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ABSTRACT
The multiple constant multiplications (MCM) problem, that
is defined as finding the minimum number of addition and
subtraction operations required for the multiplication of mul-
tiple constants by an input variable, has been the subject of
great interest since the complexity of many digital signal
processing (DSP) systems is dominated by an MCM opera-
tion. This paper introduces a variant of the MCM problem,
called multiple tunable constant multiplications (MTCM)
problem, where each constant is not fixed as in the MCM
problem, but can be selected from a set of possible con-
stants. We present an exact algorithm that formalizes the
MTCM problem as a 0-1 integer linear programming (ILP)
problem when constants are defined under a number repre-
sentation. We also introduce a local search method for the
MTCM problem that includes an efficient MCM algorithm.
Furthermore, we show that these techniques can be used
to solve various optimization problems in finite impulse re-
sponse (FIR) filter design and we apply them to one of these
problems. Experimental results clearly show the efficiency
of the proposed methods when compared to prominent al-
gorithms designed for the MCM problem.

1. INTRODUCTION
Multiplication of constant(s) by data input(s) is a ubiq-

uitous operation and performance bottleneck in many DSP
systems, such as fast Fourier transforms (FFTs), discrete
cosine transforms (DCTs), and FIR filters, as shown in Fig-
ure 1. Since the implementation of a multiplication opera-
tion in hardware is expensive in terms of area, delay, and
power dissipation and the filter coefficients are determined
beforehand by the DSP algorithms, the multiplier block of
an FIR filter is generally realized using addition/subtraction
and shift operations. Note that shifts can be implemented
using only wires that represent no hardware cost. Thus, the
fundamental optimization problem, called the MCM prob-
lem [15], is defined as: given 𝑁 constants to be multiplied
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Figure 1: Transposed form FIR filter design.

by an input variable, find the minimum number of adders
and subtracters that realize these constant multiplications.
Over the years many efficient algorithms have been intro-

duced for the MCM problem [1, 2, 7, 11, 12, 13, 15]. Al-
though they are equipped with different search techniques
and look for a solution in different search spaces, their com-
mon feature is the partial product sharing which signifi-
cantly reduces the number of operations. However, they
assume that the constants are fixed and cannot be changed,
which does not directly lend these algorithms to be applied
to various optimization problems in FIR filter design [3, 9,
14]. In these problems, the aim is to find a set of filter
coefficients that leads to a design including minimum num-
ber of adders/subtracters, satisfying constraint(s) related to
the filter characteristics. The algorithms proposed for these
problems [3, 9, 14] search a solution in intervals of floating
point/integer numbers determined for each coefficient. In
order to find a solution very close to the global minimum
on these optimization problems, we introduce the MTCM
problem where a constant to be multiplied by a variable
is chosen from a set of possible constants. It is defined as:
given 𝑁 sets consisting of constants, 𝑆0, 𝑆1, . . . , 𝑆𝑁−1, select
one constant from each set 𝑆𝑖, with 0 ≤ 𝑖 ≤ 𝑁−1, such that
the 𝑁 constant multiplications require minimum number of
adders/subtracters. In this paper, we present an exact com-
mon subexpression elimination (CSE) algorithm that for-
malizes the MTCM problem as a 0-1 ILP problem when con-
stants are defined under a particular number representation.
We also propose a local search method which incorporates
an efficient graph-based (GB) MCM algorithm [15]. Further-
more, we describe how these algorithms can be adapted to
handle an optimization problem in FIR filter design. Exper-
imental results indicate that the proposed algorithms yield
MCM and filter designs with significantly less number of op-
erations compared to those obtained by MCM algorithms.

2. BACKGROUND
This section presents the background concepts, an overview

on algorithms proposed for the shift-adds design of constant
multiplications, and filter design optimization problems.
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2.1 Number Representation
The binary representation decomposes a number in a set

of additions of powers of two. The canonical signed digit
(CSD) representation [12] is a signed digit system using the
digit set {1, 0, 1}, where 1 denotes -1, and verifies the follow-
ing properties: i) two nonzero digits are not adjacent; ii) the
number of nonzero digits is minimum. The minimal signed
digit (MSD) representation [13] is obtained by dropping the
first property of CSD. Thus, a constant may have several
representations under MSD, including its CSD representa-
tion, but all with a minimum number of nonzero digits.
As an example, consider 47 defined in seven bits. Its bi-

nary representation, 0101111, includes 5 nonzero digits. It
is represented as 1010001 in CSD and both 1010001 and
0110001 denote 47 in MSD using 3 nonzero digits.

2.2 0-1 Integer Linear Programming
The 0-1 ILP problem is the minimization or the maxi-

mization of a linear cost function subject to a set of linear
constraints and is generally defined as follows1:

Minimize w𝑇 ⋅ x (1)

Subject to A ⋅ x ≥ b, x ∈ {0, 1}𝑛 (2)

In (1), 𝑤𝑗 in w is an integer value associated with each of
𝑛 variables 𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑛, in the cost function, and in (2),
A⋅x ≥ b denotes a set of𝑚 linear constraints where b ∈ ℤ

𝑚

and A ∈ ℤ
𝑚 × ℤ

𝑛.

