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0. ABSTRACT

This paper develops a general asymptotic theory of regression for pro-
cesses which are integrated of order one. The theory includes vector auto-
regressions and multivariate regressions amongst integrated processes that
are driven by innovation sequences which allow for a wide class of weak
dependence and heterogeneity. The models studied cover cointegrated systenms
such as those advanced recently in [15] and quite general linear simﬁltan-
eous equations systems with contemporaneous regressor-error correlation
and serially correlated errors. Problems of statistical testing in vector
autoregressions and multivariate regressions with integrated processes are
also studied. It is shown that the asvmptotic theory for conventional tests
involves major departures from classical theory and raises new and impor-
tant issues of the presence of nuisance parameters in the limiting distri-

bution theory.
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1. INTRODUCTION

Unlike many of the time series encountered in the natural sciences,
economic time series frequently exhibit characteristics that are widely
believed to be intrinsically nonstationary. For example, real macroecono-
mic variables such as output and consumption typically display a strong
secular or growth component as well as cyclical behavior; and many
financial series like common stock prices behave in general as if they
had nc fixed mean. Recognizing these typical characteristics of economic
time series, econometricians have devoted attention to the problem of
describing and medeling nonstationarity. In the 1960's important contri-
butions in the area were made by Granger, Hatanaka and their associates
in [ 3], [12], [13], [20]. Later, following the influential work of Box
and Jenkins [ 4], attention shifted to the role of integrated processes
in modeling economic time series. While undoubtedly restricting the class
of nonstationary models, integrated processes of the ARIMA type have been
found to produce highly satisfactory representations of many observed time
series in economics. Quite recently, Nelson and Ploéser [29] have published
a detailed empirical study of historical economic time series for the USA.
These authors provide some convincing evidence that macroeconomic time
series normally thought to be stationary about a time trend are better de-
scribed as integrated processes with drift.

Amongst the latest research in this field have been the studies of
cointegration by Granger and his associates in [I5]. Two time series are
said to be cointegrated if some linear combination of the series has a
lower order of integration than the individual series. These authors
argue that the notion of (steady state) equilibrium in economics implies

the existence of such relationships. Thus, a classical economist's view



of the interaction of money growth and price movements would require these
series to move closely together over time even if the series themselves
are integrated and are individually well described by a model such as a
random walk. Empirical support is found in [15] for the cointegration of
several macroeconomic time series,

Against this background of empirically wotivated research there is
a growing need for a general theory of statistical inference for time series
regression with integrated processes. A step towards the achievement of
this goal has been taken by the first author in recent work [33, 34, 35].
The central idea of [33] is to use a theory of weak convergence in
function spaces that allows us to work with integrated processes that are
driven by quite general weakly dependent and possibly heterogeneously dis-
tributed innovations. The theory developed in [33] is univariate;
[34]) deals with bivariate regressions; and [35] develops a general theory

of asymptotic expansions for vector autoregressions with integrated processes,

The present paper seeks to provide a formal analytical framework for
research in this field by the development of a theory of multiple time
series regression with integrated processes. Our analysis derives from
the use of a multivariate functional central limit theorem for sums of
dependent random variables. This theorem opens the way to an asymptotic
theory for vector autoregressions and more general multivariate regressions
that permit a wide variety of error processes. In this sense the paper
builds on the methods and the results of [33], [34] and [35].

Our organization of the paper is as follows., The multivariate func-
tional lihit theorems that we use are stated and discussed in Section 2,
Proofs of these and other theorems of the paper are given in the Mathematical
Appendix. Section 3 studies the statistical properties of vector autore-

gressions with processes that are integrated of order one. Our analysis



includes the asymptotic distribution of the usual error covariance matrix
estimator and we alsc examine the asymptotic properties of the conventional
F test for unit roots. Section 4 deals with more general multivariate
regressions amongst integrated processes and develops an asymptotic theory
for such regressions. This theory includes the estimation of cointegrated
systems as a special case and should therefore be useful in such applica-
tions. Section 5 examines problems of hypothesis testing in multiple
regressions with integrated processes. Here the asymptotic theory that we
develop displays striking departures from the classical theory and, in
particular, raises new and important problems of the presence of nuisance
parameter matrices in the limiting distribution theory. Section 6 demonstrates
extensions of this theory to the case of fitted drift vectors. Some conclu-
sions are given in Section 7., Proofs and additional technical material are

presented in the Mathematical Appendix to the paper.

2. INVARIANCE PRINCIPLE FOR MULTIPLE TIME SERIES

Qur starting point will be a multivariate generalization of the func-
tional central limit theorem or invariance principle due to McLeish [26]
that is used in Phillips [33].

We consider a sequence of n x1 randeom vectors {ut} defined on a

probability space (2,B,P} such that

(1)  E(w) =0 vt.
We define the vector partial sums:

(2) S, = Iu,



and the vector functionals

1 =172 1 =172

® B = S T E T S0

izl Pl

T T
and

1 -1/2
(4) Xp(1) = Wil z Sy
where "}% iga positive definite matrix defined below.
Note that

(5) X;(t} € D{0,1]" = D[0,1] x ... x D[0,1]

the product metric space of all real valued vector functions on [0,1] that
are right continuous at each element of [0,1] and possess finite left
limits,

We endow each D[0,1] with the Skorohod metric, denoted by d , whose
definition and properties may be found in the Mathematical Appendix. This
metric renders D[0,1] a complete, separable metric space. Separability
does not occur when the uniform metric is employed. As will be apparent
in the Mathematical Appendix, separability of the underlying coordinate
spaces is useful when working with product spaces.

For the product topology D[O,l]n we therefore choose the metric
(6) d'(x,y) = sup d(xi(t), yi(t)) , d = Skorchod metric.

1
This choice of product metric implies, given separability of Df0,1] , that

the o-algebra for the producf space is equivalent to the o-algebra generated



by the measurable rectangles defined on the underlying coordinate spaces.
Finally, we define the following measures of temporal dependénce for

the {ut} sequence. For c-algebras F and G, define

i

(7) ®(F,G) sup [P(G[F) - P(O)|

{FEF,GEG,P(F)>0}

1]

a(F,G) sup |P(F,G) - P(F)PG)] .

