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Abstract—In this paper, we study the classical problem of ob-
ject recognition in low-power, low-bandwidth distributed camera
networks. The ability to perform robust object recognition is
crucial for applications such as visual surveillance to track and
identify objects of interest, and compensate visual nuisances such
as occlusion and pose variation between multiple camera views.
We propose an effective framework to perform distributed object
recognition using a network of smart cameras and a computer
as the base station. Due to the limited bandwidth between the
cameras and the computer, the method utilizes the available
computational power on the smart sensors to locally extract
and compress SIFT-type image features to represent individual
camera views. In particular, we show that between a network
of cameras, high-dimensional SIFT histograms share a joint
sparse pattern corresponding to a set of common features in
3-D. Such joint sparse patterns can be explicitly exploited to
accurately encode the distributed signal via random projection,
which is unsupervised and independent to the sensor modality.
On the base station, we study multiple decoding schemes to
simultaneously recover the multiple-view object features based on
the distributed compressive sensing theory. The system has been
implemented on the Berkeley CITRIC smart camera platform.
The efficacy of the algorithm is validated through extensive
simulation and experiments.

Index Terms—Distributed object recognition, compressive
sensing, random projection, joint sparsity, smart camera net-
works.

I. INTRODUCTION

Object recognition has been a well-studied problem in
computer vision. In the traditional formulation, a vision system
captures multiple instances of an object from a set of object
classes, and is asked to classify a new test image that may
contain one or many known object classes. Successful methods
have been demonstrated in the past, including pedestrian
detection [18], general object detection[1], [29] (e.g., vehicles
and animals), and scene annotation [20], [27] (e.g., buildings,
highways, and social events). A large body of these works have
been based on analysis of certain local image patches that are
robust/invariant to image scaling, affine transformation, and
visual occlusion, which are the common nuisances in image-
based object recognition. The local image patches are typically
extracted by a viewpoint-invariant interest point detector [23]
combined with a patch descriptor, e.g., SIFT (Scale-Invariant
Feature Transform) [21], [4].

In this paper, we consider a relatively new scenario where
a network of distributed cameras are set up to simultaneously
acquire an ensemble of images when a common object can be
viewed from multiple vantage points. In visual surveillance,

the ability to jointly recognize object classes from multiple
views enhances the accuracy of other functionalities such as
multiple-view association and tracking. It also effectively com-
pensates visual nuisances in the scene such as occlusion and
pose variation. Traditionally, investigators often assume that
the cameras are reliably connected to a central computer with
no bandwidth limit. On the other hand, the (high-resolution)
cameras may not possess significant computational power
to locally perform recognition on the object images. As a
result, the multiple-view images (or their SIFT representations)
would be streamlined back to the computer, and the whole
recognition process would be constructed in a centralized
fashion at the base station.

Recent studies in distributed object recognition have been
mainly focused on two directions. First, when multiple images
share a set of common visual features (i.e., affine-invariant
interest points), correspondence can be established across
camera views. This indeed was the original motivation for
the SIFT framework [21]. More recently, [15], [29] proposed
to harness the prior spatial distribution of specific features
to guide the multiple-view matching process and improve
recognition. [8] proposed to utilize SIFT feature matching to
obtain a vision graph for an ad-hoc camera network. Taking
advantage of random projection, [34] argued that reliable
feature correspondence can be estimated in a much lower-
dimensional space between cameras communicating under rate
constraints.

Second, when the camera sensors do not have sufficient
communication resources to streamline the high-dimensional
visual features among camera views and perform feature
matching, distributed data compression [13], [14] can be
utilized to encode and transmit the features. Then the joint
object features are recovered at the base station with much
higher computational capacity. In particular, [6] proposed a
rate-efficient codec to compress scalable tree structures in de-
scribing the hierarchy of SIFT histograms. On the other hand,
[9] studied a multiple-view SIFT feature selection algorithm.
The authors argued that the number of SIFT features that
need to be transmitted to the base station can be reduced
by considering the joint distribution of the features among
multiple camera views of a common object. However, the
selection of the joint features depends on learning the mutual
information among different camera views, and their relative
positions must be fixed.



