selected by the step-down Sidak procedure. The graph to the left is obtained by controlling FWER at level α = 0.1, the
one to the right by controlling k-GFWER with k = 5 at α = 0.1.

right-hand side in Figure 4. Therefore, we are 85% con-
fident that at most 22% of the edges of this graph are
not present in the true underlying DAG.

5. INCORPORATING PRIOR INFORMATION ABOUT
THE PRESENCE OR ABSENCE OF EDGES

Suppose it is known that in the true graph G =
(V ,E) certain edges E0 are absent, E0 ∩ E = ∅, and
certain other edges E1 are present, E1 ⊆ E. Model se-
lection then reduces to the problem of determining the
absence or presence of the uncertain edges Eu, that
is, the complement of E0 ∪ E1 in the set of all pos-
sible edges. Let Gup = (V ,E1 ∪̇Eu) denote the upper
graph, which contains all edges known to be present
as well as all uncertain edges. In the context of DAGs,
Consonni and Leucari (2001) call the upper graph the
“full graph.” Similarly, let Glow = (V ,E1) denote the
lower graph, which includes only the edges that are
known to be present. Thus the true graph G satisfies
Glow ⊆ G ⊆ Gup, where Glow and Gup are known. If
all edges are uncertain, then the upper and lower graph
are the complete and the empty graph, respectively.

The multiple testing approach presented in Sec-
tion 3 extends readily to the present case by reduc-
ing the p(p − 1)/2 simultaneous testing problems
from (3.3) to the q = |Eu| testing problems corre-
sponding to the uncertain edges only. Since q ≤ p(p −
1)/2, we have fewer testing problems to consider and

gain power in simultaneous testing. Furthermore, since
G ⊆ Gup, the conditional independences holding in
Gup also hold in G, which may allow for additional
power gain because, as we explain next, the hypothesis
Hij :ρij ·C(i,j) = 0 may be reformulated equivalently
using a smaller conditioning set Cup(i, j) ⊆ C(i, j).
By working with a smaller conditioning set, the effec-
tive sample size nC(i,j) = n − |C(i, j)| is increased; in
this context see also Wille and Bühlmann (2006). In
Sections 5.1 and 5.2, we detail this reasoning for undi-
rected graphs and DAGs, respectively. For bidirected
graphs, the conditioning set occurring in the testing
problem (3.3) is already as small as possible as it is
the empty set C(i, j) = ∅.

5.1 Decreasing the Size of the Conditioning Set in
Undirected Graphs

The following graphical condition is the key to find-
ing a smaller conditioning set Cup(i, j) ⊆ C(i, j).

LEMMA 6. Suppose the observed random vector Y

is distributed according to a multivariate normal distri-
bution that is pairwise faithful to an undirected graph
G = (V ,E). Let i, j ∈ V be two vertices and define
Gij to be the subgraph of G obtained by removing the
edge i — j , which may or may not be present in G. Let
C ⊆ V \{i, j} be a subset that separates i and j in Gij .
Then,

Yi ⊥⊥ Yj | YV \{i,j} ⇐⇒ Yi ⊥⊥ Yj | YC.
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PROOF. (�⇒): By the faithfulness assumption, G

does not contain the edge i — j , so G = Gij . Thus
the global undirected Markov property for G (see Sec-
tion 2.1) implies Yi ⊥⊥ Yj | YC .

(⇐�): Let nb(j) be the set of vertices in V \ ({i, j}∪
C) that, in the graph Gij , are connected to j by an
edge. In G, the set C ∪ {j} separates i and nb(j) and
thus we obtain via the global Markov property for G

that

Yi ⊥⊥ Ynb(j) | YC∪{j}.(5.1)

Applying standard properties of conditional indepen-
dence (Lauritzen, 1996, Section 3), we obtain from
(5.1) and the assumed Yi ⊥⊥ Yj | YC that

Yi ⊥⊥ Yj | YC∪nb(j).(5.2)

Moreover, in the graph G, the set C ∪ nb(j) ∪ {i} sep-
arates j from the remaining vertices V \ ({i, j} ∪ C ∪
nb(j)). Hence, by the global Markov property for G,

Yj ⊥⊥ YV \({i,j}∪C∪nb(j)) | YC∪nb(j)∪{i},(5.3)

which in conjunction with (5.2) implies that Yi ⊥⊥ Yj |
V \ {i, j}. (Note that this proof could be reduced
to a single application of the global Markov prop-
erty if global faithfulness was assumed about the
data-generating distribution. Under global faithfulness,
Yi ⊥⊥ Yj | YC implies G = Gij .) �

Consider now testing an uncertain edge i — j in Eu

by testing the hypothesis Hij :ρij ·V \{i,j} = 0. Remove

the edge i — j from Gup to obtain the graph G
ij
up.

