

Abstract

This paper presents an algorithm for rendering a static scene
from multiple perspectives. While most current computer graphics
algorithms render scenes as they appear from a single viewpoint
(the location of the camera) multiple viewpoint rendering (MVR)
renders a scene from a range of spatially-varying viewpoints. By
exploiting perspective coherence, MVR can produce a set of
images orders of magnitude faster than conventional rendering
methods. Images produced by MVR can be used as input to
multiple-perspective displays such as holographic stereograms, len-
ticular sheet displays, and holographic video. MVR can also be
used as a geometry-to-image prefilter for image-based rendering
algorithms. MVR techniques are adapted from single viewpoint
computer graphics algorithms and can be accelerated using
existing hardware graphics subsystems. This paper describes the
characteristics of MVR algorithms in general, along with the
design, implementation, and applications of a particular MVR
rendering system.

1 Introduction

Many of the important techniques and algorithms of computer
graphics are specifically focused on accelerating the conversion of
geometric primitives to images by using coherence of some kind.
Published taxonomies of coherence [17] have presented the
spectrum of possible coherence types, but common practice has
put greater emphasis on some areas and left others generally
untouched. In particular, most computer graphics algorithms
heavily emphasize the use of image and geometric coherence to
accelerate the rendering of a single image. These techniques
include some of the most important in computer graphics: polygon
scan conversion and incremental shading.

Less common rendering techniques have been used to exploit
coherence over multiple views of an object. For example, temporal
coherence can be used to speed the rendition of the frames of a
computer animation. Coherence across several images, referred to
under the blanket name

frame-to-frame coherence

, is very general
and scene dependent because of the sheer variety of changes that
an object in a scene can experience from one frame to the next.
Fully general temporal coherence algorithms must deal with poten-
tially complex camera motion as well as arbitrary object transfor-

mation and other changes to the scene. In part because of this gen-
erality, the observation made by Sutherland

et. al.

 from 1974 is still
mostly true today: “It is really hard to make much use of object
and frame coherence, so perhaps it is not surprising that not much
[use of it] has been made.” Recent developments such as the
Talisman graphics architecture [19] demonstrate both the promise
and the complexities of using temporal coherence.

2 Perspective coherence

While temporal coherence of time-varying image sequences is
an important subclass of frame-to-frame coherence, it is not the
only subclass. Another coherence type,

perspective coherence

, is the
similarity between images of a static scene as viewed from different
locations. Simple observation demonstrates the prevalence of per-
spective coherence in common “real world” scenes: viewing typical
objects by alternating between your left and right eyes produces
little apparent change in appearance. Small shifts of your head side
to side or up and down usually yields similarly small changes.

Because perspective coherence results from the apparent
change of a scene’s appearance due solely to a change in camera
perspective, it is much more restricted and less general than
temporal coherence. Geometric and shading changes to the
scene’s appearance are usually related to the change in the camera
position in a simple way. With the appropriate rendering con-
structs, perspective coherence is easier to find and to exploit than
more general frame-to-frame coherence. This paper describes a
method of rendering whereby perspective coherence can be
harnessed to efficiently render sets of perspective images.

3 Multiple viewpoint rendering

This text refers to rendering methods that generate perspective
image sets as

multiple viewpoint rendering

, or

MVR

, and those algo-
rithms that create single images as

single viewpoint rendering (SVR)

.
MVR algorithms treat the process of rendering a set of perspective
images as a unit, and use the structured coherence of spatio-per-
spective space to accelerate the process of image data generation.
For instance, using a relatively small number of transformation and
shading calculations, MVR can interpolate location and appear-
ance of an object through an entire range of views.

4 Applications

Perspective image sets such as those generated by MVR are
used less frequently than are animations or other temporally
varying image sequences. But perspective image sets have their
own important class of emerging uses in computer graphics. This
class of applications approximate optical capture, distortion, or
display of a field of light emitted by a scene. Two diverse
examples of potential applications for MVR-generated image sets
include synthetic three-dimensional display and image-based ren-
dering.

4.1 Three-dimensional displays

Multi-perspective 3D or parallax displays, a classification which
include lenticular sheet displays, parallax panoramagrams, holo-
graphic stereograms, and holographic video displays, mimic the

Multiple Viewpoint Rendering

Michael Halle
Brigham and Women’s Hospital

75 Francis Street, Boston, MA 02115, USA. Email: mhalle@bwh.harvard.edu.
This work was performed while the author was at the MIT Media Laboratory.

Supplemental Materials
Supplemental materials for this paper are available in the papers/halle directory.

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

appearance of three-dimensional scenes by displaying different
perspectives of the scene in different directions [10][15]. Most
multi-perspective displays are horizontal parallax only: they use a
range of perspectives that vary only horizontally in order to
provide stereopsis to a viewer. Depending on the exact technology
used in the display, the number of perspectives required as input
to the display device may range from two to tens of thousands. For
three-dimensional images of synthetic scenes, these perspectives
must be rendered. The high cost of computing this large amount
of image information is currently a major impediment for the
development of three-dimensional displays; MVR can be used to
produce 3D images of virtual scenes much faster than existing
rendering methods.

4.2 Image-based rendering

Another use for perspective image sets is as input to image-
based rendering algorithms. Image-based rendering densely
samples light traveling through a space as a set of images and
transforms this data to produce new images seen from viewpoints
spatially disparate from any of the originals. Image algorithms such
as those developed by Gortler

et. al

. [8] and Levoy and
Hanrahan [14] produce a single output image from a perspective
image set, while similar algorithms developed for optical predistor-
tion in synthetic holography derive not just one but an entirely
new set of images [10]. Either of these types of image-based
rendering algorithms requires a set of rendered perspectives in
order to image a synthetic scene. MVR serves as a prefilter for the
image-based rendering pipeline, transforming scene geometry into
a basis set of the light field from which new images are derived.
Perspective coherence, in turn, provides the means to efficiently
compute this perspective image set.

5 Camera geometries

The exact relationship between a change in camera viewpoint
and the resulting change in the appearance of a scene depends on

the capture camera geometry. Choice of camera geometry
depends on how the output data will be used and how well a par-
ticular geometry lends itself to efficient use of perspective coher-
ence. Image-based rendering algorithms have shown that a suffi-
ciently dense sampling perspectives in a single plane provides
enough information to synthesize arbitrary perspectives within a
volume free of occluders; this property permits the set of perspec-
tive images from one camera geometry to be converted to that of
another, different camera geometry. The ability to convert sets of
perspective images between different camera geometries allows the
choice of a convenient geometry to maximize the use of perspec-
tive coherence to accelerate rendering. This paper will focus on a
planar camera geometry specifically designed to simplify interpola-
tion between different views.

