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Abstract. Tree-structured models have been widely used for human pose esti-

mation, in either 2D or 3D. While such models allow efficient learning and infer-

ence, they fail to capture additional dependencies between body parts, other than

kinematic constraints between connected parts. In this paper, we consider the use

of multiple tree models, rather than a single tree model for human pose estima-

tion. Our model can alleviate the limitations of a single tree-structured model by

combining information provided across different tree models. The parameters of

each individual tree model are trained via standard learning algorithms in a single

tree-structured model. Different tree models can be combined in a discriminative

fashion by a boosting procedure. We present experimental results showing the

improvement of our approaches on two different datasets. On the first dataset, we

use our multiple tree framework for occlusion reasoning. On the second dataset,

we combine multiple deformable trees for capturing spatial constraints between

non-connected body parts.

1 Introduction

Estimating human body poses from still images is arguably one of the most difficult

object recognition problems in computer vision. The difficulties of this problem are

manifold – humans are articulated objects, and can bend and contort their bodies into a

wide variety of poses; the parts which make up a human figure are varied in appearance

(due to clothing), which makes them difficult to reliably detect; and parts often have

small support in the image or are occluded. In order to reliably interpret still images of

human figures, it is likely that multiple cues relating different parts of the figure will

need to be exploited.

Many existing approaches to this problem model the human body as a combination

of rigid parts, connected together in some fashion. The typical configuration constraints

used are kinematic constraints between adjacent parts, such as torso-upper half-limb

connection, or upper-lower half-limb connection. This set of constraints has a distinct

computational advantage – since the constraints form a tree-structured model, inferring

the optimal pose of the person using this model is tractable.

However, this computational advantage comes at a cost. Simply put, the single tree

model does not adequately model the full set of relationships between parts of the body.

Relationships between parts not connected in the kinematic tree cannot be directly cap-

tured by this model.



The main contribution of this paper is developing a framework for modeling human

figures as a collection of trees. We argue that this framework has the advantage of being

able to locally capture constraints between the parts which constitute the model. With a

collection of trees, a global set of constraints can be modeled. We demonstrate that the

computational advantages of tree-structured models can be kept, and provide tractable

algorithms for learning and inference in these multiple tree models. We present two ap-

plications of our framework. The first application uses the multiple tree model frame-

work for occlusion reasoning. The second application combines multiple deformable

trees to capture a richer set of spatial constraints between body parts. A preliminary

version of this work appeared in a workshop paper [24] in which spatial constraints

between parts were modeled. In this paper we demonstrate how the multiple tree model

can be used for occlusion reasoning. We provide a model, new inference algorithms and

experimental validations. We also provide an analysis of our approach which compares

to existing approaches for combining multiple trees [10, 23].

The rest of this paper is organized as follows. Section 2 reviews previous work.

Sections 3, 4 and 5 give the details of our approach. Section 6 presents our experimental

results. Section 7 concludes this paper.

2 Related Work

One of the earliest lines of research related to finding people from images is in the

setting of detecting and tracking pedestrians. Starting with the work of Hogg [5], there

has been a lot of work in tracking with kinematic models in both 2D and 3D. Forsyth et

al. [3] provide a survey of this work.

Some of these approaches are exemplar-based. For example, Toyama & Blake [21]

use 2D exemplars for people tracking. Mori & Malik [11] and Sullivan & Carlsson [19]

address the pose estimation problems as 2D template matching using pre-stored ex-

emplars upon which joint locations have been marked. In order to deal with the com-

plexity due to variations of pose and clothing, Shakhnarovich et al. [14] adopt a brute-

force search, using a variant of locality sensitive hashing for speed. Exemplar-based

approaches are effective when dealing with regular human poses. However, they cannot

handle those poses that rarely occur. See Fig. 7 for some examples.