2.3 Multiplierless Constant Multiplications
A straightforward way of realizing the constant multipli-

cations under a shift-adds architecture, called digit-based re-
coding (DBR) [8], is first to define the constants under a par-
ticular number representation, and second, for the nonzero
digits in the representation of the constant, is to shift the in-
put variable according to the digit positions and add/subtract
the shifted variable with respect to the digit values. As a
simple example, consider the constant multiplications 39𝑥
and 83𝑥. Their decompositions in CSD are listed as follows:

39𝑥 = (101001)𝐶𝑆𝐷𝑥 = 𝑥≪ 5 + 𝑥≪ 3− 𝑥
83𝑥 = (1010101)𝐶𝑆𝐷𝑥 = 𝑥≪ 6 + 𝑥≪ 4 + 𝑥≪ 2− 𝑥

which require 5 operations, as shown in Figure 2(a).
The complexity of an MCM design can be further re-

duced by sharing the common partial products among the
constant multiplications. The algorithms designed for the
MCM problem can be categorized in two classes as CSE
methods [1, 11, 12, 13] and GB techniques [2, 7, 15]. The
CSE algorithms generally find the most common subexpres-
sions among the constant multiplications when all possible
subexpressions are extracted from the representations of the
constants. The GB methods are not limited to any partic-
ular number representation and aim to find intermediate
constants that enable to realize the constant multiplications
with the minimum number of operations. They consider a
large number of alternative realizations of a constant and ob-
tain significantly better solutions than the CSE algorithms.
Returning to our example, the exact CSE algorithm [1]

under CSD finds 5𝑥 = (101)𝐶𝑆𝐷𝑥 as a common subexpres-

1
The maximization objective can be easily converted to a minimiza-

tion objective by negating the cost function. Less-than-or-equal and
equality constraints are accommodated by A ⋅ x ≤ b ⇔ −A ⋅ x ≥ −b
and A ⋅ x = b ⇔ (A ⋅ x ≥ b) ∧ (A ⋅ x ≤ b), respectively.
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Figure 2: Shift-adds implementations of 39𝑥 and 83𝑥:
(a) with the DBR technique [8]; (b) with the algo-
rithm of [1]; (c) with the algorithm of [2].

sion and obtains a solution with 4 operations (Figure 2b).
The exact GB algorithm [2] finds a minimum solution with
3 operations (Figure 2c). Note that the CSE algorithm of [1]
cannot realize 83𝑥 as the GB algorithm of [2].
Rather than the design of fixed constant multiplications

39𝑥 and 83𝑥, suppose that the constants can be chosen
from 𝑆0 = {38, 39, 40} and 𝑆1 = {82, 83, 84}, respectively. A
straightforward way of finding a minimum solution requires
the application of the exact GB algorithm [2] to all possible
nine MCM instances2. In this case, a minimum solution con-
sists of 2 operations where 40𝑥 = 5𝑥≪ 3 and 82𝑥 = 41𝑥≪ 1
are selected from 𝑆0 and 𝑆1, respectively and 5𝑥 and 41𝑥 are
realized as 5𝑥 = 𝑥 ≪ 2 + 𝑥 and 41𝑥 = 5𝑥 ≪ 3 + 𝑥, respec-
tively. Note that the flexibility in selection of constants can
reduce the required number of operations significantly.

2.4 Related Work
The exact CSE algorithms of [1, 11] formalize the MCM

problem as a 0-1 ILP problem. They define the constants
under a number representation and extract all possible im-
plementations of constant multiplications from the represen-
tations of constants. The prominent CSE heuristics of [12,
13] iteratively find the most common subexpressions and re-
place them in constant multiplications.
The exact GB algorithms of [2] search a minimum solu-

tion in breadth-first and depth-first manners. The approxi-
mate GB algorithms of [7, 15] include two parts, optimal and
heuristic. In their optimal parts, each constant, that can be
implemented with a single operation, is synthesized. If there
exist unimplemented elements left, then they switch to their
heuristic parts where the required intermediate constants
are found. The RAG-n algorithm [7] initially chooses a sin-
gle unimplemented constant with the smallest single coeffi-
cient cost [6] and then, synthesizes it with a single operation
including one(two) intermediate constant(s) that has(have)
the smallest value. The Hcub algorithm [15] selects a single
intermediate constant that yields the best cumulative benefit
over all unimplemented constants for their implementation.
To the best of our knowledge, for the MTCM problem,

there is only the algorithm of [9] that exhaustively considers
all possible combinations of constants and applies Hcub [15]
to each set of constants. However, it can only be applied
to the MTCM instances consisting of small number of con-
stants due to the exponential increase in the search space.

2
Given 𝑆0, 𝑆1, . . . , 𝑆𝑁−1, the number of all possible MCM instances

is
∏𝑁−1

𝑖=0 ∣𝑆𝑖∣. If each set has 𝑛 constants, we have 𝑛𝑁 combinations.
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2.5 Filter Design Optimization Problems
The frequency response of an FIR filter is computed as:

𝐻(𝑤) =

𝑁−1∑

𝑖=0

ℎ𝑖𝑒
−𝑗𝑤𝑖

where 𝑁 is the filter length, h = {ℎ0, . . . , ℎ𝑁−1} ∈ ℝ
𝑁 is

the actual vector of filter coefficients, and 𝑤 ∈ ℝ is the
frequency in radians. As shown in [9], the absolute error
in the frequency response is bounded by the 1-norm of the
coefficient vector error regardless of the frequency, given as3:

∣∣𝐻(𝑤)∣ − ∣𝐻 ′(𝑤)∣∣ ≤∣
𝑁−1∑

𝑖=0

(ℎ𝑖 − ℎ′𝑖)𝑒−𝑗𝑤𝑖∣

≤
𝑁−1∑

𝑖=0

∣ℎ𝑖 − ℎ′𝑖∣ = ∣∣h − h′∣∣1

where h′ denotes the ideal filter coefficients. Thus, the filter
design optimization (FDO) problem under a tolerable error
can be defined as: given the ideal set of filter coefficients
h′ and a tolerable error 𝜖 > 0, find the actual set of filter
coefficients h that yields an FIR filter design with minimum
number of adders/subtracters, satisfying ∣∣h − h′∣∣1 ≤ 𝜖.
In a variant of this problem [3], the zero-phase frequency

response of the FIR filter and its specifications (the nor-
malized pass-band (𝑤𝑝) and stop-band (𝑤𝑠) frequencies and
the maximum allowed pass-band (𝛿𝑝) and stop-band (𝛿𝑠)
ripples) are considered. Thus, it is defined as finding the
actual set of filter coefficients that does not violate the fil-
ter characteristics and yields an FIR filter design including
minimum number of adders/subtracters. Also, an impor-
tant FDO problem [14] is to find the actual set of filter
coefficients that minimizes the normalized peak ripple and
the complexity of the FIR filter design.
In this paper, the FDO problem under a tolerable error is

considered as an application for the algorithms proposed for
the MTCM problem. Given the filter specifications (𝑁 , 𝑤𝑝,
𝑤𝑠, 𝛿𝑝, and 𝛿𝑠), we first find the ideal set of filter coefficients
h′ that respects the filter characteristics using a linear pro-
gramming tool. Second, given the tolerable error 𝜖 > 0 and
taking into account the error constraint ∣∣h − h′∣∣1 ≤ 𝜖, we
compute the lower and upper bounds of each coefficient, ℎ𝑙𝑖
and ℎ𝑢𝑖 , as ℎ

𝑙
𝑖 = ℎ

′
𝑖−𝜖 and ℎ𝑢𝑖 = ℎ′𝑖+𝜖, respectively. Third, we

compute the minimum quantization (𝑄) value that is used to
convert the floating point coefficients to integers, respecting
the error constraint. Thus, each set 𝑆𝑖 associated with the
coefficient ℎ𝑖 consists of integers between 𝑟𝑜𝑢𝑛𝑑(ℎ

𝑙
𝑖 ⋅2𝑄) and

𝑟𝑜𝑢𝑛𝑑(ℎ𝑢𝑖 ⋅2𝑄). The reason on finding the minimum 𝑄 value
is that larger constants yield a greater number of operations
in the multiplier block of the FIR filter and lead to a greater
number of D flip-flops and larger adders in the register-add
block with respect to smaller constants (Figure 1).

3. THE EXACT CSE ALGORITHM
The exact CSE algorithm consists of four main steps:

i) generation of the implementations of constants, ii) con-
struction of a Boolean network, iii) formalization of the 0-1
ILP problem, and iv) finding the minimum solution. These
steps are described in detail next.

3
1-norm of a vector y is computed as ∣∣y∣∣1 =

∑𝑁−1
𝑖=0 ∣𝑦𝑖∣.

83 = (1000000)𝐶𝑆𝐷 + (0010101)𝐶𝑆𝐷 = 1 ≪ 6 + 19

83 = (0010000)𝐶𝑆𝐷 + (1000101)𝐶𝑆𝐷 = 1 ≪ 4 + 67

83 = (0000100)𝐶𝑆𝐷 + (1010001)𝐶𝑆𝐷 = 1 ≪ 2 + 79

83 = (0000001)𝐶𝑆𝐷 + (1010100)𝐶𝑆𝐷 = −1 + 21 ≪ 2

83 = (1010000)𝐶𝑆𝐷 + (0000101)𝐶𝑆𝐷 = 5 ≪ 4 + 3

83 = (1000100)𝐶𝑆𝐷 + (0010001)𝐶𝑆𝐷 = 17 ≪ 2 + 15

83 = (1000001)𝐶𝑆𝐷 + (0010100)𝐶𝑆𝐷 = 63 + 5 ≪ 2

𝑃1 = {(19), (67), (79), (21), (5, 3), (17, 15), (63, 5)}
Figure 3: Implementations of 83 under CSD.

3.1 Generation of Constant Implementations
Given 𝑆0, 𝑆1, . . . , 𝑆𝑁−1, consisting of integer constants,

the algorithm first generates a set called 𝐶 (initially includ-
ing 0 and 1 which are labeled as implemented4) that will
contain all the constants to be considered. Then, for each
set 𝑆𝑖, it converts each of its elements to a positive and odd
integer, adds it to 𝐶 without a repetition, and labels it as
unimplemented. An empty set of sets, called 𝑃 , that will
include all partial terms required for the realization of each
element of 𝐶, is also generated. The part of the algorithm,
where the partial terms are found, is as follows:

1. Take an unimplemented element from 𝐶, 𝑐𝑗 .
2. Find an operation that implements 𝑐𝑗 ;

(a) Convert the inputs of the operation to positive
and odd integers, determine the non-repeated par-
tial terms that are not equal to 1, and store them
in an array called Iarray. Note that Iarray may
be empty or it may contain a single partial term
or a pair of partial terms.

(b) If Iarray is empty, then make 𝑃𝑗 empty and go to
Step 5. In this case, 𝑐𝑗 can be implemented with
an operation whose inputs are 1.

