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3.1 Introduction

There exist intricate geometric relations between multiple views of a 3D
scene. These relations are related to the camera motion and calibration as
well as to the scene structure. In this chapter we introduce these concepts
and discuss how they can be applied to recover 3D models from images.

In Section 3.2 a rather thorough description of projective geometry is
given. Section 3.3 gives a short introduction to tensor calculus and Sec-
tion 3.4 describes in detail the camera model used. In Section 3.5 a modern
approach to multiple view geometry is presented and in Section 3.6 simple
structure and motion algorithms are presented. In Section 3.7 more ad-
vanced algorithms are presented that are suited for automatic processing on
real image data. Section 3.8 discusses the possibility of calibrating the cam-
era from images. Section 3.9 describes how the depth can be computed for
most image pixels and Section 3.10 presents how the results of the previous
sections can be combined to yield 3D models, render novel views or combine
real and virtual elements in video.
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3.2 Projective Geometry

Projective geometry is a fundamental tool for dealing with structure from
motion problems in computer vision, especially in multiple view geometry.
The main reason is that the image formation process can be regarded as a
projective transformation from a 3-dimensional to a 2-dimensional projective
space. It is also a fundamental tool for dealing with auto-calibration prob-
lems and examining critical configurations and critical motion sequences.

This section deals with the fundamentals of projective geometry, includ-
ing the definitions of projective spaces, homogeneous coordinates, duality,
projective transformations and affine and Euclidean embeddings. For a tra-
ditional approach to projective geometry, see [9] and for more modern treat-
ments, see [14], [15], [24].

3.2.1 The central perspective transformation

We will start the introduction of projective geometry by looking at a central
perspective transformation, which is very natural from an image formation
point of view, see Figure 3.1.
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Figure 3.1. A central perspective transformation

Definition 1. A central perspective transformation maps points, X,
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on the object plane, Πo, to points on the image plane Πi, by intersecting the
line through E, called the centre, and X with Πi.

We can immediately see the following properties of the planar perspective
transformation:

– All points on Πo maps to points on Πi except for points on l, where l
is defined as the intersection of Πo with the plane incident with E and
parallel with Πi.

– All points on Πi are images of points on Πo except for points on h,
called the horizon, where h is defined as the intersection of Πi with
the plane incident with E and parallel with Πo.

– Lines in Πo are mapped to lines in Πi.

– The images of parallel lines intersects in a point on the horizon, see
e.g. l1 and l2 in Figure 3.1.

– In the limit where the point E moves infinitely far away, the planar
perspective transformation turns into a parallel projection.

Identify the planes Πo and Πi with R
2, with a standard cartesian coordinate

system Oe1e2 in Πo and Πi respectively. The central perspective transfor-
mation is nearly a bijective transformation between Πo and Πi, i.e. from R

2

to R
2. The problem is the lines l ∈ Πo and h ∈ Πi. If we remove these lines

we obtain a bijective transformation between R
2 \ l and R

2 \ h, but this is
not the path that we will follow. Instead, we extend each R

2 with an extra
line defined as the images of points on h and points that maps to l, in the
natural way, i.e. maintaining continuity. Thus by adding one artificial line
to each plane, it is possible to make the central perspective transformation
bijective from (R2 + an extra line) to (R2 + an extra line). These extra lines
correspond naturally to directions in the other plane, e.g. the images of the
lines l1 and l2 intersects in a point on h corresponding to the direction of l1
and l2. The intersection point on h can be viewed as the limit of images of a
point on l1 moving infinitely far away. Inspired by this observation we make
the following definition:

Definition 2. Consider the set L of all lines parallel to a given line l in R
2

and assign a point to each such set, pideal, called an ideal point or point
at infinity, cf. Figure 3.2.

3.2.2 Projective spaces

We are now ready to make a preliminary definition of the two-dimensional
projective space, i.e. the projective plane.
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pideal

L

e1

e2

Figure 3.2. The point at infinity corresponding to the set of lines L.

Definition 3. The projective plane, P
2, is defined according to

P
2 = R

2 ∪ {ideal points} .

Definition 4. The ideal line, l∞ or line at infinity in P
2 is defined ac-

cording to

l∞ = {ideal points} .

The following constructions could easily be made in P
2:

1. Two different points define a line (called the join of the points)

2. Two different lines intersect in a point

with obvious interpretations for ideal points and the ideal line, e.g. the line
defined by an ordinary point and an ideal point is the line incident with
the ordinary point with the direction given by the ideal point. Similarly we
define

Definition 5. The projective line, P
1, is defined according to

P
1 = R

1 ∪ {ideal point} .
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Observe that the projective line only contains one ideal point, which could
be regarded as the point at infinity.

In order to define three-dimensional projective space, P
3, we start with

R
3 and assign an ideal point to each set of parallel lines, i.e. to each direction.

Definition 6. The projective space, P
3, is defined according to

P
3 = R

3 ∪ {ideal points} .

Observe that the ideal points in P
3 constitutes a two-dimensional manifold,

which motivates the following definition.

Definition 7. The ideal points in P
3 builds up a plane, called the ideal

plane or plane at infinity, also containing ideal lines.

The plane at infinity contains lines, again called lines at infinity. Every set
of parallel planes in R

3 defines an ideal line and all ideal lines builds up the
ideal plane. A lot of geometrical constructions can be made in P

3, e.g.

1. Two different points define a line (called the join of the two points)

2. Three different points define a plane (called the join of the three points)

3. Two different planes intersect in a line

4. Three different planes intersect in a point

3.2.3 Homogeneous coordinates

It is often advantageous to introduce coordinates in the projective spaces, so
called analytic projective geometry. Introduce a cartesian coordinate system,
Oexey in R

2 and define the line l : y = 1, see Figure 3.3. We make the
following simple observations:

Lemma 1. The vectors (p1, p2) and (q1, q2) determines the same line through
the origin iff

(p1, p2) = λ(q1, q2), λ �= 0 .

Proposition 1. Every line, lp = (p1, p2)t, t ∈ R, through the origin, except
for the x-axis, intersect the line l in one point, p.

We can now make the following definitions:
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lp : (p1.p2)t, t ∈ R

ex

ey

p

l : y = 1

Figure 3.3. Definition of homogeneous coordinates in P
1.

Definition 8. The pairs of numbers (p1, p2) and (q1, q2) are said to be equiv-
alent if

(p1, p2) = λ(q1, q2), λ �= 0 .

We write
(p1, p2) ∼ (q1, q2) .

There is a one-to-one correspondence between lines through the origin and
points on the line l if we add an extra point on the line, corresponding to
the line x = 0, i.e. the direction (1, 0). By identifying the line l augmented
with this extra point, corresponding to the point at infinity, p∞, with P

1, we
can make the following definitions:

Definition 9. The one-dimensional projective space, P
1, consists of

pairs of numbers (p1, p2) (under the equivalence above), where (p1, p2) �=
(0, 0). The pair (p1, p2) is called homogeneous coordinates for the corre-
sponding point in P

1.

Theorem 1. There is a natural division of P
1 into two disjoint subsets

P
1 = {(p1, 1) ∈ P

1} ∪ {(p1, 0) ∈ P
1} ,

corresponding to ordinary points and the ideal point.

The introduction of homogeneous coordinates can easily be generalized
to P

2 and P
3 using three and four homogeneous coordinates respectively. In

the case of P
2 fix a cartesian coordinate system Oexeyez in R

3 and define
the plane Π : z = 1, see Figure 3.4. The vectors (p1, p2, p3) and (q1, q2, q3)
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Figure 3.4. Definition of homogeneous coordinates in P
2.

determines the same line through the origin iff

(p1, p2, p3) = λ(q1, q2, q3), λ �= 0 .

Every line through the origin, except for those in the x-y-plane, intersect the
plane Π in one point. Again, there is a one-to-one correspondence between
lines through the origin and points on the plane Π if we add an extra line,
corresponding to the lines in the plane z = 0, i.e. the line at infinity, l∞,
built up by lines of the form (p1, p2, 0). We can now identifying the plane Π
augmented with this extra line, corresponding to the points at infinity, l∞,
with P

2.

Definition 10. The pairs of numbers (p1, p2, p3) and (q1, q2, q3) are said to
be equivalent iff

(p1, p2, p3) = λ(q1, q2, q3), λ �= 0 written (p1, p2, p3) ∼ (q1, q2, q3) .

Definition 11. The two-dimensional projective space P
2 consists of all

triplets of numbers (p1, p2, p3) �= (0, 0, 0). The triplet (p1, p2, p3) is called
homogeneous coordinates for the corresponding point in P

2.

Theorem 2. There is a natural division of P
2 into two disjoint subsets

P
2 = {(p1, p2, 1) ∈ P

2} ∪ {(p1, p2, 0) ∈ P
2} ,

corresponding to ordinary points and ideal points (or points at infinity).

The same procedure can be carried out to construct P
3 (and even P

n for
any n ∈ N), but it is harder to visualize, since we have to start with R

4.
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Definition 12. The three-dimensional (n-dimensional) projective space
P

3 (Pn) is defined as the set of one-dimensional linear subspaces in a vector
space, V (usually R

4 (Rn+1)) of dimension 4 (n + 1). Points in P
3 (Pn) are

represented using homogeneous coordinates by vectors (p1, p2, p3, p4) �=
(0, 0, 0, 0) ((p1, . . . , pn+1) �= (0, . . . , 0)), where two vectors represent the same
point iff they differ by a global scale factor. There is a natural division of P

3

(Pn) into two disjoint subsets

P
3 = {(p1, p2, p3, 1) ∈ P

3} ∪ {(p1, p2, p3, 0) ∈ P
3}

(Pn = {(p1, . . . , pn, 1) ∈ P
n} ∪ {(p1, . . . , pn, 0) ∈ P

n} ,

corresponding to ordinary points and ideal points (or points at infinity).

Finally, geometrical entities are defined similarly in P
3.

3.2.4 Duality

Remember that a line in P
2 is defined by two points p1 and p2 according to

l = {x = (x1, x2, x3) ∈ P
2 | x = t1p1 + t2p2, (t1, t2) ∈ R

2} .

Observe that since (x1, x2, x3) and λ(x1, x2, x3) represents the same point in
P

2, the parameters (t1, t2) and λ(t1, t2) gives the same point. This gives the
equivalent definition:

l = {x = (x1, x2, x3) ∈ P
2 | x = t1p1 + t2p2, (t1, t2) ∈ P

1} .