{FEF,GEG}

We further define FZ as the.o-algebra generated by {ua, ...,ub}

and Rg as the g-algebra generated by {Sb 'Sa-l’ Va < b} . Temporal de-

pendence for the {ut} sequence may thus be defined by the two measures:

(8) o = sup sup @(F), R} )
& N j>N+M RN'PM

= N oJ
on = SUup  sup a(Fl, RN+M)

N j>N+M

these measures are weaker than uniform or strong mixing requirements placed

upon Fz alone, e and o generalize the univariate measures defined

m

by McLeish [26}, Following [33] we say that ¢m (or am) is of size -p if
¢m {or %) =0 mP™%) for some € > o as m + o,

Our multivariate invariance principle may now be stated.

THEOREM 2.1. If {ut}T 18 a sequence of random n x1 vectors satisfying
(1) and

(a) E(T'ISTS%) + L  a positive definite matrix;

(b) {uit} is uniformly integrable for all i =1, ,,,, n;

(c) sup (E|uit]8) < w for some 2 <B<w» agnd all i =1,
t

-1 ] :
(d) E(T (SR+T‘-sk)(Sk+T -Sk)') +I asmin (k,T) t = ;
(e) eithenr @ i8 of size -B/(2B-2)or R > 2 and'am is of size -B/(B-2);

then XT(t) = W(t) ags t+= .



The notation = in the above theorem signifies weak convergence of
the associated probability measures [2]. W(t) is a multivariate Wiener
process. Each element of W(t) is a univariate Wiener process and the
elements of W(t) are independent. Finally, W{t) € C[O,l]n almost surely,
where C[0,1] is the space of continuous functions defined on [0,1] . The
proof of Theorem 2.1 may be found in the Mathematical Appendix.

The convergence properties of the theorem permit the {ut} process
to possess a high degree of temporal dependence and moderate heteroskedas-
ticity. As will be clear in Sections 3 and 4 below, the multivariate
invariance principle will permit the derivation of regression asymptotics
for a wide class of error processes.,

When {ut} is statiomary, the requirements of the theorem may be re-

laxed. We thus have:

THEOREM 2.2. If {ut} 18 a weakly stationary sequence of random mn x1
veators sdtisfying (1) and

(a} Elui1|3 <w for some 2 <B <o
1-1/8

<o op B >2 and L. u1-2/8

(b) either Zn=1w 1=1%n

< oo

then
(9) L= lim E(T'ISTS,})
and 1f I <8 positive definite, then XT(t} = W(t) ag T+t =,

This theorem generalized the stationary version of the McLeish invar-
iance principle. The method of proof mirrors the proof of Theorem 2,1 and
is therefore not reported,.

The conditions of Theorem 2.2 are different from those of Theorem 2.1

in two respects. First, the convergence of E(T'ISTS is a conclusion

T)



and not an assumption of the theorem. The cost of eliminating this as-
sumption is a tightening of the mixing assumption (b). If mixing assump-
tion (e) in Theorem 2.1 were employed, and (9) added as an assumption, then
the two theorems would be identical as the uniform integrability assumption
(a) of Theorem 2,1 is automatically fulfilled by the assumption of station-

arity and the stated moment conditiom.

3. VECTQR AUTOREGRESSIONS WITH INTEGRATED PROCESSES

Let {yt}? be a multiple (nx1) time series generated in discrete

time according to:
{10a) Yy = Ayt_1 tu o t= 1, 2,

(10b) A=T,

where {ut}? satisfies the requirements of either Theorem 2.1 or 2.2 in
the previous section. To complete the specification of (10a} we add either

of the commonly proposed initial conditions {cf, [33]):

{1la) Yo = © , @ constant; or

{11b) Yo random with a certain specified distribution.

Note that (10) allows for quite general vector ARMA specifications such that

(12) (l-L)A(L)yt B(L)Vt

where A(L) and B(L) are finite order matrix polynomials in the lag oper-
ator L . We need only require A(L) to be stable and then

-1 . .
u, = A(L) B(L)vt will satisfy the weak dependence and heterogeneity assump-



tions of Theorem 2.1 under very general conditions on the innovation sequence
{vt} . For example, if {Vt} is an i.i.d. Gaussian sequence, then the
autocorrelation sequence of {ut} decays exponentially. Since this latter
sequence bounds the strong mixing coefficient numbers [21],

the mixing decay rate conditions of Theorem 2.1 are clearly satisfied.

For nonGaussian sequences, similar results hold provided the density of

Ve is absolutely continuous | 5].1

The following lemma is useful in the derivation of our main results.

LEMMA 3.1. If {ut}T satisfies the conditions of Theorem 2.1 and {yt}T
ig generated by (10) then:

(@) Ty, =i at

-2.T 1/2

1/2
®) T Ty = 2 Al once aet/

1/2

(@ Ty, -NG, D = 22Ul e - s aerguce) racyet/?

(@ Trly, jul =t Aaw et? o)
where
(13) r, = lim Tl2E(uu)
= 1i -1 1
(14) I = lim,  E(T7'S.SY)

and W(t) <& a vector Wiemer process on C[O,l]rl . Moreover, (a}-(b) con-

tinue to hold whether the initial conditions are given by (1lla) or (11b).

This Lemma generalizes to vector processes the asymptotic theory for

sample moments of integrated processes given earlier in [33] and [34].

1 . .
The results in [ 5] demonstrate that for an error sequence with absolutely
continuous densities, stable autoregressive transformations of the sequence

will be strong mixing, However, the order of the strong mixing coefficient
cannot, in general, be determined.



Its results enable us to develop a simple asymptotic theory for vector
autoregressions, Consider, in particular, the matrix of regression coeffi-

cients

-1
(15) A* = Y'Y-I(Y:IY-I) HEER A [Yl, -'-:YT] > Y:]_ = [yl’ --"YT_I]
from a first order autoregression of Ye OR Yo g - The associated error

covariance matrix estimator is:

-1 -1
* = 1 - v = 1
(16) ¥ = TTYI(I-Py )Y ;P Y_ (Y 7Y

-1 -1 -1
Our next theorems provide the asymptotic distribution theory for these least

squares regression estimates.

THEOREM 3.2. If {ut}T satisfies the conditions of either Theorem 2.1 or

2.2 and if {yt}? 18 generated by (10) then as T 4+ = :
-1

3

(a) T(A* - 1) -%{EI/ZW(I)W(I)'EI/Z-Eu}{EI/ZIéW(t)W(t)'thl/z}
(b} A* ; A

*
(¢) ; zu .

