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Abstract

The leading edge inflated (LEI) surf-kite is a suitable wing design for pumping kite power generation
because the bridling and leading edge design allow the wing to be de-powered while retaining good
steer-ability.

Current LEI kite design is typically empirical. Fluid-Structure Interaction (FSI) modelling is necessary
to decrease design time [183] and gain insight into the physical processes driving kite performance.

Unfortunately, the current kite aerodynamic models do not meet the requirements for LEI-kite FSI
modelling: they are either fast but insufficiently accurate, or accurate but computationally expensive.
In particular, the current fast aerodynamic models are not able to represent the effects of the multiple
flow separation regions - such as behind the LEI tube and above the canopy’s trailing edge - inherent to
a LEI kite flying at a large range of angles of attack.

It is well established that 2D multiple wake vortex models can model multiple separation regions over
membranes (de Matteis & de Socio [47]; Wilkinson [196]; Cyr & Newman [43]; Bailey et al [21]; Shukla
& Eldredge [160]). Consequently, it is probable that a multiple-wake vortex lattice method (VLMMW)
could model the multiple separation regions expected on a 3D membrane-wing surf-kite. To the author’s
present knowledge, no such VLMMW aerodynamic model has yet been constructed for 3D membrane-flow
problems.

This master’s thesis is intended to evaluate the hypothesis that a quasi-steady multiple-wake vortex lattice
method can quickly and accurately model surf-kite aerodynamics to generate aerodynamic surface load
distributions.

This VLMMW models the vorticity generation in the flow with multiple vortex lattices shed from the
separation locations, as well as the standard bound vortex lattice. The separation locations are fixed at
known locations. The VLMMW uses the Vatistas Core Model to allow for simple comparisons between
different vortex models, as used by Sebastian & Lackner [157]. The impermeability boundary conditions
allow for membrane deformation such that the model could be used for FSI functions.

The pressure distributions generated by the VLMMW have been compared to experimental measurements
from flat plates at high angles of attack. Further, the aerodynamic coefficients have been compared to
the 3D Lifting Line model and 3D steady-state Reynolds-Averaged Navier-Stokes (RANS) simulation
results of an arc-shaped Clark Y wing, calculated by Leloup [105] and Maneia [120]. Finally, the pressure
distribution and aerodynamic coefficients have been compared to the 3D steady-state RANS results of
one of the TU Delft Airborne Wind Energy (AWE) group’s LEI kites, as determined by Deaves [51].

The VLMMW is strongly limited, in the case of thickness-free surfaces like membrane-wing kites, by
an inability to enforce the Kutta condition on a reattachment-line when this reattachment-line crosses
a separation-line. Further, the model appears to require - near a reattachment-location - a very high
body- and wake-resolution to extend the proper enforcement of the flow-tangency constraint to the space
between the collocation points and ensure that geometric surfaces are impermeable to the separation
stream-surfaces.

However, it appears that a careful selection of resolution parameters for the LEI-kite geometry can bring
double-wake model errors for net lift and drag coefficient predictions with the VLMMW to approximately
ten percent of the RANS simulation results. That is, it appears possible for the VLMMW to have the
same order of uncertainty with respect to RANS results as is generated by the geometric approximations
made in the TU Delft AWE group’s RANS studies of 3D LEI kites [51]

The author believes that with further development the LEI-kite aerodynamic modelling method tested
in this proof-of-concept thesis could be a useful module within the AWE’s FSI-modelling code-base.
However, in its current form, good engineering judgement is necessary to restrict the use of the VLMMW to
situations where flow-reattachment is either avoided or does not coincide with a separation-location, and
where boundary-layer effects are small.
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Nomenclature

Symbols

A Biot-Savart aerodynamic influence matrix [1/m]
AR aspect ratio [-]
aV altitude of an evaluation point from a filament [m]
BL 2D empirical linear-lift coefficient [-]
Bm,r rigidity of the membrane [N]
b kite wingspan [m]

b̂ span-wise direction unit-vector [-]
bmax wingspan [m]
b′ kite-section span length [m]
CD (3D) drag coefficient [-]
CL (3D) lift coefficient [-]
CL,α (3D) lift coefficient slope wrt. the angle of attack [1/o] or [1/rad]
CS (3D) steering-force coefficient [-]
Cy membrane Cauchy number [-]
Cν effective viscous parameter for the Vatistas vortex core model [-]
c kite chord [m]
ĉ chord-wise direction unit-vector [-]
cd,SY (2D) drag coefficient, as calculated with the Squire-Young drag formula [-]
cl (2D) lift coefficient [-]
cMAC mean aerodynamic chord [m]

D̂ the unit vector in the drag direction [-]
DLEI diameter of the kite’s LEI tube [m]
d downwash [m/s]
Em canopy-membrane Young’s modulus [Pa]
f frequency [Hz]
fF force-response frequency [Hz]
fR reduced aerodynamic frequency [-]
fS separation concentration factor [-]
f∗a characteristic aerodynamic frequency [Hz]
fcenterline function of the idealized kite center-line [m]
fcenterline a point in body-fixed coordinates that lies on fcenterline [m]
fm membrane fundamental frequency [Hz]
H tension coefficient [-]
HTE boundary layer shape function at the trailing edge [-]
h canopy thickness [m]
hK kite arc-height [m]
jb span-wise collocation point index, from 1 to NB − 1 [-]
jc chord-wise collocation point index, from 1 to NC − 1 [-]
Km membrane curvature [1/m]
km canopy-membrane stiffness [N/m]



kre surface roughness length [m]
k∞ ratio of the fixed-wake to free-wake radius [-]

L̂ the unit vector in the lift direction [-]
L′ Lift per unit span [N/m]
L/D lift-to-drag ratio [-]
LV R length of a vortex ring [m]
l chordwise canopy fabric length [m]
l0 initial chordwise canopy fabric length [m]
M Mach number [-]
M mass ratio [-]
MR Rotation matrix from cross-sectional coordinates to body-fixed coordi-

nates
[-]

mm kite-section membrane mass [kg]
NB the number of span-wise nodes of the vortex lattice [-]
NC the number of chord-wise nodes of the bound vortex lattice [-]
NI the number of wake-convection to circulation-solution iterations [-]
NJ the number of collocation points, generally (NB − 1)(NC − 1) [-]
NL the number of chord-wise collocation points used to discretize the canopy [-]
NP the number of chord-wise nodes or collocation points used to discretize

the LEI tube
[-]

NW the number of downstream (chord-wise) nodes of the trailing vortex lattice
discretizing the free-wake region

[-]

NΓ the number of unknown vortex ring circulation-strength, generally (NB−
1)(NC − 1)

[-]

n̂ membrane-surface normal unit vector [-]
nb span-wise vortex lattice node index, from 1 to NB [-]
nc chord-wise bound vortex lattice node index, from 1 to NC [-]
nj column index of a collocation point, from 1 to NJ = (NB − 1)(NC − 1) [-]
nk dimension index, where 1 refers to x̂, 2 to ŷ and 3 to ẑ [-]
nV CM vortex selection parameter for the Vatistas vortex core model [-]
nw downstream (chord-wise) trailing vortex lattice node index, from 1 to

NW + 1
[-]

nγ column index of an unknown vortex ring circulation-strength, from 1 to
NΓ = (NB − 1)(NC − 1)

[-]