By eliminating the parameters t1 and t2 we could also write the line in the
form

l = {x = (x1, x2, x3) ∈ P
2 | n1x1 + n2x2 + n3x3 = 0} , (3.1)

where the normal vector, n = (n1, n2, n3), could be calculated as n = p1×p2.
Observe that if (x1, x2, x3) fulfills (3.1) then λ(x1, x2, x3) also fulfills (3.1) and
that if the line, l, is defined by (n1, n2, n3), then the same line is defined by
λ(n1, n2, n3), which means that n could be considered as an element in P

2.
The line equation in (3.1) can be interpreted in two different ways, see

Figure 3.5:

– Given n = (n1, n2, n3), the points x = (x1, x2, x3) that fulfills (3.1)
constitutes the line defined by n.

– Given x = (x1, x2, x3), the lines n = (n1, n2, n3) that fulfills (3.1)
constitutes the lines coincident by x.

Definition 13. The set of lines incident with a given point x = (x1, x2, x3)
is called a pencil of lines.
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In this way there is a one-to-one correspondence between points and lines in
P

2 given by

x = (a, b, c) ↔ n = (a, b, c) ,

as illustrated in Figure 3.5.

e1

e2 e2

e1

Figure 3.5. Duality of points and lines in P
2.

Similarly, there exists a duality between points and planes in P
3. A plane

π in P
3 consists of the points x = (x1, x2, x3, x4) that fulfill the equation

π = {x = (x1, x2, x3, x4) ∈ P
3 | n1x1 + n2x2 + n3x3 + n4x4 = 0} , (3.2)

where n = (n1, n2, n3, n4) defines the plane. From (3.2) a similar argument
leads to a duality between planes and points in P

3. The following theorem
is fundamental in projective geometry:

Theorem 3. Given a statement valid in a projective space. Then the dual
to that statement is also valid, where the dual is obtained by interchanging
entities with their duals, intersection with join etc.

For instance, a line in P
3 could be defined as the join of two points. Thus

the dual to a line is the intersection of two planes, which again is a line, i.e.
the dual to a line in P

3 is a line. We say that lines are self-dual. A line in
P

3 defined as the join of two points, p1 and p2, as in

l = {x = (x1, x2, x3, x4) ∈ P
3 | x = t1p1 + t2p2, (t1, t2) ∈ P

1}

is said to be given in parametric form and (t1, t2) can be regarded as
homogeneous coordinates on the line. A line in P

3 defined as the intersection
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of two planes, π and µ, consists of the common points to the pencil of planes
in

l : {sπ + tµ | (s, t) ∈ P
1}

is said to be given in intersection form.

Definition 14. A conic, c, in P
2 is defined as

c = {x = (x1, x2, x3) ∈ P
2 | xT Cx = 0} , (3.3)

where C denotes 3 × 3 matrix. If C is non-singular the conic is said to be
proper, otherwise it is said to be degenerate.

The dual to a general curve in P
2 (P3) is defined as the set of tangent lines

(tangent planes) to the curve.

Theorem 4. The dual, c∗, to a conic c : xT Cx is the set of lines

{l = (l1, l2, l3) ∈ P
2 | lT C ′l = 0} ,

where C ′ = C−1.

3.2.5 Projective transformations

The central perspective transformation in Figure 3.1 is an example of a
projective transformation. The general definition is as follows:

Definition 15. A projective transformation from p ∈ P
n to p′ ∈ P

m is
defined as a linear transformation in homogeneous coordinates, i.e.

x′ ∼ Hx , (3.4)

where x and x′ denote homogeneous coordinates for p and p′ respectively
and H denote a (m + 1) × (n + 1)-matrix of full rank.

All projective transformations form a group, denoted GP . For example a
projective transformation from x ∈ P

2 to y ∈ P
2 is given by




y1

y2

y3


 ∼ H




x1

x2

x3


 ,

where H denote a non-singular 3 × 3-matrix. Such a projective transforma-
tion from P

2 to P
2 is usually called a homography.

It is possible to embed an affine space in the projective space, by a simple
construction:
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Definition 16. The subspaces

An
i = { (x1, x2, . . . , xn+1) ∈ P

n | xi �= 0 }

of P
n, are called affine pieces of P

n. The plane Hi : xi = 0 is called the
plane at infinity, corresponding to the affine piece An

i . Usually, i = n + 1
is used and called the standard affine piece and in this case the plane at
infinity is denoted H∞.

We can now identify points in A
n with points, x, in An

i ⊂ P
n, by

P
n ∋ (x1, x2, . . . , xn, xn+1) ∼ (y1, y2, . . . , yn, 1) ≡ (y1, y2, . . . , yn) ∈ A

n .

There is even an affine structure in this affine piece, given by the following
proposition:

Proposition 2. The subgroup, H, of projective transformations, GP , that
preserves the plane at infinity consists exactly of the projective transforma-
tions of the form (3.4), with

H =

[
An×n bn×1

01×n 1

]
,

where the indices denote the sizes of the matrices.

We can now identify the affine transformations in A with the subgroup H:

A ∋ x 	→ Ax + b ∈ A ,

which gives the affine structure in An
i ⊂ P

n.

Definition 17. When a plane at infinity has been chosen, two lines are said
to be parallel if they intersect at a point at the plane at infinity.

We may even go one step further and define a Euclidean structure in P
n.

Definition 18. The (singular, complex) conic, Ω, in P
n defined by

x2
1 + x2

1 + . . . + x2
n = 0 and xn+1 = 0

is called the absolute conic.

Observe that the absolute conic is located at the plane at infinity, it contains
only complex points and it is singular.
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Lemma 2. The dual to the absolute conic, denoted Ω′, is given by the set of
planes

Ω′ = {Π = (Π1, Π2, . . .Πn+1) | Π2
1 + . . . + Π2

n = 0 .

In matrix form Ω′ can be written as ΠT C ′Π = 0 with

C ′ =

[
In×n 0n×1

01×n 0

]
.

Proposition 3. The subgroup, K, of projective transformations, GP , that
preserves the absolute conic consists exactly of the projective transformations
of the form (3.4), with

H =

[
cRn×n tn×1

01×n 1

]
,

where 0 �= c ∈ R and R denote an orthogonal matrix, i.e. RRT = RT R = I.

Observe that the corresponding transformation in the affine space A =
An+1

n can be written as

A ∋ x 	→ cRx + t ∈ A ,

which is a similarity transformation. This means that we have a Euclidean
structure (to be precise a similarity structure) in P

n given by the absolute
conic.

3.3 Tensor Calculus

Tensor calculus is a natural tool to use, when the objects at study are ex-
pressed in a specific coordinate system, but have physical properties that
are independent on the chosen coordinate system. Another advantage is
that it gives a simple and compact notation and the rules for tensor algebra
makes it easy to remember even quite complex formulas. For a more detailed
treatment see [58] and for an engineering approach see [42].

In this chapter a simple definition of a tensor and the basic rules for
manipulating tensors are given. We start with a straight-forward definition:

Definition 19. An affine tensor is an object in a linear space, V, that
consists of a collection of numbers, that are related to a specific choice of
coordinate system in V, indexed by one or several indices;

Ai1,i2,··· ,in
j1,j2,··· ,jm

.
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Furthermore, this collection of numbers transforms in a pre-defined way when
a change of coordinate system in V is made, see Definition 20. The number
of indices (n + m) is called the degree of the tensor. The indices may
take any value from 1 to the dimension of V. The upper indices are called
contravariant indices and the lower indices are called covariant indices.

There are some simple conventions, that have to be remembered:
– The index rule: When an index appears in a formula, the formula is

valid for every value of the index, i.e. ai = 0 ⇒ a1 = 0, a2 = 0, . . .

– The summation convention: When an index appears twice in a formula,
it is implicitly assumed that a summation takes place over that index,
i.e. aib

i =
∑

i=1,dim V
aib

i

– The compatibility rule: A repeated index must appear once as a sub-
index and once as a super-index

– The maximum rule: An index can not be used more than twice in a
term

Definition 20. When the coordinate system in V is changed from e to ê
and the points with coordinates x are changed to x̂, according to

êj = Si
jei ⇔ xi = Si

jx̂j ,

then the affine tensor components change according to

ûk = Sj
kuj and vj = Sj

kv̂
k ,

for lower and upper indices respectively.

From this definition the terminology for indices can be motivated, since
the covariant indices co-varies with the basis vectors and the contravariant
indices contra-varies with the basis vectors. It turns out that a vector (e.g.
the coordinates of a point) is a contravariant tensor of degree one and that a
one-form (e.g. the coordinate of a vector defining a line in R

2 or a hyperplane
in R

n) is a covariant tensor of degree one.

Definition 21. The second order tensor

δij =

{
1 i = j

0 i �= j

is called the Kronecker delta. When dimV = 3, the third order tensor

ǫijk =





1 (i,j,k) an even permutation

−1 (i,j,k) an odd permutation

0 (i,j,k) has a repeated value

is called the Levi-Cevita epsilon.
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3.4 Modelling Cameras

This chapter deals with the task of building a mathematical model of a
camera. We will give a mathematical model of the standard pin-hole camera
and define intrinsic and extrinsic parameters. For more detailed treatment
see [24], [15] and for a different approach see [26].

3.4.1 The pinhole camera

The simplest optical system used for modelling cameras is the so called pin-
hole camera. The camera is modelled as a box with a small hole in one
of the sides and a photographic plate at the opposite side, see Figure 3.6.
Introduce a coordinate system as in Figure 3.6. Observe that the origin of
the coordinate system is located at the centre of projection, the so called
focal point, and that the z-axis is coinciding with the optical axis. The
distance from the focal point to the image, f , is called the focal length.
Similar triangles give

ex

C

ey

ez

Z

f

X

(X, Y, Z)

x (x, y)

(x0, y0)

Figure 3.6. The pinhole camera with a coordinate system.

x

f
=

X

Z
and

y

f
=

Y

Z
. (3.5)

This equation can be written in matrix form, using homogeneous coordinates,
as

λ




x
y
1


 =




f 0 0 0
0 f 0 0
0 0 1 0







X
Y
Z
1


 , (3.6)

where the depth, λ, is equal to Z.
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3.4.2 The camera matrix

Introducing the notation

K =




f 0 0
0 f 0
0 0 1


 x =




x
y
1


 X =




X
Y
Z
1


 , (3.7)

in (3.6) gives
λx = K[ I3×3 | 03×1 ]X = PX , (3.8)

where P = K [ I3×3 | 03×1 ].