2 2
THEOREM 3.3, Let v, = (uit -E(uit))

tions of Theorem 2,2 then as T 4 = Tl/zvec(z* -Equn'N(O,V) where

ol © I {vt}l satisfies the condi-

an Vo= Py o{¥ - (vec I ) (vec I )')Py ;

= By ' - = .
(18) ‘i»'k h{'utut+k ®utu1':+k) ; k 0,1, 2, ... ;
(19) P_=D(D'D) Ip* ;
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and D ie the n° xn(n+l)/2 duplication matrix for which vec S = Ds
for any symmetric matrix S with s denoting the vector of ite nonredun-

dant elements [27].

Theorem 3.2 generalizes Theorems 3.1 and 3.2 of [33] to vector pro-
cesses which are integrated of order one. In contrast to stable vector
autoregressions (in which the latent roots of A in (10) have modulus
less than unity), Theorem 3.2 shows that simple least squares regression
yields consistent estimates even in the presence of substantial serial
correlation. Moreover, the asymptotic distribution of the least squares
regression coefficient matrix has the same general form for a wide variety
of different error processes. These general results certainly permit
serious misspecifications in the vector autoregressive (VAR) framework that
has recently become so popular in empirical econometric work [8, 24].

The latter work proceeds under the assumption of white noise innovation
sequences and makes use of conventional asymptotic theory based on the
original theory of Mann and Wald [28], This assumption of conventional
theory proves to be inadequate even if the underlying system is vector ARMA
rather than VAR; and the asymptotic theory breaks down due to the result-
ing misspecification as well as the nonstationarity of the series. By
contrast, Theorem 3.2 allows for nonstationarity in the underlying processes,
a quite general weak dependence in the errors that certainly admits under-
lying vector ARMA structures and, finally, heterogeneous error variances
that permit moderate heteroskedasticity. Thus, Theorem 3.2 is an important
first step in the development of a robust asymptotic theory for nonstation-
ary VAR's,

Theorem 3.3 provides an associated asymptotic theory for the error

covariance matrix estimator E* . Unlike the regression coefficient matrix



11

A* , the asymptotic distribution of I* is normal with a covariance matrix
that depends on the joint cumulant sequence of the 4th order of the innova-
tion process {ut} . The limiting normal distribution is explained by the
observation that, since A* 3 1 , the residuals from this regression are
asymptotically stationary and, in effect, provide consistent estimates of
the innovation process. Conventional normal asymptotics are therefore to

be expected for the sample moments of such a sequence.

It is of some interest to consider test statistics based on the matrix

of regression coefficients A* , Of primary interest will be the hypothesis

(20) H, : A=1,

We shall first examine the distribution of the Wald statistic for testing

HO :

1

(21} F=tr[(A*-D)'z* " (A*-DY!Y ] .

THEOREM 3.4. If {yt}i ig generated by (10) and if {ut}i satisfies the

conditions of either Theorem 2.1 or 2.2 thenas T 4+ = :

(22) F = (1/4)tr{[W(1)W(l)' -gV/3y 512 1/2z;121/2[W(1)(1)' ‘E-l/Zzuz-l/Z]

°[féW(tJW(t)'dt]-1} .

Note that when n =1 (22) reduces to

2
(1/4) (W(1) %02 - a3

221

(23 F = 3
g GUIOW(t) dt
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which is the square of the result established in [33] for the t ratio
statistic in the univariate regression,
We also note that when I = Zu » as in the case of a white noise inno-

vation sequence {ut}T » (22} becomes
1 -1
(24) F = (1/4)tr{[W(l)W(1)' B UELICL TGO -I][fOW(t)W(t)'dt] }

generalizing the tests of Dickey and Fuller [ 7] and Evans and Savin [10].
When I # I, ve need to construct consistent estimates of these matrices,

1.T

Since T “rju_u! - i, @s.as T+ » we have the simple estimator

1'tt
-1.T
(25) Su T T Ly e =Y ) e mvye !

which is consistent for Zu under the null hypothesis (20),
. s s -1
Consistent estimation of I = 11mT4w E(T STS%) proceeds along the

lines developed in [32] for the univariate case. We define

_ -1/2
(26) ZT = var(T ST)
-1 T
R 1 -1 ' t
=T ElE(utut) + T Z E E(utut_T tu,_u )
=1 t=t+l
and the approximant
1.T 14 1
= T ] = 1
@7 Iy, =T IE(uu) + T I 1 E(uul +u,__ul)
=1 t=1+1

As in [33] we call & the lag truncation number.
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LEMMA 3.5. If the sequence {ut};

satisfies:
(a) E(ut) =0 all t;

’ 2+2n

(b) suptE|uit <, forsome n>0 andall i=1,...,n;

(¢) either @, 18 of size -2 or an ig of gize ~(2+2n)/n ;

and if L4+~ as T 4+ = then

as T t+ =,
We now define

uu' + T'lzl zT (u

(28) S =T "Ljuug r=1"t=1+1

1.T
T,2 1

v, 1
AN e

The following result, which generalizes Theorem 5.2 of [33], establishes
that under suitable conditions on the rate at which 2 += as T 4+ = we

may consistently estimate £ by sequentially estimating ET g "
2

THEOREM 3.6. If the sequence {ut}T satisfies the conditions of either

Theorem 2.1 or 2.2 and if

4(r+9)

(a) sup, E|u | <w for gome 6 >0 and r >1 and all

i=1, ..., 3

{b) either R 1§ of glze -2 or o_ 18 of size -2(r+8)/(r+s-1)

m
with v >1 agnd & >0 as in (a);

4

(c) L 4+wo as T+ w such that L = o(Tl/ )} then ST ; ; T as Tt e,

2

The consistent estimates Su and STz may be used to construct a

new test statistic whose limiting distribution under the null hypothesis

(20) is free of nuisance parameters. We define:
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-1
) 1 1 -1 -1 1
o e - bl st - 5,500 )

The limiting distribution of F_ is given by:

THEOREM 3.7. If the conditions of Theorem 3.6 are satisfied them as T 4 = :
1 -1
(30) F, = (1/4)tr{[W(1)W(1)' - LJW(LIW(L) ' - I][S W ()W (L) dt] } .

wnder the null hypothesis that A =1 in (l10a).

Note that the limiting distribution of the modified Wald statistic
Fs as given by (30) is the same as that of F itself when the innovation
sequence {ut}T is white noise (cf, (26) and (27) above)}, Moreover, in
the univariate case (n = 1) the limiting distribption of FS is the
limiting distribution of the square of the modified t ratio statistic

z, -in [33] (see equation (22) and Theorem 6.1 of [ 33]).

t
The limiting distribution of Fs is represented in (30) as a functional
of the multivariate Wiener process W(t) on C[O,l]n . This distribution -
is presented tabulated only for the univariate case n =1 (see [6 ] and
[.7}). It is of some interest, therefore, to try to develop alternative

test procedures which rely on conventional tabulated distributions.