A. Contributions

We propose a distributed object recognition system suitable
for band-limited camera sensor networks. The contributions
of this paper are two-fold: First, based on compressive sens-
ing theory, we propose an effective distributed compression
scheme to encode SIFT-type object histograms on individual
camera sensors. In particular, we explicitly exploit the non-
negativity and the joint sparsity properties in multiple-view
histograms to achieve state-of-the-art feature compression for
multiple-view recognition. No communication between the
cameras is necessary to exchange mutual information about the
scene. Random projection will be used to provide dimension-
ality reduction, which is particularly adept for sensor network
applications.

Second, we detail the design of a distributed recognition
system. On the sensor side, a smart camera sensor platform
called CITRIC [7] is utilized. The substantial computational
capability on CITRIC running embedded Linux enables a fast
implementation of the SURF (Speeded-Up Robust Features)
detector [4] and compression of the object histograms. On the
computer side, we demonstrate that the multiple-view object
histograms can be jointly recovered with high accuracy using
a linear ¢'-minimization (¢*-min) solver, called nonnegative
polytope faces pursuit (PFP). Finally, the object class from
the multiple views is classified using support vector machines
(SVMs). We conduct extensive simulation and a real-world
experiment to validate the performance of the system, in which
the Columbia COIL-100 object image database [24] is used.

II. ENCODING MULTIPLE-VIEW FEATURES VIA SPARSE
REPRESENTATION

Suppose multiple camera sensors are equipped to observe a
3-D scene from multiple vantage points. The sensors commu-
nicate with a base-station computer via a single-hop wireless
network, i.e., the topology of the network is a star shape
with the computer at the center.! Using a SURF feature
detector, viewpoint-invariant features can be extracted from
the corresponding images, as shown in Figure 1. These local
features are called codewords.

Fig. 1. Detection of interest points (red circles) on two image views
of a 3-D toy. The correspondence of the interest points is highlighted
via red lines.

IThe authors have recently proposed a distributed fusion algorithm to
compress high-dimensional SIFT histograms in a band-limited multi-hop
camera network. The interested reader is referred to [33].

If one is given a large training set of images that capture the
appearance of multiple object classes, the codewords from all
the object categories then can be clustered based on their visual
similarities into a vocabulary (or codebook). The clustering
normally is based on a hierarchical k-means process [25], [17].
The size of a typical vocabulary ranges from thousands to
hundreds of thousands, and naturally each codeword in the
vocabulary can be shared among multiple object classes.

Given a large vocabulary that contains codewords from
many object classes, the representation of the SIFT features in
a single object image is then sparse, which is called a SIFT
histogram (e.g., a car can be seen to have two to four wheels
depending on the viewpoint). Since only a small number of
features are exhibited on a specific object, their values (or
votes) in the histogram are positive integers, and the majority
of the histogram values should be (close to) zero, as shown in
Figure 2.2
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Fig. 2. The histograms representing the image features from the two
image views in Figure 1.

We define the problem of multiple-view histogram compres-
sion:

Problem 1 (Distributed Compression of Joint Sparse Signals):

When L camera sensors are equipped to observe a single 3-D
object, the extracted SIFT histograms @, xo,--- ,x; € RP
are assumed to be nonnegative and sparse. Further, the
corresponding images may share a set of common SIFT
features from the multiple views:

Ty = 5)-’-2’1,

(D

xr, = T+ zL.

In (1), ® is called the joint sparse component, and z; is
called an innovation [13]. Both & and z; are also sparse and
nonnegative.

Suppose the L cameras communicate with the base station
via a single-hop, band-limited network, and no communication
is allowed between the camera pairs:

2In this paper, the vocabulary is constructed using a hierarchical k-means
algorithm [17], where k = 10. For example, a four-level hierarchy generates
about 1000 mean values as codewords at the finest level, as shown in the
figure.



1) On each camera, construct an encoding function f :
x; € RP — y, € R? (d < D) that compresses the
histogram.

2) On the base station, once ¥y,,Y,, - - ,Y; are re-
ceived, simultaneously recover the histogram signals
Ty, T, - ,xy and classify the object class in 3-D.

A. Random Projection

We first discuss choosing a projection function to encode
the histogram vectors « in a lower-dimensional space. In
particular, a linear projection function is defined as:

[ y=Ax, (2

where A € R*D ig in general a full-rank matrix with d < D,
and represents an overcomplete coding dictionary.