Definition 22. A 3 × 4 matrix P relating extended image coordinates x =
(x, y, 1) to extended object coordinates X = (X, Y, Z, 1) via the equation

λx = PX

is called a camera matrix and the equation above is called the camera
equation.

Observe that the focal point is given as the right null-space to the camera
matrix, since PC = 0, where C denote homogeneous coordinates for the
focal point, C.

3.4.3 The intrinsic parameters

In a refined camera model, the matrix K in (3.7) is replaced by

K =




γf sf x0

0 f y0

0 0 1


 , (3.9)

where the parameters have the following interpretations, see Figure 3.7:

– f : focal length - also called camera constant

– γ : aspect ratio - modelling non-quadratic light-sensitive elements

– s : skew - modelling non-rectangular light-sensitive elements

– (x0, y0) : principal point - orthogonal projection of the focal point
onto the image plane, see Figure 3.6.

These parameters are called the intrinsic parameters, since they model
intrinsic properties of the camera. For most cameras s = 0 and γ ≈ 1 and
the principal point is located close to the centre of the image.

Definition 23. A camera is said to be calibrated if K is known. Otherwise,
it is said to be uncalibrated.
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γ

1 arctan(1/s)

Figure 3.7. The intrinsic parameters

3.4.4 The extrinsic parameters

It is often advantageous to be able to express object coordinates in a differ-
ent coordinate system than the camera coordinate system. This is especially
the case when the relation between these coordinate systems are not known.
For this purpose it is necessary to model the relation between two different
coordinate systems in 3D. The natural way to do this is to model the rela-
tion as a Euclidean transformation. Denote the camera coordinate system
with ec and points expressed in this coordinate system with index c, e.g.
(Xc, Yc, Zc), and similarly denote the object coordinate system with eo and
points expressed in this coordinate system with index o, see Figure 3.8. A

(R, t)

ec
eo

Figure 3.8. Using different coordinate systems for the camera and the object.

Euclidean transformation from the object coordinate system to the camera
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coordinate system can be written in homogeneous coordinates as




Xc

Yc

Zc

1


 =

[
RT 0
0 1

] [
I −t
0 1

]



Xo

Yo

Zo

1


 =⇒ Xc =

[
RT −RT t
0 1

]
Xo , (3.10)

where R denote an orthogonal matrix and t a vector, encoding the rotation
and translation in the rigid transformation. Observe that the focal point
(0, 0, 0) in the c-system corresponds to the point t in the o-system. Inserting
(3.10) in (3.8) taking into account that X in (3.8) is the same as Xc in (3.10),
we obtain

λx = KRT [ I | − t ]Xo = PX , (3.11)

with P = KRT [ I | − t ]. Usually, it is assumed that object coordinates are
expressed in the object coordinate system and the index o in Xo is omitted.
Observe that the focal point, Cf = t = (tx, ty, tz), is given from the right
null-space to P according to

P




tx
ty
tz
1


 = KRT [ I | − t ]




tx
ty
tz
1


 = 0 .

Given a camera, described by the camera matrix P , this camera could also
be described by the camera matrix µP , 0 �= µ ∈ R, since these give the same
image point for each object point. This means that the camera matrix is
only defined up to an unknown scale factor. Moreover, the camera matrix P
can be regarded as a projective transformation from P

3 to P
2, cf. (3.8) and

(3.4).
Observe also that replacing t by µt and (X, Y, Z) with (µX, µY, µZ),

0 �= µ ∈ R, gives the same image since

KRT [ I | − µt ]




µX
µY
µZ
1


 = µKRT [ I | − t ]




X
Y
Z
1


 .

We refer to this ambiguity as the scale ambiguity.
We can now calculate the number of parameters in the camera matrix,

P :

– K: 5 parameters (f , γ, s, x0, y0)
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– R: 3 parameters

– t: 3 parameters

Summing up gives a total of 11 parameters, which is the same as in a general
3×4 matrix defined up to scale. This means that for an uncalibrated camera,
the factorization P = KRT [ I | − t ] has no meaning and we can instead deal
with P as a general 3 × 4 matrix.

Given a calibrated camera with camera matrix P = KRT [ I | − t ] and
corresponding camera equation

λx = KRT [ I | − t ]X ,

it is often advantageous to make a change of coordinates from x to x̂ in the
image according to x = Kx̂, which gives

λKx̂ = KRT [ I | − t ]X ⇒ λx̂ = RT [ I | − t ]X = P̂X .

Now the camera matrix becomes P̂ = RT [ I | − t].

Definition 24. A camera represented with a camera matrix of the form

P = RT [ I | − t]

is called a normalized camera.

Note that even when K is only approximatively known, the above nor-
malization can be useful for numerical reasons. This will be discussed more
in detail in Section 3.7.

3.4.5 Properties of the pinhole camera

We will conclude this section with some properties of the pinhole camera.

Proposition 4. The set of 3D-points that projects to an image point, x, is
given by

X = C + µP+x, 0 �= µ ∈ R ,

where C denote the focal point in homogeneous coordinates and P+ denote
the pseudo-inverse of P .

Proposition 5. The set of 3D-points that projects to a line, l, is the points
lying on the plane Π = P T l.

Proof: It is obvious that the set of points lie on the plane defined by the
focal point and the line l. A point x on l fulfills xT l = 0 and a point X on
the plane Π fulfills ΠTX = 0. Since x ∼ PX we have (PX)T l = XT P T l = 0
and identification with ΠTX = 0 gives Π = P T l.
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Lemma 3. The projection of a quadric, XT CX = 0 (dually ΠT C ′Π = 0,
C ′ = C−1), is an image conic, xT cx = 0 (dually lT c′l = 0, c′ = c−1), with
c′ = PC ′P T .

Proof: Use the previous proposition.

Proposition 6. The image of the absolute conic is given by the conic xT ωx =
0 (dually lT ω′l = 0), where ω′ = KKT .

Proof: The result follows from the previous lemma:

ω′ ∼ PΩ′P T ∼ KRT
[
I −t

] [
I 0
0 0

] [
I

−tT

]
RKT = KRT RKT = KKT .

3.5 Multiple View Geometry

Multiple view geometry is the subject where relations between coordinates
of feature points in different views are studied. It is an important tool
for understanding the image formation process for several cameras and for
designing reconstruction algorithms. For a more detailed treatment, see [27]
or [24] and for a different approach see [26]. For the algebraic properties of
multilinear constraints see [30].

3.5.1 The structure and motion problem

The following problem is central in computer vision:

Problem 1. structure and motion Given a sequence of images with corre-
sponding feature points xij, taken by a perspective camera, i.e.

λijxij = PiXj , i = 1, . . . , m, j = 1, . . . , n ,

determine the camera matrices, Pi, i.e. the motion, and the 3D-points,
Xj, i.e. the structure, under different assumptions on the intrinsic and/or
extrinsic parameters. This is called the structure and motion problem.

It turns out that there is a fundamental limitation on the solutions to the
structure and motion problem, when the intrinsic parameters are unknown
and possibly varying, a so called un-calibrated image sequence.

Theorem 5. Given an un-calibrated image sequence with corresponding
points, it is only possible to reconstruct the object up to an unknown pro-
jective transformation.
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Proof: Assume that Xj is a reconstruction of n points in m images, with
camera matrices Pi according to

xij ∼ Pi Xj , i = 1, . . . m, j = 1, . . . n .

Then H Xj is also a reconstruction, with camera matrices Pi H
−1, for every

non-singular 4 × 4 matrix H, since

xij ∼ Pi Xj ∼ PiH
−1HXj ∼ (PiH

−1) (HXj) .

The transformation
X 	→ HX

corresponds to all projective transformations of the object.
In the same way it can be shown that if the cameras are calibrated, then it is
possible to reconstruct the scene up to an unknown similarity transformation.

3.5.2 The two-view case

The epipoles

Consider two images of the same point X as in Figure 3.9.

C1

x1

e2,1

X

e1,2

x2

C2
Image 2Image 1

Figure 3.9. Two images of the same point and the epipoles.

Definition 25. The epipole, ei,j , is the projection of the focal point of
camera i in image j.
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Proposition 7. Let

P1 = [ A1 | b1 ] and P2 = [ A2 | b2 ] .

Then the epipole, e1,2 is given by

e1,2 = −A2A
−1
1 b1 + b2 . (3.12)

Proof: The focal point of camera 1, C1, is given by

P1

[
C1

1

]
= [ A1 | b1 ]

[
C1

1

]
= A1C1 + b1 = 0 ,

i.e. C1 = −A−1
1 b1 and then the epipole is obtained from

P2

[
C1

1

]
= [ A2 | b2 ]

[
C1

1

]
= A2C1 + b2 = −A2A

−1
1 b1 + b2 .

It is convenient to use the notation A12 = A2A
−1
1 . Assume that we have

calculated two camera matrices, representing the two-view geometry,

P1 = [ A1 | b1 ] and P2 = [ A2 | b2 ] .

According to Theorem 5 we can multiply these camera matrices with

H =

[
A−1

1 −A−1
1 b1

0 1

]

from the right and obtain

P̄1 = P1H = [ I | 0 ] P̄2 = P2H = [ A2A
−1
1 | b2 − A2A

−1
1 b1 ] .

Thus, we may always assume that the first camera matrix is [ I | 0 ]. Observe
that P̄2 = [ A12 | e ], where e denotes the epipole in the second image.
Observe also that we may multiply again with

H̄ =

[
I 0
vT 1

]

without changing P̄1, but

H̄P̄2 = [ A12 + evT | e ] ,

i.e. the last column of the second camera matrix still represents the epipole.

Definition 26. A pair of camera matrices is said to be in canonical form
if

P1 = [ I | 0 ] and P2 = [ A12 + evT | e ] , (3.13)

where v denote a three-parameter ambiguity.
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The fundamental matrix

The fundamental matrix was originally discovered in the calibrated case in
[38] and in the uncalibrated case in [13]. Consider a fixed point, X, in 2
views:

λ1x1 = P1X = [ A1 | b1 ]X, λ2x2 = P2X = [ A2 | b2 ]X .