O the origin point of the (2D) cross-sectional reference frame [-]
∆p pressure difference between suction- and pressure-sides of the membrane [Pa]
pv influence parameter of the induced velocity on the apparent velocity [-]
q dynamic pressure [Pa]
Re Reynolds number, wrt. the kite chord [-]
Re,k Reynolds number, wrt. the canopy surface roughness [-]
Re,LEI Reynolds number, wrt. the LEI tube diameter [-]
rCanopy the LEI-kite airfoil profile description, radius of the canopy normalized

by the chord
[-]

rc vortex core radius [m]
reff,c effective vortex core radius after vortex ring stretching [m]
rLEI the LEI-kite airfoil profile description, radius of the LEI tube normalized

by the chord
[-]

rw the radius of the free-wake region, as measured from the trailing edge [m]

Ŝ the unit vector in the steering-force direction [-]
S location of the attachment point between the LEI tube and the canopy

in the cross-sectional reference frame, normalized by c; related to xattach

[-]

S projected area onto x̂, ŷ plane [m2]
St Strouhal number [-]
St,Lock Strouhal number at which the vorticity shedding frequency locks onto the

structure vibration frequency
[-]



s1 distance from LE to pressure-side leading-edge separation bubble reat-
tachment point

[m]

s2 distance from TE to suction-side trailing-edge separation location [m]
s3 distance from LE to suction-side leading-edge separation bubble reattach-

ment point
[m]

T canopy tension [Pa m]
t∗F characteristic force-response time-scale [s]
t∗a characteristic aerodynamic time-scale [s]
UA kite apparent velocity magnitude [m/s]
UA kite apparent velocity vector [m/s]
Ui or Uind induced velocity [m/s]
Uind,surf induced velocity by bound vortices on the kite surface [m/s]
Uind,wake induced velocity by trailing vortices in the wake [m/s]
Ui,w induced velocity as experienced within the wake at the vortex lattice

nodes
[m/s]

Umembrane local membrane velocity [m/s]
U∞ free-stream velocity [m/s]
U∗ characteristic boundary layer velocity [m/s]
x position of the kite-surface (collocation points) or the vortex lattice, can

be normalized by chord-length
[m] or [-]

xattach chordwise location of the attachment point between the LEI tube and the
canopy, can be normalized by chord-length

[m] or [-]

α kite angle of attack [o] or [rad]
αL0 zero-lift angle of attack [o] or [rad]
αs angle of attack shift for VACM [rad]
β kite side-slip angle [o] or [rad]
βZ membrane fundamental frequency proportionality constant [-]
δ boundary layer displacement thickness [m]
ǫ membrane strain [-]
ǫL sail excess length [-] or [%]
ǫOT divide-by-zero prevention ǫ used in the Vatistas Core Model [m] or [m2]
ǫV R change in length of a vortex ring [-]
Γ circulation, vortex strength [m2/s]
ΓF net circulation at front of vortex ring [m2/s]
Γd local dihedral angle [rad]
γs sweep angle [rad]
ΛLEI LEI tube diameter to chord ratio [-]
λ inverse of the tension coefficient [-]
νair air kinematic viscosity [m2/s]
νm canopy Poisson ratio [-]
φRoj Rojratsirikul linear-elastic membrane natural frequency correction factor [-]
Π membrane aeroelastic number [-]
ΠE membrane aeroelastic number, when tension is dominated by elastic strain [-]
Πcc critical concavity membrane aeroelastic number, for fully-attached flow [-]
Πσ membrane aeroelastic number, when tension is dominated by pre-tension [-]
Ψ coordinate transformed membrane slope, for the Thwaites Sail Equation [-]
ψ membrane slope for the Thwaites Sail Equation [-]
ψR roll angle for the cross-sectional coordinate transformation [rad]
ρair air density [kg/m3]
ρm canopy areal mass density [kg/m2]
ρm,V canopy volumetric mass density [kg/m3]
σm canopy porosity [-]
σ0 canopy pre-stress [Pa]
τw pseudo-timestep in wake vortex lattice node convection [s]
τw,∞ convection pseudo-timestep for a purely fixed-wake model [s]
θ boundary layer momentum thickness [m]



θP the angle between the vortex lattice nodes of the LEI tube, in cross-
sectional representation

[rad]

θ0 the angle between the x̂′ axis and the first LEI tube vortex lattice node
(nc = 1), in cross-sectional representation

[rad]

θR pitch angle for the cross-sectional coordinate transformation [rad]

Abbreviations

AWE Airborne Wind Energy
BALM Breukels Aerodynamic Load Model
BBM Black Box Model
BEM Boundary Element Method
CFD Computational Fluid Dynamics
CP Collocation Point
DLM Doublet Lattice Method
DM Deformation Mode
DNS Direct Numerical Simulation
FEM Finite Element Method
FMM Fast Multipole Method
FP2D Flat-Plate 2D geometry
FP3D Flat-Plate 3D geometry
FSI Fluid-Structure Interaction
KFM Kernel-Function Method
LBM Lattice Boltzmann Method
LE Leading Edge
LEI Leading-Edge Inflated
LES Large Eddy Simulation
LLKG Lifting-Line Kite Geometry
LLT Lifting-Line Theory
MAV Micro Air Vehicle
MFP Method of Fixed Positions of nascent vortices
MVP Method of Variable Positions of nascent vortices
MVS Method of Velocity Singularities
MWVM Multiple-Wake Vortex Method
NE y-Negative Edge of the kite, vortex ring, or geometry element
PE y-Positive Edge of the kite, vortex ring, or geometry element
PSS Pressure-Surface Separation
PVM Point Vortex Method
RANS Reynolds-Averaged Navier Stokes
SFVR Single Flat Vortex Ring
SSS Suction-Surface Separation
TAT Thin Airfoil Theory
TE Trailing Edge
TU Delft Technical University of Delft
UAV Unmanned Aerial Vehicle
UVLM Unsteady Vortex Lattice Method
VACM Viscous Angle of attack Correction Method
VCM Vatistas Core Model
VIC Visual Image Correlation
VLM Vortex Lattice Method
VLMMW Multiple-Wake Vortex Lattice Method
VLMN-VK Nonlinear Vortex Lattice Method as implemented by Van Kappel
VPM Vortex Particle Method
VVPM Viscous Vortex Particle Method



WInDS Wake Induced Dynamics Simulator
W12F Warren 12 planform with Flat-plate profile geometry

Sub- and Super-Scripts

�AM corrected for added-mass
�air related to the air
�BE related to the bunny-ear flapping deformation mode
�b in the span-wise direction, or related to the span-wise vortex lattice node

index
�CB related to the canopy billowing deformation mode
�Collapse related to the collapse deformation mode
�c in the chord-wise direction, or related to the chord-wise vortex lattice

node index
�calc calculated
�cntl describing the LEI centerline of a modelled kite
�depower during the depower phase of the pumping cycle
�FD related to the flight dynamic period
�fill in the woven canopy fill direction
�g evaluated at the geometric meshpoints
�IDM related to the leading edge indentation deformation mode
�i related to a vortex filament i
�ind induced
�JF related to the jellyfishing deformation mode
�j related to collocation point at jb, jc; for jb between nb and (nb + 1) and

jc between nc and (nc + 1)
�KJ referencing the Kutta-Joukowski equation for force per unit span
�k related to the direction index
�LE on or related-to the leading edge
�M midpoint, when determining the vortex lattice node locations during grid

generation
�MD coordinates in Deaves’ cross-sectional reference frame
�m related to the canopy membrane
�max maximum expected value
�min minimum expected value
�PS or
�PSS

related to the pressure-surface separation surface

�power during the power phase of the pumping cycle
�R at the flow reattachment point
�S at the flow separation point
�Sep. related to a general separation surface
�SS or
�SSS

related to the suction-surface separation surface

�SR related to the seam-rippling deformation mode
�surf describes the influence of the bound vortices
�TE on or related-to the trailing edge
�TEF related to the trailing edge flutter deformation mode
�w in the wake-downstream direction, or related to the wake-downstream

direction vortex lattice node index
�wake describes the influence of the wake vortices
�warp in the woven canopy warp direction
�µ at the force-evaluation points
�θ in the tangential direction
�1/4 evaluated at the quarter-chord location



�3/4 evaluated at the three-quarter-chord location
�8 related to the flight manoeuvre period
�∞ evaluated - or approximated as - ”infinitely-far” downstream
� indication that a typically scalar value is multiplied with vortex filament

direction
�

2D two-dimensional
�

3D three-dimensional
� average expected value

�̃ a column-rearrangement of a geometrically-indexed matrix
�

∗ characteristic value
�

′ in the cross-sectional reference frame coordinates, or defined per-unit-
span



Chapter 1

Introduction

1.1 Motivation

Kites provide the ability to generate renewable electricity from the high energy-availability and -constancy
of the wind at altitude. Archer & Caldeira [16], notably, measured mean energy densities of 10kW/m2

at 1km altitude in parts of eastern China and north-eastern Africa.