In this paper, we assume that information sharing between
cameras is not available for the compression process. This
constraint is particularly relevant in distributed camera net-
works, where the locations of the cameras may not be known
and may not be assumed fixed before hand. Recently, a
special projection method called random projection has gained
much publicity in applications where the prior information of
the source data and the computational power of the sensor
modalities are limited [5], [7], [34]. In this case, each element
a;; of A is independently drawn from a zero-mean Gaussian
distribution. One can further simplify the implementation for
generating random matrices by a Bernoulli distribution of two
values (+1,—1) with equal probability, i.e., the Rademacher
distribution.

Compared with other linear projections, the main advan-
tages of random projection are two-fold: 1. Random projec-
tion is efficient to generate using a pseudo-random number
generator, and it does not depend on any domain-specific
training set. 2. In terms of robustness to wireless congestion
and packet loss, if (part of) the projected coefficients are
dropped from the communication, the node needs not resend
the coefficients, so long as the receiver can keep track of
the packet IDs to reconstruct a partial random matrix with
a lower dimension d in (2). In addition, it is straightforward
to implement a progressive compression protocol to construct
additional random projections of the signal & to improve the
reconstruction accuracy.

Clearly, one implication of encoding x in (2) is that the
possible solution becomes not unique. In the following, we
establish the basic compressive sensing framework to recover
ax on each individual camera. In Section II-C, we will investi-
gate new methods to recover joint sparse signals from multiple
cameras.

Before we discuss how to recover histogram vectors x in
(2), remember the goal of Problem 1 is to classify the object
class in the 3-D scene. Indeed, one can directly utilize the
randomly projected features y in the d-dim feature space for
recognition. One important property of random projection is
that it preserves the pairwise Euclidean distance, known as the
Johnson-Lindenstrauss (J-L) lemma [3]:

Theorem 1 (Johnson-Lindenstrauss Lemma): Let 0 < € <
1 and an integer n for the number of any point cloud X C RP.
For any d > 4(¢2/2 — €¢3/3)"!logn, a random projection
f: RP — R9 preserves the pairwise Euclidean distance with
high probability:

(1 - o)llws — 2,13 < If (@) ~ fl@)} < 1+ —:ng;
where x; and x; are any two points in the point cloud X.

The J-L lemma essentially provides the following guarantee:
For applications where only pairwise ¢2-distances are con-
cerned, it suffices to use the randomly projected features y and
“throw away” the original data. In machine learning, random
projection has been applied to reducing the data complexity
for k-nearest neighbor (kKNN) [2], [34]. On the other hand,
Gaussian random projection does not guarantee the bounds for
other ¢P-norms with (p < 2). Particularly in object recognition,
the similarity between different histograms is often measured
w.r.t. the ¢!-norm using the histogram intersection kernel,
which will be discussed in more detail in Section III-B. More
recent studies have proposed other p-stable random projection
methods to effectively approximate the general ¢P-distance
[32], [19], for example, using Cauchy random projections to
preserve the pairwise ¢!-distance. For clarity, in the paper, our
discussion will be limited to Gaussian/Rademacher random
projections.

Another observation in the J-L lemma is that the lower
bound of the projection dimension d depends on the number
of samples n. However, the lemma does not assume any
special structure of the point cloud in the high-dimensional
space. If we further assume the source signal x is sufficiently
sparse, e.g., as the case for image feature histograms computed
over a large vocabulary, each x then can be reliably recov-
ered/decoded from its random observations y. This “inverse”
process is related to the sparsity of the source signal &, which
is the main subject in compressive sensing [5], [11].

Theorem 2: Given a sparse signal x(, denote k as the
sparsity (i.e., ||zollo = k). Then for large D, with high
probability, there exists a constant p = p(A) in (2) such that
for every x( with its sparsity k < pd, x is the unique solution
of the ¢!-min program:

(P1): minl|x|/; subject to y = Ax. 4)

Clearly, the condition p in Theorem 2 is a function of
the matrix A. In fact, for a particular A matrix, p can be
exactly quantified in convex polytope theory [10], [12]. This
relationship is also pivotal in enforcing the nonnegativity of
x that will be discussed in Section II-C. In the rest of this
subsection, we will first overview this relationship.

Figure 3 illustrates a projection between a cross polytope
C = C3 C R3 and its image AC C R2. In general, a cross
polytope CP in RP is the collection of vectors {z : ||z||; <
1}. For any k-sparse vector x, ||x||; = 1, one can show that x
must lie on a (k — 1)-face of CP. With projection A € R¥*P,
AC' is an induced quotient polytope in the d-dim space. It is



important to note that some of the vertices and faces of C' may
be mapped to the interior of AC, i.e., they do not “survive”
the projection.