Use the first camera equation to solve for X, Y , Z

λ1x1 = P1X = [ A1 | b1 ]X = A1




X
Y
Z


 + b1 ⇒




X
Y
Z


 = A−1

1 (λ1x1 − b1)

and insert into the second one

λ2x2 = A2A
−1
1 (λ1x1 − b1) + b2 = λ1A12x1 + (−A12b1 − b2) ,

i.e. x2, A12x1 and t = −A12b1 + b2 = e1,2 are linearly dependent. Observe
that t = e1,2, i.e. the epipole in the second image. This condition can be
written as xT

1 AT
12Tex2 = xT

1 Fx2 = 0, with F = AT
12Te, where Tx denote the

skew-symmetric matrix corresponding to the vector x, i.e. Tx(y) = x × y.

Definition 27. The bilinear constraint

xT
1 Fx2 = 0 (3.14)

is called the epipolar constraint and

F = AT
12Te

is called the fundamental matrix.

Theorem 6. The epipole in the second image is obtain as the right nullspace
to the fundamental matrix and the epipole in the left image is obtained as
the left nullspace to the fundamental matrix.

Proof: Follows from Fe = AT
12Tee = AT

12(e × e) = 0. The statement about
the epipole in the left image follows from symmetry.

Corollary 1. The fundamental matrix is singular, i.e. det F = 0.

Given a point, x1, in the first image, the coordinates of the corresponding
point in the second image fulfill

0 = xT
1 Fx2 = (xT

1 F )x2 = l(x1)
Tx2 = 0 ,

where l(x1) denote the line represented by xT
1 F .
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Definition 28. The line l = F Tx1 is called the epipolar line corresponding
to x1.

The geometrical interpretation of the epipolar line is the geometric construc-
tion in Figure 3.10. The points x1, C1 and C2 defines a plane, Π, intersecting
the second image plane in the line l, containing the corresponding point.

e2,1

Image 1 Image 2

x1

C1 C2

e1,2

l2

Π

L

Figure 3.10. The epipolar line.

From the previous considerations we have the following pair

F = AT
12Te ⇔ P1 = [ I | 0 ], P2 = [ A12 | e ] . (3.15)

Observe that

F = AT
12Te = (A12 + evT )T Te

for every vector v, since

(A12 + ev)T Te(x) = AT
12(e × x) + veT (e × x) = AT

12Tex ,

since eT (e × x) = e · (e × x) = 0. This ambiguity corresponds to the
transformation

H̄P̄2 = [ A12 + evT | e ] .

We conclude that there are three free parameters in the choice of the second
camera matrix when the first is fixed to P1 = [ I | 0 ].
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x1

e1,2

X

e2,1

x2

C2
Image 2Image 1

C1

Π : VTX = 0

Figure 3.11. The homography corresponding to the plane Π.

The infinity homography

Consider a plane in the three-dimensional object space, Π, defined by a
vector V: VTX = 0 and the following construction, cf. Figure 3.11. Given
a point in the first image, construct the intersection with the optical ray
and the plane Π and project to the second image. This procedure gives a
homography between points in the first and second image, that depends on
the chosen plane Π.

Proposition 8. The homography corresponding to the plane Π : VTX = 0
is given by the matrix

HΠ = A12 − evT ,

where e denote the epipole and V = [v 1 ]T .

Proof: Assume that

P1 = [ I | 0 ], P2 = [ A12 | e ] .

Write V = [ v1 v2 v3 1 ]T = [v 1 ]T (assuming v4 �= 0, i.e. the plane is not
incident with the origin, i.e. the focal point of the first camera) and X =
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[ X Y Z W ]T = [w W ]T , which gives

VTX = vTw + W , (3.16)

which implies that vTw = −W for points in the plane Π. The first camera
equation gives

x1 ∼ [ I | 0 ]X = w

and using (3.16) gives vTx1 = −W . Finally, the second camera matrix gives

x2 ∼ [ A12 | e ]

[
x1

−vTx1

]
= A12x1 − evTx1 = (A12 − evT )x1 .

Observe that when V = (0, 0, 0, 1), i.e. v = (0, 0, 0) the plane Π is the plane
at infinity.

Definition 29. The homography

H∞ = HΠ∞
= A12

is called the homography corresponding to the plane at infinity or
infinity homography.

Note that the epipolar line through the point x2 in the second image can be
written as x2 × e, implying

(x2 × e)T Hx1 = xT
1 HT Tex2 = 0 ,

i.e. the epipolar constraint and we get

F = HT Te .

Proposition 9. There is a one to one correspondence between planes in 3D,
homographies between two views and factorization of the fundamental matrix
as F = HT Te.

Finally, we note that the matrix HT
Π

TeHΠ is skew symmetric, implying that

FHΠ + HT
ΠF T = 0 . (3.17)
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3.5.3 Multi-view constraints and tensors

Consider one object point, X, and its m images, xi, according to the camera
equations λixi = PiX, i = 1 . . . m. These equations can be written as




P1 x1 0 0 . . . 0
P2 0 x2 0 . . . 0
P3 0 0 x3 . . . 0
...

...
...

...
. . .

...
Pm 0 0 0 . . . xm




︸ ︷︷ ︸
M




X
−λ1

−λ2

−λ3

...
−λm




=




0
0
0
...
0




. (3.18)

We immediately get the following proposition:

Proposition 10. The matrix, M , in (3.18) is rank deficient, i.e.

rankM < m + 4 ,

which is referred to as the rank condition.

The rank condition implies that all (m+4)× (m+4) minors of M are equal
to 0. These can be written using Laplace expansions as sums of products
of determinants of four rows taken from the first four columns of M and of
image coordinates. There are 3 different categories of such minors depending
on the number of rows taken from each image, since one row has to be taken
from each image and then the remaining 4 rows can be distributed freely.
The three different types are:

1. Take the 2 remaining rows from one camera matrix and the 2 remaining
rows from another camera matrix, gives 2-view constraints.

2. Take the 2 remaining rows from one camera matrix, 1 row from another
and 1 row from a third camera matrix, gives 3-view constraints.

3. Take 1 row from each of four different camera matrices, gives 4-view
constraints.

Observe that the minors of M can be factorized as products of the 2-, 3-
or 4-view constraint and image coordinates in the other images. In order to
get a notation that connects to the tensor notation we will use (x1, x2, x3)
instead of (x, y, z) for homogeneous image coordinates. We will also denote
row number i of a camera matrix P by P i.
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The monofocal tensor

Before we proceed to the multi-view tensors we make the following observa-
tion:

Proposition 11. The epipole in image 2 from camera 1, e = (e1, e2, e3) in
homogeneous coordinates, can be written as

ej = det




P 1
1

P 2
1

P 3
1

P j
2


 . (3.19)

Proposition 12. The numbers ej constitutes a first order contravariant
tensor, where the transformations of the tensor components are related to
projective transformations of the image coordinates.

Definition 30. The first order contravariant tensor, ej , is called the mono-
focal tensor.

The bifocal tensor

Considering minors obtained by taking 3 rows from one image, and 3 rows
from another image:

det

[
P1 x1 0
P2 0 x2

]
= det




P 1
1 x1

1 0
P 2

1 x2
1 0

P 3
1 x3

1 0
P 1

2 0 x1
2

P 2
2 0 x2

2

P 3
2 0 x3

2




= 0 ,

which gives a bilinear constraint:

3∑

i,j=1

Fijx
i
1x

j
2 = Fijx

i
1x

j
2 = 0 , (3.20)

where

Fij =
3∑

i′,i′′,j′,j′′=1

ǫii′i′′ǫjj′j′′ det




P i′

1

P i′′

1

P j′

2

P j′′

2


 .

The following proposition follows from (3.20).
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Proposition 13. The numbers Fij constitutes a second order covariant ten-
sor.

Here the transformations of the tensor components are related to projective
transformations of the image coordinates.

Definition 31. The second order covariant tensor, Fij , is called the bifocal
tensor and the bilinear constraint in (3.20) is called the bifocal constraint.

Observe that the indices tell us which row to exclude from the corresponding
camera matrix when forming the determinant. The geometric interpretation
of the bifocal constraint is that corresponding view-lines in two images in-
tersect in 3D, cf. Figure 3.9. The bifocal tensor can also be used to trans-
fer a point to the corresponding epipolar line, cf. Figure 3.10, according to
l2j = Fijx

i
1. This transfer can be extended to a homography between epipolar

lines in the first view and epipolar lines in the second view according to

l1i = Fijǫ
jj′

j′′ l
2
j′ej′′

,

since ǫjj′

j′′ l2j′ej′′

gives the cross product between the epipole e and the line l2,
which gives a point on the epipolar line.

The trifocal tensor

The trifocal tensor was originally discovered in the calibrated case in [60]
and in the uncalibrated case in [55]. Considering minors obtained by taking
3 rows from one image, 2 rows from another image and 2 rows from a third
image, e.g.

det




P 1
1 x1

1 0 0
P 2

1 x2
1 0 0

P 3
1 x3

1 0 0
P 1

2 0 x1
2 0

P 2
2 0 x2

2 0
P 1

3 0 0 x1
3

P 3
3 0 0 x3

3




= 0 ,

gives a trilinear constraints:

3∑

i,j,j′,k,k′=1

T jk
i xi

1ǫjj′j′′xj′

2 ǫkk′k′′xk′

3 = 0 , (3.21)
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where

T jk
i =

3∑

i′,i′′=1

ǫii′i′′ det




P i′

1

P i′′

1

P j
2

P k
3


 . (3.22)

Note that there are in total 9 constraints indexed by j′′ and k′′ in (3.21).

Proposition 14. The numbers T jk
i constitutes a third order mixed tensor,

that is covariant in i and contravariant in j and k.

Definition 32. The third order mixed tensor, T jk
i is called the trifocal ten-

sor and the trilinear constraint in (3.21) is called the trifocal constraint.

Again the lower index tells us which row to exclude from the first camera
matrix and the upper indices tell us which rows to include from the second
and third camera matrices respectively and these indices becomes covariant
and contravariant respectively. Observe that the order of the images are
important, since the first image is treated differently. If the images are per-
muted another set of coefficients are obtained. The geometric interpretation
of the trifocal constraint is that the view-line in the first image and the planes
corresponding to arbitrary lines coincident with the corresponding points in
the second and third images (together with the focal points) respectively
intersect in 3D, cf. Figure 3.12. The following theorem is straightforward to
prove.