There are many approaches which explicitly model the human body as an assem-

bly of parts. Ju et al. [7] introduce the “cardboard people” model, where body parts

are represented by a set of connected planar patches. Felzenszwalb & Huttenlocher [2]

develop the tree-structured pictorial structure (PS) model and apply it in 2D human

pose estimation. There is also some work using non-tree structured models. Sudderth et

al. [18] introduce a non-parametric belief propagation method with occlusion reasoning

for hand tracking. Sigal & Black [15] use a similar idea for pose estimation. Both of

them use loopy belief propagation (LBP) for the inference, so the convergence is not

guaranteed. Ren et al. [13] use bottom-up detections of parallel lines as part hypothe-

ses, and combine these hypotheses with various pairwise part constraints via an integer

quadratic programming. While this sidesteps the problems of LBP, the solution relies

heavily on the performance of lower-level limb detectors. Song et al. [17] detect corner

features in video sequences and model them using a decomposable triangulated graph,



where the graph structure is found by a greedy search. Ioffe & Forsyth [6] use a mixture

of tree model for human tracking. Again, they both rely on good low-level detectors,

and cannot search the images exhaustively.

Our work is closely related to some recent work on learning discriminative models

for localization. Ramanan [12] uses a variant of Conditional Random Fields (CRF) [8]

for training localization models for articulated objects, such as human figures, horses,

etc. Sminchisescu et al. [16] uses “mixture of experts” for visual tracking.

Our work is also related to boosting on structured outputs. Boosting was originally

proposed for classification problems. Recently people have adopted it for various tasks

where the outputs have certain structures (e.g., chains, trees, graphs). For example, Tor-

ralba et al. [20] use boosted random fields for object detection with contextual informa-

tion. Truyen et al. [22] use a boosting algorithm on Markov Random Fields (MRF) for

multilevel activity recognition.

3 Modeling the Human Body

In our method we use a combination of tree-structured deformable models for human

pose estimation. The basic idea is to model a human figure as a weighted combination

of several tree-structured deformable models. The parameters of each tree model are

learned from training data in a discriminative fashion.

We first describe how we model the human body, and then demonstrate how this

model of multiple trees can be used for modeling spatial constraints and occlusion rea-

soning. We also relate the pictorial structures [2] defined with pixel likelihoods and the

CRF model [12] defined with patch likelihoods. This connection turns out to be useful

when we develop our occlusion reasoning scheme in Sect. 5.

3.1 Single Tree-structured Deformable Body Models

Consider a human body model with K parts, where each part is represented by an

oriented rectangle with fixed size. We can construct an undirected graph G = (V,E)
to represent the K parts (Fig. 1(a)). Each part is represented by a vertex vi ∈ V , and

there exists an undirected edge eij = (vi, vj) ∈ E between vertices vi and vj if vi and

vj has some dependency. Let li = (xi, yi, θi) be a random variable encoding the image

position and orientation of the i-th part, we denote the configuration of theK part model

as L = (l1, l2, ..., lK). Given the model parameters Θ and assuming no occlusions, the

conditional probability of L in an image I can be written as:

P (L|I,Θ) ∝ P (L|Θ)P (I|L,Θ) = P (L|α)
∏

i

P (I|li, βi) (1)

where we explicitly decompose P (L|I,Θ) into the prior term P (L|α) and the product

of several likelihood terms P (I|li, βi). Each P (I|li, βi) is a local likelihood for the part

i. Assuming pixel independence, we can write each local likelihood as:

P (I|li, βi) =
∏

u∈Ω(li)

Pli(u) (f(Iu))
∏

Υ−Ω(li)

Pbg(u) (f(Iu)) ∝
∏

u∈Ω(li)

Pli(u)(f(Iu))

Pbg(u)(f(Iu))

(2)



In the above equation, we have used the following notation. u is a pixel location

in the image I , Iu is the image evidence at pixel u. In this paper, we use binary edges

as our image evidences. f(Iu) is a function returning 1 if Iu is an edge point, and 0

otherwise.Ω(li) is the set of pixels enclosed by part i as defined by li. Υ is the set of all

pixels in the whole image. Pli(u) is a binomial distribution indicating how likely pixel u
is an edge point under the part li. Pbg(u) is a binomial distribution for the background.