Fig. 3. Projection of a cross polytope C' in R? to a quotient polytope
AC via projection A. The corresponding simplex is 7" at the shaded
area. Both AC' and AT are O-neighborly.

Theorem 3: 1) For a projection matrix A € R?*P the
quotient polytope AC is called k-neighborly if all the
k-faces of CP are mapped to the boundary of AC.
Any sparse signal € R” with (k + 1) or less sparse
coefficients can be recovered by (Py) if and only if AC
is k-neighborly.

2) For a specific (k + 1)-sparse signal € R”, & must
lie on a unique k-face F' C C. Then « can be uniquely
recovered by (P;) if and only if AF is also a k-face of
AC.

Theorem 3 is a powerful tool to examine if a sparse signal
under a projection A can be uniquely recovered by (P ). For
example, in Figure 3, AC is 0-neighborly. Therefore, any 1-
sparse signal can be uniquely recovered by (P, ). However, for
a specific  on a 1-face of C, x is 2-sparse and it is projected
to a 1-face of AC. Hence, x also can be uniquely recovered
via (P 1).

For a specific A matrix that depends on the application,
one can simulate the projection by sampling vectors @ on all
the k-faces of C. If with high probability, the projection Ax
survives (i.e., on the boundary of AC), then AC is at least
k-neighborly. The simulation provides a practical means to
verify the neighborliness of a linear projection, particularly in
high-dimensional data spaces. On the other hand, a somewhat
surprising property guarantees the well-behavior of random
projection: In a high-dimensional space, with high probability,
random projection preserves most faces of a cross polytope.
A short explanation to this observation is that most randomly
generated column vectors in A are linearly independent.

B. Enforcing Nonnegativity using Polytope Faces Pursuit

Given the observations ¥, Y, - , Y, (P1) in the previous
subsection provides a solution to independently recover each
of the ensemble elements xq,xs,--- ,x. However, such a
solution fails to observe that in our application the sparse
signals & represent image histograms and are therefore strictly
nonnegative, and it also fails to enforce the possible joint
sparse pattern that is shared among multiple camera views.
In this subsection, we show that the abilities for a set of new
algorithms to enforce nonnegativity and joint sparsity of the

ensemble significantly boost the accuracy of #!-min. In Section
IV, we will further demonstrate that the improvement also
leads to better classification of 3-D objects.

We first discuss how to impose nonnegativity in general £!-
min. Assuming nonnegative x is normalized to be ¢'-norm
one without loss of generality, we denote 7' = TP~ as the
standard simplex in R”, i.e.,

T={x:|z||y=1and x > 0}. )

Figure 3 shows the relationship between C” and TP-!,
Hence, the nonnegative vector  must lie on a (k + 1)-face of
T, which is a small subset of the cross polytope. The following
theorem shows that the nonnegativity constraint reduces the
domain of possible solutions for £!-min (as shown in Figure

3) [12]:
Theorem 4: 1) Any nonnegative sparse signal & € RP
with (k4 1) or less sparse coefficients can be recovered

by

(P{): min||z|; subject to y = Az and x >0 (6)

if and only if all k-faces of TP~ survive the projection
A.

2) For a specific nonnegative (k + 1)-sparse signal x, «
must lie on a unique k-face F' C T. Then x can be
uniquely recovered by (P]) if and only if AF is also a
k-face of AT.

The nonnegative £'-min (6) is a linear program, and can
be solved by many algorithms, including orthogonal match-
ing pursuit (OMP), basis pursuit (BP), and polytope faces
pursuit (PFP) [26]. These algorithms are usually preferred in
sensor network applications compared to other more expensive
quadratic programs (e.g., the LASSO [30]). In both simulation
and experiments on real-world data, we have found that PFP
is a more efficient algorithm than the LASSO to impose the
nonnegativity constraint, and produces good results that are
difficult to solve for OMP.

The PFP algorithm is summarized in Algorithm 1. Note that
the modification of Algorithm 1 compared to the standard PFP
that permits negative coefficients is that the pursuit does not
involve the antipodal vertices as the columns of —A. In the
rest of the paper, Algorithm 1 is the £*-solver of our choice.

C. Estimation of Joint Nonnegative Sparse Signals

In this subsection, we propose a novel solution to simul-
taneously recover the ensemble x1, s, - - - ,x that represent
L camera views, where a joint sparse pattern  in (1) may be
present.

