
Multiple UAV Path Planning using Anytime Algorithms

P. B. Sujit and Randy Beard

Abstract— We address the problem of generating feasible
paths from a given start location to a goal configuration
for multiple unmanned aerial vehicles (UAVs) operating in
an obstacle rich environment that consist of static, pop-up
and moving obstacles. The UAVs have limited sensor and
communication ranges, when they detect a pop-up or a moving
obstacle that is in the collision course with the UAV flight
path, then it has to replan a new optimal path from its
current location to the goal. Determining optimal paths with
short time intervals is not feasible, hence we develop anytime
algorithm using particle swarm optimization that yields paths
whose quality increases with increase in available computation
time. To track the given path by the anytime algorithm in
3D, we developed a new uav guidance law that is based on a
combination of pursuit guidance law and line of sight guidance
law from missile guidance literature. Simulations are carried
out to show that the anytime algorithm produces good paths
in a relatively short time interval and the guidance law allows
the UAVs to track the generated path.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have been
used for various search and surveillance missions. A mission
usually consists of generating a path that the UAV uses
as a reference and follows it. A path can be described as
a set of way-points and the path planning problem is to
produce a set of valid way-points taking the environmental
and physical constraints of the UAVs. Designing a path
planner for multiple UAVs flying at low altitudes in obstacle
rich environments that contains static, pop-up and moving
obstacles is difficult. The difficulty further increases as the
environment is in three dimensions.

For example, consider a mission with multiple UAVs
where, the initial and goal positions for each UAV is given
and the UAVs need to plan optimal de-conflicted paths in the
presence of static and dynamic obstacles. When the UAVs
detect a change in environment then they have to re-plan an
optimal path to their goal configuration. Generating optimal
paths in a short interval of time is difficult hence they need
to produce close to optimal paths. Since, the quality of the
generated path depends on the time available to the UAV for

This work was partially funded by the National Science Foundation
under Information Technology Research Grant CCR-0313056 and by NASA
under STTR contract number NNA04AA19C to Scientific Systems Inc,
and Brigham Young University and by the Air Force Office of Scientific
Research award no. FA9550-04-0209.

P. B. Sujit is a Research Scientist in the Department of Elec-
trical and Computer Engineering, University of Porto, Portugal.
sujit@fe.up.pt

Randy Beard is a Professor in the Department of Electrical and
Computer Engineering, Brigham Young University, Provo, Utah - 84602.
beard@byu.edu

computation, therefore hence we need to develop anytime
algorithms. Anytime algorithms produce solutions for any
given computational time interval and the solutions get better
with increase in available computation time. In this paper,
we develop a path planning algorithm based on particle
swarm optimization (PSO), whose solution quality increases
with increase in the computation time for multiple UAVs
traveling in an obstacle rich environment. The choice of
PSO is based on its low computational overheads and faster
solution convergence compared to GA and other evolutionary
algorithms [1]. Qin et. al. [3] used PSO to improve the
path generated by the Dijkstra shortest path algorithm for a
partitioned environment in 2D with static obstacles. In 3D it
is difficult to partition the configuration space taking pop-up
and dynamic obstacles into account. In this paper, we present
3D path planning algorithm using PSO and take pop-up and
dynamic obstacles into account.

The path planning problem in three dimensional environ-
ment without any obstacles was addressed in [4], [5] and
with only static obstacles in [6]- [8]. Saunders et al. [9] used
RRTs for UAV path planning but do not consider the quality
of the path produced. Ferguson and Stentz [10] develop
anytime RRTs for a single robot traveling in an obstacle rich
environment but in two dimensions. When RRTs are used
in three dimensions, due to availability of larger solution
space, the RRTs can produce high sub-optimal paths, hence
RRTs are not suitable when close to optimal solutions are
needed. All these papers address the issue of path planning,
but address only a subset of the issues that our mission
confronts.

In this paper, we develop a path planning algorithm
for multiple UAVs traversing from a start location to the
goal configuration in the presence of static and dynamics
obstacles. When a new obstacle is detected, then depending
on the time available to generate a new path we execute the
anytime algorithm using PSO that produces a path avoiding
the obstacle. In order to track the desired path, we developed
a new guidance law for the UAVs in three dimension. The
guidance law is based on a combination of pursuit and line
of sight guidance laws from the missile guidance literature.