The kite used by the TU Delft’s Airborne Wind Energy (AWE) group is a leading edge inflated (LEI)
surf-kite: a span-wise arc-shaped compliant [175] structure, with a frame composed of a cylindrical
inflated-tube at the leading edge and thinner inflated-tube struts, over which a pre-tensioned membrane
wing is stretched as the primary aerodynamic structure. The membrane is a flexible material with a
very small thickness in comparison to its span-wise length and chord-wise length, and can carry tension
but not compression [22].

The behavior of an LEI kite in a flow is a complex physical phenomenon, due to the strong aeroelastic
coupling between the membrane wing’s deformation and the flow pattern. That is, the membrane wing
deforms, causing the flow about the wing to change; this new flow pattern produces a different pressure
distribuition on the kite, again deforming the kite geometry. This fluid-structure interaction (FSI) is
especially important considering the high flexibility of the membrane wing and the high variability of
the inflow conditions on the kite during its periodic figure-eight-shaped flight path. Consequently, the
behavior of a given power-kite in a flow cannot be modelled with any certainty without considering the
FSI effects.

Experimental studies show that membrane wings, such as the LEI-kite, have the potential for higher lift-
to-drag ratios, higher maximum lift coefficients, and delayed stall in comparison1 with rigid wings. These
facts suggest the application of FSI-modelling to system design for AWE systems with LEI-kites could
improve the system efficiency and total power production. Further, a system-design and -optimization
procedure based on FSI-modelling has been estimated to be signiciantly less expensive - Breukels [29]
suggests a time-savings of 75 percent - than the current empirical design procedure which requires the
construction and flight-testing of many preliminary designs.

Such a FSI-modelling based iterative design procedure requires not just a large number of simulations
within some Design of Experiments, but also an iteration of alternating aerodynamic- and structural-
model solutions for each design simulation. Analysis of a large number of these FSI solver steps, for each
of a large number of simulations, is only feasible if the runtime-cost of the individual aerodynamic model
steps is small. That is, for FSI-modelling to be possible, the aerodynamic module of the FSI-solver must
be both fast and accurate.

However, the current kite aerodynamic models do not meet the requirements for LEI-kite FSI modelling:
they are either fast but insufficiently accurate, or accurate but computationally expensive.

1See Section 2.3 for a description of membrane wing behavior, including the relevant citations.
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The Breukels aerodynamic load model (BALM), correlated from airfoil CFD data along a 2D strip-theory
approach, is fast; but the accuracy is questionable and the weight function requires empirical ”tuning”
such that it cannot be used for design work prior to flight testing [183]. Bosch produced a working FSI
model built with the Breukels model; it is supposed that if there were a ”replacement” for the Breukels
method within this program, Bosch’s program could be used for iterative design [28].

Computational fluid dynamics (CFD) models set the standard for LEI-kite flow modelling accuracy, but
are not viable for iterative design work due to their high computational cost. The recent 3D Reynolds-
Averaged Navier-Stokes (RANS) model of Deaves [51] required a computational time on the order of 30
hours for one steady-flow simulation.

Van Kappel’s implementation of a nonlinear vortex lattice method (VLMN-VK) gives accurate results,
but its real time factor of 1100x is too slow for iterative design [183]. The accuracy of this method
suggests that it is possible to quickly and accurately model kite aerodynamics with an adapted vortex
lattice method (VLM).

Due to the ability of existing 2D multiple wake vortex models to model membrane-flows with multiple
separation regions, it is probable that a multiple-wake vortex lattice method (VLMMW) could model the
multiple separation regions expected on a 3D membrane-wing surf-kite. To the author’s present knowl-
edge, no such VLMMW aerodynamic model has yet been constructed for 3D membrane-flow problems.

If such a VLMMW is well suited to modelling the pressure distribution on an LEI-kite, its inclusion as
the aerodynamics module of a FSI solver could be expected to decrease the development cost of airborne
wind energy systems, and further allow the development of renewable electricity generation from the
wind.

The information in this report is divided into chapter, following the sequence described below:

• Chapter 2: a description of the LEI-kite and its flight environment during normal operation, as
it can be used - in combination with the experimentally-determined trends in membrane-wing
behaviors - to determine the assumptions of an aerodynamic model;

• Chapter 3: a history of aeodynamic simulation methods as applicable to membrane wing problems,
with the aim of selecting a method to apply to the LEI-kite problem;

• Chapter 4: a detailed description of the information a user needs to run the resulting aerodynamic
code, the VLMMW;

• Chapter 5: a description of the physical theory used by the VLMMW to predict the pressure
distrbution over a body in a flow, including the relationship between the various portions of the
theory and the predictions of the method for well-known geometries;

• Chapter 6: the application of the VLMMW to a sample LEI kite, and a comparison of the found
results to the predictions for the same kite by a Reynolds-Averaged Navier-Stokes (RANS) solver,
as determined by a previous AWE group-member;

• Chapter 7: a conclusion considering the usefulness of the VLMMW as a portion of the AWE’s
modelling code-base, and suggestions for future development; and

• Appendices: the detailed geometric methods for creating input files for the VLMMW, as used in
testing.

1.2 Hypothesis

This thesis is intended to evaluate the hypothesis that:

A quasi-steady multiple-wake vortex lattice method can quickly and accurately model surf-kite aerody-
namics to generate aerodynamic surface load distributions.
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1.3 Objective

The objective of this work is to produce a proof-of-concept aerodynamic model that could be a useful
module within the AWE’s FSI-modelling code-base. Consequently, the goal of this thesis is to produce
a method that is:

• able to find aerodynamic force distributions for a power-generation LEI kite, with the particular
requirements of strong flow-three-dimensionality and significant flow separation,

• without relying on empiricism and previous results 2,

• with inputs and outputs that are consistent with, or easily converted to-and-from, the other codes
in the AWE’s FSI-modelling code-base,

• producing pressure-distribution predictions that qualitatively resemble those produced by RANS
solutions, with some small degree of error,

• where that error can be justified by a significant run-time savings, in comparison to the RANS
solution.

Each of these objectives appears to be reasonable within the frame-work of a VLMMW.

1.4 Success Criterion

Success is defined as the ability to evaluate and make a feasibiliy statement relative to the computational
speed and model accuracy - in comparison to either windtunnel measurements or CFD results - for well-
known comparison geometries, including an LEI kite used by the TU Delft AWE group.

2Though the development of the VLMMW within the scope of this thesis is limited to using assumed or previously-known
separation locations, the VLMMW is constructed such that future development would be able to remove this restriction.
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Chapter 2

Problem Definition

We can consider the normal operating conditions of an LEI-kite in a power-generating pumping-cycle,
and the known trends in membrane-flow problems, to determine what assumptions are reasonable when
modelling.