Theorem 7. Given three corresponding lines, l1, l2 and l3 in three image,
represented by the vectors (l11, l

1
2, l

1
3) etc. Then

l3k = T ij
k l1i l

2
j . (3.23)

From this theorem it is possible to transfer the images of a line seen in two
images to a third image, so called tensorial transfer. The geometrical
interpretation is that two corresponding lines defines two planes in 3D, that
intersect in a line, that can be projected onto the third image. There are
also other transfer equations, such as

xj
2 = T jk

i xi
1l

3
k and xk

3 = T jk
i xj

2l
3
k ,

with obvious geometrical interpretations.
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C3

x1

l3

Image 3

C1

Image 1

l2

Image 2

C2

X

Figure 3.12. Geometrical interpretation of the trifocal constraint.

The quadrifocal tensor

The quadrifocal tensor was independently discovered in several papers, e.g.
[64], [26]. Considering minors obtained by taking 2 rows from each one of 4
different images gives a quadrilinear constraint:

3∑

i,i′,j,j′,k,k′,l,l′=1

Qijklǫii′i′′x
1
i′ǫjj′j′′x2

j′ǫkk′k′′x3
k′ǫll′l′′x

4
l′ = 0 , (3.24)

where

Qijkl = det




P i
1

P j
2

P k
3

P l
4


 .

Note that there are in total 81 constraints indexed by i′′, j′′, k′′ and l′′ in
(3.24).

Proposition 15. The numbers Qijkl constitutes a fourth order contravariant
tensor.
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Definition 33. The fourth order contravariant tensor, Qijkl is called the
quadrifocal tensor and the quadrilinear constraint in (3.24) is called the
quadrifocal constraint.

Note that there are in total 81 constraints indexed by i′′, j′′, k′′ and l′′.
Again, the upper indices tell us which rows to include from each camera
matrix respectively they become contravariant indices. The geometric inter-
pretation of the quadrifocal constraint is that the four planes corresponding
to arbitrary lines coincident with the corresponding points in the images
intersect in 3D.

3.6 Structure and Motion I

We will now study the structure and motion problem in detail. Firstly, we
will solve the problem when the structure in known, so called resection, then
when the motion is known, so called intersection. Then we will present a
linear algorithm to solve for both structure and motion using the multifocal
tensors and finally a factorization algorithm will be presented. Again we
refer the reader to [24] for a more detailed treatment.

3.6.1 Resection

Problem 2 (Resection). Assume that the structure is given, i.e. the object
points, Xj, j = 1, . . . n are given in some coordinate system. Calculate the
camera matrices Pi, i = 1, . . . m from the images, i.e. from xi,j.

The most simple solution to this problem is the classical DLT algorithm
based on the fact that the camera equations

λjxj = PXj , j = 1 . . . n

are linear in the unknown parameters, λj and P .

3.6.2 Intersection

Problem 3 (Intersection). Assume that the motion is given, i.e. the cam-
era matrices, Pi, i = 1, . . . m are given in some coordinate system. Calculate
the structure Xj, j = 1, . . . n from the images, i.e. from xi,j.

Consider the image of X in camera 1 and 2

{
λ1x1 = P1X,

λ2x2 = P2X,
(3.25)
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which can be written in matrix form as (cf. (3.18))

[
P1 x1 0
P2 0 x2

]


X
−λ1

−λ2


 = 0 , (3.26)

which again is linear in the unknowns, λi and X. This linear method can of
course be extended to an arbitrary number of images.

3.6.3 Linear estimation of tensors

We are now able to solve the structure and motion problem given in Prob-
lem 1. The general scheme is as follows

1. Estimate the components of a multiview tensor linearly from image
correspondences

2. Extract the camera matrices from the tensor components

3. Reconstruct the object using intersection, i.e. (3.26)

The eight-point algorithm

Each point correspondence gives one linear constraint on the components of
the bifocal tensor according to the bifocal constraint:

Fijx
i
1x

j
2 = 0 .

Each pair of corresponding points gives a linear homogeneous constraint on
the nine tensor components Fij . Thus given at least eight corresponding
points we can solve linearly (e.g. by SVD) for the tensor components. After
the bifocal tensor (fundamental matrix) has been calculated it has to be
factorized as F = A12T

T
e , which can be done by first solving for e using

Fe = 0 (i.e. finding the right nullspace to F ) and then for A12, by solving
linear system of equations. One solution is

A12 =




0 0 0
F13 F23 F33

−F12 −F22 −F32


 ,

which can be seen from the definition of the tensor components. In the case
of noisy data it might happen that detF �= 0 and the right nullspace does
not exist. One solution is to solve Fe = 0 in least squares sense using SVD.
Another possibility is to project F to the closest rank-2 matrix, again using
SVD. Then the camera matrices can be calculated from (3.26) and finally
using intersection, (3.25) to calculate the structure.
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The seven-point algorithm

A similar algorithm can be constructed for the case of corresponding points
in three images.

Proposition 16. The trifocal constraint in (3.21) contains 4 linearly inde-

pendent constraints in the tensor components T jk
i .

Corollary 2. At least 7 corresponding points in three views are needed in
order to estimate the 27 homogeneous components of the trifocal tensor.

The main difference to the eight-point algorithm is that it is not obvious how
to extract the camera matrices from the trifocal tensor components. Start
with the transfer equation

xj
2 = T jk

i xi
1l

3
k ,

which can be seen as a homography between the first two images, by fixing
a line in the third image. The homography is the one corresponding to the
plane Π defined by the focal point of the third camera and the fixed line in
the third camera. Thus we know from (3.17) that the fundamental matrix
between image 1 and image 2 obeys

FT ·J
· + (T ·J

· )T F T = 0 ,

where T ·J
· denotes the matrix obtained by fixing the index J . Since this is a

linear constraint on the components of the fundamental matrix, it can easily
be extracted from the trifocal tensor. Then the camera matrices P1 and P2

could be calculated and finally, the entries in the third camera matrix P3 can
be recovered linearly from the definition of the tensor components in (3.22),
cf. [27].

An advantage of using three views is that lines could be used to constrain
the geometry, using (3.23), giving two linearly independent constraints for
each corresponding line.

The six-point algorithm

Again a similar algorithm can be constructed for the case of corresponding
points in four images.

Proposition 17. The quadrifocal constraint in (3.24) contains 16 linearly
independent constraints in the tensor components Qijkl.

From this proposition it seems as 5 corresponding points would be suffi-
cient to calculate the 81 homogeneous components of the quadrifocal tensor.
However, the following proposition says that this is not possible
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Proposition 18. The quadrifocal constraint in (3.24) for 2 corresponding
points contains 31 linearly independent constraints in the tensor components
Qijkl.

Corollary 3. At least 6 corresponding points in three views are needed in
order to estimate the 81 homogeneous components of the quadrifocal tensor.

Since one independent constraint is lost for each pair of corresponding points
in four images, we get 6 · 16 − ( 6

2
) = 81 linearly independent constraints.

Again, it is not obvious how to extract the camera matrices from the
trifocal tensor components. First, a trifocal tensor has to be extracted and
then a fundamental matrix and finally the camera matrices. It is outside
the scope of this work to give the details for this, see [27]. Also in this
case corresponding lines can be used by looking at transfer equations for the
quadrifocal tensor.

3.6.4 Factorization

A disadvantage with using multiview tensors to solve the structure and mo-
tion problem is that when many images (≫ 4) are available, the information
in all images can not be used with equal weight. An alternative is to use a
so called factorization method, see [59].

Write the camera equations

λi,jxi,j = PiXj , i = 1, . . . , m, j = 1, . . . , n

for a fixed image i in matrix form as

XiΛi = PiX , (3.27)

where

Xi =
[
xT

i,1 xT
i,2 . . . xT

i,n

]
, X =

[
XT

1 XT
2 . . . XT

n

]
,

Λi = diag(λi,1, λi,2, . . . , λi,n) .

The camera matrix equations for all images can now be written as

X̂ = PX , (3.28)

where

X̂ =




X1Λ1

X2Λ2

...
XmΛm


 , P =




P1

P2

...
P3


 .
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Observe that X̂ only contains image measurements apart from the unknown
depths.

Proposition 19.

rank X̂ ≤ 4

This follows from (3.28) since X̂ is a product of a 3m×4 and a 4×n matrix.
Assume that the depths, i.e. Λi are known, corresponding to affine cameras,
we may use the following simple factorization algorithm:

1. Build up the matrix X̂ from image measurements.

2. Factorize X̂ = UΣV T using SVD.

3. Extract P = the first four columns of UΣ and X = the first four rows
of V T .

In the perspective case this algorithm can be extended to the so called iter-
ative factorization algorithm:

1. Set λi,j = 1.

2. Build up the matrix X̂ from image measurements and the current es-
timate of λi,j .

3. Factorize X̂ = UΣV T using SVD.

4. Extract P = the first four columns of UΣ and X = the first four rows
of V T .

5. Use the current estimate of P and X to improve the estimate of the
depths from the camera equations XiΛi = PiX.

6. If the error (re-projection errors or σ5) is too large goto 2.

Definition 34. The fifth singular value, σ5 in the SVD above is called the
proximity measure and is a measure of the accuracy of the reconstruction.

Theorem 8. The algorithm above minimizes the proximity measure.

Figure 3.13 shows an example of a reconstruction using the iterative factor-
ization method applied on four images of a toy block scene. Observe that
the proximity measure decreases quite fast and the algorithm converges in
about 20 steps.
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Figure 3.13. Above: Four images. Below: The proximity measure for each
iteration, the standard deviation of re-projection errors and the reconstruction.

3.7 Structure and Motion II

In this section we will discuss the problem of structure and motion recov-
ery from a more practical point of view. We will present an approach to
automatically build up the projective structure and motion from a sequence
of images. The presented approach is sequential which offers the advantage
that corresponding features are not required to be visible in all views.