6 PRS camera geometry

One of the simplest multi-perspective camera geometries
consists of an planar array of cameras arranged in a regular grid,
with all of the cameras’ optical axes mutually parallel. The film
plane of each camera in the grid is sheared in a plane orthogonal
to the camera’s view vector in order to recenter the image of
points on an image plane located a constant distance from the
camera plane. This camera geometry has been used in computer
vision and synthetic holography since the late 1970’s; it is identical
to the one described by Levoy and Hanrahan [14].

We will refer to this geometry as a

planar regular shearing

camera geometry, or

PRS

 camera. The one-dimensional analog of
the PRS camera consists of a regularly spaced line of cameras; this
geometry is called a

linear regular shearing

 geometry, or

LRS

. The
PRS camera can be decomposed into a set of simpler LRS
cameras arranged in a regular array. Collectively, the PRS and
LRS geometries are called

regular shearing

 (

RS

) cameras. PRS and
LRS camera geometries are shown in Figure 1.

Figure 1: The left picture shows a two-dimensional array of cameras arranged in a PRS geometry, capturing an image of a three-dimensional object located at the recentering
plane. The PRS camera geometry captures both vertical and horizontal parallax (full parallax information) of the object. The middle picture depicts a one-dimensional LRS
camera geometry, which captures only horizontal parallax. A PRS camera can be created from a set of LRS camera positioned in a regular grid. The right picture shows a detail
of the individual camera orientation for RS camera geometries: the cameras are positioned at regular grid locations, with their optical axes (view vectors) all parallel, and their
film planes shifted so as to recenter the image plane in each view.

image plane

camera plane

camera
location

object

full parallax

image plane

camera plane

camera
location

object

horizontal parallax only

y

x

all camera up vectors are parallel
to camera plane y vector

all camera optical axes
are perpendicular to
camera plane

The use of an RS camera introduces several simplifying con-
straints to the geometry and the mathematics of rendering multiple
images. Assuming that a pinhole camera imaging model is used,
an unoccluded point in the scene will translate in position from
one camera image to the next at a velocity constant for all views
and linearly proportional to the point’s distance from the recenter-
ing plane and the spacing between the cameras in the grid. The
relationship between camera position and the point’s location in
the corresponding image is separable. In other words, a point
translating horizontally from one camera’s image to another can
only be due to a change in horizontal camera position (and
similarly true in any other axis of lateral camera displacement).
The separable linearity between camera location and image
position is the key to maximizing perspective coherence.

7 Spatio-perspective image volume

Considered as a single unit, the set of perspective images from
an RS camera form an image volume that spans a region of spatio-
perspective space. The three-dimensional perspective image
volume from an LRS camera is formed by stacking the individual
camera images on top of each other like playing cards. A PRS
camera forms an analogous four-dimensional volume. For the
purposes of illustration, we will for the moment restrict our expla-
nation to a LRS camera geometry where the camera is moving
strictly horizontally.

The original perspectives of the RS camera are slices through
the perspective image space. The volume can also be sliced in
other ways. The computer vision community has used a construct
known as an

epipolar plane image

, or

EPI

, to analyze the output of
cameras arranged in (or moved through) a set of spatially disparate
locations [4]. EPIs are slices of spatio-perspective space cut parallel
to the direction of camera motion. The scanlines that make up EPI

n

are the

n

th scanline from each of the original camera views.
Figure 2 shows the frames of a polygonal scene stacked up to form
a spatio-perspective image volume. A horizontal slice through the
volume at the location shown forms the EPI at right.

EPIs are useful because they expose the perspective coherence
of the RS camera geometry. The linear relationship between
camera position and the location of image detail manifests itself as
linear features called tracks in the EPI. A point in the scene, for
instance, sweeps out a linear

point track

 in the EPI. Tracks are
visible in the EPI as long as objects are visible and in frame as seen
from a particular camera location. If an object is occluded by

another object in one viewpoint, its track will be correspondingly
occluded by the other point’s track in the EPI. Since points in a
scene tend to remain visible over a range of viewing locations,
tracks tend to be fairly long in EPI space.

Surfaces in the spatio-perspective volume swept out by lines in
the scene are called

 line tracks.

Line tracks are twisted quadrilater-
als that interpolate between the point tracks of the line segment’s
two endpoints. A line in the scene that lies in an

epipolar plane

 (a
plane that includes the line of the camera track and a horizontal
scanline) has a line track restricted to a single EPI. The EPI of the
line track is formed by projecting its twisted 3D shape into 2D. A
line track can occlude or intersect the tracks of other objects in the
scene, or even twist itself into a bowtie shape as seen in 2D projec-
tion. The occlusion relationship between two different line tracks
can be determined by interpolating the depth coordinate of the
two endpoint tracks for each line track and occluding the more
distant of the two line tracks at every point. These occlusion calcu-
lations are very similar to those performed in conventional single
viewpoint rendering.

8 Properties of EPIs

The simple EPI shown in Figure 2 demonstrates some of the
reasons why EPIs are useful for rendering. Linear track features are

Figure 2: This spatio-perspective volume of a simple polygonal scene is formed by the frames captured by an LRS camera. An epipolar plane image (EPI) is a horizontal slice
through this volume. In the scene, the cube and star are diffuse surfaces while the cone is shiny with a specular highlight.

L

R

L

R

spatio-perspective volume epipolar plane image

Figure 3: This figure shows some of the graphical properties of an LRS EPI. The
large size of the track primitives, the regularity of the linear features, and the
assimilation of shading make EPIs appealing to render. Note that specular
highlights are not attached to the surface upon which they appear, but instead have
their own slope. Since the renderer that produced this image implements Phong
lighting but not Phong shading, the specular highlight on the cone is approximate.

compatible with interpolation algorithms implemented in conven-
tional rendering software and hardware. The shape of line tracks
are similar to, but even more regular than, the shape of the
polygons that are frequently used to describe the geometry of
scenes. Tracks are usually very long, spanning many pixels, so that
the ratio of pixels spanned by a track versus the vertices needed to
describe it is high. Occlusion relationships are essentially the same
as in ordinary scenes. The color of objects tends to change slowly
with varying viewpoint. Figure 3 shows examples of these and
other graphical properties of objects in the EPI from Figure 2.