A straightforward attempt to recover joint sparsity formu-
lates the ensemble of randomly projected vectors as multiple
measurement vectors (MMV) [28], [31]:

Wi, -yl = Az, ,x]) © YV = AX. @)

Assuming the ensembles x1,--- ,x are sparse and share
the same support, one can modify (P;) as

D
(Pyq): minz |2 |2 subject to Y = AX, 2™ >0, (8)

i=1



Algorithm 1 Nonnegative Polytope Faces Pursuit (PFP)

Input: A full rank matrix A = [a,--- ,ap] € R4*D 4 < D,
avectory € R4, and an error threshold e.

1: Initialization: k& « 0. Assign residual ro < y, sparse
support index set  « ), & « 0 € RP.

2: Project  onto the boundary of the dual polytope of A:
Cpo < 0.

3: repeat

k—k+1.

5:  Pursuit on the dual polytope faces

»

. : T
= : _ 1) =1
i argrjxélél{am] (k-1 +arp_1) =1},

Q— QU {Z}
6:  Update: %% « (AN Ty, rp =y — Ax.
7. Project on the dual polytope: ¢, = ((A?)")T1.
8:  if o contains negative coefficients then
9: Remove negative support indices from (2.
10: Go to STEP 6.
11:  end if
12: until H’I’kHQ < €.
Output: x.

where () is the ith row of X. By a similar argument in
compressive sensing, one can show that if x,---,x; are
sufficiently sparse and share the same support (nonzero rows),
they can be uniquely recovered by (P ;).

However, the drawbacks of the MMV formulation are also
obvious in the context of distributed object recognition: First,
MMV imposes that during the encoding process, all camera
sensors must share the same projection matrix A. It is clearly
more desirable for individual sensors to have the freedom to
construct their own projections. Second, MMV does not take
into account any possible innovations z; in different camera
views in (1). As shown in Figure 2, the assumption is ill-posed
as innovation features abound in multiple-view SIFT features.

In this paper, we propose a sparse innovation model (SIM)
to directly recover the joint sparse signal and the sparse
innovations as the following:

Yy, = A(@+z)=A1c+ Az,

: ©
yr = Ap(@+zp)=Arx+ Arzg,

where both & and the ensemble of zq,---,z; are assumed
to be nonnegative. The SIM can be directly solved in the
following linear system via PFP:

lyll Ay A1 O - 0] jl
- P B (10)
& y = Az ¢RI,

The global projection function (10) projects a D(L+1)-dim
nonnegative sparse signal onto a dL-dim subspace defined by
matrix A’. The new linear system also improves the sparsity

w.r.t. the total data space. As an example, suppose for each
camera in (2), p = %, and ||&[o = £ and ||z;|lo = £. Then
the new sparsity ratio in (10) becomes
, (L+Dk/2 L+1

P=""aL " 2L ” (n
Hence, with a large L for the number of the cameras, the
joint histogram x’ becomes much sparser and can be recovered
more accurately via ¢!-min.

Example 1: We validate the performance of the three joint
sparsity solutions using sythetic data. Experiments on real-
world multiple-view image data will be presented in Section
IV. Suppose the triplet D = 1000, d = 200, and k£ = 60. To
simulate multiple-view histograms, three k-sparse histograms
X1, T2, ¢35 € R are randomly generated with nonzero
coefficients between 0 and 1, and then randomly projected
to a 200-dim space. Among the 60 nonzero coefficients
in each histogram, different combinations of joint sparsity
and innovation are constructed, as shown in Table I, from
lZ]lo = 60 and ||z||p = 0 to ||Z|lo = 30 and |/z]|p = 30.
We evaluate the performance of OMP, PFP, MMV, and SIM,
based on their #°-norm distortion (i.e, sparse support error) and
£2-norm distortion between the ground truth and the estimate.

TABLE 1
AVERAGE °-ERROR AND ¢2-ERROR OF OMP, PFP, MMV, AND
SIM OVER 100 TRIALS. THE TWO NUMBERS IN THE
PARENTHESES INDICATE THE SPARSITY IN THE JOINT SPARSE
SIGNAL AND THE INNOVATION, RESPECTIVELY. THE BEST
RESULTS ARE INDICATED IN BOLD NUMBERS.