Let
Pli(u)(f(Iu))

Pbg(u)(f(Iu)) = exp(βi(u)f(Iu)), we will have:

P (I|li, βi) ∝
∏

u∈Ω(li)

exp
(

βi(u)f(Iu)
)

= exp





∑

u∈Ω(li)

βi(u)f(Iu)



 (3)

= exp
(

βT
i fi(I(li))

)

(4)

where fi(I(li)) is the part-specific feature vector extracted from the oriented image

patch at location li. In our case, it is a binary vector of edges for part i. βi is a part-

specific parameter that favors certain edge patterns for an oriented rectangle patch I(li)
in image I . In our formulation, βi is simply the concatenation of {βi(u)}u∈Ω(li). We

visualize βi in Fig. 1(d).

Following previous work [12], we assume the prior term P (L|α) is defined in terms

of the relative locations of the parts as follows:

P (L|α) ∝ exp





∑

(i,j)∈E

ψ(li − lj)



 (5)

Most previous approaches use Gaussian shape priors ψ(li− lj) ∝ N (li− lj;µi, Σi)
[2]. However, since we are dealing with images with a wide range of poses and aspects,

Gaussian shape priors seem too rigid. Instead we choose a spatial prior using discrete

binning (Fig. 1(c)) similar to the one used in Ramanan [12]:

ψ(li − lj) = αT
i bin(li − lj) (6)

bin(·) is a vector of all zeros with a single one for the occupied bin. αi is a parameter

that favors certain spatial and angular bins for part i with respect to its parent j. This

spatial prior captures more intricate distributions than a Gaussian prior.

Combining (1), (4) and (5), we obtain the following formulation:

P (L|I,Θ) ∝ exp





∑

(i,j)∈E

ψ(li − lj) +

K
∑

i=1

φ(li)



 (7)

where φ(li) is a potential function that models the local image evidence for part i lo-

cated at li. φ(li) is defined as φ(li) = βT
i fi(I(li)).

Equation (7) is exactly the same Conditional Random Field (CRF) formulation of

human pose estimation problem in Ramanan [12]. This shows the two different for-

mulations (pictorial structures [2] and CRF [12]) of human pose estimation problems

are in fact equivalent. The only difference is that they use different criteria for model



parameter learning, i.e., maximizing the joint likelihood (ML) or the conditional like-

lihood (CL). In the following, we will use the CRF formulation in (7). But we will

come back to the pictorial structure formulation of (1), when we develop our occlusion

reasoning method.

To facilitate tractable learning and inference, G is usually assumed to form a tree

T = (V,ET ) [2, 12]. In particular, most work uses the kinematic tree (Fig. 1(b)) as the

underlying tree model.

l6 l2 l1 l3 l7

l4

l8 l9

l10

l5

(a) (b) (c) (d)

Fig. 1. Representation of a human body: (a) human body represented as a 10-part model; (b)

corresponding kinematic tree structured model; (c) discrete binning for spatial prior; (d) visual-

ization of the learned edge-based appearance model βi for each body part. Dark areas correspond

to small values of βi, and bright areas correspond to large values of βi

Inference in a single tree-structured model can be done by message-passing. Using

3D convolution, one can search exhaustively over all part locations in an image without

relying on feature detectors. Learning of the model parameters can be done by closed-

form solutions (ML) or gradient ascent methods (CL). See [12, 24] for details.

3.2 Multiple Tree Models

In our work we model the human body by a collection of multiple tree-structured mod-

els. For example, one can use the two tree models in Fig. 4 to model the kinematic

constraints and the occlusion relationships between the legs. One can also use different

tree structures (e.g., Fig. 6) to model the spatial constraints that are not captured in the

kinematic tree. The weighting parameters which combine the multiple tree models can

also be learned in a discriminative fashion using boosting (Sect. 4).