(c) If Iarray is not empty, check each element of 𝑃𝑗 ;

i. If 𝑃𝑗(𝑘) dominates5 Iarray, go to Step 3.
ii. If Iarray dominates 𝑃𝑗(𝑘), delete 𝑃𝑗(𝑘).

(d) Add Iarray to 𝑃𝑗 .

3. Repeat Step 2 until all possible implementations of 𝑐𝑗
are considered.

4. Add all the partial terms in 𝑃𝑗 to 𝐶 if they are not in
𝐶 and label them as unimplemented.

5. Label 𝑐𝑗 as implemented and repeat Step 1 until all
elements in 𝐶 are labeled as implemented.

Observe that the set C is augmented with partial terms
that are required for the implementation of constants in later
iterations of the algorithm. Note that in Step 2 of the al-
gorithm, the implementations of a constant 𝑐𝑗 are found
by decomposing the nonzero digits in the representation of
𝑐𝑗 into two partial terms. As an example, consider 83 de-
fined under CSD, (1010101)𝐶𝑆𝐷. Figure 3 presents all of its
possible implementations extracted from its CSD represen-
tation. Note that the duplications of implementations, such
as (5 ≪ 4) + 3 = 3 + (5 ≪ 4), are not listed in this figure.
Observe that the partial terms required for the implemen-

tation of 83 are 3, 5, 15, 17, 19, 21, 63, 67, and 79, and there
are four single and three pairs of partial terms, as shown

4
The variable that the constants are multiplied with is denoted by 1.

5
A dominates B, if 𝐴 ∩ 𝐵 = 𝐴.
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in 𝑃1. After the implementations of 83 are found, these
partial terms are added to 𝐶 without repetition and their
implementations are found in a similar way.
Note that, in Step 2b of the algorithm, we determine that

the implementation of a constant requires the minimum cost,
i.e., a single operation whose inputs are 1 or the shifted ver-
sion of 1. In Step 2c, we avoid the repetition of a single
partial term or a pair of partial terms, and remove the redun-
dant partial terms, determined by the dominance rule [5].
The algorithm can handle the constants under binary,

CSD, or MSD. In the case of MSD, we consider all the repre-
sentations of the constant while finding its implementations.

3.2 The Boolean Network
The implementations of constants are represented in a

Boolean network that includes only and and or gates. While
an or gate gathers all possible partial terms required for the
implementation of a constant, an and gate combines the ele-
ments of a pair of partial terms, indicating that both partial
terms are required for the implementation of the constant.
The Boolean network is constructed as follows:

1. For each constant in 𝐶, 𝑐𝑗 , except 0 and 1, if its asso-
ciated set 𝑃𝑗 is not empty, then generate an or gate
corresponding to the constant 𝑐𝑗 , 𝑂𝑅𝑐𝑗 . Otherwise,
assign 𝑐𝑗 as a primary input of the network.

2. For each 𝑃𝑗 , that is not empty, if it includes a pair
of partial terms, 𝑎 and 𝑏, then generate an and gate
corresponding to this pair, 𝐴𝑁𝐷𝑎&𝑏, and assign its
output to the input of 𝑂𝑅𝑐𝑗 . If it includes a single
partial term, i.e., a primary input of the network or
an or gate output, then assign it to the input of 𝑂𝑅𝑐𝑗 .

The optimization variables of the 0-1 ILP problem are as-
sociated with the elements of 𝐶. In order to add them into
the network, for each or gate denoting a constant 𝑐𝑗 , 𝑂𝑅𝑐𝑗 ,
we generate a 2-input and gate, 𝐴𝑁𝐷𝑐𝑗 , where one of its in-
puts is the output of 𝑂𝑅𝑐𝑗 and the other is the optimization
variable associated with 𝑐𝑗 , 𝑂𝑃𝑇𝑐𝑗 . Each primary input of
the network denoting a constant is also represented with an
optimization variable. Figure 4 presents the Boolean net-
work constructed for the implementations of 83 under CSD.
Furthermore, for each set 𝑆𝑖, we generate an or gate,

𝑂𝑅𝑆𝑖 , that gathers its elements 𝑠𝑖𝑘, indicating that only
one of them must be synthesized. For an MTCM problem
without an error constraint, the inputs of this or gate are
the outputs of and gates including an optimization variable
or the primary input of the network, which are associated
with the positive and odd version of 𝑠𝑖𝑘. For an MTCM
problem with an error constraint or an FDO problem under
a tolerable error, the inputs of the or gate 𝑂𝑅𝑆𝑖 are the
outputs of 2-input and gates generated for each element of
𝑆𝑖, 𝐴𝑁𝐷𝑠𝑖𝑘@𝑆𝑖 . One of the inputs of this and gate is the
output of an and gate including an optimization variable or
the primary input of the network, which are associated with
the positive and odd version of 𝑠𝑖𝑘. The other is a variable
denoted by 𝑉 𝐴𝑅𝑠𝑖𝑘@𝑆𝑖 . The reason behind including this
and gate into the network is to differentiate the impact of
each element in each set (𝑠𝑖𝑘) on the error constraint since
the same constant can be in more than one set. Figure 5
depicts this part of the network for the set 𝑆1 = {82, 83, 84}.
Observe from Figure 5 that when 𝑠𝑖𝑘 is 1 or the negative