2.1 Power-Generation with Leading-Edge Inflatable Kites

2.1.1 Airborne Wind Energy Concept

The TU Delft airborne wind energy system - otherwise referred to as a kite-power system - is a ground-
based power generation system. The tether of a kite is wound around the drum of a generator, such
that extension of the kite tether generates electricity and allows the kite to gain altitude. As the kite
rises, it flies cross-wind in figure-eights, which increases the apparent wind velocity by about a factor of
five [28] with respect to the atmospheric wind velocity. Once the kite has reached its maximum altitude,
it pitches down to decrease its angle of attack with respect to the free-stream - and consequently the lift
force on the kite - and is pulled back towards the ground by running the generator as a motor. One full
extension of the tether, or reel-out, and the following full retraction of the tether, or reel-in, make up a
pumping cycle.

Figure 2.1: A concept sketch of the TU Delft airborne wind energy system, as reproduced from Ruppert.
[153]

For a more thorough explanation of airborne wind energy systems, the reader is referred to the Airborne
Wind Energy text edited by Ahrens, Diehl and Schmehl. [7]
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2.1.2 Leading-Edge Inflatable (LEI) Kite

The TU Delft Airborne Wind Energy system currently uses the 25 square meter TUD-25mV3 kite design.

The kite under consideration is a leading edge inflated (LEI) surf-kite: a span-wise arc-shaped compliant
[175] structure, with a flexible membrane wing as the primary aerodynamic structure, pre-tensioned
to stretch over a cylindrical inflated-tube at the leading edge, and thin cylindrical inflated-tube struts
extending from the leading edge inflated-tube to the trailing edge. The form of an LEI kite is shown in
Figure 2.2.

There is a thin wire running along the trailing edge of the canopy to prevent the trailing edge from being
completely free. The kite is divided spanwise into nine canopy sections by the eight inflated-tube struts.
The membrane which makes up each canopy section is a tensile structure with a very small thickness
in comparison to its spanwise length and chordwise length. The membrane can carry tension but not
compression. [22] It further has a very small bending stiffness and a low porosity.

Figure 2.2: One of the LEI kites designed and used by the TU Delft AWE group for power-generation

Typical Kite Dimensions

The kite wingspan b = 11.18m, with an at-rest projected span of 8.313m and an at-rest projected arc-
heigh of 2.825m. Dividing the wingspan evenly between the 9 canopy sections, gives an average section
span b̄′ = 1.24m [72].

The diameter of the kite’s LEI tube is DLEI = 0.20m. [72]

The canopy is assumed to be attached at the exact top-and-center of the LEI tube. Following the example
of Den Boer [53], it is assumed that the chordwise slopes of the LEI tube and the canopy are continuous
at the attachment point:

(
dy

dx

)

LEI

(xattach) =

(
dy

dx

)

canopy

(xattach)

At the kite root, the chord c = 2.63m; at the tips, the leading edge and trailing edge join smoothly, such
that the chord at the tips is 0m.

2.1.3 Flight Path

The TU Delft kite power system currently operates under a ceiling of 700m altitude, though discussion
exists about flying at 1km altitude to increase the available wind power.

5



During typical pumping cycles, the apparent velocity UA ranges between 20m/s and 40m/s, with an
average apparent velocity on the order of 30m/s. The global apparent velocity maxima are at 0m/s and
45m/s. The altitudes and velocties during a typical flight can be seen in Figure 2.5.

Figure 2.3: A typical steering response during power-generating operation, as reproduced from Ruppert.
[153]

According to Ruppert [153], the TU Delft kite power system experiences angular velocities between
−15rad/s and +15rad/s, centered around a rotation rate of 0rad/s. (See Figure 2.3)

Ruppert [153] also measures (see Figure 2.4) that the kite angle of attack α varies by about 50o during
normal operation; the kite side slip angle β has been measured to vary between −35o and +35o.

Angle-of-attack measurements on the LEI-kites are well known within the AWE group to have significant
uncertainty. The sensor from whose data the angle of attack is determined - the X-Sens sensor is fixed
to one of the inflated beams of the LEI kite. These beams bend under loading, such that the zeroing
angle of the X-Sense, even without the influence of gusts, is variable.

It is therefore conservative to consider that the possible range of angles of attack during normal operating
conditions to be wider than that measured during live testing.

However, we know that a kite in full stall exhibits a distinctive ”tripping back” movement, which is not
seen in normal operating conditions. Consequently, while significant separation is expected during flight,
the LEI kite does not experience full stall in normal operation.

2.1.4 Atmospheric Properties

The atmospheric properties of the kite flow problem are approximated with the international standard
atmosphere, though this representation assumes that the influence of humidity and local weather phe-
nomena are negligible. [3]

Between the extreme altitudes of 0m and 1km, the international standard atmosphere’s density varies,
respectively, between ρair,max = 1.225kg/m3 and ρair,min = 1.112kg/m3. At an average altitude of
500m, the air density is expected to be ρ̄air = 1.167kg/m3. [3]
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Figure 2.4: Typical angles of attack and side-slip angles in normal power-generating operation. [153]

Between altitudes of 0m and 1km, the international standard atmosphere’s kinematic viscosity varies,
respectively, between νair,min = 1.461 ·10−5m2/s and νair,max = 1.581 ·10−5m2/s. At an average altitude
of 500m, the air kinematic viscosity is expected to be ν̄air = 1.520 · 10−5m2/s. [3]

The freestream turbulence intensity is likely to be very low, as flight tends to be above open fields - such
as the current TU Delft test location at Vliegkamp Valkenburg, the Netherlands.

Combining the average operating air density with the average apparent velocity, the minimum operating
air density with the minimum typical operational apparent velocity, and the maximum operating air
density with the global maximum apparent velocity, give an average dynamic pressure q̄ = 1

2ρairU
2
A of

525Pa, with a conservative operational range of 222Pa ≤ q ≤ 1240Pa.

2.1.5 Typical Reynolds Numbers and Aerodynamic Coefficients

Using the chord as the characteristic length, the expected Reynolds number Re =
UAc
νair

ranges conserva-

tively between a minimum of 3.33 · 106 - for the combination of 1000m altitude atmosphere and 20m/s
apparent velocity - and a maximum of 8.10 · 106 - for the combination of sea-level altitude and 45m/s
apparent velocity.

Ruppert [153] measures the lift coefficient to range between 0 ≤ CL ≤ 0.7; the drag coefficient to range
between 0.05 ≤ CD ≤ 0.3. Ruppert [153] further measured lift-to-drag values for the TU Delft’s kite
during multiple pumping-cycle test-flights to have an average value of L/Dpower = 5.9 during the power

phase of the pumping-cycle, and the fairly constant average value of L/Ddepower = 1.8 during the depower
phase of the pumping cycle. These aerodynamic coefficient measurements are shown in Figure 2.6.
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(a) Lift-to-drag ratio according to pumping cycle phase

(b) Compilation of lift-to-drag ratio measurements

(c) Smoothed aerodynamic coefficient polars

Figure 2.6: Aerodynamic coefficients measured during normal pumping-cycle operation of an LEI kite,
all reproduced from [153].
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2.2 Experimental Studies of Membrane Flows

The difficulty in making accurate measurements for angle-of-attack during the flight-testing of an LEI
kite has already been mentioned. Lacking confidence in our angle-of-attack measurements, we cannot well
use our flight-testing experience to design future kite geometries, flight paths, or other system aspects.