II. PROBLEM FORMULATION

A. Scenario

We consider a mission where multiple UAVs need to
travel from their assigned start location to goal configurations

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThB11.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2978

 0

50

100

150

200

250

300

350

400

450

500

Start

Goal

(a)

Y

X

Z

V

(b)

Fig. 1. (a) UAV has to determine its optimal de-conflicting path from the
start location to the goal in the presence of static and pop-up obstacles. The
color of the obstacles determines their height as shown in the color bar. (b)
UAV coordinate geometry in three dimensions.

through an environment consisting of obstacles of different
sizes and heights. The UAVs have to design an optimal path
avoiding the obstacles and also other UAVs during flight.
The environment also consists of pop-up obstacles and if the
flight path is on a collision course with the pop-up obstacles
then the UAV has to replan a new optimal path from its
current location to the goal. A typical scenario for one UAV
is shown in Figure 1(a).

B. Assumptions and constraints

We assume that the UAVs are subjected to limited sensor
and communication ranges, physical constraints and have
constant velocity during flight. Since the UAVs have limited
sensor range, they can detect the pop-up obstacles only
within its sensor range. If the obstacle is in the collision
course of the flight path, then the UAV has to change the path
to avoid collision. Depending on the velocity of the UAV, it
can predict the time to collide T c

i (where i represents the ith

UAV), and it needs to determine a new path before T c
i .

We assume that the UAVs have physical constraints in
terms of maximum descent and accent rates, and maximum
turn radius constraints. Although the time to collide is T c

i ,
due to the UAV physical constraints, it has to start its
collision avoidance maneuver much earlier than T c

i , which is
denoted as Tm

i (time to maneuver) and Tm
i < T c

i . Therefore
the time given to the anytime algorithm to produce a feasible
path is Tm

i .

The UAVs are also subject to limited communication
ranges and hence they cannot inform the other UAVs about
their planned path that may be in conflict. In this case
also, the UAVs determine their T c

i and Tm
i and plan a

new path given the time constraint. Designing path planning
algorithms with these constraints in three dimensions is a
difficult problem that we address in this paper.

C. Solution concept

UAVs like Predators or Global Hawk have been used for
surveillance missions. For these missions a pre-defined path
is generated and the UAV has to follow the path. This path
is a sequence of way-points that the UAV uses as a reference
path. Similarly, we also consider a path to be a set of way-
points and optimize their locations to obtain an optimal path
length. However, generating an optimal path with a short
interval of time and in obstacle rich environment is difficult.

Let S be the environment that contains M obstacles and
each obstacle is a cube (as shown in Figure 1(a)). The jth

obstacle is represented as Oj , j = 1, . . . ,M and located at
xo

j , y
o
j with width wo

j , length loj and height ho
j . The free space

F = S \ O is the space available for the UAVs to generate
the optimal path, where O =

⋃M
j=1Oj and ′\′ is the set

difference operator.

Each UAV is represented as Ai, i = 1, . . . , N with start
location as Si = {xs

i , y
s
i , z

s
i } and goal configuration as Gi =

{xf
i , y

f
i , z

f
i }. We assume that a path Pi of agent Ai from Si

to Gi consists of Q−1 number of way-points. Therefore, path
Pi = {W 0

i , . . . ,W
Q
i } and each way-point is represented by

a tuple W k
i = {xw

i , y
w
i , z

w
i }, k = 0, . . . , Q. When k = 0, the

way-point W 0
i represents the start configuration Si and when

k = Q, way-point WQ
i represents the goal configuration Gi.

In order to obtain an optimal path, the way-points W k
i , k =

1, . . . , Q−1 should be optimized such that the path cost Ci is
minimized. While constructing the cost function we should
also take the vertical climb and descent of the way-points.
When the UAV is climbing, it has to spend additional fuel
and hence its cost should be increased, on the other hand
when the UAV is on the descent phase, it spends less fuel
therefore the segment cost should be reduced. Hence, the
path cost Ci is evaluated as

Ci =
Q−1∑
k=0

(||W k
i −W k+1

i ||+ kcVc − kdVd) (1)

where ||W k
i − W k+1

i || is length of path segment between
way-points W k

i and W k+1
i , Vc and Vd represent the vertical

climb and descent of the segment, while kc and kd represent
the gains associated with climb and descent phases.