The final form of our model is:

F (L, I;Θ) =
∑

t

wtft(L, I;Θ) (8)

where ft(L, I;Θ) is a single tree model with tree structure τt, wt is the weight associ-

ated with this single tree model. The optimal pose L∗ can be obtained in our model as

L∗ = arg maxL F (L, I;Θ). In the next section, we describe the algorithm for learning

all the model parameters Θ = {wt, Θt}.

4 Spatial Constraints with Multiple Trees

Our learning algorithm for spatial constraints is based on AdaBoost.MRF proposed in

Truyen et al. [22]. Given an image I , the problem of pose estimation is to find the



best part labeling L∗ that maximizes F (L, I), i.e. L∗ = argmaxL F (L, I). F (L, I) is

known as the “strong learner” in the boosting literature. Given a set of training examples

(Ii, Li), i = 1, 2, ..., N . F (L, I) is found by minimizing the following loss function

LO:

LO =
∑

i

∑

L

exp
(

F (Ii, L)− F (Ii, Li)
)

(9)

We assume F (L, I) is a linear combination of a set of so-called “weak learners”,

i.e., F (I, L) =
∑

t wtft(L, I). The t-th weak learner ft(L, I) and its corresponding

weight wt are found by minimizing the loss function defined above, i.e. (ft, wt) =
arg maxf,w LO. In our case, we choose the weak learner as f(L, I) = log p(L|I). To

achieve computational tractability, we assume each weak learner is defined on a tree

model.

If we can successfully learn a set of tree-based weak learners ft(L, I) and their

weights wt, the combination of these weak learners captures more dependencies than a

single tree model. At the same time, the inference in this model is still tractable, since

each component is a tree.

OptimizingLO is difficult, Truyen et al. [22] suggest optimizing the following alter-

native loss function: LH =
∑

i exp
(

−F (Li, Ii)
)

. It can be shown that LH is an upper

bound of the original loss function LO, provided that we can make sure
∑

j wj = 1. In

Truyen et al. [22], the requirement
∑

j wj = 1 is met by scaling down each previous

weak learner’s weight by a factor of 1−wt asw
′

j ← wj(1−wt), for j = 1, 2, ..., t−1, so

that
∑t−1

j=1 w
′

j +wt =
∑t−1

j=1 wj(1−wt)+wt = 1, since
∑t−1

j=1 wj = 1. In practice, we

find that this trick sometimes scales down previous weak learners to have zero weights.

So we use a slightly different method by scaling down each weak learner’s weight up to

t by a factor of 1/(1 + wt). It can be shown that we still have
∑t

j=1 wj = 1. Figure 2

shows the overall algorithm.

Discussion: Our model is similar to “mixtures of trees” (MoT) [10] at a first glance,

but there are some important differences. MoT is a generative model developed for

density modeling problem. It is not designed for classification or prediction. Although

one can use MoT as the spatial prior in a generative fashion, it is not clear how to learn

the model in a discriminative way. Instead, our model is trained discriminatively, and

our objective function is more closely tied to inference.

Another similar work is the tree-reweighted message passing (TRW)[23]. TRW

aims to approximate the partition function in MRF, it does not answer the question

of learning a good model for recognition, i.e., TRW assumes the MRF model is given,

and it simply tries to solve the inference problem. Plus, TRW is an iterative algorithm,

and its convergence is still an unsolved problem.

5 Occlusion Reasoning with Multiple Trees

In this section, we apply the multiple tree framework to the “double counting of image

evidence” problem in human pose estimation illustrated in the top row of Fig. 3, where

the same image patch is used twice to explain two different body parts. Previous ap-

proaches [9] have focused on using strong priors of body poses to solve this problem.