But, we might still wonder why it is not sufficient to use other available sources of shape, flow, and
pressure relationship information - such as from wind tunnel testing of either the LEI kite or other
similar membrane wings - to design future LEI kite and kite-power systems. After all, there exist many
natural analogies1 to the LEI-kite shape: such as in pterosaur wings [144] [195], bat wings [169] [191], and
veined leaves [45]. Other examples of membrane structures with similar geometries can be seen in yacht
sails [66], paragliders [148] [130], sail-bladed wind turbines [125] [65], micro UAVs [109] [171] [79] [152],
canvas structures such as tents [48] and convertible roofs [101], and newspaper printing webs [193].

However, the behavior of a membrane in a flow is so heavily dependent on the particular details of
the membrane in question, that it is very difficult to make specific predictions based on the total sum
of experimental membrane data. That is, the behavior of a membrane wing cannot be extrapolated
from the known behavior of a membrane wing which is not fundamentally similar in all of the material
qualities2 which determine its aeroelastic response to a flow. To demonstrate the non-transferability
of membrane flow-behavior specifics, some experimentally-measured values for the relevant angles-of-
attack of a membrane-wing FSI problem - zero-lift, luffing-onset, separation-onset, and complete-stall -
are assembled in Table 2.1.

If we could match all of the relevant qualities to the problem, then windtunnel testing might give us
useful results. However, given that LEI kites are typically woven, it is difficult to correctly scale-down
all aspects of the LEI-kite flight environment. While Reynolds number matching may be possible, it is
not inherently obvious how a model should reproduce the inhomongenous stiffness caused by the ripstop
weaving and sewing of the kite fabric, as well as the stiffness of the inflated beams.

One possibility would be to use a full-scale kite in wind-tunnel testing. The associated cost, both in the
materials, labor and time needed to construct the kite as well as the cost of the reserving a suitably large
wind-tunnel to minimize wall effects for flow around such a large object, make full-scale wind-tunnel
testing ill suited to design work.

It has been suggested3 that an alternative to the wind-tunnel testing of the dynamic aeroelasticity of the
kite, would be to run wind-tunnel tests of scaled, rigid LEI deformation states. The results might not
be obviously useful for the future design of kites that take advantage of their aeroelastic behavior, but it
may serve as a validation testing for the AWE’s aerodynamic code-base, all of whose current predictive
aerodynamic codes assume quasi-steady flow. The author is not aware of the existance of such a study
at this point in time, but would heavily recommend that some future student consider undertaking such
testing.

If we have determined that the results of live testing are not - at present - useful decision-making tools
during kite design, there remains the possibility that the numerical modelling could provide the necessary
information to make design-decisions.

Increasing computational power allows for shorter turn around times for flow simulation. The accuracy
of the results however depends on choosing the right input assumptions. If we want to avoid ”garbage-
in garbage-out” scenarios we need to asses the kite’s flow situation with an eye on possible modelling
assumptions.

1There are also many studies of membrane wings without prominent leading-edge cylinders, but we known that the
inclusion of a leading-edge cylinder has a large influence on the pressures experienced by a rigid, flat wing [130]. We must
therefore be extra cautious when we extrapolate behaviors of membrane wings with significant leading edge supports - such
as the LEI kite - from the studied behavior of membrane wings without such supports.

2It is these material properties that are used, in addition to the standard flow descriptions, to determine the dimensionless
aeroelastic numbers that are discussed further on in Section 2.2.1.

3during lunch-hour discussions among the AWE group members
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2.2.1 The Dimensionless Aeroelastic Parameter for Membrane Flow Prob-
lems

Based on the work by de Matteis & de Socio [47] and Sneyd [167], and following the derivation by
Smith [166], the aeroelastic behavior in membrane flow problems can be characterised according to two
parameters which split the tension of the membrane into the elastic-strain tension and the membrane
pre-tension.

For a linearly elastic membrane, the tension T can be written as:

T = (Emǫ+ σ0)h

with Em the elastic modulus of the membrane material, ǫ the membrane strain (ǫ = l−l0
l0

), σ0 the
pre-stress, and h the membrane thickness. For most membrane applications, the tension caused by the
membrane’s own weight is negligible in comparison to - qualitatively, less than 0.1 percent of - the tension
caused by the pre-tension and aerodynamic tensions [202].

For a membrane in equilibrium, the membrane curvature Km is determined by the balance between the
pressure difference across the membrane ∆p and membrane tension T :

Km =
d2y

dx2i

(

1 +
dy

dxi

2)−3/2

= −
(
∆p

T

)

where y is the membrane deflection distance perpendicular to the span and chord, and xi is conceptual
two-dimensionalized membrane distance.

If xi is normalized by c, and ∆p by the dynamic pressure 1
2ρU

2
A, the membrane equilibrium equation

becomes:

Km = − 1

Π

(

∆̂p

T̂

)

where the aeroelastic number Π relates the dominant tension to the dynamic pressure and chord. That
is, for a membrane4 whose tension is dominated by elastic strain:

Π = ΠE =
Emh

1
2ρairU

2
Ac

For a membrane whose tension is dominated by pre-tension, as the case for a close-to-inextensible mem-
brane:

Π = Πσ =
σ0h

1
2ρairU

2
Ac

The aeroelastic number Π compares the canopy stiffness to the flow dynamic pressure [69] and provides a
measure of how much a membrane will resist deformation for a given aerodynamic line load. The smaller
the aeroelastic number, the more compliant - the more deformable - the membrane is. Membranes with
small aeroelastic numbers will self-camber more than membranes with high aeroelastic numbers, and
consequently produce higher lift coefficients under attached flow conditions [190].

Increasing the (3D) canopy pretension [171] is expected to decrease drag [75], decrease the time-averaged
lift, decrease CL,α [142], preserve flow-attachment to linearize lift behavior [164], increase αL0 [136],
cause a more abrupt stall [75], decrease the membrane oscillation mode [79], and decrease the vortex
shedding Strouhal number [79].

For fully-attached [140], inviscid flow, the aeroelastic parameter can be used to predict whether the
canopy remains ”wholly concave,” when the 0 ≤ 1

Π ≤ 1
Π cc

, where the value for 1/Πcc was found by
Thwaites [176] to be 2.316, by Voelz [189] to be 2.299, by Dugan [58] to be 2.310, by Nielsen [141] to be
2.3155, Irvine [93] to be 2.547 [117]. For further information concerning the effect of the nondimensional
membrane aeroelastic number on classical yacht-sail behavior, the, the reader is referred to Newman &
Low [139], Greenhalgh at al [82], Jackson & Fiddes [95], and Sneyd [167].

4As a note, there exists an alternate version of the dimensionless aeroelastic number for elastic membranes - typically
found in the research done by the University of Florida, Gainesville [163] and the University of Alabama, Tuscaloosa [203]
groups - where Π1 = (ΠE)1/3 based on Seide’s finding that elastic membrane deformation [158] is proportional to (ΠE)−1/3.
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Unfortnately, there is - as of the author’s current knowledge - no consistent measurement method to
determine a single dimensionless membrane aeroelastic parameter for a given LEI-kite, for whom the
degree of pre-tension on a canopy section varies significantly by measurement location and measurement
direction. That is, for an LEI kite, the pre-tension near the LEI tube is fairly large, while the tension
near the trailing edge is small but non-zero due to the wire along the trailing edge. We also expect
that the tension is likely to be significantly higher in the canopy fabric warp- and weft- directions than
skew to these directions. Further, the tension in the canopy can be expected to increase when the kite
experiences high loading.

It becomes especially difficult to make predictions based on other experimental studies within the
membrane-flow field when there are neither values for the relevant dimensionless numbers, nor stan-
dard conventions for the calculation of these dimensionless numbers.