We use particle swarm optimization (PSO) technique to
determine the optimal path Pi. At the beginning of the
mission we assume that the location of the obstacles, the
number of obstacles and their shapes are known. With this
information the UAV plans a path. If the start locations of
the UAVs are within the communication range then they can
share their plans. If the plans have potential conflict that
can result in a collision then the UAVs need to coordinate
with each other to change their plans and avoid collision.
Let T i

m be the time allowed to compute a new optimal path
before a collision can occur. In that case, we execute the PSO
algorithm with the updated environment for T i

m seconds. The
solution obtained from the time constrained optimization is

2979

the new path Pi. The determination of the solution using
PSO is described in the next section.

III. PARTICLE SWARM OPTIMIZATION SOLUTION

A. Basics of PSO

PSO is a population based stochastic optimization tech-
nique developed by Eberhart and Kennedy [2] that simulates
the social behavior of bird flocks, fish schools, etc. Each
particle in a swarm is a potential solution in the search space.
The particle adjusts its velocity according to its own flying
experiences and its flock’s experiences.

Assume the optimization problem to be of D-dimension,
then each particle in the swarm Ω can be represented as Xl =
(xl1, . . . , xlD), l = 1, . . . ,Ω. The best previous position
attained by the particle is represented as Bl = (bl1, . . . , blD),
and the velocity of the particle is V p

l = (vl1, vl2, . . . , vlD).
The best global position achieved by the swarm is repre-
sented by symbol Γ, and the iteration number is represented
as f . The particles in the swarm are updated according to
the following equation:

vf+1
ld = λ(ωvf

ld + c1r1(bfld − x
f
ld) + c2r2(bfΓd − x

f
ld)),(2)

xf+1
ld = xf

ld + vf+1
ld (3)

where d = 1, . . . , D, r1 and r2 are uniformly distributed
random numbers between [0, 1], c1 and c2 are positive
constants representing cognitive and social parameters, ω is
the inertia weight, and λ is the constriction factor. The role
of inertia weight ω is to create a balance between global
exploration and local exploitation. Initially, it is necessary to
explore the search space and then reduce ω as the solution
reaches the optimum value [1]. The constants c1 and c2 aid
in convergence of the solution. The random parameters r1

and r2 are used to maintain the diversity of the population,
while the constriction factor controls the effect of velocity
on the particles.

B. Implementing PSO for path planning

The PSO algorithm has the ability to explore higher
dimensional solution spaces to generate optimal solutions
given sufficient number of iterations. However, due to lack of
sufficient time to achieve optimal solution, the UAVs have to
settle for the best available solution based on the constrained
computation time. We design an algorithm to generate the
best solutions for a given computation time Tm

i .

We consider a swarm Ω number of particles to determine
the path. Each particle has a dimension D = 3(Q−1), that is,
the path consists of Q−1 way-points and each way-point has
three components. Therefore, the dimension of the particle
is 3(Q−1). The path formed by each particle is evaluated to
determine the cost. If any segment of the path intersects an
obstacle then that path cost is forced to infinity otherwise it

is determined using Equation 1. The implementation of the
anytime algorithm using PSO is described using Algorithm
1.

Algorithm 1 Path planning algorithm using anytime algo-
rithm based on PSO
% Function to determine PSOpath

1: function PSOpath(S, Si, Gi, Tm
i)

2: Initialize: swarm Ω, numParticles, λ, ω, c1, c2
3: bestParticleValue ←∞; bestParticle ← []
4: while t ≤ Tm

i do
5: Pval ← evaluateSwarm(Ω, numParticles);
6: [minParticleValue, minParticleIndex]← min(Pval)
7: if minParticleValue ≤ bestParticleValue then
8: bestParticleValue ← minParticleValue;
9: bestParticle← Ω(minParticleIndex);

10: end if
11: update Ω using Equations 2 and 3
12: update t
13: end while
14: return(bestParticle)

Algorithm 2 Function to evaluate the particles
% Evaluate each particle of the swarm