We will assume that for each pair of consecutive views we are given a set
of potentially corresponding feature points. The feature points are typically
obtained by using a corner detector [19]. If the images are not too widely
separated corresponding features can be identified by comparing the local
intensity neighborhoods of the feature points on a pixel-by-pixel basis. In
this case, typically only feature points that have similar coordinates are
compared. In case of video, it might be more appropriate to use a feature
tracker [56] that follows features from frame to frame. For more widely
separated views more complex features would have to be used [39, 53, 69, 40].

3.7.1 Two-view geometry computation

The first step of our sequential structure and motion computation approach
consists of computing the geometric relation between two consecutive views.
As seen in Section 3.5.2 this consist of recovering the fundamental matrix. In
principle the linear method presented in Section 3.6.3 could be used. In this
section a practical algorithm is presented to compute the fundamental matrix
from a set of corresponding points perturbed with noise and containing a
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significant proportion of outliers.

Linear algorithms

Before presenting the complete robust algorithm we will first revisit the linear
algorithm. Given a number of corresponding points (3.14) can be used to
compute F . This equation can be rewritten in the following form:

[
x1x2 y1x2 x2 x1y2 y1y2 y2 x1 y1 1

]
f = 0 (3.29)

with x1 = [x1 y1 1]⊤,x2 = [x2 y2 1]⊤ and f a vector containing the elements
of the fundamental matrix. As discussed before, stacking 8 or more of these
equations allows for a linear solution. Even for 7 corresponding points the
one parameter family of solutions obtained by solving the linear equations
can be restricted to 1 or 3 solutions by enforcing the cubic rank-2 con-
straint det (F1 + λF2) = 0. Note also that, as pointed out by Hartley [22],
it is important to normalize the image coordinates before solving the linear
equations. Otherwise the columns of (3.29) would differ by several orders
of magnitude and the error would be concentrated on the coefficients cor-
responding to the smaller columns. This normalization can be achieved by
transforming the image center to the origin and scaling the images so that
the coordinates have a standard deviation of unity.

Non-linear algorithms

The result of the linear equations can be refined by minimizing the following
criterion [70]:

C(F ) =
∑ (

d(x2, Fx1)
2 + d(x1, F

⊤x2)
2
)

(3.30)

with d(., .) representing the Euclidean distance in the image. This criterion
can be minimized through a Levenberg-Marquard algorithm [50]. An even
better approach consists of computing the maximum-likelyhood estimation
(for Gaussian noise) by minimizing the following criterion:

C(F, x̂1, x̂2) =
∑ (

d(x̂1,x1)
2 + d(x̂2,x2)

2
)

with x̂⊤
2 F x̂1 = 0 (3.31)

Although in this case the minimization has to be carried out over a much
larger set of variables, this can be achieved efficiently by taking advantage
of the sparsity of the problem.
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Robust algorithm

To compute the fundamental matrix from a set of matches that were auto-
matically obtained from a pair of real images, it is important to explicitly
deal with outliers. If the set of matches is contaminated with even a small
set of outliers, the result of the above methods can become unusable. This is
typical for all types of least-squares approaches (even non-linear ones). The
problem is that the quadratic penalty allows for a single outlier that is very
far away from the true solution to completely bias the final result.

An approach that can be used to cope with this problem is the RANSAC
algorithm that was proposed by Fischler and Bolles [17]. A minimal subset
of the data, in this case 7 point correspondences, is randomly selected from
the set of potential correspondences and the solution obtained from it is
used to segment the remainder of the dataset in inliers and outliers. If
the initial subset contains no outliers, most of the correct correspondences
will support the solution. However, if one or more outliers are contained in
the initial subset, it is highly improbable that the computed solution will
find a lot of support among the remainder of the potential correspondences,
yielding a low “inlier” ratio. This procedure is repeated until a satisfying
solution is obtained. This is typically defined as a probability in excess of
95% that a good subsample was selected. The expression for this probability
is Γ = 1− (1−ρp)m with ρ the fraction of inliers, p the number of features in
each sample, 7 in this case, and m the number of trials (see Rousseeuw [51]).

Two-view geometry computation

The different algorithms described above can be combined to yield a practical
algorithm to compute the two-view geometry from real images:

1. Compute initial set of potential correspondences (and set ρmax =
0, m = 0)

2. While (1 − (1 − ρ7
max)m) < 95% do

(a) Randomly select a minimal sample (7 pairs of corresponding points)

(b) Compute the solution(s) for F (yielding 1 or 3 solutions)

(c) Determine percentage of inliers ρ (for all solutions)

(d) Increment m, update ρmax if ρmax < ρ

3. Refine F based on all inliers

4. Look for additional matches along epipolar lines

5. Refine F based on all correct matches (preferably using (3.31))
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3.7.2 Structure and motion recovery

Once the epipolar geometry has been computed between all consecutive
views, the next step consists of reconstructing the structure and motion
for the whole sequence. To the contrary of the factorization approach of
Section 3.6.4, here a sequential approach is presented. First the structure
and motion is initialized for two views and then gradually extended towards
the whole sequence. Finally, the solution is refined through a global mini-
mization over all the unknown parameters.

Initializing the structure and motion

Initial motion computation Two images of the sequence are used to deter-
mine a reference frame. The world frame is aligned with the first camera.
The second camera is chosen so that the epipolar geometry corresponds to
the retrieved fundamental matrix F :

P1 = [ I3×3 | 03 ]
P2 = [ TeF + ev⊤ | σe ]

(3.32)

Eq. (3.32) is not completely determined by the epipolar geometry (i.e. F and
e), but has 4 more degrees of freedom (i.e. v and σ). The vector v determines
the position of the reference plane (i.e. the plane at infinity in an affine or
metric frame) and σ determines the global scale of the reconstruction. The
location of the reference plane shouldn’t make any difference if the algorithm
is projectively invariant. To achieve this it is important to use homogeneous
representations for all 3D entities and to only use image measurements for
minimizations. The value for the parameter σ has no importance and can
be fixed to one.

Initial structure computation Once two projection matrices have been fully
determined the matches can be reconstructed through triangulation. Due
to noise the lines of sight will not intersect perfectly. In the projective case
the minimizations should be carried out in the images and not in projective
3D space. Therefore, the distance between the reprojected 3D point and the
image points should be minimized:

d(x1, P1X)2 + d(x2, P2X)2 (3.33)

It was noted by Hartley and Sturm [23] that the only important choice is to
select in which epipolar plane the point is reconstructed. Once this choice is
made it is trivial to select the optimal point from the plane. Since a bundle
of epipolar planes only has one parameter, the dimension of the problem
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is reduced from three to one. Minimizing the following equation is thus
equivalent to minimizing equation (3.33).

d(x1, l1(λ))2 + d(x2, l2(λ))2 (3.34)

with l1(λ) and l2(λ) the epipolar lines obtained in function of the parameter
λ describing the bundle of epipolar planes. It turns out (see [23]) that this
equation is a polynomial of degree 6 in λ. The global minimum of equa-
tion (3.34) can thus easily be computed directly. In both images the points
on the epipolar line l1(λ) and l2(λ) closest to the points x1 resp. x2 are se-
lected. Since these points are in epipolar correspondence their lines of sight
intersect exactly in a 3D point. In the case where (3.31) had been mini-
mized to obtain the fundamental matrix F the procedure described here is
unnecessary and the pairs (x̂1, x̂2) can be reconstructed directly.

Updating the structure and motion

The previous section dealt with obtaining an initial reconstruction from two
views. This section discusses how to add a view to an existing reconstruction.
First the pose of the camera is determined, then the structure is updated
based on the added view and finally new points are initialized.

projective pose estimation For every additional view the pose towards the
pre-existing reconstruction is determined. This is illustrated in Figure 3.14.
It is assumed that the epipolar geometry has been computed between view
i − 1 and i. The matches which correspond to already reconstructed points
are used to infer correspondences between 2D and 3D. Based on these the
projection matrix Pi is computed using a robust procedure similar to the
one laid out for computing the fundamental matrix. In this case a minimal
sample of 6 matches is needed to compute Pi. A point is considered an inlier
if there exists a 3D point that projects sufficiently close to all associated
image points. This requires to refine the initial solution of X based on all
observations, including the last. Because this is computationally expensive
(remember that this has to be done for each generated hypothesis), it is
advised to use a modified version of RANSAC that cancels the verification
of unpromising hypothesis [5]. Once Pi has been determined the projection
of already reconstructed points can be predicted, so that some additional
matches can be obtained. This means that the search space is gradually
reduced from the full image to the epipolar line to the predicted projection
of the point.

This procedure only relates the image to the previous image. In fact it is
implicitly assumed that once a point gets out of sight, it will not come back.



Section 3.7. Structure and Motion II 85

x

i−3
x

i−2 i−1 Fi−3
i−2

i−1

x

X

x

xx
x

x
i

i
^

^
^ ^

Figure 3.14. Image matches (xi−1,xi) are found as described before. Since some
image points, xi−1, relate to object points, X, the pose for view i can be computed
from the inferred matches (X,xi). A point is accepted as an inlier if a solution for

X̂ exist for which d(P X̂,xi) < 1 for each view k in which X has been observed.

Although this is true for many sequences, this assumptions does not always
hold. Assume that a specific 3D point got out of sight, but that it becomes
visible again in the two most recent views. This type of points could be
interesting to avoid error accumulation. However, the naive approach would
just reinstantiate a new independent 3D point. A possible solution to this
problem was proposed in [35].

Refining and extending structure The structure is refined using an iterated
linear reconstruction algorithm on each point. The scale factors can also be
eliminated from (3.25) so that homogeneous equations in X are obtained:

P3Xx − P1X = 0
P3Xy − P2X = 0

(3.35)
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with Pi the i-th row of P and (x, y) being the image coordinates of the point.
An estimate of X is computed by solving the system of linear equations ob-
tained from all views where a corresponding image point is available. To ob-
tain a better solution the criterion

∑
d(PX,x)2 should be minimized. This

can be approximately obtained by iteratively solving the following weighted
linear least-squares problem:

1

P3X̃

[
P3x − P1

P3y − P2

]
X = 0 (3.36)

where X̃ is the previous solution for X. This procedure can be repeated a
few times. By solving this system of equations through SVD a normalized
homogeneous point is automatically obtained. If a 3D point is not observed
the position is not updated. In this case one can check if the point was seen
in a sufficient number of views to be kept in the final reconstruction. This
minimum number of views can for example be put to three. This avoids to
have an important number of outliers due to spurious matches.