2.3 Typical Membrane-Flow Behavior

It is important that the general behavior of membrane-flows be considered when assembling the model
assumptions. These behaviors can be considered in generalities, even if the specific flow behaviors cannot
be transfered.

As for rigid wings, the behavior of the flow changes dramatically between the attached-flow and separated-
flow regimes. The behavior in these two regimes is discussed in the following sections.

2.3.1 Attached Flow Trends

We know that as the angle of attack of a membrane wing increases, the aerodynamic loading increases.
This increased loading deforms the trailing edge of the membrane upwards. This causes the wing to
experience an effective reduction in angle of attack - as the chord-line is tilted tail-up and effectively
nose-down. This ”adaptive washout” decreases the rate at which the angle of attack grows even as the
incoming freestream direction shifts [5]. The decrease in effective angle of attack due to membrane wing
deformation has been confirmed by Lian et al [109] and Lian & Shyy [108] This decrease in effective angle
of attack has the general effect of delaying separation, and then stall past the angles of attack where
these flow-behaviors might occur in rigid wings [149]. This ability of a membrane wing’s flexibility to
delay stall is shown in Figure 2.7.

Further, as the wing deforms under increasing angle of attack, the canopy billows. This ”adaptive
camber” or ”self-camber” of the wing increases the wing’s lift and lift slope [171] with respect to angle
of attack. Two examples of the many visual image correlation (VIC) studies of membrane wings can
be found from Albertani et al [12] for elliptical micro air vehicle (MAV) membrane wings, and from
Breukels [30] for the mostly-planar LEI-framed kiteplane membrane wing used by the TU Delft’s Airborne
Wind Energy group prior to the use of surf-kites. Because the deformation increases as the aerodynamic
loads on the wing increase, the lift and drag will both increase as Reynolds number increases [149].

The flexibility of a membrane delays separation and stall, increases the maximum lift coefficient, and
causes stall to occur much more suddenly for a given membrane wing in comparison to an equivalent
rigid wing [192]. Further the delayed separation due to the effective washout of a membrane wing can
increase the lift-to-drag ratio of a 3D membrane wing compared to an equivalent rigid wing [46].

Depending on the shape of a 3D membrane wing’s frame, the lift-slope can be higher than the theoretical
thin-airfoil lift slope CL,α [125]. A membrane-wing frame with a fixed trailing edge will generate adaptive
camber but no adaptive washout, resulting in the significantly higher lift slope than a membrane-wing
with a free trailing edge [12]. The TU Delft LEI surf-kite has a wire running through the trailing edge
to provide tension, in part to minimize the experienced adaptive washout.
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Figure 2.7: The influence of wing membrane flexibility on lift coefficient over a 3D membrane wing,
where a greater number of spars (”battens”) and/or a stiffer material decreases flexibility [192].

The incidence range of linear, fully-attached flow is quite small; for descriptive purposes, this validity
range has been found to lie between 5o and 8o angle of attack for a 2D mylar membrane airfoil [82]. Nielsen
[141] suggests that separation occurs, and the flow leaves the attached, linear lift-alpha relation, regime
when a membrane reaches an adaptive camber above 15 percent. It should be noted that Mendenhall
et al [130] found that the inclusion of a prominent leading-edge cylinder to a flexible membrane delays
leading-edge separation to higher angles-of-attack, although the delay is more noticeable for supercritical
Reynolds numbers than subcritical Reynolds numbers.

For fully attached flow on an inextensible, purely-concave sail5 - without a LEI tube - Voelz [189],
Thwaites [176], Nielsen [141] and Greenhalgh at al [82] find independently the empirical approximation
for the 2D lift coefficient:

cl ≈ 2πα+BL
√
ǫL

Where Thwaites finds BL = 0.636, Nielsen BL = 0.72784, and Greenhalgh et al BL = 0.70, and ǫL is
the sail excess length ǫL = (l − l0)/c. [117].

2.3.2 Nonlinear Flow Trends

There are two main nonlinear flow regimes relevant to membrane wings. The first of these hysteresis
regimes occurs when the lift force is low, near CL ≈ 0. The other is a strong fluid-structure interaction
as a result of vortex shedding after flow separation.

Low-Lift Hysteresis

When the lift on a membrane wing is low, small variations in aerodynamic lift due to small inflow
variations can change the direction in which the wing billows. This hysteresis becomes more extreme when
the membrane pretension is low and the flow velocity is high, and is not a flow-separation phenomenon
[24].

5As a note, the sail literature frequently makes a reference to a ”design” or ”optimum” incidence. This ”design” or
”optimum” incidence is the angle of attack, which in combination with a given tension coefficient (H = T

qc
), allows the

Kutta condition to be satisfied at both the leading and trailing edges [140] [176]. In the remainder of this work, any further
usage of the word ”optimum” or its derivatives - such as ”optimize” refers to its standard definition as a value which
maximizes some desired quality or minimizes some undesired quality.
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Figure 2.8: The effects of adaptive washout, as demonstrated by a batten-reinforced wing, and adaptive
camber as demonstrated by a perimeter-reinforced wing. Reproduced from Albertani et al [12].

From sailing, this low-lift, bistable-instability [151] is called ’luffing.’ For analytical solutions of the
critical membrane-tension below which luffing may occur in yacht-sails, the reader is referred to Nielsen
[141], Newman & Low [139], and Newman [138].

As a note, there is debate whether prominent, very-thick (in comparison to membrane thickness) leading
edges on 3D membrane wings can prevent the membrane wing from experiencing luffing at angles of
attack near the zero-lift angle of attack αL0, as suggested by the sailwing windmill research group of
Princeton University [125], but refuted by Waldman & Breuer [190]. Analysis of crashes during AWE
test flights suggests that Waldman & Breuer have the correct impression.

In practical kite flight, this low-lift oscillation can cause an unrecoverable one-way deformation: near
αL0 a shift in inflow direction causes the canopy billow to reverse directions, and the lift vector to invert.
When the wind is strong, the inverted lift can be enough to overcome the tension in the kite and buckle
the LEI tube, leading to the destruction of the kite’s steering ability, and an almost-certain crash. That
is, when the low-lift oscillation is large enough in magnitude, it can lead to kite collapse. Consequently,
the low angles of attack associated with the low-lift hysteresis regime are strongly avoided during kite
operation.

Given that this motion pattern is not within the normal-operating conditions of the kite-power system,
it is assumed that the ability to model luffing is not of primary importance in the selection of modelling
method.
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Flow Separation

The primary source of discrepancies between experimental and modelled flow over membrane wings is
separation [139] [166], and as an LEI kite flies to high angles of attack during power-production operation
and has a large wind-shadow region behind the LEI tube, it certainly experiences separation.

Conceptually speaking, there are three possible separated-flow recirculation regions that may come into
play on an LEI kite. Following the abbreviations (shown in Figure 2.9) used by Newman & Low [139]
who performed a study on the separation - and reattachment - of flow on 2D, impermeable and slack
sails being held by various supports, we can use a set of abbreviations to describe certain recirculation
regions:

1. a pressure-side leading-edge separation bubble, analogous to the wind-shadow region behind the
LEI tube;

2. a suction-side trailing-edge separation region, as seen on any airfoil at high incidence; and

3. a suction-side leading-edge separation, as seen on sharp leading-edged surfaces like flat-plates.

The specific findings of Newman & Low are reproduced in Figure 2.10. If we generalize the specific
trends6 that they found, we see that:

• As the angle of attack increases, the wind-shadow region of a kite shrinks, corresponding to the
shrinking of the separation bubble (1).

• As the angle of attack increases, the trailing edge separation location (2) moves forward.