Input: i = 1, 2, ..., D data pairs, graphs {Gi = (Vi, Ei)}
Output: set of trees with learned parameters and weights

Select a set of spanning trees {τ}
Choose the number of boosting iterations T

Initialize {wi,0 = 1

D
}, and w1 = 1

for each boosting round t = 1, 2, ..., T

Select a spanning tree τt

/* Add a weak learner */

Θt = arg maxΘ

P

i wi,t−1 log Pτt(Li, Ii|Θ)
ft = log Pτt(L|I, Θt)
if t > 1 then

select the step size 0 < wt < 1 using line searches

end if
/* Update the strong learner */

Ft = 1

1+wt
Ft−1 + wt

1+wt
ft

/* Scale down the previous learners’ weights*/

wj ←
wj

1+wt
, for j = 1, 2, ..., t

/* Re-weight training data*/

wi,t ∝ wi,t−1 exp(−wtfi,t)
end for
Output {τt},{Θt} and {wt}, t = 1, 2, ..., T

Fig. 2. Algorithm of boosted multiple trees

torso head ll−arm

lu−leg ll−leg ru−leg rl−leg

single

tree model

multiple torso head ll−arm

lu−leg ll−leg ru−leg rl−leg

lu−arm

lu−arm

tree model

Fig. 3. Illustration of “double counting of image evidence” problem: top row shows how the same

piece of image patch is used to explain two body parts, the bottom row shows how our occlusion

reasoning mechanism using multiple trees can alleviate this problem



However, these approaches are limited to the cases of normal poses and known activi-

ties. We believe the proper way to solve this problem is to introduce occlusion reason-

ing in the model. In our multiple tree framework, we can define one tree for the kine-

matic constraint (e.g., Fig. 4(a)), and a second tree for the occlusion relationships (e.g.,

Fig. 4(b)). In this section, we discuss how to incorporate occlusion reasoning into the

human body model introduced in Sect. 3, and how to do inference in a tree model in-

volving occlusion relationships (see Fig. 4(b)). Before we proceed, we first clarify the

terminology we are using. By “occlusion reasoning”, we do not necessarily mean the

body parts in the image are occluding each other, instead we use “occlusion” to refer to

the particular problem of using the same image patch to explain different body parts, as

illustrated in Fig. 3.

Occlusion-sensitive formulation: The factorization of the global likelihood into

local likelihood terms in Eq. 1 is valid only if the local terms P (I|li, βi) for i ∈ {1..K}
are independent. This assumption holds when there are no occlusions among different

parts. In order to obtain a similar decomposition (hence distributed inference) when

occlusions exist, we augment the configuration li of part i with a set of binary hidden

variables zi = {zi(u)}u∈Υ , similar to [18]. Note that there is a binary variable zi(u) for

each pixel. Let zi(u) = 0 if pixel u in the area enclosed by part i is occluded by any
other part, and 1 otherwise. If a part is partially occluded, only a subset of these binary

variables are zeros. Letting Z = {z1, z2, ..., zK}, the local likelihood term (2) can be

rewritten as:

P (I|L,Z,Θ) =
∏

i

P (I|li, zi, βi) (10)

∝
∏

i

∏

u∈Ω(li)

(

Pli(u)(f(Iu))

Pbg(u)(f(Iu))

)zi(u)

(11)

=
∏

i

∏

u∈Ω(li)

(

exp
(

βi(u)f(Iu)
))zi(u)

(12)

It is important to note that if all the occlusion variables zi are consistent, the global

likelihood P (I|L,Z,Θ) truly factorizes as (12). Similar to [18], we enforce the consis-

tency of the occlusion variables using the following function:

η(lj , zi(u); li) =

{

0 if lj occludes li, u ∈ Ω(xj), and zi(u) = 1
1 otherwise

The consistency relationship of occlusion variable zi and zj can be enforced by the

following potential function:

ψO(li, zi, xj , zj) =
∏

u∈Υ

η(xj , zi(u);xi)η(xi, zj(u);xj) (13)

Letting EO be the set of edges corresponding to pairs of parts that are prone to

occlusions, and defining PO(L,Z) ∝
∏

(i,j)∈EO
ψO

i,j(li, zi, lj , zj), we obtain the final

occlusion sensitive version of our model:

P (L|I, Z,Θ) ∝ P (L|α)PO(L,Z)P (I|L,Z, β) (14)



Occlusion-sensitive message passing: Now we discuss how to do message passing

that involves occlusion variables zi. Similar to previous work [18, 15], we assume that

potentially occluding parts have a known relative depth in order to simplify the formu-

lation. In general, one could introduce another discrete hidden variable indicating the

relative depth order between parts and perform inference for each value.