Of course in an image sequence some new features will appear in every
new image. If point matches are available that were not related to an existing
point in the structure, then a new point can be initialized as described in
Section 3.7.2.

Refining structure and motion

Once the structure and motion has been obtained for the whole sequence,
it is recommended to refine it through a global minimization step so that a
bias towards the initial views is avoided. A maximum likelihood estimation
can be obtained through bundle adjustment [67, 57]. The goal is to find
the parameters of the camera view Pk and the 3D points Xi for which the
sum of squared distances between the observed image points mki and the
reprojected image points Pk(Xi) is minimized. It is advised to extend the
camera projection model to also take radial distortion into account. For m
views and n points the following criterion should be minimized:

min
Pk,Xi

m∑

k=1

n∑

i=1

d(xki, Pk(Xi))
2 (3.37)

If the errors on the localisation of image features are independent and satisfy
a zero-mean Gaussian distribution then it can be shown that bundle adjust-
ment corresponds to a maximum likelihood estimator. This minimization
problem is huge, e.g. for a sequence of 20 views and 100 points/view, a
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minimization problem in more than 6000 variables has to be solved (most of
them related to the structure). A straight-forward computation is obviously
not feasible. However, the special structure of the problem can be exploited
to solve the problem much more efficiently [67, 57]. The key reason for this
is that a specific residual is only dependent on one point and one camera,
which results in a very sparse structure for the normal equations.

Structure and motion recovery algorithm

To conclude this section an overview of the structure and motion recovery
algorithm is given. The whole procedure consists of the following steps:

1. Match or track points over the whole image sequence (see Section 3.5.2)

2. Initialize the structure and motion recovery

(a) Select two views that are suited for initialization

(b) Set up the initial frame

(c) Reconstruct the initial structure

3. For every additional view

(a) Infer matches to the existing 3D structure

(b) Compute the camera pose using a robust algorithm

(c) Refine the existing structure

(d) Initialize new structure points

4. Refine the structure and motion through bundle adjustment

The results of this algorithm are the camera poses for all the views and
the reconstruction of the interest points. For most applications the camera
poses are the most usefull, e.g. MatchMoving (aligning a virtual camera with
the motion of a real camera, see Section 3.10.3).

3.8 Auto-calibration

As shown by Theorem 5, for a completely uncalibrated image sequence the
reconstruction is only determined up to a projective transformation. While
it is true that often the full calibration is not available, often some knowl-
edge of the camera intrinsics is available. As will be seen in this section,
this knowledge can be used to recover the structure and motion up to a
similarity transformation. This type of approach is called auto-calibration or
self-calibration in the literature. A first class of algorithms assumes constant,



88 Multiple View Geometry Chapter 3

but unknown, intrinsic camera parameters [16, 21, 44, 28, 65]. Another class
of algorithms assumes some intrinsic camera parameters to be known, while
others can vary [47, 29]. Specific algorithms have also been proposed for
restricted camera motion, such as pure rotation [20, 11], or restricted scene
structure, such as planar scenes [66].

The absolute conic and its image

The central concept for auto-calibration is the absolute conic. As stated in
Proposition 3 the absolute conic allows to identify the similarity structure in
a projective space. In other words, if, given a projective reconstruction, one
was able to locate the conic corresponding to the absolute conic in the real
world, this would be equivalent to recovering the structure of the observed
scene up to a similarity. In this case, a transformation that transforms
the absolute conic to its canonical representation in Euclidean space, i.e.
Ω′ = diag(1, 1, 1, 0), would yield a reconstruction similar to the original (i.e.
identical up to orientation, position and scale).

As was seen in Proposition 6 the image of the absolute conic is directly
related to the intrinsic camera parameters, and this independently of the
choice of projective basis:

PΩ′P⊤ ∼ KK⊤ (3.38)

Therefore, constraints on the intrinsics can be used to constrain the loca-
tion of the conic corresponding to the absolute conic. Most auto-calibration
algorithms are based on (3.38).

Critical motion sequences

Auto-calibration is not always guaranteed to yield a uniqyue solution. De-
pending on the available constraints on the intrinsics and on the camera
motion, the remaining ambiguity on the reconstruction might be larger than
a similarity. This problem was identified as the problem of critical motion
sequences. The first complete analysis of the problem for constant intrin-
sics camera parameters was made by Sturm [61]. Analysis for some other
cases can be found in [62, 43, 32]. It was also shown that in some cases the
ambiguity notwithstanding correct novel views could be generate [45].

Linear auto-calibration

In this section we present a simple linear algorithm for auto-calibration of
cameras. The approach, published in [49], is related to the initial approach
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published in [46], but avoids most of the problems due to critical motion
sequences by incorporating more a priori knowledge. As input it requires a
projective representation of the camera projection matrices.

As discussed in Section 3.4.3, for most cameras it is reasonable to assume
that the pixels are close to square and that the principal point is close to the
center of the image. The focal length (measured in pixel units) will typically
be of the same order of magnitude as the image size. It is therefore a good
idea to perform the following normalization:

PN = K−1

N P with KN =




w + h 0 w
2

w + h h
2

1


 (3.39)

where w and h are the width, respectively height of the image. After
normalization the focal length should be of the order of unity and the prin-
cipal point should be close to the origin. The above normalization would
scale a focal length of a 60mm lens to 1 and thus focal lengths in the range
of 20mm to 180mm would end up in the range [1/3, 3] and the principal
point should now be close to the origin. The aspect ratio is typically around
1 and the skew can be assumed 0 for all practical purposes. Making this
a priori knowledge more explicit and estimating reasonable standard devia-
tions yields f ≈ rf ≈ 1 ± 3, u ≈ v ≈ 0 ± 0.1, r ≈ 1 ± 0.1 and s = 0 which
approximately translates to the following expectations for ω′:

ω′ ∼ KK⊤ =




γ2f2 + x2
0 x0y0 x0

x0y0 f2 + y2
0 y0

x0 y0 1


 ≈




1 ± 9 ±0.01 ±0.1
±0.01 1 ± 9 ±0.1
±0.1 ±0.1 1




(3.40)
and ω′

22/ω′
11 ≈ 1 ± 0.2. Now, these constraints can also be used to constrain

the left-hand side of (3.38). The uncertainty can be take into account by
weighting the equations, yielding the following set of constraints:

ν
9

(
P1Ω

′
P1

⊤ − P3Ω
′
P3

⊤
)

= 0
ν
9

(
P2Ω

′
P2

⊤ − P3Ω
′
P3

⊤
)

= 0
ν

0.2

(
P1Ω

′
P1

⊤ − P2Ω
′
P2

⊤
)

= 0
ν

0.1

(
P1Ω

′
P2

⊤
)

= 0
ν

0.1

(
P1Ω

′
P3

⊤
)

= 0
ν

0.01

(
P2Ω

′
P3

⊤
)

= 0

(3.41)

with Pi the ith row of P and ν a scale factor that can be set to 1. If
for the solution P3Ω

′
P3

⊤ varies widely for the different views, one might
want to iterate with ν = (P3Ω̃

′
P3

⊤)−1 with Ω̃′ the result of the previous
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iteration. Since Ω′ is a symmetric 4× 4 matrix it is linearly parametrized by
10 coefficients. An estimate of the dual absolute quadric Ω′ can be obtained
by solving the above set of equations for all views through homogeneous
linear least-squares. The rank-3 constraint can be imposed by forcing the
smallest singular value to zero. The upgrading transformation T can be
obtained from diag (1, 1, 1, 0) = TΩ′T⊤ by decomposition of Ω′.

Auto-calibration refinement

This result can then further be refined through bundle adjustment (see Sec-
tion 3.7.2). In this case the constraints on the intrinsics should be enforced
during the minimization process. Constraints on the intrinsics can be en-
forced either exactly through parametrisation, or approximately by adding a
residual for the deviation from the expected value in the global minimization
process.

3.9 Dense Depth Estimation

With the camera calibration given for all viewpoints of the sequence, we
can proceed with methods developed for calibrated structure from motion
algorithms. The feature tracking algorithm already delivers a sparse sur-
face model based on distinct feature points. This however is not sufficient
to reconstruct geometrically correct and visually pleasing surface models.
This task is accomplished by a dense disparity matching that estimates cor-
respondences from the grey level images directly by exploiting additional
geometrical constraints. The dense surface estimation is done in a number
of steps. First image pairs are rectified to the standard stereo configuration.
Then disparity maps are computed through a stereo matching algorithm.
Finally a multi-view approach integrates the results obtained from several
view pairs.

3.9.1 Rectification

Since the calibration between successive image pairs was computed, the
epipolar constraint that restricts the correspondence search to a 1-D search
range can be exploited. Image pairs can be warped so that epipolar lines
coincide with image scan lines. The correspondence search is then reduced
to a matching of the image points along each image scan-line. This results
in a dramatic increase of the computational efficiency of the algorithms by
enabling several optimizations in the computations.

For some motions (i.e. when the epipole is located in the image) standard
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rectification based on planar homographies [2] is not possible and a more ad-
vanced procedure should be used. The approach proposed in [48] avoids this
problem. The method works for all possible camera motions. The key idea
is to use polar coordinates with the epipole as origin. Corresponding lines
are given through the epipolar geometry. By taking the orientation [36] into
account the matching ambiguity is reduced to half epipolar lines. A mini-
mal image size is achieved by computing the angle between two consecutive
epipolar lines, that correspond to rows in the rectified images, to have the
worst case pixel on the line preserve its area.

Some examples A first example comes from the castle sequence. In Fig-
ure 3.15 an image pair and the associated rectified image pair are shown.
A second example was filmed with a hand-held digital video camera in the

Figure 3.15. Original image pair (left) and rectified image pair (right).

Béguinage in Leuven. Due to the narrow streets only forward motion is feasi-
ble. In this case the full advantage of the polar rectification scheme becomes
clear since this sequence could not have been handled through traditional
planar rectification. An example of a rectified image pair is given in Fig-
ure 3.16. Note that the whole left part of the rectified images corresponds
to the epipole. On the right side of this figure a model that was obtained by
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Figure 3.16. Rectified image pair (left) and some views of the reconstructed scene
(right).

combining the results from several image pairs is shown.