• The suction-side leading-edge separation bubble (3) primarily occurs at moderate angles of attack,
before which there is no leading-edge separtion, and after which the bubble has popped to join (2).

That is, we can expect that the canopy separation and reattachment behavior follows the same general
trends as we would expect on a thin airfoil, with the addition of the separation bubble after the LEI
tube.

Deaves [51], who performed a steady RANS analysis of a rigid LEI kite with smoothed profiles, finds
that suction-surface separation begins at the tips at around 16 degrees angle-of-attack; then appears
on a strip on the quarter- and three-quarter span locations of the kite; moves to the root; and returns
again to the quarter- and three-quarter span locations. There does not appear to be a consistent way to
predict the separated locations on the kite suction-surface, and the separation line is discontinuous.

Deaves also presents some results for separation on the pressure-surface. Unsurprisingly, at the angles of
attack within normal operating conditions, there is always pressure-surface separation. Unfortunately for
the development of this thesis-work’s method, the location of the separation line is difficult to determine
from his reported values and appears to lay on the portion of the kite where his study’s profile smoothing
is in effect.

6as the wire at the trailing edge of the kite is intended to decrease the canopy slackness, and two-dimensionality does
not represent the LEI kite’s low aspect ratio and highly non-planar nature particularly well.

(a) A schematic of flow separation regions over an LEI
kite - from Anderson et al [14], with region A compara-
ble to the Newman & Low [139] region S1, and region
B comparable to the Newman & Low region S2.

(b) The defining dimensions of the
three types of separation, as re-
produced from Newman & Low
[139].

Figure 2.9: Separation sketches over LEI membrane-wing kites and 2D sails.
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Figure 2.10: Positions of separation and reattachment for a 2D membrane wing - where the value s1
l is

indicated with a flap pointing down, the value s2
l is indicated with a flap pointing diagonally upwards,

the value s3
l is indicated with a flap pointing up. ǫ indicates the degree of slack on the wing, and the

four graphs represent different support shapes. (a) with wedge shaped supports, for Re = 1.2 · 105 and
ǫ = 0.017; (b) with thin (open symbols) vs. thick supports (solid symbols), for Re = 1.2 · 105 and
ǫ = 0.03; (c) with Re = 1.2 · 105(uncrossed symbols) vs. Re = 7 · 104(crossed symbols), for ǫ = 0.05; and
(d) ǫ = 0.10, as found by Newman & Low [139].
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The separation lines found by Deaves for various angles of attack on the suction- and pressure-surfaces
can be found in Figure 2.11.

Consequently, whatever model is developed must be applicable under separated flow conditions.

Vortex Shedding Hysteresis

Flow separation results in oscillatory vortex shedding. When the membrane’s natural frequency and the
vortex shedding frequency are close, the pressure jump on the membrane surface caused by the nascent
vortex forces the deformation of the membrane [168] [132]. Oscillatory vortex shedding produces an
oscillatory aerodynamic force, which causes an oscillatory adaptive camber. Consequently, the character
of membrane-wing oscillations depends primarily on the vortex shedding off the membrane - which is
determined by the location and size of the flow separation region [149].

It is generally found that a flow-excited membrane will vibrate as a sum of standing wave modes [168] [79]
[151] [15] [177], though there is a disagreement over the point where the standing wave frequencies shift
from periodic harmonic frequencies to a chaotic spectrum of frequencies. Gordnier [79] computes that 2D
membrane oscillation in laminar flow will become more chaotic as flow Reynolds number increases; Alben
& Shelley [10] model the oscillation frequencies will become more chaotic as Bm,r/(ρairU

2
Ac

3) increases,
where Bm,r is the rigidity of the membrane. Analysis of flight videos suggests that the oscillation of the
LEI-kite’s trailing edge flutter deformation is periodic - or sufficiently periodic that the chaotic behavior
cannot be seen visually.

Where the deformation is periodic, the dominant mode is expected to provide approximately 90 percent
(See Figure 2.12) of the canopy deformation [190]. The remaining canopy deformation is caused by the
higher harmonic standing wave modes; Rojratsirikul et al [152] suggest that the effect of the first six -
for small membrane wings - overlapping harmonics is sufficiently great that any further harmonics do
not have any practical effect.

That is, we predict the higher deformation mode harmonics - which would be expected to be the high
frequency deformations - have both a small amplitude and are present only in the small region of the
canopy near the trailing edge. We might, therefore, assume that the influence of the high frequency
deformations would be fairly small on the pressures experienced by the kite.

As a result, we assume that we can neglect the influence of these higher mode deformations. That is, we
assume that the errors introduced by neglecting the higher harmonics of a dominant deformation mode
are on the same order or smaller than the errors introduced by the other sources of modelling error,
particularly for a fast aerodynamic modelling method.

The next question, concerning the requirements of the aerodynamic model, is what sort of dominant
deformation mode are we expecting the LEI kite to experience?

It has been suggested [81] that the only factors which the dominant periodic deformation frequency and
amplitude of a membrane wing are the free-stream dynamic pressure, the angle of attack, the tension in
the membrane, and - to a much smaller extent - the membrane twist.

We know that this dominant perdiodic deformation mode increases with flow Reynolds number. This
increase is not a smooth increase, but discontinuous: the dominant membrane oscillation mode is ex-
pected to jump mode harmonics in a discrete stepping process. This is represented in Figure 2.13. Song
et al [168] propose that this frequency jumping occurs because the vortex shedding frequency increases -
possibly as vortex shedding Strouhal number increases with Reynolds number due to varying separation
locations, asymptotically approaching the structure-specific constant value at high Reynolds number [49]
- triggering resonance with the closest harmonic of the membrane natural frequency. The amplitude of
the deformation does not tend to depend on the flow velocity [151].

Further, Rojratsirikul et al [152] suggest that a pre-tensioned membrane deformation will deform at
lower mode numbers than a slack membrane.
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Figure 2.12: Time-averaged and instantaneous membrane deformation at mid-half-span for α = 10deg
and U∞ = 10m/s, dominated by the primary standing wave mode [190].

Figure 2.13: Membrane oscillation mode jumping to harmonics of the membrane natural frequency, as
measured by Rojratsirikul et al [151] for low Reynolds number membrane wing flow (5.31 · 104 ≤ Re ≤
1.06 · 105).

Increasing the angle of attack is expected to decrease the dominant deformation mode number, as well as
increase the amplitude of the deformation oscillations. [151] This can be seen from one of the Rojratsirikul
et al deformation studies, as reproduced in Figure 2.14.

Given that the LEI kite membrane sections are tensioned by the LEI-tube, the inflated struts, and - to
a lesser extent - the wire at the trailing edge, we can expect that the canopy sections that are not near
the trailing edge will deform with a low mode number.

This dominant mode number may not be one due to the moderate Reynolds numbers over the large
range of angles of attack, but we would still expect the dominant mode number to be on the order of
one. The parabolic or catenary deformation assumptions - where the dominant membrane deformation
mode is the second mode - are particularly well represented in the membrane-flow aeroelasticity research
[190] [202] [190] [168].
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Figure 2.14: Influence of angle of attack and free-stream velocity on membrane deformation mode shape
[151].

In model construction, the method will have much more flexibility if it is not assumed that the deforma-
tion follows a specific deformation mode number, other than to resign high-frequency harmonics to the
unresolved sub-scale.
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2.4 Quasi-Steady Flow Assumption

2.4.1 Flow Steadiness Analysis with Reduced Frequency

The reduced aerodynamic frequency fR is a measure of whether a problem should be described as quasi-
steady or unsteady.

If a fluid element crosses the wing faster than the kite can react to the force-change the element brings,
then that fluid element will effectively see a steady kite.