or shifted version of 1, rather than using a 2-input and gate,
the variable 𝑉 𝐴𝑅𝑠𝑖𝑘@𝑆𝑖 can be assigned to 𝐴𝑁𝐷𝑠𝑖𝑘@𝑆𝑖 .
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Figure 4: Implementations of 83 under CSD in a
Boolean network including optimization variables.
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Figure 5: The part of the network for the elements
of 𝑆1 = {82, 83, 84}.
This is because the realization of the input, that the con-
stants are multiplied with, does not require any hardware
cost, implying that a variable related to the constant 1 in
the 0-1 ILP problem is always assumed to be 1. The same
simplification can be done when 𝑠𝑖𝑘 is equal to 0 due to
the same reason. However, in an FDO problem under a
tolerable error, for a filter coefficient equal to zero, no addi-
tion operation is required in the multiplier block and in the
register-add block (Figure 1). In this case, we generate an
optimization variable for an element of each set 𝑠𝑖𝑘 equal to
0, 𝑂𝑃𝑇0@𝑆𝑖 , and assign it to the variable 𝑉 𝐴𝑅0@𝑆𝑖 .

3.3 0-1 ILP Formalization
The cost function of the 0-1 ILP problem is constructed

as a linear function of optimization variables where the cost
value of each optimization variable is 1. In an FDO problem
under a tolerable error, the cost value of 𝑂𝑃𝑇0@𝑆𝑖 , if exists,
is set to -1 in order to model the savings of adders in the
register-add block. Then, for each or gate associated with
a set of constants, 𝑂𝑅𝑆𝑖 , we generate an equality constraint
which indicates that only one of its inputs must be set to
1. For our example in Figure 5, this equality constraint is
𝐴𝑁𝐷82@𝑆1 + 𝐴𝑁𝐷83@𝑆1 + 𝐴𝑁𝐷84@𝑆1 = 1. For the rest of
the logic gates in the Boolean network, we find the conjunc-
tive normal form (CNF) formulas of each gate and express
each clause of the CNF formulas as a linear inequality [4].
For example, a 2-input and gate, 𝑐 = 𝑎 ∧ 𝑏, is translated
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to CNF as (𝑎+ 𝑐)(𝑏+ 𝑐)(𝑎+ 𝑏+ 𝑐) and converted to linear
constraints as 𝑎− 𝑐 ≥ 0, 𝑏− 𝑐 ≥ 0, −𝑎− 𝑏+ 𝑐 ≥ −1.
For the error constraint in an FDO problem under a toler-

able error, we generate a linear less-than-or-equal inequality,

i.e.,
∑𝑁−1

𝑖=0

∑∣𝑆𝑖∣
𝑘=1 ∣𝑠𝑖𝑘/2𝑄 − ℎ′𝑖∣ ⋅ 𝑉 𝐴𝑅𝑠𝑖𝑘@𝑆𝑖 ≤ 𝜖, where 𝑄 is

the quantization value and ℎ′𝑖 is the ideal filter coefficient in
floating point, determined as described in Section 2.5. Also,
𝑉 𝐴𝑅𝑠𝑖𝑘@𝑆𝑖 is the variable associated with a constant 𝑠𝑖𝑘
that can be selected from 𝑆𝑖 (Figure 5).

3.4 Finding the Minimum Solution
A generic 0-1 ILP solver will search for the minimum value

of the cost function by satisfying the constraints that repre-
sent how constants are implemented and by respecting the
error constraint if available. The variables 𝐴𝑁𝐷𝑠𝑖𝑘@𝑆𝑖 set
to 1 will indicate which element is to be chosen from the set
𝑆𝑖. The optimization variables denoting constants, 𝑂𝑃𝑇𝑐𝑗 ,
set to 1 will determine which constants are to be synthe-
sized. Each of these constants are realized using a single
operation whose inputs are 1 or one of these constants.

4. THE LOCAL SEARCH ALGORITHM
Since there are instances that the exact CSE algorithm

cannot handle due to the NP-completeness of the MTCM
problem and its solutions are limited to a number represen-
tation, we also introduce a local search algorithm, LSMTCM,
that is equipped with an efficient GBMCM algorithm, called
Hcub [15]. Its pseudo-code is given in Figure 6.
The LSMTCM algorithm takes 𝑁 sets consisting of integer

constants as input and returns a set of operations with the
fewest number of operations, denoted as the best solution
(𝐵𝑆) in Figure 6. First, the FixConstants function is ap-
plied to determine an initial search point (𝐼𝑆𝑃 ) by selecting
a constant from each set. In this function, for each set 𝑆𝑖,
we find the implementation cost of each constant of 𝑆𝑖 in
terms of the number of operations [6] and assign the one
that has the minimum cost to 𝐼𝑆𝑃 (𝑖). Then, we apply the
ComputeImpCost function to 𝐼𝑆𝑃 , find a solution with the
fewest number of operations using Hcub, and store the set of
operations to 𝐵𝑆 and its cost value in terms of the number
of operations to 𝑏𝑐𝑜𝑠𝑡. In the infinite loop of LSMTCM (lines
3-25), since the order that we traverse on the 𝑁 sets affects
the solution of LSMTCM, we first randomly generate a dif-
ferent ordering using the DetermineOrder function. Then,
in an iterative loop (lines 5-18), we traverse each element of
each set, 𝑆𝑂(𝑗)(𝑘), and replace the related element of 𝐼𝑆𝑃
with this constant. On this new set of constants, 𝑁𝐼𝑆𝑃 , we
first find the lower bound on the number of operations us-
ing the ComputeLB function [10]. If this lower bound is not
greater than the cost of the best solution found so far (𝑏𝑐𝑜𝑠𝑡),
then we apply the ComputeImpCost function to 𝑁𝐼𝑆𝑃 . If
a solution with less number of operations than that of 𝐵𝑆
is obtained, we update 𝐵𝑆 and 𝑏𝑐𝑜𝑠𝑡, and replace the re-
lated element of 𝐼𝑆𝑃 with this constant. The iterative loop
terminates when no better solution is obtained during the
traverse on each element of each set. In this case, we decide
that a local minima is reached and we apply the RandomFix
function to escape from this point by randomly generating a
new 𝐼𝑆𝑃 . The infinite loop terminates whenever the num-
ber of iterations in the infinite loop is 30 or the total number
of Hcub runs is 30𝑁 .6