1: Function cost = evaluateSwarm(Ω, numParticles)
2: for l = 1 to numParticles do
3: cost(l) ← 0;
4: if Any ξd /∈ S, ξd ∈ Ω(l, :) then
5: cost(l) ← ∞;
6: else if Any ξd ∈ O, ξd ∈ Ω(l, :) then
7: cost(l) ← ∞;
8: else
9: for d = 1 : 3 : 3(Q− 1) do

10: if (line([Ω(l, (d : d+2))], [Ω(l, (d+3 : d+5))]) ∈
O then

11: cost(l) ← ∞;
12: else
13: cost(l) ← ||Ω(l, (d : d+ 2)),Ω(l, (d+ 3 : d+

5))||+ kcVc + kdVd;
14: end if
15: end for
16: end if
17: end for

We initialize the Swarm Ω and the constants c1, c2, ω,
and λ. The PSO algorithm uses evaluateSwarm function
(described in Algorithm 2) to determine the cost of a path
that is represented by a particle. For each evaluation, we
check if all the dimensions of the lth particle are in the
environment or not (Algorithm 2, line 4). If the value of any
ξd 6∈ S then we consider the particle to be invalid and make
its value as infinity. We also carry out other verifications on
the validity of the particle before determining the cost of
the path, these checks are (i) whether a particle is inside
an obstacle (ξd ∈ O, line 6) and (ii) if the line segment
joining the two way-points does not intersect any obstacle

2980

(Algorithm 2line 10). If the particle passes these checks then
we evaluate the cost using Equation 1. We determine the
minimum value particle for the swarm and check if the
minimum value is less than the previously recorded cost
by the swarm. If the current minimum value is less than
previous best then we modify the bestParticleValue to the
current minimum value and the minimum attained particle in
bestParticle (Algorithm 1, line 8 and 9). If the computation
time is available then we update the swarm using Equations
2 and 3. This process continues till t reaches Tm

i and we use
the path for the agent Ai represented by bestParticle. Once
the path is generated, the UAV has to follow the way-point
segments of the path. In order to carry out this operation we
developed a guidance law for the UAV which is described
in the next section.

IV. GUIDANCE LAW

The UAV has to navigate along the path taking the
kinematic constraints into account in three dimensions given
by the anytime PSO algorithm. We develop a guidance which
is a combination of pursuit guidance law and Line of Sight
(LOS) guidance law from the missile guidance literature. The
choice of using pursuit and LOS guidance laws is motivated
from the fact that pursuit allows the UAVs to catch the
desired way-points fast and is simple to implement but its
trajectory may not be along the LOS. Hence, we also use
LOS guidance law that will steer the UAV towards the LOS.

We use a five UAV state model that can take the course
angles, flight path angles and the height into account during
its flight. These state equations are given in Equation 4 and
the geometry of the coordinate system is shown in Figure
1(b).

ẋi = Vi cosψi cos θi

ẏi = Vi sinψi cos θi

żi = Vi sin θi (4)

ψ̇i =
g

Vi
tanφiηi

θ̇i =
g cos θi

Vi
(ηi − 1)

where Vi represents velocity, ψi the heading angle, θi the
pitch angle, g the gravitational acceleration, φi the roll angle
and ηi the load factor of the UAV Ai.

Consider the engagement geometry of the UAV Ai in two-
dimension as shown in Figure 2(a). Assume that the UAV is
located at the xi, yi, zi and it has to follow the path formed
by the way-points W k

i and W k+1
i with zi = zk

i = zk+1
i = 0.

For the UAV to move towards the way-point W k+1
i , it has

to apply vertical acceleration and horizontal acceleration to
move along the LOS (give by R0).

The vertical acceleration is determined using the pursuit
guidance law and given as:

ap = −K(ψ1 − ψ) (5)

Wi
k

W i
k+1

R

R

R0

1

ii iX Y Z

!

"

"

"

"

" #"

1

1

0

e

$

V

(a)

!
1!

1"

"

V

Y
X

Z

X

X

Y

Y

Z

Z

2#

1# 0"

0!