9 MVR rendering algorithm

The length of the tracks of geometric primitives in spatio-per-
spective space hints that EPIs of a scene contain more coherence
than conventional perspective views of the same scene. This obser-
vation, combined with the other graphical properties of LRS EPIs,
leads to the basic idea of the MVR algorithm: decompose a
geometric scene into primitives that are rendered efficiently into
EPIs, then render the spatio-perspective volume, EPI by EPI, until
the entire volume is computed. To render a four-dimensional PRS
spatio-perspective volume, decompose it into simpler three-dimen-
sional LRS subvolumes that can be rendered individually. (A more
sophisticated algorithm could render the 4D spatio-perspective
volume as a single unit.) In many ways, MVR can be thought of as
a higher-dimensional version of established scan conversion algo-
rithms.

The basic steps of the MVR pipeline are as follows:

Preprocessing and transformation:

•Perform initial scene transformation and view independent
lighting calculations for each vertex in the scene,

•Decompose the two-dimensional PRS camera geometry into a
set of simpler horizontal LRS cameras,

•For each LRS camera, transform the vertices of the original
scene geometry to find its position as seen from the two most
extreme camera viewpoints,

Geometric slicing:

•Decompose the scene polygons into horizontal slices that lie
along the scanlines of the final image,

•Sort these polygon slices by scanline into a scanline slice table,

Rasterization and hidden surface removal:

•For each scanline entry in the slice table, scan convert the slices
for that scanline into tracks in EPI space, performing view-
dependent shading calculations and hidden surface removal in
the process,

•Combine all EPIs from all LRS cameras into a complete spatio-
perspective volume.

The rest of this section describes more specific details of the
different stages of the MVR rendering pipeline.

9.1 Preprocessing and transformation

Several of the computational steps used to calculate the appear-
ance of a single image in conventional rendering can be
performed once for the entire set of perspective images in multiple
viewpoint rendering. For a Gouraud-shaded object, for instance,
view independent lighting calculations such as Lambertian reflec-
tion can be performed once at each vertex of the scene. The cost
of these lighting calculations is independent of the number of
views to be rendered; their computational expense is amortized
over the entire set of images.

Per-sequence MVR calculations proceed as follows. The
geometry of the scene is either read from disk or accessed from
memory. For each LRS image set to be rendered, the model is
transformed into homogeneous screen space as seen from the two
extreme camera viewpoints. (This paper uses a right-handed coor-

dinate system where the

x

 coordinate increases to the right of the
screen,

y

 increases up, and

z

 increases out of the screen.) These
two camera views differ only in the horizontal direction; because
of the RS camera geometry, a vertex seen from these two view-
points differs strictly in its

x

 coordinate. The redundancy of the cal-
culation means that the cost of performing both endpoint camera
transformations is only 1.25 times the cost of performing a single
transformation. Following this step, each vertex will have screen

space coordinates (

x

L

, x

R

, y, z, w

), where

x

L

and

x

R

are the x coor-
dinates of the vertex as seen from the extreme left and right
camera views.

Next, clipping is performed on the transformed vertex coordi-
nates. Polygons lying completely above or below the view window
can be culled, as can those outside the near and far clipping
planes. Clipping polygons that partially fall within the view
window of at least one view is straightforward but somewhat more
complicated than for SVR. In our prototype implementation, we
chose to perform no polygon clipping at this stage for simplicity,
while risking some performance penalty.

As another result of the RS camera geometry, both the

z

 and

w

screen-space coordinates of each vertex remain constant over the
entire range of viewpoints. Because

w

 is fixed, the homogeneous
divide required for perspective transformation are performed as a
preprocessing step, reducing the computational cost of transforma-
tion. The

w

 coordinate should be maintained, however, to permit
perspective-correct shading and texture interpolation during scan
conversion [3].

9.2 Geometric slicing

Polygon tracks

, or

PT

s, are three-dimensional volume primitives
in the spatio-perspective space of an LRS camera geometry. Two-
dimensional scan conversion of a PT requires the original polygon
be decomposed, or sliced, into a set of line segments that lie along
the scanlines of the image set’s final perspective images. These line
segments are called

polygon slices

.

Slicing a polygon along scanlines is very similar to conventional
scan conversion, except that the slices retain their continuous
three-dimensionality. As each horizontal slice is generated, a data
structure describing it is added to a scanline slice table. This table
has one entry per scanline: each entry is a list of polygon slices that
the scanline intersects. Thus, each scanline table entry contains all
the information needed to render the scanline’s EPI, which is in
turn the scanline’s appearance from all viewpoints.

9.3 Rasterization

When it is rendered, each polygon slice is converted into a
special kind of line track called a

polygon slice track

 (

PST

) and
rendered into the appropriate EPI. The PST is the key rendering
primitive of MVR. Figure 4 shows some of the PST shapes from
which different slice orientations can result. PSTs have two types of
edges.

P-edges

 (projection edges) are the projections of the polygon

slice as seen from two most extreme camera views.

I-edges

 (interpo-
lating edges) interpolate the position of a slice endpoint through
the range of views. The geometry of PSTs is very regular; without
clipping or culling and disregarding degenerate cases, p-edges are
always horizontal and lie at the top and bottom scanline of the
EPI, while i-edges cross all EPI scanlines.

Figure 5 shows how the coordinates of the PST vertices in
spatio-perspective space are derived from the endpoints of the
polygon slice in screen space. Rasterization of a PST of a diffuse
Gouraud-shaded polygon proceeds by interpolating the perspec-
tive coordinate in the vertical (

p

) direction, and all other parame-
ters in the horizontal (

x

) direction. Every horizontal scanline of the
PST crosses through the same range of values for each parameter,
but at a different rate of sampling depending on the width of the
PST at that scanline. If the i-edges of a PST cross at a point, the
direction of interpolation will be opposite from one side of the
crossing point to the other, as the figure demonstrates.

Geometric slicing and PST rasterization most distinguish the
MVR rendering process from that of a more conventional
renderer. By way of example, Figure 6 shows how a single triangle
is rendered using MVR and an LRS camera geometry.