6
These values were determined empirically based on experiments.

LSMTCM(𝑆0, 𝑆1, . . . , 𝑆𝑁−1)

1: 𝐼𝑆𝑃 = FixConstants(𝑆0, 𝑆1, . . . , 𝑆𝑁−1)
2: (𝐵𝑆, 𝑏𝑐𝑜𝑠𝑡) = ComputeImpCost(𝐼𝑆𝑃 )
3: while 1 do
4: 𝑂 = DetermineOrder(𝑁)
5: repeat
6: 𝑤2𝑙𝑜𝑜𝑝 = 0
7: for 𝑗 = 0 𝑡𝑜 𝑁 − 1 do
8: for 𝑘 = 1 𝑡𝑜 ∣𝑆𝑂(𝑗)∣ do
9: if 𝑆𝑂(𝑗)(𝑘) ∕= 𝐼𝑆𝑃 (𝑂(𝑗)) then
10: 𝑁𝐼𝑆𝑃 = 𝐼𝑆𝑃
11: 𝑁𝐼𝑆𝑃 (𝑂(𝑗)) = 𝑆𝑂(𝑗)(𝑘)
12: 𝑙𝑏𝑐𝑜𝑠𝑡 = ComputeLB(𝑁𝐼𝑆𝑃 )
13: if 𝑙𝑏𝑐𝑜𝑠𝑡 < 𝑏𝑐𝑜𝑠𝑡 then
14: (𝐴𝑆, 𝑐𝑜𝑠𝑡) = ComputeImpCost(𝑁𝐼𝑆𝑃 )
15: if 𝑐𝑜𝑠𝑡 < 𝑏𝑐𝑜𝑠𝑡 then
16: 𝑤2𝑙𝑜𝑜𝑝 = 1, 𝐵𝑆 = 𝐴𝑆, 𝑏𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡
17: 𝐼𝑆𝑃 (𝑂(𝑗)) = 𝑆𝑂(𝑗)(𝑘)
18: until 𝑤2𝑙𝑜𝑜𝑝 = 0
19: if Terminating conditions are not met then
20: (𝐼𝑆𝑃 ) = RandomFix(𝐼𝑆𝑃, 𝑆0, 𝑆1, . . . , 𝑆𝑁−1)
21: (𝐴𝑆, 𝑐𝑜𝑠𝑡) = ComputeImpCost(𝐼𝑆𝑃 )
22: if 𝑐𝑜𝑠𝑡 < 𝑏𝑐𝑜𝑠𝑡 then
23: 𝐵𝑆 = 𝐴𝑆, 𝑏𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡
24: else
25: return 𝐵𝑆

Figure 6: The local search algorithm.

In an MTCM problem with an error constraint or an FDO
problem under a tolerable error, the FixConstants and Ran-
domFix functions are modified not to violate the error con-
straint while fixing and changing the value of a constant in
an 𝐼𝑆𝑃 , respectively. After a new set of constants 𝑁𝐼𝑆𝑃
is generated (line 11), we also check if its constants satisfy
the error constraint. In a FDO problem under a tolerable
error, the ComputeImpCost function is modified to compute
the total number of adders/subtracters in the whole filter,
i.e., both in the multiplier and register-add blocks. While
Hcub is applied to find a solution with the fewest number
of operations in the multiplier block, the number of adders
in the register-add block is computed as 𝑁 − 𝑛𝑐𝑧 − 1 where
𝑛𝑐𝑧 is the number of filter coefficients equal to 0.

5. EXPERIMENTAL RESULTS
This section introduces the results of the proposed algo-

rithms and compares them with those of prominent algo-
rithms designed for the MCM problem.
As the first experiment set, we used randomly generated

14-bit constants. The number of constants (𝑁) ranges from
10 to 100 and we generated 30 instances for each 𝑁 , a to-
tal of 300 instances. The solutions of these MCM instances
were obtained using the exact CSE [1] and Hcub [15] algo-
rithms. Each MCM instance was converted to an MTCM
instance, where, for each constant 𝑐𝑖, the set 𝑆𝑖 consists of
the integer values between 𝑐𝑖−2 and 𝑐𝑖+2. Also, from each
MTCM instance, we generated an MTCM instance with an
error constraint, determined as ∣∣c − c′∣∣1 ≤ 0.2𝑁 where c′

is the set of constants in each original MCM instance. The
proposed algorithms were applied to these MTCM instances.
Table 1 presents the results of algorithms where adder de-

notes the average number of operations and CPU presents
the average CPU time in seconds. Also, gain under the
proposed exact CSE and LSMTCM algorithms stands for the
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Table 1: Summary of results of algorithms on randomly generated instances with 14-bit constants.
MCM instances MTCM instances without an error constraint MTCM instances with an error constraint