In place of FS we introduce a new statistic defined by

t

_ * -1 ' =2y -1
(31) G = tr{[T(A -1 - (/20 (T Tyqyp =S (T YY) ]
[TCA*-1) - (1/2) (Tygy4 - S,) (T'ZYllY_l)'ll} T hastlyy

THEQOREM 3.8. If the sequence {ut}? satisfies the conditions of Theorem

2.1 or 2.2 and if the null hypothesis (20) is true then G = y. as Tt = .



15

In the univariate case (A=a ,5 =s_, 5, =5 the statistic

u u T2 TQ)

G reduces to:

T

-1
(32) 6= (T%ry2 ) [T‘l

Iy Ve = Yep) - (1/2) (y.?./T -qu] + y%/Tst .

For stable alternatives (a < 1) T1/2

Yo ;'0 as T 4 = and the first

term of G diverges. Thus, the distribution of G diverges as T + =

and the test is consistent against stable alternatives. When the true

model is explosive (a > 1) the sample moments that appear in the construc-
tion of G all diverge with the sample size and the test is again comsistent.

For the G statistic, we recommend that the STl estimate be con-
structed from the unconstrained OLS residuals. If the errors in the model
fulfill the requirements of Theorem 2.1, then STA will converge to a non
degenerate limit, Thus, if the {yT}? sequence follows an explosive path
the quadratic form T_ly+8;in will asymptotically diverge to infinity.

The intuition behind the G statistic is straightforward, The null
hypothesis that A =1 imposes well defined rates of convergence on the
sample moments of {yt}T . By constructing a statistic which explodes when
these rates of convergence are violated, one thereby ensures test consis-

tency.

4. MULTIPLE TIME SERIES REGRESSIONS ON INTEGRATED PROCESSES

We shall examine the multiple regression equation

(33) Ye = Ax,c U {(t=1, 2, ...)
where
(34) Xe = X 1 * Ve s (t=1, 2, ...) , X, = comstant or random,
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In (33) A is an nxm matrix of unknown coefficients, We shall require
the sequence {(pt, Vt)}T of joint innovations on (33) and (34) to satisfy
the general conditions of Theorem 2.1. This allows for a wide range of
serial dependence and simultaneity as well as nonstationarity in the system
(33) and (34). Thus (34) may be regarded as the reduced form of a simul-
taneous equations system in which the exogenous variables X, are driven
by a quite general integrated process of order one, such as a vector ARIMA
model, and none of the common exogeneity conditions need necessarily apply
since we allow for contemporaneous correlations of the form E(xtué) £ 0

Define the least squares regression estimators

(35) A* = Yrxexrx L
and
(36) a* = T lyr(1 -PY

where X' = [xl, ...,xT] .

In the theory that follows it will be convenient to set z{ = (u{, v{)

and define
(37) Q. = 1i 1715 E (2 21
z T Ffr,, 15022
(38) Q= 1i (T I p1)
Mo T
T

where PT = Elzt . We shall employ block partitions of matrices such as

I in (14) and use the notation
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n m
el [l | m

(elpp I8l |m

to signify the component submatrices.

THEOREM 4.1. If the sequence {zt}T satisfies the conditions of Theorem

2.1 or 2.2 then as T + =

-1
(a) T(A*-A) -'%[QI/ZV(l)V(l)'Ql/Z +2.] °{[nl/2féV(t)V(t)'dtﬂl/z}zz}
12
(b) Ar 3 A
() a 2 2,1y,
where V(t) 18 a multivariate Wiener process in C[O,l]m+n .

Theorem 4.1 shows that least squares regression is consistent in multi-
variate regression where the regressors are contemporaneously correlated
with the errors and where both errors and regressors may be jointly deter-
mined by quite general time series processes. The central requirement of
the result is that the regressors follow an integrated process such as (34).
Note that this implies that Ye is also an integrated process. In the
special case where the sequence {ut}i is stationary the processes Ye
and x, are cointegrated in the sense of Granger and Engle [15]. Thus,
Theorem 4.1 provides the correct asymptotic theory for linear regression
amongst cointegrated variates,

It is an interesting consequence of Theorem 4.1 that there is no
asymptotic simultaneous equations bias or measurement error bias in regres-
sions such as (33) when the regressors form an integrated process. This
result, which seems never before to have appeared in the literature, has

quite a simple intuitive explanation. In the usual theory of time series
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regression amongst stationary, ergodic processes sample moment matrices
converge to constant matrices., The bias that arises from contemporaneous
correlation between the regressors and the errors is determined by such

a sample moment matrix, which converges to a constant non zero matrix in
the stationary, ergodic case. But when the regressor process is integrated
of order one and hence nonstationary and nonergodic, as it is above, the
usual sample moment matrix of the regressors diverges while the matrix of
sample moments between the regressors and the errors converges weakly to

a random matrix. Upon appropriate renormalization (as is clear in the
proof of Theorem 4.1) the sample moment matrix of the regressors also con-
verges weakly to a random matrix. But the signal that comes from the observed
sample variation of the regressors is stronger by an order of magnitude

(in the sample size)} than the sample correlation of the errors and the re-
gressors, It is this fact which eliminates the simultaneous equations and
measurement error bias, at least asymptotically, for integrated processes.
A related phenomenon occurs in the case of simultaneous equations with
trending regressors as has been known for some time, although simple illus-
trations seem only recently to have appeared in the literature [23]. The
examples that are reported in [23] involve only white noise errors. They
may, in fact, be extended using the methods of this paper to include quite

general weakly dependent and heterogeneocusly distributed innovations.
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_ 2 2
THEOREM 4.2, Let w,_ = (uit -E(uit))

" If {wt}? and {zt}? satisfy

nxl °
the conditions of Theorem 2,2, thenas T + =

T 2yec(n* - q,) = N(O,V)
where
(39) Q =[r.]1,, = 1i T’lzTE(u u') ;
T e e St S
(40) V = PDE:=0“’k - (vec Q) (vec 2,)'3Py ;
and
(41) o = E(utué+k ® utu£+k) ; k=0,1, 2, ...