9.4 Hidden surface removal

Hidden surface removal (HSR) is performed in spatio-perspec-
tive space in the same way it would be performed in image space,
and many of the algorithms for HSR can be adapted to work on
PSTs instead of polygons. The widely-used Z-buffer algorithm for
HSR can be easily implemented by storing a depth value for each
pixel in an EPI, and comparing the interpolated depth value for
each pixel of the PST being rasterized to see if it is in front of all
previous surfaces.

Some aspects of HSR can be simplified in MVR by using the
inherent perspective coherence of the scene. Backface culling, for
instance, can be performed once per PST instead of once per
polygon per viewpoint by observing that the orientation of a
polygon slice with respect to the camera changes slowly and pre-
dictably. If the i-edges of a PST do not intersect, a backfacing test
is required only once for the entire PST, accepting or rejecting it as
a whole. If a PST does cross itself, one of the triangles of the PST
is back facing and the other is front facing. The back facing piece
of the PST need not be rendered.

9.5 Texture mapping

Texture mapping is a type of shading that applies image detail
to the surfaces of geometric objects. The appearance of texture
maps is view independent: while the geometry onto which the
texture is mapped may change depending on the location of the
viewer, the appearance of the texture itself does not. Other types
of image-level mapping algorithms such as reflection or environ-
ment mapping are not view independent; a reflection on a surface
can change in appearance as the viewer moves around it. Figure 7
shows a simple polygonal scene with both texture and reflection
maps applied to different objects. The corresponding EPI shows
how the texture mapped onto the cube and star changes gradually
over the entire range of views, in contrast to the less predictable
reflection mapped cone. The view independence of texture
mapping lends itself to an efficient MVR implementation.

In its simplest form, MVR texture mapping is similar to the
analogous algorithms in SVR. Texture coordinates are assigned to
each vertex of the original scene geometry, hyperbolic texture
coordinates[3] are interpolated to find the texture of each slice
endpoint, and textures are further interpolated across the surface
of the PST. This simple texturing technique can be used when
adapting existing rendering algorithms to render PSTs.

When rendering a large number of views, a more efficient
MVR texture map algorithm can be implemented using the fact
that each horizontal line of a PST is a resampling of the same
texture at a different rate. Figure 8 outlines the steps of this algo-
rithm. The texture for each polygon slice is extracted from two-
dimensional texture memory using MIP [21] or area sampling tech-
niques and stored in a one-dimensional texture map at a sampling
rate appropriate for the slice’s greatest width under transformation.
Non-linear sampling of the two-dimensional texture takes care of
distortions due to perspective: further resampling of the one-
dimensional texture can be performed linearly without need for
complex and expensive hyperbolic interpolation when rendering
every pixel.

This 1D map is the basis for a new MIP map that is applied to
different regions of the PST. Using the 1D map has several advan-
tages over existing texturing algorithms. The width of a PST
changes slowly and regularly, so the appropriate level of the MIP
map needed to avoid sampling artifacts can readily be chosen. 2D
texture memory is probed in a more predictable way, improving

Figure 4: Polygon slice tracks (PSTs) can have a variety of shapes depending on the
orientation of the corresponding polygon with respect to the image plane. P-edges are
the edges of the PST that are projected onto the camera plane; i-edges interpolate the
endpoints of the p-edges through a range of viewpoints. This figure shows several
polygon slice orientations (top) and the corresponding PST shape (bottom). The
dotted line represents the image or recentering plane of the capture camera.

Figure 5: The picture on the left shows a slice extracted from a triangle from the

original scene geometry. The coordinates E

0

 and E

1

 have been interpolated from the
triangle’s vertices and represent the homogeneous location of the vertex (x

L

, x

R

, y, z,
w) and the view independent per-vertex color (c) calculated there. From these
endpoint coordinates, the vertices of the PST V

0L

, V

0R

, V

1L

, and V

1R

 are found.
PST rasterization requires linear interpolation of geometric and Gouraud shading
parameters in the horizontal direction.

x

- z

x

p

PL

PR

p-edge p-edgep-edge

p-edge p-edgep-edgep-edge

p-edge

i-edge i-edge
i-edge

i-edge
i-edge i-edge i-edge i-edge

A B

A

B

A

B

A

B

A B
AB

A B AB

A B

E0 E1

polygon slice

V1R

V1L

V0R

V0L

x

p

PL

PR

E1 = (x1L, x1R, y, z1, w1, c1)
E0 = (x0L , x0R, y, z0, w0, c0)

V0R = (x0R, PR, z0, w0, c0)

V0L = (x0L , PL, z0, w0, c0)

V1R = (x1R, PR, z1, w1, c1)

V1L = (x1L , PL, z1, w1, c1) direction of interpolation

c0

c0

c1

c1

texture prefetching strategies. The size of the 1D map is small
enough to allow efficient caching in fast memory, where the
texture of a PST pixel can be computed using linear indexing and
simple interpolation.These simple operations suggest the possible
use of specialized hardware including image warping subsystems
to perform MVR texturing.

9.6 View-dependent shading

View dependent shading of surfaces in MVR can, like texture
mapping, be implemented using modified SVR algorithms. Reflec-
tion and environment mapping are the most common view
dependent shading algorithms in current use. Reflection algo-
rithms calculate reflection vectors at each polygon vertex based on
eye, light, and surface orientation vectors, interpolating the reflec-
tion vectors across the polygon, and perform a lookup into a
reflection map using the interpolated vector. MVR reflection
mapping works the same way, except that the eye vector can
potentially vary over a large angle through the range of camera
positions. Figure 9 describes the relationship between camera
geometry and the assignment of reflection vectors to a PST.

When implementing reflection mapping in MVR, care must be
taken to assure that reflection calculations are accurate over a large
angular change in eye vectors. For example, spherical reflection
mapping [16] substitutes complex spherical interpolation with
simpler linear interpolation across the extent of polygons. Over
large angles, this approximation becomes invalid and results in
noticeably incorrect shading of PSTs. One recourse to solve this
problem with spherical maps is to uniformly subdivide PSTs in the
perspective dimension at the cost of performance. Cubic reflection
maps, on the other hand, correctly interpolate reflection vectors
and can be used without subdivision.

Although view dependent shading does not attain the level of
efficiency in MVR as does view independent shading, it can still
be more efficient than a comparable SVR algorithm. Computa-
tional savings result from the precalculation and incremental inter-
polation of reflection vectors over PSTs and the regularity of the
reflection vector’s mapping into the reflection map memory.