N Exact CSE [1] Hcub [15] Exact CSE LSMTCM Exact CSE LSMTCM

adder CPU adder CPU adder gain CPU adder gain CPU adder gain CPU adder gain CPU
10 17.13 13.0 13.97 0.1 11.47 33.07 97.1 10.50 24.82 39.6 13.80 19.46 103.2 11.13 20.29 35.8
20 30.77 27.7 23.63 0.1 19.70 35.97 297.3 18.27 22.71 86.3 23.53 23.51 282.5 19.30 18.34 78.6
30 40.97 33.3 31.77 0.1 25.53 37.67 256.9 24.60 22.56 126.2 30.60 25.31 365.0 26.10 17.84 124.5
40 52.20 49.6 40.90 0.1 31.77 39.14 482.4 31.77 22.33 179.4 38.17 26.88 784.1 33.20 18.83 173.3
50 62.63 47.0 50.40 0.1 37.20 40.61 448.1 37.87 24.87 223.5 45.10 27.99 742.1 39.73 21.16 229.6
60 72.80 59.9 59.87 0.1 44.07 39.47 661.8 44.73 25.28 279.5 52.57 27.79 1217.3 47.00 21.49 282.6
70 83.07 65.5 69.80 0.1 48.23 41.93 590.3 51.13 26.74 339.5 58.27 29.86 1316.4 53.23 23.73 341.9
80 92.23 69.2 79.80 0.1 51.93 43.69 722.8 55.30 30.70 385.9 63.77 30.86 1566.2 58.70 26.44 390.7
90 102.23 75.3 89.67 0.1 57.57 43.69 961.7 61.93 30.93 461.2 70.03 31.50 1973.3 64.67 27.88 451.3
100 111.57 74.8 99.57 0.1 61.67 44.73 1312.1 66.80 32.91 548.6 75.97 31.91 1626.2 70.80 28.89 542.5
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Figure 7: Sizes of 0-1 ILP problems generated by the exact CSE algorithms on 14-bit constants: (a) average
number of variables; (b) average number of constraints; (c) average number of optimization variables.

gain in terms of the number of operations in percentage with
respect to those of the exact CSE [1] and Hcub [15] algo-
rithms, respectively. The algorithms were run on a PC with
Intel Xeon at 2.33GHz and 4GB memory. In the exact CSE
algorithms, the constants were defined under CSD and scip
2.07 was used as a 0-1 ILP solver.
Observe from Table 1 that the Hcub algorithm [15] ob-

tains significantly better solutions on MCM instances in
terms of the number of operations than the exact CSE al-
gorithm [1] since it is not limited to any number represen-
tation. When each constant 𝑐𝑖 to be multiplied by an in-
put variable has the flexibility of being chosen from the set
{𝑐𝑖−2, 𝑐𝑖−1, 𝑐𝑖, 𝑐𝑖+1, 𝑐𝑖+2}, the proposed algorithms lead
to significant reductions in the number of operations with
respect to the algorithms of [1, 15] designed for the MCM
problem. However, the runtime of the proposed algorithms
is significantly increased with respect to these algorithms.
For LSMTCM, this is because Hcub [15] is run so many times
in the local search technique. For the exact CSE algorithm,
this is due to the increased size of the 0-1 ILP problem with
respect to those generated in the exact CSE algorithm of [1],
as shown in Figure 7. Also, observe from Figure 7(c) that
the number of optimization variables in the 0-1 ILP prob-
lems generated for the MTCM problems with and without
an error constraint is the same. However, Figures 7(a)-(b)
show that the number of variables and constraints generated
for an MTCM problem without an error constraint is slightly
less than those generated for an MTCM problem with an er-
ror constraint. This is simply because when there is no error
constraint, there is no need for the variables 𝑉 𝐴𝑅𝑠𝑖𝑘@𝑆𝑖 and
thus, the 2-input AND gates 𝐴𝑁𝐷𝑠𝑖𝑘@𝑆𝑖 illustrated in Fig-
ure 5, as described in Section 3.2.
Also, when there is no error constraint in an MTCM in-

stance, LSMTCM obtains better solutions on instances with

7
The 0-1 ILP solver is available at http://scip.zib.de/

Table 2: Filter specifications.
Filter 𝑁 𝑤𝑝 𝑤𝑠 𝛿𝑝 𝛿𝑠

1 105 0.200 0.240 0.010 0.010
2 131 0.060 0.130 0.002 0.002
3 173 0.150 0.190 0.007 0.007
4 211 0.170 0.200 0.009 0.009
5 325 0.125 0.140 0.005 0.005

small 𝑁 values than the exact CSE algorithm. This is due
to the use of Hcub that considers more implementations of
a constant. However, the exact CSE algorithm finds better
solutions on instances with large 𝑁 values than LSMTCM,
which is due to the greedy search technique used in LSMTCM.
Moreover, when there is an error constraint in an MTCM

instance, as expected, the number of operations obtained by
the proposed algorithms is increased according to the results
obtained on an MTCM instance without an error constraint.
In this case, LSMTCM finds the best solutions since the er-
ror constraint eliminates the promising subexpressions to
be chosen in the exact CSE algorithm. Also, the exact CSE
algorithm requires more CPU time when compared to its re-
sults on MTCM instances without an error constraint, which
is due to the stringent error constraint. The LSMTCM algo-
rithm spends similar CPU time on both MTCM instances
and is faster than the exact CSE algorithm.
Table 2 presents the second experiment set, five low-pass