Theorem 4.2 gives the asymptotic theory for the estimated error covar-
jance matrix in the regression (33). As with the nonstationary VAR (cf.
Theorem 3.3} the asymptotic distribution of 0* is normal with a covariance
matrix that depends on the fourth order cumulant sequence of the innovation
process {ut} . Note also that the limiting distribution given in Theorem

4.2 is equivalent to that of the error covariance matrix from the VAR given

in Theorem 3.3, Thus, for these sample regression characteristics at least,
the asymptotic theory in a multiple regression corresponds to that of a

vector autoregression, as indeed it does in the stationary case.
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5. HYPOQTHESIS TESTING IN MULTIPLE REGRESSION

WITH INTEGRATED PROCESSES

We shall consider linear hypotheses that involve the elements of the
coefficient matrix A in the multiple regression (33}. Thus, the null

and alternative hypotheses have the form:
{(42a) H. : RvecA=r1,
(42b) H, : RvecA¢r

where R and r are known gqxnm , g x1 matrices, respectively, and R
has full rank gq .

To test H, we commonly employ the Wald statistic:

0

-1
(43) F= (RvecA* - ) '[R(2* ® (X'X) 'R'] (RvecA* -1) .

Qur next result gives the asymptotic distribution of F in the present

nonstationary case.

THEOREM 5.1. If the null hypothesis (42a) is true and if the sequence {zt}T

satisfies the conditions of Theorem 2,1 or 2,2 thenas T 4 « :

-1

1/2
]22

2, 1/2 1/2

(49) F = (1/8)vec(l2/Pvavay '/, ) rire et Ardvinvie) e }R!

-1 -1
1/2),1 1/2

*[Rin, ®[0 oV V(t) dte " 7], 1R ]

1/2.-1 2

1/2
]22

R{I @0 IéV(t)V(t)'dtQ wee([al/2viyvan)y et/ £ 1;,)
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In spite of its complication the asymptotic result (36) is very inter-
esting. It suggests that, in general, the limiting distribution of F
depends on the nuisance parameter matrices Q and nz . Even when ¢ = Q, »
as in the case of a white noise innovation sequence {zt}T , the limiting
distribution (44) is still dependent on the matrix of nuisance parameters
2 . The situation is thereby akin to that of finite sample distribution
theory where the presence of nuisance parameters is the rule rather than
the exception.l

Theorem 5.1 shows how very special the usual theory of inference for
regression models really is, It is a particular feature of the limiting
normal distribution theory that the nuisance parameters are concentrated
in the covariance matrix of the asymptotic distribution. Since this matrix
may be consistently estimated from the data, a quadratic form in an appro-
priate metric yields the usual asymptotic chi-squared criterion and removes
the nuisance parameters. The nonnormality of the limiting distribution
theory in the present case eliminates the possibility of such a simple trans-
formation. In particular, we recall from Theorem 4.1 that T(RvecA* -r)
has a nonnormal and asymmetric limiting distribution under the null hypo-
thesis (42a). Moreover, the conventional metric that is embodied in the
matrix of the quadratic form of the Wald statistic {44) no longer delivers
a relevant measure of distance according to which departures of the vector
T(R vec A* -r) from zero may reasonably be measured. More precisely, the
limit of {R{(Q* 8>(X'X/T2)—1R'}*1 is now a random matrix. It is no longer
reasonable to think of it as a precision matrix on the support, ok , of

the limiting distribution of T(RvecA* -r) . Thus, the Wald statistic F

»

lhe concluding section of [32] contains a detailed discussion of this point.
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as given by (36), lacks its usual rationale.

The situation described above is not changed by the use of other
test criteria such as the likelihood ratio (LR) or Lagrange miltiplier (LM)
tests. In fact, although we shall not prove it here, the Wald, the LR and
the LM test are equivalent asymptotically in the present context, just as
they are in the more conventional setting. In each case the limiting dis-

tribution theory is given by the result of Theorem 5.1.

6. MODELS WITH FITTED DRIFT VECTORS

The results in Sections 3-5 may be extended quite easily to models
with fitted means or fitted means and time trends. Here we shall report
the main resuits for vector autoregressions with a fitted drift. A more com-
plete treatment in the scaler case is available in the doctoral dissertation [31].

Consider the vector autoregression:

~

(45) Ye T H* Ayt-l *u,

where 1 =y - Ay and A = [Zg(yt -Sﬁ(yt_l -511)'] covariance matrix

-1
estimator is now Eu = T‘IY'(I -PZJY where the regressor matrix Z = [i i Y-l]

and 1 is the T =x1 sum vector.

THECREM 6.1, If the conditions of Theorem 3.2 are satisfied themas T + » :

1/2 1/2

a. T(A-1) q-[%{z W(IIW(1) 's -z}

-1
ZI/ZW(I)IéW(t)'dtZl/Z][Zl/z{féW(t)W(t)'dt -féW(t)dtféW(t)'dt}El/z] =g ;

"'I;
P

+ 0 ;
r
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1/2~

da. ™M) - et i

e. £ >cI_ .
up u
Moreover, if the conditions of Theorem 3.3 are satisfied then

1/2

f. T vec(f-zu) = N(0,V)

where the asymptotic covariance matrix V is given by (40) above.

For testing the unit roots hypothesis (10b) we could use extensions
of the Wald statistic F defined by (17) for case of the known zero drift
model. This would lead to distributional results such as those given by
Theorems 3.4 and 3.7 with attendant problems of nuisance parameter matrices
and tabulation. An alternative, which we consider here, is to extend the
test statistic G defined by (31) to the case of a fitted dirft vector.

Specifically, we define:

(46) G =tr[{T(ﬁ-I)-£(1/2)(T'1 s ) =Ty T ) (7, '1}
B 0 RS L) =9 ]

u
-1
1D -t a -5 -1 F 1B 0P 0 D) ]H

-1, -1
+ T ySe¥r -

THEOREM 6.2. If the conditions of Theorem 3.8 are satisfied thenas T t =
2

G]J =X
This result provides us with a simple xz test of the unit roots

hypothesis (20).
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7. CONCLUSIONS

Models with integrated regressors and cointegrated variables seem likely
to become an important focal point of future macroeconomic theory and de-
bate. At the theoretical level, efficient macroeconomic equilibrium implies
that a number of macroeconomic time series must behave as martingales., As
argued by Hall [17], the fulfillment of first order conditions for intertem-
poral utility maximization requires that consumption follows a random walk.
Rationality of expectations implies that a sequence of forecasts of a given
event form a martingale. On the empirical level, evidence has mounted that
a number of time series, ranging from GNP (Nelson and Plosser [30]) to divi-
dends (Marsh and Merton [29]) are integrated processes, Statistical esti-
mation and inference in these models requires a methodology which accounts
for the nonstationarity and nonergodicity of the underlying time series.