Our inference scheme is similar to [18]. It is based on the following intuition. Sup-

pose part j is occluding part i and we have a distribution of P (lj), we can use P (lj)
to calculate an occlusion probability P [zi(u) = 0] for each pixel u. Then we can dis-

count the image evidence at pixel u according to P [zi(u) = 0] when we use that image

evidence to infer the configuration of li. If P [zi(u) = 0] is close to 1, it means pixel u
has a higher probability of being claimed by part j. In this case, we will discount more

of the image evidence at u. In the extreme case of P [zi(u) = 0] approaches 0 for all

{u : u ∈ Υ}, it is equivalent to inference without occlusion reasoning.

Consider the BP message sent from lj to (li, zi) in message passing. At this point,

we already have a pseudo-marginal P (l̂j |I)) (it is the true marginal P (lj |I) if the un-

derlying graph structure is a tree, and the message is passed from the root to the leaves).

If li lies in front of lj (remember that we known the depth order), the BP message

µj,i(u)(zi(u)) is uninformative. If li is occluded and lj is the only potentially occlud-

ing part, we firstly determine an approximation to the marginal occlusion probability

νi(u) ≈ Pr[zi(u) = 0]. If we think of P (l̂j |I) as a 3D image (x, y, θ), νi(u) (which can

be thought as a 2D image) can be efficiently calculated by convolving P (l̂j |I) with ro-

tated version of a uniform rectangle (with size proportional to the size of lj) filter, then

summing over θ dimension. Then the BP approximation to li can be written in terms of

these marginal occlusion probabilities (see [18] for the rationale behind (15)):

P (I|li) ∝
∏

u∈Ω(li)

[

νi(u) + (1− νi(u))

(

Pli(u)(f(Iu))

Pbg(u)(f(Iu))

)]

(15)

=
∏

u∈Ω(li)

[

νi(u) + (1 − νi(u)) exp
(

βi(u)f(Iu)
)]

(16)

≈
∏

u∈Ω(li)

[

exp
((

1− νi(u)

)

βi(u)f(Iu)
)]

(17)

= exp





∑

u∈Ω(li)

((

1− νi(u)

)

βi(u)f (Iu)
)



 (18)

= exp (βigi(I(li), νi)) (19)

where gi(I(li), νi) is a function similar to fi(I(li)), but instead of returning 1, it returns

a fractional number (1 − νi(u)) at pixel u if Iu is an edge point. The approximation in

(17) is based on the fact that absolute values of βi(u) are usually small (e.g., less than

0.6 in our experiments). When |x| is small, exp(x) can be approximated by 1+x based

on the truncated Taylor expansion of exp(x).
Unlike previous methods [18, 15] which handle occlusion reasoning using sam-

pling, our final result (19) has a surprisingly simple form. It can be efficiently calcu-

lated by first getting gi(I(li), νi) through a simple dot-product between f(I) (a binary



2D edge map of the whole image I) and (1− νi) (a 2D image of occlusion marginals),

then convolving gi with rotated versions of βi. The dot-product has the nice intuition

of discounting the image evidences by their occlusion variables. Our method can be

applied efficiently and exhaustively over all the image pixel locations. This is due to the

convolution trick. However, if the structure of the graphical model is not a tree, one has

to use loopy belief propagations. In that case, the convolution trick is no longer valid,

since the message stored at a node is no longer in a simple form that allows the deriva-

tion of (19) to go through. This further justifies the advantage of using tree-structured

models.

6 Experiments

CMU MoBo dataset: We first test our algorithm on the rescaled versions of side-view

persons of CMU mobo dataset [4] for the occlusion reasoning. Since people’s right arm

in this dataset is almost always occluded, we only try to infer one arm. We use the

background subtraction masks that come with this dataset to remove the edges found in

the background.