1R

R

0R

$

!! %1

0W

1W

UAV

(b)

Fig. 2. (a) UAV engagement geometry in two-dimension (b) UAV
engagement geometry in three-dimensions.

where, K is the gain, ψ1 is the current heading angle, and
ψ is the desired heading angle. The horizontal acceleration
is determined using the LOS guidance law and given as:

al = R1 sin(ψo − δ) (6)

The combined acceleration that Ai has to apply to move
towards the way-point W k+1

i is

a = −K(ψ1 − ψ)−R1 sin(δ − ψo) (7)

The analysis applied to a two-dimensional system can
now be extended to a three dimension coordinate frame for
the UAV. Unlike in 2-D, now the UAV has to consider the
heading and the pitch angles. The coordinate geometry of
the UAV is shown in Figure 2(b). Since, the UAV is moving
in three dimensions, we also need to apply acceleration in
the horizontal (ah) and in the vertical (av) directions. These
accelerations are given as:

ah = −K1(ψ1 − ψ)−R1 sin(δ1 − ψo) (8)
av = −K2(θ1 − θ)−R2 sin(δ2 − θ) (9)

where, ψ1, ψ, δ1, δ2, θ, and θ1 are determined using the
coordinate geometry figure as shown in Figure 2(b).

For implementing the five-state model of the UAV, we
need to determine the load factor ηi and the roll angle φi.
From the three dimensional missile engagement geometry,
we can determine these values as

ψ̇1 =
g

V
tanφη =

ah

V cos θ1
(10)

θ̇1 =
g cos θ1

V
(η − 1) =

av

V
(11)

solving Equations (10) and (11), we get

η =
av

g cos θ1
+ 1

= −K2(θ1 − θ)−R2 sin(δ2 − θo) (12)

φ = tan−1 ah

ηg cos θ1
(13)

2981

0
50

100
150

200

0
50

100
150

200
0

50

100

150

200

X (m)

 3 D Trajectory

Y (m)

Z
(m

)

(a)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

Time in seconds

C
ou

rs
e

an
gl

e
in

 r
ad

ia
ns

!

0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time in seconds

F
lig

ht
 p

at
h

an
gl

e
in

 r
ad

ia
ns

"

0 10 20 30
0.5

1

1.5

2

2.5

3

3.5
#

Time in seconds

Lo
ad

 fa
ct

or

Desired
Actual

Desired
Actual

(b)

Fig. 3. (a) UAV 3-D path for a given way-point segment with K1 = 10,
and K2 = 10 (b) Plots of heading angle, pitch angle and the load factor.

Using the values obtained from equations (12) and (13)
we simulated an example scenario where the UAV is initially
located at [0,0,0], and has to follow the path formed by the
way-point segment [0,0,0] and [200,200,200]. Figure 3(a)
shows the trajectory of the UAV following the way-point
path. From the figure we can see that the UAV settles along
the path in less than 8 seconds. This settling time is due to
low gains on the accelerations. In Figure 3(b) we can see
that the heading and pitch angles settle to the desired values
determined by the way-points of the path. In the figure we
can also see that the load factor settled to 1, which means that
the UAV has attained its desired pitch angle. Thus it follows
the given path. We can significantly decrease the settling time
with increase with acceleration gains that correspondingly
requires high load factor. Hence, by tuning these gains we
can achieve the desired performance of the guidance law.

Apart from the gain, the initial pitch and heading angles
of the UAV also contribute to the behavior of the trajectory.
For a given path by the PSO, the UAV has to follow the
path using the developed guidance law. During the transition
from one way-point to another, the UAV trajectory may be off
the path and there is a possibility that the UAV can collide
with the obstacles. Hence, before starting the mission, we
fix the gains and determine the worst deviation and use this
deviation in the PSO path cost. If the deviated path intersects
with an obstacle then that path is not considered. Thus, using
the developed guidance law we can track any given path.