This paper has developed a general asyvmptotic theory for regressions
with integrated processes. The asymptotic distribution of regression coef-
ficients and covariance matrix estimators in these models have been derived.
Least squares estimation procedures produée consistent coefficient estimates
which converge at a faster rate LOp(T‘l)) than in conventional regression
theory. However, these estimates are not asymptotically normal when appro-
priately centered and scaled. The nonnormality results from the fact that
suitably scaled sample moments (and also the hessian) converge weakly to
random matrices rather than constant matrices. Our development and employ-
ment of a multivariate functional central limit theory has permitted explicit
derivation of the nonnormal asymptotics.,

We have further analyzed the asymptotic properties of conventional
statistical tests in the context of these regressions. Standard tests, such

as the Wald test, no longer yield asymptotically distributed XZ criteria.
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This is because the metric underlying the Wald test is no longer relevant
when the limiting distribution of the regression coefficients is nonnormal.
Moreover, in multiple equation systems the asymptotic distribution of the
usual test criteria are dependent upon the limiting covariance matrix of

the contemporaneous innovations across equations and the limiting covariance
matrix of the accumulated sums of past innovations. In the case of weakly
dependent innovation sequences these limiting covariance matrices are dif-
ferent whereas for i.i.d. innovations they are the same. Interestingly,

in both cases the asymptotic distribution of the usual test criteria is
parameter dependent. For these reasons, it is important to devise new sta-
tistical tests whose asymptotic distributions, at least, are free of nuisance
parameters, TFor the case of testing for unit roots in vector autoregres-
sions we demonstrate the existence of transformations of the Wald statistic
which are independent of nuisance parameters. We also develop for this case
a new test statistic which is asymptotically x2 » S0 that conventional
tabulations may be used in testing.

Qur asymptotic results are compatible with a wide range of innovatiocn
processes and model formulations. They allow for a high degree of serial
correlation and moderate heterogeneity in the error processes. Moreover,
our conditions permit regressor-error correlation and therefore apply to
simultaneous equations systems with integrated processes. As a result, con-
ventional measurement error and simultaneity bias do not generally arise
in these models when they are formulated and estimated with integrated
processes,

One area of future research lies in the modelling of integrated process
regressions when the integrated regressors are themselves cointegrated.

The multivariate regression theory in Sections 4-6 presupposes that no
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cointegration exists amongst the regressors. This requirement is not

innocuous. Sims [39], for example, has indicated that in the AR(2):
Ye = ®Veop * BYpg t U

with a+8 = 1 the least squares estimates o and g each possess limit-

ing marginal normal distributions with an O(T“I/2

} convergence rate,
Intuitively, the leverage needed to generate O(T'l) convergence requires
that the regressors not become asymptotically collinear, as occurs in the

Sims example. Research into models that combine integrated, cointegrated

and nonintegrated regressors is currently being pursued by the authors.
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MATHEMATICAL APPENDIX

Skorohod Metric

The specific metric we use to render D[0,1] separable is:

(AL} d(x,y) = infle : ||A]] < e, sup|X(t) -Y(A(t))] < €}
g>0 t

where ) 1is any continuous mappingof [0,1] onto itselfwith A(0) =0, A(1) =1 and

(A2) 2] = sup log MB-AS) ¢ s € [0,1] .
t£s

This metric may be contrasted with the uniform metric

(A3) d(x,y) = sup|X(t) -Y(t)]| .
t

The two metrics coincide when X(t) and Y(t} are continuocus. For
D[0,1] , the Skorchod metric differs from the uniform for points of dis-
continuity. Two functions in the uniform metric are close only if their
discontinuities are of approximately equal magnitude and occur at exactly
the same values ti , whereas under the Skorohod metric the discontinuities
need not occur at exactly the same t.

Following an example of Billingsley [2], one can easily see that under
the uniform metric D[0,1] is not separable. Consider functions of the form

0 0<t<$

X (t) =
1 § <t <1

Under the uniform metric d(x, , x. ) =1 1if &, # 6, . This would imply
8,7 76, 1 2
the existence of an uncountable set of elements mutually separated by a

non negligible distance. Since each Xg (t) may be surrounded by an open
i
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sphere S(xa.(t), 1/2) which does not intersect an open sphere surround-
i

ing another Xs (t) , there cannot exist a countable open covering for
3

the xé(t) corresponding to the uncountable open covering generated by

U S(xa(t), 1/2) . The failure of the latter property is equivalent to
§

nonseparability since an uncountable subcover of open spheres of radius

1/2 over all points in the space will not possess a countable subcover.

Proof of Theorem 2.1

The result holds for n =1 ., In addition, the marginal distributions
all converge to univariate Wiener processes, as the requirements of the
univariate Mcleish invariance principle hold for each element of XT(tJ .
Thus we need to demonstrate that the convergence of the marginal probability
measures implies convergence of the joint probability measure.

The proof of convergence proceeds in two steps. First, we demonstrate
that XT(t) converges to W(t) over a determining subclass in D[O,l]n .

A determining class is a class of subsets of D[O,l]n such that any two
measures which coincide over the c¢lass must coincide over D[O,l]n . A
determining subclass insures equality of two measures over the g-algebra
generated by the class, when they coincide on the class. Thus, if XT(t)
possesses a limiting probability measure, it must equal W(t) . Second,
we demonstrate that the sequenceof probability measures PT( ) associated
with XT(t) is "tight" which will imply from Prohorov's Theorem (see
Billingsley | 2]) that the limit of PT( } is a properly defined probability
measure., By the equality of this limiting probability measure with W(t)
over the determining subclass on D{O,l]n , this limiting measure must
equal W(t) .

We first define the finite dimensional distributions of XT(t) . For
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each x & D[O,l]n define the mapping:

(A4) Htl"'tk(X) = [x(tl), ...,x(tk)] a kxn matrix.
We may also consider the inverse mapping, since Ht(x) is measurable with

respect to the Skorchod topology,

(A5) 1 ) , He R

tlnl).tk
where each point in H identifies a vector of values for X at k dif-
ferent values t. - This inverse mapping is equivalent to considering the
distribution of x at k distinct elements of [0,1] .

Qur first result is Lemma 2.1.