3.9.2 Stereo matching

The goal of a dense stereo algorithm is to compute corresponding pixel for
every pixel of an image pair. After rectification the correspondence search
is limited to corresponding scanlines. As illustrated in Fig 3.17, finding
the correspondences for a pair of scanlines can be seen as a path search
problem. Besides the epipolar geometry other constraints, like preserving
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Figure 3.17. Illustration of the ordering constraint (left), dense matching as a
path search problem (right).

the order of neighboring pixels, bidirectional uniqueness of the match, and
detection of occlusions can be exploited. In most cases it is also possible
to limit the search to a certain disparity range (an estimate of this range
can be obtained from the reconstructed 3D feature points). Besides these
constraints, a stereo algorithm should also take into account the similarity
between corresponding points and the continuity of the surface. It is possible
to compute the optimal path taking all the constraints into account using
dynamic programming [8, 12, 41]. Other computationally more expensive
approaches also take continuity across scanlines into account. Real-time
approaches on the other hand estimate the best match independently for
every pixel. A complete taxonomy of stereo algorithms can be found in [52].

3.9.3 Multi-view linking

The pairwise disparity estimation allows to compute image to image corre-
spondences between adjacent rectified image pairs, and independent depth
estimates for each camera viewpoint. An optimal joint estimate is achieved
by fusing all independent estimates into a common 3D model. The fusion
can be performed in an economical way through controlled correspondence
linking (see Figure 3.18). A point is transferred from one image to the next
as follows:

x2 = R′−1
(R(x1) + D(R(x1)) (3.42)

with R(.) and R′(.) functions that map points from the original image into
the rectified image and D(.) a function that corresponds to the disparity
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Figure 3.18. Depth fusion and uncertainty reduction from correspondence linking.

map. When the depth obtained from the new image point x2 is outside the
confidence interval the linking is stopped, otherwise the result is fused with
the previous values through a Kalman filter. This approach is discussed into
more detail in [34]. This approach combines the advantages of small baseline
and wide baseline stereo. The depth resolution is increased through the com-
bination of multiple viewpoints and large global baseline while the matching
is simplified through the small local baselines. It can provide a very dense
depth map by avoiding most occlusions. Due to multiple observations of a
single surface points the texture can be enhanced and noise and highlights
can be removed.

3.10 Visual Modeling

In the previous sections we explained how the camera motion and calibra-
tion, and depth estimates for (almost) every pixel could be obtained. This
yields all the necessary information to build different types of visual models.
In this section several types of models are considered. First, the construction
of texture-mapped 3D surface models is discussed. Then, a combined image-
and geometry-based approach is presented that can render models ranging
from pure plenoptic to view-dependent texture and geometry models. Fi-
nally, the possibility of combining real and virtual scenes is also treated.
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3.10.1 3D surface reconstruction

The 3D surface is approximated by a triangular mesh to reduce geometric
complexity and to tailor the model to the requirements of computer graphics
visualization systems. A simple approach consists of overlaying a 2D trian-
gular mesh on top of one of the images and then build a corresponding 3D
mesh by placing the vertices of the triangles in 3D space according to the
values found in the corresponding depth map. To reduce noise it is recom-
mended to first smooth the depth image (the kernel can be chosen of the
same size as the mesh triangles). The image itself can be used as texture
map. While normally projective texture mapping would be required, the
small size of the triangles allow to use standard (affine) texture mapping
(the texture coordinates are trivially obtained as the 2D coordinates of the
vertices).

Figure 3.19. Surface reconstruction approach (top): A triangular mesh is overlaid
on top of the image. The vertices are back-projected in space according to the depth
values. From this a 3D surface model is obtained (bottom)
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It can happen that for some vertices no depth value is available or that
the confidence is too low. In these cases the corresponding triangles are
not reconstructed. The same happens when triangles are placed over dis-
continuities. This is achieved by selecting a maximum angle between the
normal of a triangle and the line-of-sight through its center (e.g. 85 de-
grees). This simple approach works very well on the dense depth maps as
obtained through multi-view linking. The surface reconstruction approach
is illustrated in Figure 3.19.

A further example is shown in Figure 3.20. The video sequence was
recorded with a hand-held camcorder on an archaeological site in Turkey
(courtesy of Marc Waelkens). It shows a decorative medusa head that was
part of a monumental fountain. The video sequence was processed fully
automatically by using the algorithms discussed in Section 3.7, 3.8, 3.9, 3.10.
From the bundle adjustment and the multi-view linking, the accuracy was
estimated to be of 1

500
(compared to the size of the reconstructed object).

This has to be compared with the image resolution of 720 × 576. Note that
the camera was uncalibrated and, besides the unknown focal length and
principal point, has significant radial distortion and an aspect ratio different
from one, i.e. 1.09, which were all automatically recovered from the video
sequence.

To reconstruct more complex shapes it is necessary to combine results
from multiple depth maps. The simplest approach consists of generating sep-
arate models independently and then loading them together in the graphics
system. Since all depth-maps are located in a single coordinate frame, reg-
istration is not an issue. Often it is interesting to integrate the different
meshes into a single mesh. A possible approach is given in [10].

A further example is shown in Figure 3.20. The video sequence was
recorded with a hand-held camcorder on the archaeological site of Sagalasso
in Turkey (courtesy of Marc Waelkens). It shows a decorative medusa head
that was part of a monumental fountain. The video sequence was processed
fully automatically by using the algorithms discussed in Section 3.7, 3.8, 3.9,
3.10. From the bundle adjustment and the multi-view linking, the accuracy
was estimated to be of 1

500
(compared to the size of the reconstructed object).

This has to be compared with the image resolution of 720 × 576. Note that
the camera was uncalibrated and, besides the unknown focal length and
principal point, has significant radial distortion and an aspect ratio different
from one, i.e. 1.09, which were all automatically recovered from the video
sequence.

To reconstruct more complex shapes it is necessary to combine results
from multiple depth maps. The simplest approach consists of generating sep-
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Figure 3.20. 3D-from-video: one of the video frames (upper-left), recovered
structure and motion (upper-right), textured and shaded 3D model (middle) and
more views of textured 3D model (bottom).
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arate models independently and then loading them together in the graphics
system. Since all depth-maps are located in a single coordinate frame, reg-
istration is not an issue. Often it is interesting to integrate the different
meshes into a single mesh. A possible approach is given in [10].

3.10.2 Image-based rendering

In the previous section we presented an approach to construct 3D models.
If the goal is to generate novel views, other approaches are available. In
recent years, a multitude of image-based approaches have been proposed
that render images from images without the need for an explicit intermediate
3D model. The most well known approaches are lightfield and lumigraph
rendering [37, 18] and image warping [4, 54, 1].

Here we will briefly introduce an approach to render novel views directly
from images recorded with a hand-held camera. If available, some depth
information can also be used to refine the underlying geometric assumption.
A more extensive discussion of this work can be found in [25, 33]. A related
approach was presented in [3]. A lightfield is the collection of the lightrays
corresponding to all the pixels in all the recorded images. Therefore, ren-
dering from a lightfield consists of looking up the “closest” ray(s) passing
through every pixel of the novel view. Determining the closest ray consists
of two steps: (1) determining in which views the closest rays are located
and (2) within that view select the ray that intersects the implicit geometric
assumption in the same point. For example, if the assumption is that the
scene is far away, the corresponding implicit geometric assumption might be
Π∞ so that parallel rays would be selected.

In our case the view selection works as follows. All the camera projection
centers are projected in the novel view and Delaunay triangulated. For every
pixel within a triangle, the recorded views corresponding to the three vertices
are selected as “closest” views. If the implicit geometric assumption is planar,
a homography relates the pixels in the novel view with those in a recorded
view. Therefore, a complete triangle in the novel view can efficiently be
drawn using texture mapping. The contributions of the three cameras can
be combined using alpha blending. The geometry can be approximated by
one plane for the whole scene, one plane per camera triple or by several
planes for one camera triple. The geometric construction is illustrated in
Figure 3.21.

This approach is illustrated in Figure 3.22 with an image sequence of 187
images recorded by waving a camera over a cluttered desk. In the lower part
of Figure 3.22 a detail of a view is shown for the different methods. In the
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Figure 3.22. Top: Image of the desk sequence and sparse structure-and-motion
result (left), artificial view rendered using one plane per image triple (right). Details
of rendered images showing the differences between the approaches (bottom): one
global plane of geometry (left), one local plane for each image triple (middle) and
refinement of local planes (right).
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case of one global plane (left image), the reconstruction is sharp where the
approximating plane intersects the actual scene geometry. The reconstruc-
tion is blurred where the scene geometry diverges from this plane. In the
case of local planes (middle image), at the corners of the triangles, the re-
construction is almost sharp, because there the scene geometry is considered
directly. Within a triangle, ghosting artifacts occur where the scene geome-
try diverges from the particular local plane. If these triangles are subdivided
(right image) these artifacts are reduced further.

3.10.3 Match-moving

Another interesting application of the presented algorithms consists of adding
virtual elements to real video. This has important applications in the enter-
tainment industry and several products, such as 2d3’s boujou and RealViz’
MatchMover, exist that are based on the techniques described in Section 3.7
and Section 3.8 of this chapter. The key issue consists of registering the
motion of the real and the virtual camera. The presented techniques can be
used to compute the motion of the camera in the real world. This allows
to restrict the problem of introducing virtual objects in video to determine
the desired position, orientation and scale with respect to the reconstructed
camera motion. More details on this approach can be found in [7]. Note
that to achieve a seamless integration also other effects such as occlusion
and lighting would have to be taken care of.

An example is shown in Figure 3.23. The video shows the remains of one
of the ancient monumental fountains of Sagalassos. A virtual reconstruction
of the monument was overlaid on the original frame. The virtual camera was
set-up to mimic exactly the computed motion and calibration of the original
camera.

3.11 Conclusion

In this chapter the relations between multiple views of a 3D scene were dis-
cussed. The discussion started by introducing the basic concepts of projective
geometry and tensor calculus. Then the pinhole camera model, the epipolar
geometry and the multiple view tensors were discussed. Next, approaches
that rely on those concepts to recover both the structure and motion from a
sequence of images were presented. Those approaches were illustrated with
some real world example and applications.

Acknowledgment The authors wish to acknowledge the financial support of
the EU projects InViews, Attest, Vibes and Murale, as well as the contri-
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Figure 3.23. Augmented video: 6 frames (out of 250) from a video where a virtual
reconstruction of an ancient monument has been added.
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