Sparsity | (60,0) (40,20)  (30,30)
up | 5614 56.14  56.14
4up 1.76 1.76 1.76
&pp 3.48 3.48 3.48
Popp 0.05 0.05 0.05
By | 4217 4877 5850
Crrv | 1.84 3.10 3.67
s 1.85 1.65 1.95
Ty 0.02 0.02 0.02

First, since both OMP and PFP do not consider any joint
sparsity, each x is independently recovered from its projection
y. Hence, their performance should not change w.r.t. different
sparsity combinations. Without enforcing the nonnegativity,
OMP basically fails to recover any meaningful nonnegative
sparse patterns. On the other hand, the average sparse support
error for PFP that enforces the nonnegativity is much smaller.

When the joint sparsity is considered, the model of MMV
does not perform well either. It clearly underperforms both
individual PFP and the SIM, even in the case of (60,0) without
innovation signals.

Overall, the SIM achieves the best performance. First,
w.r.t. different combinations of joint sparsity and innovation,
the average support error stays consistent, which shows the
method adapts well to the presence of innovation signals in
the multiple-view histograms. More importantly, the method
achieves a very low estimation error both in ¢° and ¢2. Out of
60 nonzero coefficients, only one coefficient is misidentified.



III. SYSTEM IMPLEMENTATION
A. Feature Extraction on CITRIC Camera Motes

The complete recognition system has been implemented on
the Berkeley CITRIC smart camera sensor [7] and a computer
as the base station. The design of the CITRIC platform
provides considerable computational power to execute SIFT
feature extraction and histogram compression on the sensor
board. Each CITRIC mote consists of a camera sensor board
running embedded Linux and a TelosB network board running
TinyOS. The camera board integrates a 1.3 megapixel SXGA
CMOS image sensor, a frequency-scalable (up to 624 MHz)
microprocessor, and up to 80 MB memory. We have ported
an Open SURF library to extract SIFT features.® Figure 4
illustrates two examples.

Fig. 4. The interest points detected from a corridor scene (left) and
a tree object (right). The SURF features are superimposed as red
circles.

The TelosB network board uses the IEEE 802.15.4 protocol
to communicate between camera nodes and the base station.
The typical bandwidth is 250 Kbps. To measure the speed of
the system on the camera sensor, we have conducted a real-
world experiment at multiple locations of an office building
[33]. Overall, the CITRIC system takes about 10-20 seconds
to extract SURF features from 320 x 240 grayscale images
and transmits the compressed histograms y to the base station,
depending on the number of SURF features and the dimension
of the random projection. The experiment reveals some limi-
tation of the CITRIC platform in more computation-intensive
applications such as real-time SIFT feature extraction. We
believe the limitation can be mitigated in a future hardware
update with a state-of-the-art floating-point mobile processor
and a faster data rate between the CITRIC mote and the
network mote.

B. Multiple-View Recognition via SVMs

On the base station, upon receiving the compressed
features from the L cameras, the original sparse his-
tograms x1, o, -, are simultaneously recovered via the

3The Open SURF project is documented at: http://code.google.com/p/
opensurf1/.

SIM (10). In order to identify M object classes w.r.t. each in-
dividual camera view, we train one-vs-one SVM classifiers for
every pair of categories. We use LibSVM* with the histogram
intersection kernel for learning classifiers. This kernel and its
variants such as the pyramid match kernel [16] have been
shown to work quite well for visual recognition. Since there
have been quite efficient algorithms for classification [22], we
do not believe the possible computation and memory limitation
would be a major issue for a real-time classification system
on the base station computer.

When multiple views are available there are various ways to
use them together to improve recognition. The simplest being
one that enforces agreement between the views by means
of majority voting. One may also learn to classify in the
joint representation domain directly. On the other hand, most
existing methods must assume the relative camera positions are
known and fixed. We leave the exploration of this direction for
future research.

IV. EXPERIMENT

To demonstrate the performance of the algorithm on real
multiple-view images, we utilize the public COIL-100 dataset.
This dataset consists of 72 views of 100 objects imaged
from O to 360 degrees in 5 degree increments. In this setting
we perform instance-level recognition and demonstrate the
performance of our approach with varying number of random
projection dimensions. The imaging process on the CITRIC
mote is simulated by directly uploading the COIL images to
the camera memory for processing.