V. SIMULATION RESULTS

The validity of the anytime path planning algorithm us-
ing PSO is determined using simulations. We consider an
environment of 1000m × 1000m that contains 15 static
obstacles and 5 dynamic obstacles that appear randomly. All
the obstacles are randomly generated with random heights
and the maximum height of any obstacle is 500m (see Figure
4(a)). The grey scale shows the heights of the obstacle in the
environment. We assume the velocity of the UAV is constant
at 12m/s and can detect any obstacle within a sensor range of
100m. Therefore, the UAV has less than 100/12 seconds to
produce the path as the obstacle can pop-up inside the sensor
range of 100m. The pop-up obstacles appear at random

A1 Goal

A3 Goal

300

A5 Goal

53

A2 Goal

53

371

469

400

A4 Home

225
331

A5 Home

366

43

500

424

145

406

151

A4 Goal

A2 Home

A3 Home

A1 Home

(a)

Fig. 4. The initial start and the goal locations of the UAVs with their paths.

interval of times and they are represented in a different color
to distinguish between the static and the pop-up obstacles
(see Figure 5(a)).

We consider five UAVs who need to plan their paths
from start to goal configurations without colliding against the
static, pop-up, and moving obstacles (other UAVs). A path is
considered as a sequence of way-point segments and when
one way-point is reached the next way-point is considered. If
the UAV detects a pop-up obstacle which is in the collision
course then it has to generate a new path. The number of
way-points that the new path may consists of depends on
the remaining number of way-points to traverse.

Initially, each UAV is allowed to generate its path for a
computational period of 60 seconds. Since, the UAVs are at
the base station, we can allow sufficient amount of time to
compute the best path, but to know the feasibility of the PSO
algorithm in providing reasonable solutions, the computation
time was limited to 60 seconds. The paths of each UAV
is shown in Figure 4(a). The parameters used the UAVs to
generate paths are K1 = 10, and K2 = 10 for the guidance
law, c1 = 0.5, c2 = 0.5, λ = 0.5,Ω = 20 and ω = 0.95 for
the PSO algorithm, and kc = 2 and kd = 0.5 for the cost
function.

Selecting the number of way-points is a trade-off for a
mission that depends on the number of obstacles present
in the environment and the available computational time. If
the number of way-points are low then the algorithm will
generate paths that travel above the obstacle and not into the
environment. The computational complexity of the algorithm
is also cheap. However, increasing the number of way-points
increases the complexity of the algorithm that will result in
low cost paths. Another difficulty in the selection of the way-
points is that, the available computational time is dependent
on the current UAV sensing environment, hence having large
number of way-points may not result in better solution
than the low number of way-points. After carrying out
several experiments with different number of way-points, we
selected five way-points, whose computational complexity is
reasonable to the produced paths in relatively short intervals
(around 5-6 seconds).

2982

A1 Goal

A3 Goal

300

A5 Goal

53

A2 Goal

53

371

469
400

225

213

A4 Home

331

A5 Home

366

43

500

424

145

406

151

A4 Goal

A2 Home

231

A3 Home

145

A1 Home

Obstacle detected by A2

A2 new path

(a)

A2 Goal

A3 Goal

300

53

A5 Goal

A2 Goal

53

371

390

469
400

225

A4 Home

213

Home

331

A5 Home

366

43

500

339

424

145

406

151

A4 Goal

A2 Home

231

A3 Home

145

A1 Home

New path of A5

Obstacle detected
by A5

(b)

Fig. 5. (a) A2 encounters a pop-up obstacle and the new replanned path
(b) A5 detects a pop-up obstacle on its route and the new re-planned path.

At time t = 23s, A2 detects a pop-up obstacles as shown in
the Figure 5(a). In the same figure we can see the trajectories
of all the five agents and also the pop-up obstacles that
have appeared. The UAV A2 has 6.59 seconds to compute
a new path before reaching the maneuvering way-point. The
computed new path also shown in the Figure 5(a). The path
of A2 in the plot appears to cross over the obstacle with
height 331 which is not true since the third way-point height
is 368m (before the obstacle)and the fourth way-point height
is 331.86m (after the obstacle). Although the path is sub-
optimal but this is the best path that the algorithm was able
to generate in the given computation time.

Next the UAV A3 encounters a pop-up obstacle as shown
in Figure 5(b) at time t = 32 seconds and it has 6.71 seconds
to compute a new path. The new path generated by the path
planning algorithm is shown in the same figure. The UAV A1

detects a pop-up obstacle at time t = 50 and has 7.53 seconds
to compute the path. The new path generated by A1 is shown
in Figure 6(a). All the UAVs reach their respected destination
by 126 seconds and their paths are shown in Figure 6(b).