10 Implementation

The MVR algorithm described in this paper generates a set of
perspective images from cameras arranged in a PRS camera
geometry, using computer graphics hardware to accelerate the
rendering process. The prototype implementation described here
is designed to fairly compare the relative efficiency of MVR and
conventional SVR algorithms. The implementation consists of
shared modules for file input and output, scene transformation,
and texturing and reflection mapping, as well as MVR or SVR-
specific modules for primitive generation, rendering and image

assembly. The code for the implementation is written in ANSI C
and uses the OpenGL

TM

graphics library to provide device-inde-
pendent graphics acceleration. The algorithm has been tested on a
range of workstations from Silicon Graphics Inc., including an
Indigo

2

 workstation with Maximum Impact graphics and a 150
MHz R4400 CPU, and an Onyx with RealityEngine

2

 graphics and
two 150 MHz R4400 CPUs. Further tests were done using a Sun
Microsystems Ultra 1 workstation with Creator3D graphics.

Input data for the tests consisted of two polygonal models: one
of a teacup, the other of a Ferio automobile body shell provided
by the Honda R&D Company (Figure 10). These scenes were
created using Alias/Wavefront Corporation’s Alias Studio
modeling program. From original surface models, Alias Studio cal-
culates per-vertex view independent lighting and texture coordi-
nate values, and outputs a collection of independent triangles to a
file. This triangle data eliminates the need for view independent
lighting to be implemented in the rendering testbed itself. In

Figure 6: The basic MVR rendering pipeline for the LRS camera geometry, applied to rendering a single triangle.

L

R

}

x

y

z
x

p

z
x

y

z
x

y

z

Transformed polygon scene

geometry (xL, xR, y, z, w).

Polygon is intersected with the

scanlines of the screen.

Polygon slices are formed by

interpolating between vertices.

Each slice is converted to a PST

and rendered into a different EPI.

Figure 7: The cube and star in this polygonal scene are texture mapped, while the
cone is reflection mapped. The EPI of a scanline of the scene is extracted and
shown in the lower picture.

addition the teacup was tessellated to produce 4K, 16K, 63K, 99K,
and 143K triangle count models in order to compare the efficiency
of MVR when rendering polygons of different average sizes.

10.1 MVR renderer

The MVR module consists of a polygon slicer, a scanline slice
table, a slice-to-PST converter, and an EPI rasterizer. PSTs are
rendered in hardware by approximating them as polygons.
Although PST shading and interpolation is actually easier than
shading triangles because of their regular geometry, current
rendering hardware designed for optimized triangle rendering
produces shading artifacts across the PST (and many other
quadrilaterals [22]). Such errors can be reduced by minimizing the
size of polygons, reducing the range of viewpoints, or decompos-
ing the PST into smaller primitives. During testing, a minimal
decomposition of PSTs into no more than four triangles was used
for both timing and rendering accuracy tests. A hardware
rendering system specifically designed for MVR could provide
higher quality rendering at rates faster than the fastest rates
described here.

Texturing and reflection mapping were implemented in the
MVR module without using MVR-specific algorithms in order to
use existing graphics hardware to accelerate these operations.
Reflection mapping uses spherical environment maps to simulate
surrounding objects and Phong-like specular highlights. Figure 11
shows a two-dimensional array of images rendered using MVR
with both texture and reflection mapping. Figure 12 is an EPI from
the teacup, from a scanline near the cup’s lip.

10.2 SVR renderer

The SVR module was designed to minimize redundant opera-
tions consistent with rendering a set of images. For instance, the
initial transformation of the scene triangles, performed on the CPU
and not in the graphics engine, is done only once for all views.
The graphics hardware’s transformation matrices were not
updated from view to view for the SVR speed tests: only the image
of the central view was used as an approximation of the per-frame
rendering speed. If anything, this approximation should underesti-
mate the rendering time for the SVR algorithm. For both the SVR
and MVR modules, speed tests do not include the time required
to read back data from framebuffer memory. Applications that use
a set of perspective images are almost certain to need the rendered
images as data in main memory, not just on the screen, but
reading framebuffer memory requires approximately the same
time in either SVR or MVR.

The next section presents the results of speed and rendering
accuracy tests performed using the prototype rendering implemen-
tation.

11 Performance

11.1 Timing tests

The graph in Figure 13 shows the performance of the different
stages of the MVR pipeline when rendering the Ferio database at
a resolution of 640 by 480 pixels per view over a varying number
of views of an LRS camera. Only view independent shading was
performed for this test. Timings were performed on the SGI
Indigo

2

. The cost of reading triangles, transforming them (includ-

Figure 8: An MVR-specific algorithm for texture mapping extracts the texture for a polygon slice from two-dimensional memory, builds a 1D MIP map, and repeatedly resamples
it to apply the texture to scanlines of the PST. This process eliminates the need for a per-pixel homogeneous divide.

2D MIP texture map

"footprint" of polygon
in texture space

"footprints" of texture
samples from polygon slice

extracted 1D texture map

1D MIP texture map

a polygon slice from the middle of a

foreshortened, texture-mapped polygon

x

p

EPI showing rendered image of textured

PST. The horizontal bands correspond to

different levels of the MIP map.

PL

PR

s

t

ing conventional transformation and the additional cost of calculat-
ing horizontally and vertically varying parallax information), and
slicing the polygons is constant. The cost of rendering less than
about 400 primitives is also constant: the hardware setup time for
the PSTs is greater than the cost of concurrently painting the pixels
of the PSTs onto the screen. The line on the far left side of the
graph shows the relative cost of rendering using the SVR module.
In this test, MVR is more efficient than SVR for images sets larger
than about 10 views.

Figure 14 directly compares the time required to render scenes
of different tessellation using both MVR and SVR. The teacup
models of different tessellation densities were rendered using both
algorithms using the SGI Onyx. The graph shows that the smaller
the polygons, the better MVR performed relative to SVR. This
behavior is due to the increased spatial coherence in the smaller
polygon scenes: SVR better amortizes per-polygon setup costs over
a larger number of pixels drawn to the screen. At best case for this
resolution, MVR is about 26 times faster than SVR.