FIR filters. The results of algorithms on these FIR filters are
presented in Table 3 where 𝑄 presents the minimum quan-
tization value and 𝐸𝑊𝐿 denotes the maximum bitwidth of
integer coefficients. Also, 𝑀𝐴, 𝑆𝐴, and 𝑇𝐴 stand respec-
tively for the number of operations in the multiplier block,
in the register-add block, and in the whole filter. We used
three tolerable error values, namely 0.001, 0.002, and 0.005.
The ideal filter coefficients (h′), the minimum 𝑄 value, and
each set of constants (𝑆𝑖) were determined as described in
Section 2.5. The exact CSE [1] and Hcub [15] algorithms
were applied after the ideal filter coefficients were quantized
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Table 3: Summary of results of algorithms on FIR filter instances.
MCM algorithms MTCM algorithms

Filter 𝜖 Q EWL Exact CSE [1] Hcub [15] Exact CSE LSMTCM

MA SA TA CPU MA SA TA CPU MA SA TA CPU MA SA TA CPU
0.001 15 13 50 104 154 6.7 50 104 154 0.2 44 104 148 241.2 42 104 146 175.6

1 0.002 14 12 40 104 144 2.6 38 104 142 0.1 32 104 136 97.7 31 104 135 189.7
0.005 13 11 32 104 136 0.7 32 104 136 0.1 19 104 123 51.0 19 104 123 330.9
0.001 15 12 46 128 174 5.0 43 128 171 0.2 44 128 172 157.5 40 128 168 113.0

2 0.002 15 12 46 128 174 5.0 43 128 171 0.2 29 118 147 363.3 27 118 145 477.4
0.005 13 10 27 118 145 0.4 27 118 145 0.1 23 112 135 25.7 25 108 133 341.8
0.001 16 14 58 170 228 4.7 57 170 227 0.2 43 170 213 2081.3 43 170 213 742.8

3 0.002 15 13 48 170 218 1.9 47 170 217 0.2 34 168 202 453.6 35 168 203 669.3
0.005 13 11 33 168 201 0.6 33 168 201 0.2 28 168 196 49.3 29 166 195 209.3
0.001 16 14 68 210 278 39.7 65 210 275 0.2 51 208 259 2857.0 53 204 257 852.1

4 0.002 15 13 58 208 266 11.8 56 208 264 0.2 44 202 246 563.1 47 196 243 631.1
0.005 14 12 44 202 246 1.3 44 202 246 0.2 31 186 217 298.2 32 186 218 763.9
0.001 17 15 111 322 433 19.0 109 322 431 0.2 75 320 395 2400.7 79 320 399 2313.1

5 0.002 16 14 91 322 413 4.3 91 322 413 0.2 61 318 379 1430.4 65 318 383 1853.7
0.005 14 12 56 318 374 1.0 56 318 374 0.2 51 316 367 127.5 51 316 367 283.0

to integers. In the exact CSE algorithms, the constants were
defined under CSD and scip 2.0 was used as a 0-1 ILP solver.
Observe from Table 3 that the exact CSE [1] and Hcub [15]

algorithms obtain similar results in terms of the total num-
ber of operations in the whole filter design. This also occurs
on the exact CSE and LSMTCM algorithms designed for the
MTCM problem. However, due to a large number of alterna-
tive constants in each set, they can find significantly better
solutions than the algorithms of [1, 15] where the maximum
gain on the total number of operations in the whole filter is
15% obtained on Filter 2 when 𝜖 is 0.002. Also, observe from
the SA values that the proposed algorithms are capable of
reducing the number of adders in the register-add block by
assigning a 0 value to a filter coefficient, where the maxi-
mum gain is 7.9% obtained on Filter 4 when 𝜖 is 0.005. The
maximum gain on the number of operations in the multiplier
block is 40% obtained on Filter 1 when 𝜖 is 0.005.
However, the proposed techniques require more compu-

tational time than the MCM algorithms due to the larger
search space. It is interesting to note that on some instances,
such as every filter when 𝜖 is 0.005, the exact CSE algorithm
requires less CPU time than LSMTCM. This is because while
the exact CSE algorithm solves a relatively easy problem due
to the smaller 𝑄 value and less stringent error constraint,
LSMTCM searches a solution until the terminating conditions
are met although it finds the best solution earlier. We note
that as the 𝜖 value is increased, as expected, the complexity
of the filter design is decreased. This is primarily because the
𝑄 value is decreased, quantizing the coefficients to smaller
integers. This is secondarily because the number of elements
in each set 𝑆𝑖 is increased, enabling the proposed techniques
to consider more possible constants.

6. CONCLUSIONS
This paper introduced the MTCM problem and proposed

an exact CSE algorithm and a local search method, incorpo-
rating an efficient GB MCM heuristic, for this problem. It
also described the modifications required for the application
of these algorithms to the FDO problem under a tolerable er-
ror. The experimental results indicated that their solutions
lead to less complex MCM and filter designs with respect to
those obtained by prominent MCM algorithms.
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