In this known graph G
ij
up we can determine a subset

Cup(i, j) ⊆ V \ {i, j} that separates i and j . (Choos-
ing this subset to be of minimal cardinality yields the
largest gain in effective sample size.) We know a pri-
ori that the true data-generating distribution is pairwise
faithful to an undirected graph G which is a subgraph
of the known graph Gup. Since graphical separation in
Gup implies graphical separation in the subgraph G,
we can deduce from Lemma 6 that

ρij ·V \{i,j} = 0 ⇐⇒ ρij ·Cup(i,j) = 0.(5.4)

As an example, consider as an upper graph the undi-
rected graph in Figure 5. For testing the edge 3 — 6,
which is drawn dotted, we can test H36 :ρ36·12457 = 0
but also simply H36 :ρ36·45 = 0 or H36 :ρ36·57 = 0.

Based on (5.4), the model selection testing problem
in (3.3) can be replaced by the problem of testing the q

hypotheses

Hij :ρij ·Cup(i,j) = 0 vs. Kij :ρij ·Cup(i,j) �= 0,
(5.5)

(i, j) ∈ Eu.

FIG. 5. Testing the edge 3 — 6 in an undirected upper graph.

These hypotheses can again be tested using the cor-
responding sample partial correlations rij ·Cup(i,j), or
rather the sample z-transforms zij ·Cup(i,j). Proposi-
tion 5 still holds for the vector (zij ·Cup(i,j) | (i, j) ∈
Eu). Instead, one could also work with more effi-
cient maximum likelihood estimates computed for the
model N(Gup). It should be noted, however, that the z-
transform need no longer be variance-stabilizing when
applied to such maximum likelihood estimates of par-
tial correlations (Roverato, 1996).

5.2 Decreasing the Size of the Conditioning Set
in DAGs

In a DAG with well-numbered vertex set, the condi-
tioning set C(i, j) = {1, . . . , j} \ {i, j} may be reduced
to any subset Cup(i, j) that d-separates i and j in the

graph G
ij
up, defined to be the upper DAG Gup with the

edge i −→ j removed. The validity of this replace-
ment can be established using Lemma 7. We note that
a simple choice for such a set Cup(i, j) are the parents

of j in G
ij
up, that is, the set of vertices k that are such

that k −→ j in G
ij
up. However, this need not be the d-

separating set in G
ij
up of smallest cardinality.

Consider, for example, the DAG in Figure 6 as
an upper DAG. For testing the edge 1 — 5, which
is drawn dotted, we can use the parents of 5 to test
H15 :ρ15·34 = 0 but alternatively we can test H15 :
ρ15·2 = 0.

LEMMA 7. Suppose the observed random vector Y

is distributed according to a multivariate normal dis-
tribution that is pairwise faithful to a DAG G = (V ,E)

with well-numbered vertex set. For any vertices i, j ∈

FIG. 6. Testing the edge 1 −→ 5 in a DAG.
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V define Gij to be the subgraph of G obtained by re-
moving the edge i −→ j , which may or may not be
present in G. Let C ⊆ {1, . . . , j} \ {i, j} be a subset
that d-separates i and j in Gij . Then,

Yi ⊥⊥ Yj | Y{1,...,j}\{i,j}
(5.6)

⇐⇒ Yi ⊥⊥ Yj | YC.

PROOF. (�⇒): By the faithfulness assumption, G

does not contain the edge i −→ j , so G = Gij . Thus
the global directed Markov property for G (see Sec-
tion 2.3) implies Yi ⊥⊥ Yj | YC .

(⇐�): Let G̃ = (Ṽ , Ẽ) be the subgraph of G in-
duced by {1, . . . , j} and set Ỹ = Y{1,...,j }. Then Ṽ is
well-numbered for G̃ and Ỹ is pairwise faithful to G̃.
Because C d-separates i and j in G̃ij if and only if C

d-separates i and j in Gij and because (5.6) involves
only Ỹ , we may assume for the proof that G = G̃ and
Y = Ỹ . Note that j is now a terminal vertex in G; that
is, j has no children in G.

Let pa(j) be the set of parents of j in Gij . We claim
that pa(j) \ C and i are d-separated in G given C. For,
any path γ between i and some k ∈ pa(j) \ C in G

either includes j as a nonendpoint or does not. In the
first case, since j is terminal in G it must be a col-
lider in γ with no directed path to any c̄ ∈ C, so γ is
blocked relative to C in G. In the second case, con-
sider the extension of the path γ given by appending
the edge k −→ j . By the assumed d-separation of i

and j in Gij given C and the fact that k /∈ C is a non-
collider in the extended path, the path γ must again be
blocked relative to C in G. This establishes the claim.

Hence, by the global directed Markov property
for G,

Yi ⊥⊥ Ypa(j)\C | YC.(5.7)

Because Y has a multivariate normal distribution, it fol-
lows from (5.7) and the assumed independence Yi ⊥⊥
Yj | YC that Yi ⊥⊥ (Yj , Ypa(j)\C) | YC , hence

Yi ⊥⊥ Yj | YC∪pa(j).(5.8)

Since j is terminal in G, the set C ∪ pa(j) ∪ {i}
d-separates j from the remaining vertices {1, . . . , j} \
({i, j} ∪ C ∪ pa(j)) in G. Therefore, by the global
Markov property for G,