Figure 15 shows a comparison between SVR and MVR using a
polygon database of fixed size, but with a varying pixel resolution
of the output images. The Indigo

2

 system was used to render the
Ferio database for this test. In the SVR timing results, the
hardware is not pixel fill rate limited at any of the resolutions.
Thus, rendering times are independent of the pixel size of the

image. MVR performance is, on the other hand, dependent on
image resolution. Smaller images result in fewer PSTs to render. At
the lowest image resolution, for example, MVR is more than 200
times faster than SVR. These low-resolution images have applica-
tion in three-dimensional display devices, where light modulators
may have a low pixel count.

The shape of the MVR timing curves reflects the different
types of cost savings when rendering different numbers of views.
For a small view count, geometry costs dominate pixel fill and
adding more views are essentially free. The knee of the curve rep-
resents the point where the cost of the concurrently-performed
geometry and fill operations are equal. The slope to the right of
the knee of the curve levels off as the costs of sequential prepro-
cessing operations are amortized over increasingly many views.

11.2 Rendering accuracy

Ideally in the most common case, there should be no differ-
ence between the image sets rendered using MVR and those
rendered conventionally with MVR. However, some errors in
shading may occur because of algorithm-dependent differences in
rasterization or shading. To test the accuracy of MVR, the 143K
teacup was used as a model for both MVR and SVR to render
sixteen views at 640 by 480 pixels. From these two collections of

Figure 9: The top figure shows an LRS camera viewing a polygon slice with a

surface normal

N

across its surface. The slice endpoints each have two reflection
vectors

R

 that result from view vectors from the two camera track endpoints. These
four reflection vectors are assigned to the PST shown in the EPI in the bottom
figure.

camera track

image plane

polygon slice

N

R0L

R0R

R1L

R1R

light

source

P L

P R

R1L

R0Rx

p

R0L

R1R

eye and normal vectors inter-
polate across polygon slice

eye vector
interpolates
across
view track

specular
highlight

Figure 10: These objects are the test data for the prototype renderer. Numbers
indicate the triangle count of the two models shown here. These images are extracted
from a set of MVR-rendered perspective images.

views, four pairs were extracted, and the absolute values of their
pixel-by-pixel differences computed. Rendering was done using
the Sun Ultra 1. No PST subdivision was used when rendering
using MVR.

The result of this difference is shown in Figure 16. An enlarged
piece of the error image is shown in Figure 17. The largest errors
located along the edge of the cup are most likely due to small dif-
ferences in transformation between the two rendering modules;
these differences are never more than one pixel wide in any view.
Errors on the interior of the teacup result from differences in

shading between the two algorithms. Neither error is generally
noticeable in practice.

When rendering small numbers of widely disparate views,
however, shading differences between MVR and SVR can be sig-
nificant. The reason for this difference is SVR makes no guaran-
tees that the track of a object in spatio-perspective space is continu-
uous, while MVR does; the track of any MVR-rendered feature is
bandlimited so that the images of the feature abut from view to
view. The MVR behavior, while different than that of SVR,
provides sufficient sampling to avoid aliasing artifacts in image-
based rendering and synthetic holographic displays [12].

Figure 11: A set of texture mapped and reflection mapped images computed using MVR.

Figure 12: An EPI of the teacup.

Figure 13: Relative costs of the different stages of MVR, using an LRS camera,
when rendering different numbers of views. Total rendering time of SVR is included
for reference.

0 200 400 600 800 1000
number of views

0.0

10.0

20.0

cu
m

u
la

ti
ve

 t
im

e
 (

se
co

n
d
s)

stages of MVR
ferio (136858 triangles, 640x480 pixels)

render

polygon slicing

MVR transform

SVR transform

read triangles

SVR total time

primitives

(for comparison)

11.3 Interpreting the results

These results for scenes with view independent shading demon-
strate that MVR is capable of exceeding the performance of SVR
algorithms by one to two orders of magnitude. Further testing
confirms that these savings are also true for texture- and reflection-
mapped scenes, and for PRS cameras constructed from multiple
LRS cameras. MVR is faster than SVR for rendering large sets of
perspective images for several reasons. First, a significant number
of transformation and shading operations are performed as prepro-
cessing steps, incurring a constant cost that is amortized over the
entire set of images. In the RS camera geometry, this preprocess-

ing can include the otherwise-costly homogeneous divide required
during perspective transformations.

Second, the ratio of the pixel size of rendered primitives to the
number of vertices that describe those primitives’ geometry is
much higher for PSTs in MVR than for ordinary polygons when
rendering many viewpoints. Since rendering hardware often uses
more expensive floating point representations to describe and
transform vertices, and fixed-point or integer calculations to deal
with pixels, improving the pixel-to-vertex ratio of geometric primi-
tives can often lead to dramatic improvements in performance.
Many other techniques exist for changing the pixel-to-vertex ratio,
including building geometry strips and compressing the scene’s
geometric description [7]. The use of these techniques and the
tuning of software and hardware that makes up a specific
rendering pipeline can control whether rendering of a given scene
is geometry or pixel fill limited. MVR is an additional technique
that shifts the balance towards high pixel-to-vertex ratios; it can
also be combined with other techniques such as geometry strips or
compression to achieve still more pixels per vertex.

Third, shading and texturing PSTs is less complex than the
equivalent operations on polygons. PSTs have a more regular
shape and size than do polygons from the same scene. PSTs can
be shaded and textured using only horizontal interpolation
between i-edges for each scanline of a PST. Perspective-correct
texture mapping can be performed using only linear resampling of
a perspective-predistorted subtexture, eliminating a per-pixel
divide, improving memory access and cache performance, and
simplifying possible hardware implementation. Backface culling
and hidden surface removal can both be implemented to take
advantage of perspective coherence.

The exact impact of these cost-saving properties on the time
required to render a perspective image set depends on the archi-
tecture of the computer rendering subsystem (including the
relative costs of vertex operations, pixel fills, memory access and
communication), the resolution and count of the output images,
and the properties of the particular scene being rendered. A
graphics system with a very limited pixel fill rate, for example,
may experience little or no savings from MVR. The following rule
can be used to determine the general applicability of MVR to a
particular application: if the height in pixels of an average polygon
in a scene is smaller than the number of viewpoints to be
rendered, MVR will likely be as fast or faster than an SVR algo-
rithm. For this number of views, the pixel-to-vertex ratio for SVR
and MVR is approximately equal.

12 Comparison to other work

Several other researchers have developed computer graphics
algorithms that use some form of frame-to-frame coherence. Badt
[2], Chapman

et. al.