-1
tlun.tk

elass over the subspace of D[O,l]n containing XT(t) and W(t) .

LEMMA 1. The finite dimensional sets 1 (H) form a determining

Proof: For n =1, Billingsley verifies the result. For higher n ,
note that the product of determining classes equal the determining classes
of the product space, when the coordinate spaces are separable. Separa-
bility is necessary, as Halmos [18] verifies,

Now, this result by itself is insufficient as it means we must consider
finite dimensional distributions on D[O,l]n where the t values may vary
across the coordinate subspaces. However, XT(t) and W(t) are constrained
to lie in the subspace of D[O,l]n where each element of the vector func-
tion is evaluated at the same t ., Thus the "diagonal" of the product of
the determining classes will constitute the determining subclass for XT(t) .
The sets HEI . (H) form a base for the diagonal, which renders finite

lillk .
dimensional distributions of (12) a determining subclass.
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LEMMA 2. X (t) = W(t) over the finite dimensional sets 1. (H)

Proof. Since each marginal distribution of XT(t) converges, for fixed
t to a Wiener process, A‘XT(t) will converge to W(t) for all x'x =1

This follows as:

(A6) ATX () = % ):i;

where {Vt} is a scalar sequence which fulfills the requirements of the

McLeish invariance principle. The variance of Ve will converge to

(A7) o? = lim E(% s:f.)
T

= wz'l/z}s(l zT u.u!)E-l/z)\
T "j=1737]

by assumptions of the theorem.
Since A was arbitrary, one can invoke the Cramér-Wold device to

conclude that

(A8) XT(t) =+ W(t) fixed t .

Clearly, by straightforward use of the Cramér-Wold device, and use of in-

dependence of W(tl -t and W(to)

o

(A9) XT(t) + W(t) for any tl’ cees tk ’

which implies that the finite dimensional distributions of XT(t) and

W(t) coincide.
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Thus, if XT(t) has a limiting joint probability measure, this measure
will coincide with W(t)

By the Helly selection theorem, the sequence of PT( )} probability
measures associated with XT(t) will converge to a measure with every re-

quirement of a probability measure except (possibly) linm PT(D[O,l])n) =1,

T=e0

This last requirement will be fulfilled according to Prohorov's Theorem
if PT('} is tight (i.e. there exists a compact set A such that
Pr(A) > 1-e VT ).

Tightness of {PT( )} follows from:

LEMMA 3. The joint probability measure on a geparable product space is

tight 1f each marginal probability measure is tight.

Proof. Let § = S1 X 4. % Sk be a product space. The marginal probability

measure Pi is defined by

(A10) Pi(Ai) = P(S1 X 4ee X Ai x S, X 44. X 8

i+l k)

1f each marginal probability measure is tight, then there exist a sequence

of sets Ai € Si such that
i
(A1) pi(Ai) >1 - g/27 .

Thus the compact set A = A x ,,, x A

1 K must from (15) and (16) obey

(A12) PT(A) > 1l-g

thus PT( ) is tight.
Now, each marginal probability measure for XT(t) is tight on D[0,1]

Thus the joint measure for XT(t) is also tight, which completes the proof.
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Proof of Lemma 3.1

The proof follows the same lines as that of Theorem 3.1 of [33] and

Lemma 2.1 of [34]. Thus to prove (a) we have

(A13) T-S/zzfyt = T-3/22I=1(Si-1 *uy *+yp)
i/T
- zl/zzIJ Xp(t)dt + o_(1)
(i-1)/T P

]

1
1/2J .
z OXT(t)dt op(t)

1
- zl/ZI W(t)dt
0
by Theorem 1.1 and the continuous mapping theorem. The proofs of (b) and

(¢c) are entirely analogous.

To prove (d) we define the following functional on C[O,l]n :

W14) 2p00) = 5= %50 IE—%%IEJE-I/ZuITt]+1 s G-L/T <t < §/T
Gg=1,...,7)
(Als) Z.(1) = :%g'l/st )

Note that ZT(t) = XT(t) + op(l) and thus ZT(t) = W(t) by Theorem 2.1

above and [33, Theorem 4.1], Moreover, by direct integration (noting

that dZT(t) = Tl/zx'l/zujdt for (j-1)/T <t < j/T ) we find that:

(A17) o ( ( [Zo(8)Z () ]j/T T (t) (t)

Al [ 2()dZ_(t) " - [Z.(t)Z.(t)" -J 7. .(t)dZ.(t) "
G-/ T T TG g 0T

so that
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T (£)dZ (1) ' = {Zo (1) Z( ]j/T
(A18) J Z(£)dZ ()" = ={Z.(t)Z.(t)" .
G-/ T T A $ Y4

Summing (Al18) over j =1, ..., T and combining (Al6} and (Al8) we find:

a9y Tlz Y2z ; S;5.qule” /2 . T (DZp(1) - ot 1/2(2 uju)z” /2

Hence, by the weak convergence of ZT(t) W(t} , the strong law of large
numbers for dependent variables [25] and the continuous mapping theorem,

we deduce that:

771gT ut = 1T (s

1,.1/2 1/2
Vi1 521055 +y0)u3 =»§{z W(LIW(1)'Z —zu}

as required.

Proof of Theorem 3.2. Let U' = [ul, ..,,uT] and we have:

oo 1 t -
{(A20) A I +U Y-l(Y-IY-l)
Then
-1 -2 -1
(A21) T(A*-I) = (T U'Y_l](T Y:lY_l)

1 -1
-'%{ZI/ZW(I)W(l)'Zl/z —zu}{zl/zj W(t)W(t)'dtZl/z}
0

proving (a). (b) follows directly. To prove (c) note that

-1 -1 -1
23 L LN | . ! t 1
(A28) z* = TN - T _DOYLY DT sy

as required.
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Proof of Theorem 3.3

Write

-1

ooy - HFNER ()

ATty - 2+ o)

(A24) T(Z* «Zu)

EI(utué —Zu)//T + op(l)

By assumptiocn {(utu£ —Zu)}T is a weakly stationary sequence of random
matrices with zero mean that satisfies the moment and mixing conditions of

Theorem 2.2, Define

-1
= 1 [} T _ = | -
{A25) wo {(D'D) "D vec(utut ) L vec(utut )

where D 4is the n2 xn(n+1)/2 duplication matrix and L = D~ is the

n{n+1}/2 xn2 elimination matrix [27]. By Theorem 2.2

(A26) T‘I/Z):;rwt - N(0,Q)

where

(A27) Q = E(wywl) + E:=2{E(w1wl‘(J + E(ww)} .
Now

{A28) E(wlwi) = L{'i’0 - (vec zu)(vec zu)'}L'
and

(A29) E(wywp) = L{¥, - (vec I} (vec I )'IL'

where
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(A30) Wk = E(utué+k b utu£+k) ; k=10, 2, ... .