We use the two tree structures shown in Fig. 4. The first tree captures the kine-

matic spatial constraint. The second tree captures the occlusion relationships between

the left and right legs. Inference in the second tree uses the message passing algorithm

described in Sect. 5. Learning the model parameters is a bit tricky. If we use CMU

mobo dataset for training, we will probably end up with a strong spatial prior specifi-

cally tuned to side-view walking. Instead, we learn the model parametersΘ = {αi, βi}
using the same training set in our second experiment (see below). That dataset contains

images of people with a variety of poses. We manually set the weights of these two trees

to be equal, since we do not have appropriate datasets with ground truths, and we do

not want to learn the parameters from the mobo dataset. In principle, this parameter can

be learned from some labeled dataset where the relative depth order of parts is known.

Some of the sample results are shown in Fig. 5. We can see that the single tree

model tends to put the legs on top of each other. But our method correctly infers the

configurations of both legs. To quantify the results, we manually label 300 mobo images

as ground truths and measure their perplexity (or negative log-probability [12]) under

the learned model. Instead of measuring the perplexity for the whole body pose L, we

measure them separately for each body part li(i = 1, 2, ...,K) to emphasize the effect

of occlusion reasoning between two legs. As shown in Table 1, our method achieves

lower perplexity on the lower and upper right legs. The perplexities for other body parts

are not shown in the table since they are the same for both methods. This is because we

have only modeled the occlusion relationships between the legs.

People dataset: We test our algorithm on the people dataset used in previous work [12].

This dataset contains 305 images of people in various poses. First 100 images and their

mirror-flipped versions are used for training, and the remaining 205 images for test-

ing. We manually select three tree structures shown in Fig. 6, although it will be an
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Fig. 4. Two tree structures used on CMU Mobo dataset. We use dashed lines to indicate occlusion

relationships, rather than spatial constraints

Table 1. Quantitative measurement on mobo dataset for the right upper and lower legs. Smaller

perplexities mean better performance

Part Perplexity(two trees) Perplexity(one tree)

ru-leg 32.4939 33.9706

rl-leg 26.7597 33.6693

interesting future work on how to automatically learn the tree structure at each itera-

tion in an efficient way. We visualize the distribution P (L|I) as a 2D image using the

same technique in [12], where the torso is rendered as red, the upper-limbs as green,

the lower-limbs and the head as blue. Some of the parsing results are shown in Fig. 7.

We can see that our parsing results are much clearer than the one using the kinematic

tree. In many images, the body parts are almost clearly visible from our parsing results.

In the results of using the kinematic tree, there are many white pixels, indicating high

uncertainty about body parts at those locations. But with multiple trees, a lot of these

white pixels are cleaned up. It is plausible that if we sample the part candidates li ac-

cording to P (li|I) and use them as the inputs to other pose estimation algorithms (e.g.,

Ren et al. [13]), the samples generated from our parsing results are more likely to be

the true part locations.

7 Conclusion

We have presented a framework for modeling human figures as a collection of tree-

structured models. This framework has the computational advantages of previous tree-

structured models used for human pose estimation. At the same time, it models a richer

set of constraints between body parts. We demonstrate our results on side-walking per-

sons in CMU mobo dataset, and a challenging people dataset with substantial pose

variations.

Human pose estimation is an extremely difficult computer vision problem. The solu-

tion of this problem probably requires the symbiosis of various kinds of visual cues. Our

framework provides a flexible way of modeling dependencies between non-connected

body parts.
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Fig. 5. Sample results on the CMU mobo dataset: (a) original images; (b) results of using one

kinematic tree; (c) results of using multiple trees for occlusion reasoning
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Fig. 6. Three tree structures used on people dataset
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Fig. 7. Sample results on the people dataset: (a) original images; (b) results of using one kinematic

tree; (c) results of using multiple trees
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