 [5], and Groeller and Purgathofer [9] have
produced ray-tracing algorithms that use temporal coherence to
improve multi-frame rendering performance. Each of these algo-
rithms produce modest computational savings over conventional
ray-tracing techniques. Tost and Brunet characterized a variety of
frame coherent algorithms in a 1990 taxonomy[20]. Adelson

 et.
al.

 [1] used perspective coherence to compute pairs of images for
stereoscopic displays. Because their algorithm only computes pairs
of images, only limited acceleration due to perspective coherence
is possible.

The computer vision and image processing fields have used
epipolar plane image analysis as a way to interpolate intermediate
viewpoints from a set of photographically acquired images.
Takahashi

et. al.

[18] have used these methods to generate images

Figure 14: This graph compares the performance of SVR and MVR algorithms
while rendering the same scene at different tessellation densities.The arrows in the
graph show the “break even” points where SVR and MVR take the same amount of
time to render the image volume.

Figure 15: The graph compares SVR and MVR performance at different image
resolutions.

100 101 102 103

number of views

10-2

10-1

100

101

se
co

n
d
s

p
e
r

vi
e
w

MVR vs. SVR (scene complexity)
teacup (640x480 pixels)

4K MVR
16K MVR
64K MVR
143K MVR
4K SVR
16K SVR
64K SVR
143K SVR

10
13

36

250

100 101 102 103

number of views

10-3

10-2

10-1

100

101

se
co

n
d
s

p
e
r

vi
e
w

MVR vs. SVR (resolution)
ferio (136858 triangles)

MVR 1120x840
MVR 640x480
MVR 160x120
SVR (all resolutions)

2.3 7 10.3

for holographic stereograms. Image interpolation of this kind
requires finding corresponding points in different images (the
underconstrained “correspondence problem” of computer vision).

Hybrid computer graphics and image processing algorithms
reduce the need to solve the correspondence problem by aug-
menting image information with more data from the original
scene. Zeghers

et. al.

 [23] use motion-compensated interpolation to
produce a series of intermediate frames in an image sequence of
fully computed frames. The disadvantages of this algorithm are the
need to compute a motion field, and the loss of fine detail in the
scene because of image space interpolation.

Chen and Williams [6] also use geometry information to guide
viewpoint interpolation. Using known camera geometries, their
algorithm builds an image space morph map from two images and
depth buffers. This technique can be used to reduce the cost of
shadow and motion blur generation, since intermediate images
can be computed in time independent of the geometric complexity
of the scene. They propose methods for reducing the “overlaps”
and “holes” in the data between two images. These problems can
only be minimized, not eliminated, however. The image space
interpolation cannot correctly deal with anti-aliased input images,
specular highlights, and other view dependent scene changes.

Instead of using a limited amount of scene information from an
image space buffer, MVR interpolates intermediate views using
the object precision of the original scene geometry. It incorporates

Figure 16: The four images on the left side of the figure were calculated using conventional SVR rendering techniques. The set on the right was rendered using MVR, with the
four images extracted from a set of sixteen. In the middle is the per-pixel absolute value of the difference between the two sets (as a percentage of the maximum possible
difference), colorized to more clearly show error regions. The rectangular area is enlarged in Figure 17.

max. pixel error

0%

< 1%

1%–5%

5%–10%

10%-25%

Figure 17: An enlargement of the difference image from Figure 16. The blue and
green interior areas are the result of shading differences, while the broken red and
white lines are probably the result of slight misregistration of geometry.

image interpolation as part of the rendering process without any
need to deal with the difficult computer vision problems of corre-
spondence. The cost of rendering intermediate views is dependent
on the complexity of the scene geometry. However, MVR is more
compatible with the interpolation hardware found in hardware
graphics systems.

13 Conclusions and future work

New applications in computer graphics such as three-dimen-
sional display and image-based rendering need large sets of per-
spective images as input. MVR extends conventional scanline
rendering algorithms to provide these sets of images at rates one to
two orders of magnitude faster than existing methods. MVR can
generate high quality images using texture and reflection maps,
and can be accelerated using both existing and future graphics
hardware. Many rendering techniques not described here can be
adapted for use with MVR. MVR techniques can also be extended
to alternate camera geometries, geometry compression, and trans-
mission of three-dimensional geometry information.

Acknowledgments

The work described in this paper was done as part of my
doctoral dissertation at the Spatial Imaging Group of the MIT
Media Laboratory. Thanks to everyone in the group who helped
me think through these ideas and reviewed drafts of this paper,
including Wendy Plesniak, Ravikanth Pappu, and John Underkof-
fler. Wendy Plesniak also modeled the teacup used in the figures.
My advisor Stephen Benton and my thesis committee members V.
Michael Bove and Seth Teller provided great comments and
support. Ron Kikinis and Ferenc Jolesz at BWH supported me
during the last year of this work, in part through funding from
Robert Sproull at Sun Microsystems. Both Silicon Graphics and
Sun Microsystems provided equipment used in this research. Also,
thanks to the SIGGRAPH reviewers for their thoughtful comments
and suggestions.

This work was funded in part by the Design Staff of the
General Motors Corporation, the Honda R&D Company, IBM,
NEC, and the Office of Naval Research (Grant N0014-96-11200).

References

[1] Stephen J. Adelson, Jeffrey B. Bentley, In Seok Chung, Larry F.
Hodges, and Joseph Winograd. Simultaneous Generation of Ste-
reoscopic Views.

Computer Graphics Forum

, 10(1):3-10, March 1991.

[2] Sig Badt, Jr. Two Algorithms for Taking Advantage of
Temporal Coherence in Ray Tracing.

The Visual Computer

,
4(3):123-132, September 1988.

[3] James F. Blinn. Jim Blinn's corner: Hyperbolic Interpolation.

IEEE Computer Graphics and Applications

, 12(4):89-94, July 1992.

[4] R. C. Bolles, H. H. Baker, and D. H. Marimont. Epipolar-Plane
Image Analysis: An Approach to Determining Structure from
Motion.

Inter. J. Computer Vision

, 1:7-55, 1987.

[5] J. Chapman, T. W. Calvert, and J. Dill. Exploiting Temporal
Coherence in Ray Tracing. In

Proceedings of Graphics Interface '90

,
pages 196-204, May 1990.