A local feature representation was computed for each image
using 10-D PCA-SIFT features extracted on a regular grid with
a 4 pixel spacing that were combined with their image location
to form a 12-D feature space. The features from a subset of the
COIL-100 images were then used to compute the vocabulary
of a multi-resolution histogram image representation found
using hierarchical k-means with LIBPMK [17]. We used 4
levels and a branching factor of 10 to give a 991 word vocab-
ulary at the finest level of the hierarchy, as shown in Figure
5. We represent each image and perform L1 recovery using
the finest level of the hierarchical histogram, and similarity
between images is computed using histogram intersection over
the resulting 991-D histogram vectors corresponding to each
image. Note that it is straightforward to reconstruct the higher
levels of the hierarchy given the reconstructed image histogram
at the finest level, and other metrics such as pyramid match
similarity can also be used.

In this paper, 10 training examples are sampled uniformly
from the complete 360 degree viewing circle. Given a new
test example that is not in the training set, each pairwise SVM
classifier votes for a class of the example, and the final decision
is assigned to the class with the maximum number of votes.
For testing using multiple views we use the projected features
from the neighboring views of the test example in the dataset

“http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Example of a hierarchical histogram tree. Top: Level 1-3. Bottom:

to jointly recover the features, but classify each independently
for a fair comparison.

Figure 6 shows the performance of various methods on
this dataset. The solid line on the top shows the ground-truth
recognition accuracy assuming no compression is included in
the process, and the computer has direct access to all the SIFT
histograms. Hence, the upper-bound per-view recognition rate
is about 95%. When the histograms are compressed via
random projection, in the low-dimension regime, the random
projection space works quite well to directly classify the object
classes. For example, at 200-D, directly applying SVMs in
the random projection space achieves about 88% accuracy.
However, the accuracy soon flattens out and is overtaken by
the ¢'-min methods when the projected feature dimension
becomes high enough.

Since the ¢!'-min scheme provides a means to recover the
original SIFT histogram in the high-dimensional space, when
the dimension of random projection becomes sufficiently high,
the accuracy via PFP surpasses the random projection features,
and approaches the baseline performance beyond 600-D. Fur-
thermore, when more camera views are available, the joint
sparsity model of SIM significantly boosts the accuracy by as
much as 50%, as seen in Figure 6. For example, at 200-D, the
recognition accuracy for PFP is about 47%, but it jumps to
71% with two camera views, and 80% with three views. SIM
has also been shown to reduce the ¢!- and ¢?-recovery-error
in Figure 7.

V. CONCLUSION AND DISCUSSION

We have studied the problem of distributed object recog-
nition in band-limited smart camera networks. The main
contribution of the solution is a novel compression framework
that encodes SIFT-based object histograms. We exploit three
important properties of multiple-view image histograms of a
3-D object: histogram sparsity, histogram nonnegativity, and
multiple-view joint sparsity.

Inspired by compressive sensing theory, Gaussian random
projection has been proposed as a universal dimensionality
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Fig. 6. Per-view classification accuracy (in color) w.r.t. random
projection dimensions. Three compression schemes are tested: 1.
Randomly projected feature space. 2. PFP on each independent view.
3. SIM with 2-to-3 camera views. The top curve is the baseline
recognition rate without histogram compression, and it is independent
to the dimension change.

reduction function to compress high-dimensional histograms.
We have discussed the implication of the J-L lemma to random
projection that classification can be directly applied to the
randomly projected samples in the low-dimensional space as
the projection preserves the pairwise Euclidean distance.

The disadvantage of the randomly projected samples is that
their pairwise ¢ 1_distance is not preserved, which is crucial for
generating accurate object recognition results based on SIFT
feature histograms. We have proposed a sparse innovation
model to directly characterize the relationship between the
joint sparsity and the innovation signals in multiple views.
We have further shown that both the joint sparsity and the
innovations are sparse and nonnegative. Hence, they can be
simultaneously recovered on the base computer via a ¢!-min
solver such as the nonnegative polytope faces pursuit. The
complete recognition system has been implemented on the
Berkeley CITRIC smart camera platform.

One of the limitations in the current solution is that the
algorithm lacks a mechanism to classify and associate multiple
objects in the scene. This is due to the fact that each histogram
is being treated as a holistic representation of the 3-D scene.
Another limitation is that the classification via SVMs is
conducted on a per-view basis, although majority-voting can
be trivially applied to incorporate the multiple views to some
extent. Future solutions to these questions must carefully study
the detailed structure of sparse histograms in full granularity,
and answer how the association of these SIFT features can
improve the classification across multiple camera views in a
band-limited sensor network.
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