The pursuit plus LOS guidance law was able to track
the generated path without colliding into any of the objects.
Thus allowing us to use the guidance law for more complex
scenarios. Due to the stochastic nature of the PSO, the
solution may be different for different runs with the same
initial conditions. In order to determine the variation in the
simulations, we ran the setup for 50 times. The results shown
in Figures 4(a)-6(b) were the same for 48 out of 50 runs,
while for two runs the solutions were different from that
shown in the figures 4(a)-6(b). Hence, the anytime PSO can
produce consistently good results even with the stochastic
nature of the PSO.

VI. CONCLUSIONS

We proposed an anytime algorithm using PSO for multiple
UAV path planning problem in an environment that consist
of both static and pop-up obstacles. The algorithm can
improve its quality of solution given sufficient amount of
the time. In order to track the path produced by the anytime

A1 Goal

A3 Goal

300

53

A2 Goal

A5 Goal

53

371

390

469
400

225

A4 Home

213

331

A5 Home

366

43

500

339

Home

424

145

406

151

A4 Goal

A2 Home

231

A3 Home

145

A1 Home

New path of A1

(a)

A1 Goal

A3 Goal

300

A5 Goal

53

A2 Goal

53

371

390

469
400

225

A4 Home

213

331

A5 Home

366

43

500

339

424

145
406

151

A4 Goal

A1 Home

Home

231

145

A1 Home

(b)

Fig. 6. (a) The new path of A1 that was replanned after encountering a
pop-up obstacle (b) Paths of all the UAVs from start location to the goal.

PSO, we developed a new guidance law that combines the
pursuit guidance law and the LOS guidance law. From the
simulations we can observe that the anytime algorithm has
generated paths that are reasonably good for a short interval
of computation time.

REFERENCES

[1] K. E. Parsopoulos and M. N. Vrahatis: Recent approaches to global
optimization problems through particle swarm optimization, Natural
Computing, Springer, 2002, Vol. 1, pp. 235-306.

[2] R. C. Eberhart and J. Kennedy: A new optimizer using particle swarm
theory, Proc. of the Symposium on Micro Machine and Human Science,
Piscataway, NJ, 1995, pp. 39-43.

[3] Y. Qin, D. Sun, N. Li, and Y. Cen: Path planning for mobile robot
using the particle swarm optimization with mutation operator, Proc.
of the Internation Conference on Machine Learning and Cybernetics,
Aug 2004, pp. 2473-2478.

[4] S. Kanchanavally, R. Ordonez, C.J. Schumacher: Path Planning in
Three Dimensional Environment Using Feedback Linearization, Proc.
of the American Control Conference, Mineapolis, MN, June 2006.

[5] M. Shanmugavel, A. Tsourdos, R. Zbikowski and B. A. White: 3D
path planning for multiple UAVs using pythagorean hodograph curves,
Proc. of the AIAA Guidance, Navigation and Control Conference and
Exhibit, Hilton Head, SC, August 2007, AIAA 2007-6455.

[6] N. Vandapel, J. Kuffner and O. Amidi: Planning 3-D path networks
in unstructured environments, Proc. of the IEEE International Confer-
ence on Robotics and Automation, Barcelona, Spain, April 2005, pp.
4624 - 4629.

[7] Y. Kuwata and J. How: Three dimensional receding horizon control
for UAVs, Proc. of tha AIAA Guidance, Navigation, and Control
Conference, Aug 2004, AIAA-2004-5144.

[8] I. Hasircioglu, H. R. Topcuoglu and M. Ermis: 3-D path planning
for the navigation of unmanned aerial vehicles by using evolutionary
algorithms, Proc. of the Conference on Genetic and Evolutionary
Computation, Atlanta, GA, 2008, pp. 1499–1506.

[9] J. Saunders, B. Call, A. Curtis, R. Beard, and T. McLain: Static and
dynamic obstacle avoidance in miniature air vehicles, Proc. of that
AIAA Infotech@Aerospace Conference and Exhibit, Arlington, VA,
Sep. 2005, AIAA-2005-6950.

[10] D. Ferguson and A. Stentz: Anytime RRTs, Proc. of the IEEE
International Conference on Intelligent Robots and Systems, Beijing,
China, Oct. 2006, pp.5369-5375.

2983