[6] Shenchang Eric Chen and Lance Williams. View Interpolation
for Image Synthesis. In James T. Kajiya, editor,

Computer Graphics

(SIGGRAPH 93 Proceedings), volume 27, pages 279-288, August
1993.

[7] Michael Deering. Geometry Compression. In Robert Cook,
editor,

SIGGRAPH 95 Conference Proceedings

, Annual Conference
Series, pages 13–20, August 1995.

[8] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F. Cohen. The Lumigraph. In Holly Rushmeier, editor,

SIGGRAPH 96 Conference Proceedings

, Annual Conference Series,
pages 43-54, August 1996.

[9] E. Groeller and W. Purgathofer. Using Temporal and Spatial
Coherence for Accelerating the Calculation of Animation
Sequences. In Werner Purgathofer, editor,

 Eurographics '91

, pages
103-113. North-Holland, September 1991.

[10] Michael W. Halle. Autostereoscopic Displays and Computer
Graphics. In

Computer Graphics,

ACM SIGGRAPH. 31(2), pages
58-62.

[11] Michael W. Halle. The Generalized Holographic Stereogram.
Master’s thesis, Department of Architecture and Planning, Massa-
chusetts Institute of Technology, February 1991.

[12] Michael W. Halle. Holographic Stereograms as Discrete
Imaging Systems. In

Practical Holography VIII,

vol. 2176, pages 73–
84, SPIE, May 1994.

[13] Michael W. Halle. Multiple Viewpoint Rendering for Autoste-
reoscopic Displays. Ph.D. thesis, Media Arts and Sciences Section,
Massachusetts Institute of Technology, May 1997.

[14] Marc Levoy and Pat Hanrahan. Light Field Rendering. In
Holly Rushmeier, editor,

SIGGRAPH 96 Conference Proceedings,
Annual Conference Series

, pages 31-42, August 1996.

[15] T. Okoshi.

Three-Dimensional Imaging Techniques.

Academic
Press, New York, 1976.

[16] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran,
and Paul E. Haeberli. Fast Shadows and Lighting Effects using
Texture Mapping. In Edwin E. Catmull, editor,

Computer Graphics

(SIGGRAPH 92 Proceedings), volume 26, pages 249-252, July
1992.

[17] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schu-
macker. A Characterization of Ten Hidden-Surface Algorithms.

Computing Surveys

, 6(1), March 1974.

[18] S. Takahashi, T. Honda, M. Yamaguchi, N. Ohyama, and F.
Iwata. Generation of Intermediate Parallax-images for Holo-
graphic stereograms. In

Practical Holography VII: Imaging and
Materials

, pages 2+, SPIE, 1993.

[19] Jay Torborg and Jim Kajiya. Talisman: Commodity Real-time
3D Graphics for the PC. In Holly Rushmeier, editor,

SIGGRAPH
96 Conference Proceedings

, Annual Conference Series, pages 353-
364, August 1996.

[20] Daniele Tost and Pere Brunet. A Definition of Frame-To-
Frame Coherence. In N. Magnenat-Thalmann and D. Thalmann,
editors,

Computer Animation '90

, pages 207-225, April 1990.

[21] Lance Williams. Pyramidal Parametrics. In

Computer Graphics

(SIGGRAPH '83 Proceedings), volume 17, pages 1-11, July 1983.

[22] Andrew Woo, Andrew Pearce, and Marc Ouellette. It's Really
Not a Rendering Bug, You See....

IEEE Computer Graphics and
Applications

, 16(5):21-25, September 1996.

[23] Eric Zeghers, Kadi Bouatouch, Eric Maisel, and Christian
Bouville. Faster Image Rendering in Animation Through Motion
Compensated Interpolation. In

Graphics, Design and Visualization

,
pages 49+. International Federation for Information Processing
Transactions, 1993.

	mvr-sig-cr-p10-12.pdf
	Multiple Viewpoint Rendering
	Michael Halle Brigham and Women’s Hospital

	1 Introduction
	2 Perspective coherence
	3 Multiple viewpoint rendering
	4 Applications
	4.1 Three-dimensional displays
	4.2 Image-based rendering

	5 Camera geometries
	6 PRS camera geometry
	7 Spatio-perspective image volume
	8 Properties of EPIs
	9 MVR rendering algorithm
	9.1 Preprocessing and transformation
	9.2 Geometric slicing
	9.3 Rasterization
	9.4 Hidden surface removal
	9.5 Texture mapping
	9.6 View-dependent shading

	10 Implementation
	10.1 MVR renderer
	10.2 SVR renderer

	11 Performance
	11.1 Timing tests
	11.2 Rendering accuracy
	11.3 Interpreting the results

	12 Comparison to other work
	13 Conclusions and future work
	[1] Stephen J. Adelson, Jeffrey B. Bentley, In Seo...
	[2] Sig Badt, Jr. Two Algorithms for Taking Advant...
	[3] James F. Blinn. Jim Blinn's corner: Hyperbolic...
	[4] R. C. Bolles, H. H. Baker, and D. H. Marimont....
	[5] J. Chapman, T. W. Calvert, and J. Dill. Exploi...
	[6] Shenchang Eric Chen and Lance Williams. View I...
	[7] Michael Deering. Geometry Compression. In Robe...
	[8] Steven J. Gortler, Radek Grzeszczuk, Richard S...
	[9] E. Groeller and W. Purgathofer. Using Temporal...
	[10] Michael W. Halle. Autostereoscopic Displays a...
	[11] Michael W. Halle. The Generalized Holographic...
	[12] Michael W. Halle. Holographic Stereograms as ...
	[13] Michael W. Halle. Multiple Viewpoint Renderin...
	[14] Marc Levoy and Pat Hanrahan. Light Field Rend...
	[15] T. Okoshi. Three-Dimensional Imaging Techniqu...
	[16] Mark Segal, Carl Korobkin, Rolf van Widenfelt...
	[17] Ivan E. Sutherland, Robert F. Sproull, and Ro...
	[18] S. Takahashi, T. Honda, M. Yamaguchi, N. Ohya...
	[19] Jay Torborg and Jim Kajiya. Talisman: Commodi...
	[20] Daniele Tost and Pere Brunet. A Definition of...
	[21] Lance Williams. Pyramidal Parametrics. In Com...
	[22] Andrew Woo, Andrew Pearce, and Marc Ouellette...
	[23] Eric Zeghers, Kadi Bouatouch, Eric Maisel, an...