Yj ⊥⊥ Y{1,...,j}\({i,j}∪C∪pa(j)) | YC∪pa(j)∪{i},(5.9)

which in conjunction with (5.8) implies that Yi ⊥⊥ Yj |
Y{1,...,j}\{i,j}. (This proof could be reduced to a sin-
gle application of the global Markov property if global
faithfulness were assumed for Y .) �

REMARK 8. The proof of implication (⇐�) in
Lemma 6 holds for any distribution, not necessarily
Gaussian, that obeys the global Markov property of the
graph G. This is in contrast to the proof of implication
(⇐�) in Lemma 7, where we have employed a special
property of the multivariate normal distribution when
deducing (5.8). This special property, namely the fact
that Yi ⊥⊥ Yj and Yi ⊥⊥ Yk implies Yi ⊥⊥ (Yj , Yk), is
crucial. For example, it is easy to choose a joint dis-
tribution for a binary random vector (Y1, Y2, Y3)

t such
that Y1 ⊥⊥ Y2 and Y1 ⊥⊥ Y3 but Y1 �⊥⊥ (Y2, Y3). This
distribution is then pairwise but not globally faithful to
the DAG 1 −→ 3 ←− 2, and since Y1 �⊥⊥ Y3 | Y2, it
yields a contradiction to the claim of Lemma 7 for bi-
nary random variables. A way around an assumption
of global faithfulness is to apply Lemma 6 to an undi-
rected graph Gm

up such that N(Gup) ⊆ N(Gm
up). Such a

graph Gm
up can be obtained via the moralization proce-

dure (Lauritzen, 1996).

6. DISCUSSION

Gaussian graphical models are determined by pair-
wise (conditional) independence restrictions, which are
in correspondence to the edges that are absent from the
underlying graph. These restrictions can be converted
into a set of hypotheses that can be tested in order to se-
lect a model, or equivalently, a graph. If the arising is-
sue of multiple testing is appropriately addressed, then
the selection of a graph can be performed while con-
trolling error rates for incorrect edge inclusion. As re-
viewed in Section 3, the literature provides a number
of methods for such error rate control.

In graphical model selection, controlling incorrect
edge inclusion allows us to detect the most important
features of multivariate dependence patterns. However,
the graph encoding these features need not necessarily
yield a model that fits the data well, and if the choice
of such a model is the primary focus, then other model
selection methods (e.g., the score-based and Bayesian
methods discussed in Section 1) may be preferable.

The number of edges in the graph to which the true
data-generating distribution is pairwise faithful equals
the number of false null hypotheses Hij in (3.3). It
would be interesting to adapt existing methods for
estimating or bounding this latter number (see, e.g.,
Meinshausen and Bühlmann, 2005) to make them ap-
plicable in graphical model selection. This would allow
us to assess the sparseness of the underlying graph by
estimating or bounding the number of its edges. Such
knowledge could also be used to design more power-
ful multiple testing-based methods of graph selection
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in an empirical Bayes framework (see, e.g., Efron et
al., 2001).

In order to associate unique null hypotheses with
acyclic directed graphs (DAGs), we restricted our-
selves to the situation where a well-numbering of the
variables is known a priori. Requiring the knowledge
of such a total order is clearly very restrictive. More
commonly, time of observation of variables and other
considerations provide a priori knowledge in form of
a partial order, which allows us to identify ordered
blocks of variables. Such blocking strategies appear in
many case studies (Caputo, Heinicke and Pigeot, 1999;
Caputo et al., 2003; Didelez et al., 2002; Mohamed, Di-
amond and Smith, 1998); compare also Wermuth and
Lauritzen (1990). In our illustration of DAG selection
in Section 4 the structure of a metabolic pathway yields
a partial order among genes that we extended rather
arbitrarily to a total order. Hence, a more appropriate
analysis might proceed by using the ordered blocks of
variables and a generalization of the multiple testing-
based model selection we described in order to select
a Gaussian chain graph model; see Drton and Perlman
(2007) for details on this generalization.

For the class of ancestral graphs of Richardson and
Spirtes (2002), multiple testing-based model selection
as presented here is less natural. The reason is that
in this class there is no distinguished complete graph
whose edges could be tested for absence/presence by
testing associated conditional independences. If a par-
ticular complete ancestral graph is chosen, then a sub-
graph could be selected similarly as for the other mod-
els. The pairwise Markov property (Richardson and
Spirtes, 2002, page 979) would yield the conditional
independences that would have to be tested. However,
this procedure could not assure that the selected ances-
tral graph is maximal (Richardson and Spirtes, 2002,
page 978). Gaussian models associated with nonmaxi-
mal ancestral graphs cannot in general be specified in
terms of conditional independence.

Finally, many of the ideas presented here in the
framework of Gaussian models carry over to the case
of discrete variables or even the mixed case of discrete
and continuous variables. Background on the distribu-
tional assumptions in the mixed case can be found, for
example, in Lauritzen (1996). However, when adapting
the methods reviewed here, care must be taken, as con-
ditional independence in the multivariate normal distri-
bution exhibits special properties not shared by other
distributional settings. In particular, moving from con-
ditional independence statements between pairs of ran-
dom variables to ones involving sets of random vari-

ables may be valid in a multivariate normal distribution
but not in other distributions; compare Remark 8.
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