It follows that

(A31) /T vec(Z* -Eu) = T-l/zzfvec(utué -Zu) + op(l)
- T'l/zz'lrnwt + o (1)
= N(0, DQD') = N(0O,V)

as required.

Proof of Theorem 3.4

Under the null hypothesis (20} as T ¢+ =

1 -1
(A32) T vec(A*-1) = vec{%—[zl/zwu)wu) 1g/2 zu][zlfzj W(EIW (L) 'thl/z] }

4]

and I* B L, by Thecrem 3,2, Additionally,

1
(A33) T-zYllY_l - zl/zj‘ Wee)W(e) rdezt
0

/2

by Lemma 3,1. Thus the stated result (22) follows by the continuous mapping

theoren,

Proof of Lemma 3.5, The result follows by choosing an arbitrary element

of the matrix I - AN and proceeding as in Lemma 5.1 of [33].

Proof of Theorem 3.6. The result follows by taking an arbitrary element

of the matrix ST PR and proceeding as in Theorem 5.2 of [33].



Proof of Theorem 3.7

Note that

-1/2.  _ .~1/2_T
(A34) T yp =T DI

-1/2

+ T yo

= 2 251y

by Theorem 2.1. Moreover, under the conditions of the Theorem Su E

and STz 5 t by Theorem 3.6. Also

1
(A35) TTYIY - 21/2J W(t)W(t) rdezt/?
0

as before. Hence by Theorem 3.4 and the continuous mapping theorem

1

) -1
(A36) F, = Itr{ W)WY - TT[W()W(L)! -_I]U W(t)W(t}'dt] }

0

as required,

Proof of Theorem 3.8

Under the null hypothesis we may write (see (A2l) above):

-1. 1T 1T
*- T ' = t =
(A37) T(A*-I) (7 f_lY_l) T Elutyt-l T zl”t(st-l +y0)

_ 1/2 1/2 -1.T -1.T
= (/27 "2z (1) "2 -Trjuutl + T Ljuy,

where ZT(t) is defined in (Al4) above. Also

-1/2 1/2

(A38) /2y - T'1/2(5T+y03 SN IS

Thus

z

AlO

u
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TAr-D (172 Y1) - (/2 (T gy -s)

=T lZTu - a/nrt/?

! 1/2 +T-1/2 1/2

Yolr(1)':
Moreover

-1/2.-1/2 _
T S yT"W(l) = N(O, IJ .

It follows by Theorem 4.1 of [33] and the continuous mapping theorem

that as T 4+ = G = W(1)'W(1} = Xﬁ , as required.

Proof of Theorem 4.1

Define
(439) zp(e) = a2 e TESATEG V2 Gy e ey, (e,
1 .-1/2
ZT(I) = :%Q PT .

By Theorem 2.1 or 2.2 ZT(t) = V(t) where V(t) is a multivariate Wiener

process on C[0,1]™7" |

Set 4y = 0 and further define the sequence {qt}T by
(A40) Gy = Qe_y * 2, 5 t=1, 2, ... .

Let Q' = [ql, ...,qT] s L' = [zl, ...,zT] and then we have

-1 -1.T

t =
(A41) T712q = T 5]z q!
1T 1T
=T ryzap ; + T Lyzezg
1.1/2 L1721
- {22 Vv /e - Eﬁz} v I

1/2 1/2
- 5{ vy st/? . zz}

-1
] t
ZT(l)y0 +T yoyo} ; 0.

e T)



Al2

by arguments entirely analogous to those used in the proof of Lemma 3.1.

In a similar way we find

1
T2Q1q u-ﬂl/zf veeyvee) rdeat’? |
0

The stated result (a) now follows since T'IU'X = [T"IZ'Q]12 ,
T-2X'X = [T_ZQ'Q]22 at least up to initial values and

-1
T(A*-A) = (T-1U"X0) (T"%x' %)

{(b) follows immediately. To prove (c) we note that

1 -1

(A42) a* = T low - i luy %yt lxrw

v

11r1T T E E(u u')

(2,11
by the strong law of large numbers for weakly dependent variates [25].

Proof of Theorem 4.2. The proof is entirely analogous to that the Theorem 3.3.

Proof of Theorem 5.1.

Under the null hypothesis (42a)as T + =

(A43) T{(Rvec A* -1) = R{vec T(A*-A)}

2

1 -1
- R vec 5{ o 2vyva) at/? s e ]lz[n”zj Vi) vee) Tdeat’ 4] }
0

22

and Q* ; [QZ]11 =Q, by Theorem 4.1, Additionally,
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1
(A44) T72X1X = nlfzjr Ve vie) rdeat’?

0 22
The stated result follows directly.

Proof of Theorem 6.1

From Lemma 3.1 we know that

1 1

1/2 .

-2.T — - 1/2 1 1
(Ad5)Y T "L (y, =Y )y, ;-¥y ;)" = W{tIW(t)'dt - | W{t)dr| W(t)'dt}z
10ea17v) ey . . . /
Additionally,
-1.T L1 T -1/2; T -3/2,T
(Ade) T "Ijuly, -y =T oy, - (T )(T I;yiy)
1
- (/0 M Awmway et g ) -zl/zwu)J W(e) raest/?
0.
by Lemma 3.1 again. Results (a) and (b) follow directly. To prove (c)
and (d) note that
(447) = T ]u, —T/(AI)(T3/2§t1)+0
and
1
(A48) /25 & 2V %)y - gzl/zj W(t)dt .
' 0
To prove (e) and (f) note that
- - -1 [l "‘1 1 -1
(A49) L-x,=T7UW-5 -T (UZ)(2'2)7(Z'V)
and
- - - - -1 -
(A50) /T(E-1) = YI(TT'U'U-I)-T I/Z(U'ZD /2, (o] 1/2 z'znTl/z) DTl/zz'U )

In this expression
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(A51) D. = 2

and the second term of the expression is OP(T_I/Z) as T 4+ = ., Result

(f) now follows as in Theorenm 3.3.

Proof of Theorenm 6.2

The proof is analogous to that of Theorem 3.8 and is omitted,
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