This situation can be represented as a short time required for the flow to travel over the chord t∗a in
comparison to the time required for the kite to react to a force t∗F . That is, a quasi-steady situation is
described by: t∗a ≪ t∗F .

In comparison, if the kite reacts at the same speed or faster than the fluid element travels, then the kite
will be deforming as the fluid element passes over it. This situation - t∗a /≪ t∗F - must be modelled as
unsteady.

Because the flight path and many of the deformations are approximately periodic, it is easier to ex-
press the reduced frequency of the kite FSI problem in the frequency domain than in the time domain.
Then, the reduced frequency depends on the characteristic aerodynamics frequency f∗a = 1/t∗a, and the
frequency with which the kite reacts to force fF . Here, the frequency with which the kite reacts to
force contains the frequency with which the position, angle of attack, camber, and global kite geometry
change. Consequently, fF must consider the flight path frequencies as well as the large-scale deformation
mode frequencies.

Then, the problem can be considered quasi-steady if: f∗F ≪ f∗a ; and the problem must be considered

unsteady if: f∗F /≪ f∗a . Defining the reduced frequency as fR = fF
f∗

a
=

t∗a
t∗
F
, this can be summarized:

fR

{
≪ 1 : Quasi-Steady
/≪ 1 : Unsteady

2.4.2 Characteristic Aerodynamic Frequency

A characteristic fluid element, travelling with a representative velocity will take some characteristic
amount of time to pass over the surface of the kite. Because flow effects are convected in a Lagrangian
fashion, the characteristic amount of time it will take for flow conditions to vary over the kite travelling
at subsonic speeds must be the same as the the characteristic time for the fluid element to travel the
characteristic length of the kite [156] [69]. Consequently,

t∗a = c/UA

Considering the average apparent velocity, the minimum typical operational apparent velocity, and the
global maximum apparent velocity, the relevant range of characteristic aerodynamic time for a fluid
particle to travel over the chord range is between 0.06s and 0.13s, with an average value of 0.09s.

Following Flay & Jackson [69], the characteristic aerodynamic time is inverted to find a characteristic
aerodynamic frequency:

f∗a = 1/t∗a = UA/c

For this problem, this frequency is between 7.6Hz and 17.1Hz, with an average value of 11.4Hz.
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2.4.3 Flight Path Frequencies

Characteristic Manoeuvre Frequency

During the course of the power (or reel-out) phase of the power-generation pumping-cycle, the kite flies
”figure-eight” shaped manoeuvres.

Because the shapes of these figure-eights are similar with respect to a fairly-uniform wind field at altitude,
the inflow conditions at equivalent points along the figure-eight path are close to periodic. That suggests
that there is a characteristic period for one ”figure-eight” manoeuvre, corresponding to a characteristic
manoeuvre frequency.

(a) A typical power-phase of the power-generation
pumping cycle, demonstrating ”figure-eight” manoeu-
vres. The pink circles correspond to ten second marks
[73].

(b) A typical progression of azimuthal angle over time
during the power-phase of the power-generation pump-
ing cycle, where one wavelength corresponds to a ma-
noeuvre period [73].

The characteristic manoeuvre period tends to be between 25 and 15 seconds, with a mean value of 20
seconds. These values correspond respectively to a characteristic manoeuvre frequency f8 between

0.04Hz ≤ f∗8 ≤ 0.067Hz

with a representative value of 0.05Hz.

Flight Dynamic Frequency

The figure-eight flight manoeuvre is composed of four consecutive periods of constant steering input.
This suggests that there is a second characteristic period - and frequency - associated with the kite flight
path, that is approximately four times the characteristic manoeuvre frequency:

0.16Hz ≤ f∗FD ≤ 0.27Hz

with a representative value of 0.20Hz.

2.4.4 Kite Deformation Modes

In typical operation, an LEI kite experiences multiple typical deformation modes. In order from generally
fastest deformations to generally slowest deformations, these are: trailing edge flutter, seam-rippling,
canopy billowing, jellyfishing, bunny-ear flapping, and leading edge indentation which can lead to kite
collapse.
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Figure 2.16: The typical deformation modes seen in normal pumping-cycle kite operation.

Trailing Edge Flutter Deformation Mode

Trailing edge flutter is the deformation of the canopy’s free trailing edge as a result of the periodic
aerodynamic force oscillation caused by vortex shedding.

Because the trailing edge flutter produces an audible buzz, and the audible frequency range for humans
is generally accepted to be between 20Hz and 20kHz [85], it is expected that the characteristic trailing
edge flutter frequency f∗TEF > 20Hz.

This audio-bound is supported by video analysis. For an LEI kite in normal power-production operation,
the trailing edge flutter is faster than video analysis can confidently capture at 30 frames per second.
The Nyquist Shannon sampling theorem says a behavior of a given frequency can only be observed if the
sampling frequency is twice the behavior frequency. This would suggest that the characteristic trailing
edge flutter frequency f∗TEF > 15Hz.

This deformation is relatively local, as it is confined to the small band of the canopy along the trailing
edge. It consequently has a small effect on the aerodynamic force distribution over the total body of the
kite, and can be resigned to the sub-scale. Resolution of the trailing edge flutter deformation mode is
outside of the scope of this thesis.

For completeness’s sake, an order-of-magnitude upper limit on the trailing edge flutter frequency can be
estimated.

One estimation method follows the the correction method of Rojratsirijul et al [151] to the membrane
flutter frequency estimation method developed by Zhang et al [202], and used by Song et al [168] and
Waldman & Breuer [190]. The basis of this first-order estimation method is the work of Rojratsirikul et
al [150], and Michelin & Smith [131] showing that the trailing edge flutter frequency for membrane wings
- stretched over aerodynamicially negligible frames - tends to the harmonics of the membrane natural
frequency.

A second estimation method follows the work of Strouhal-locking of membrane splitter plate oscillation
behind non-negligible circular cylinders by Allen et al [13] and Shukla et al [161].
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Figure 2.17: A concept sketch and video frame-extraction from flutter-experiment flight demonstrate the
trailing edge flutter deformation mode on the TU Delft KitePlane. Trailing edge flutter is difficult to see
on an LEI kite in power-production operation due it’s high frequency, but produces an audible hum.

Rojratsirikul Correction to the Zhang Approximation Method for Membrane Flutter Fre-
quency The membrane natural frequency can be estimated very roughly from the membrane tension
using linear elastic theory. The membrane tension can be estimated from an estimated membrane defor-
mation, which is itself derived from known material properties and an estimate of forces. Rojratsirikul et
al [151] found that approximating the membrane flutter frequency with this first-order method predicts
frequencies that are about half of what can be measured experimentally, for membrane wings without
an LEI tube.

According to the Zhang approximation method, a membrane wing or canopy-section that is attached
at the leading-edge, and two side edges, with a free trailing edge, will vibrate analogously with a 2D
membrane that is tensioned in the span-wise direction. The fundamental frequency for this vibration
can be found with:

fm,calc = βZ

√

T

mmb′

where βZ is a proportionality constant, which is expected to be greater for a pre-tensioned canopy
than the value βZ = 1/2 of a tensioned string; mm is the membrane mass m = ρm(b′c); and b′ is the
canopy-section span.

Because the trailing edge is free, the tension in the span-wise direction should be much greater than
the tension in the chord-wise direction [202]. Consequently, for the process of roughly estimating the
expected membrane natural frequency, the effect chord-wise tension is neglected. This is a reasonable
approximation towards the trailing edge of the canopy, but not necessarily near the connection point
with the LEI tube.

T = |Tbb̂+ Tcĉ| ≈ Tb

Zhang et al [202] measure βZ to fit to the relationship:

βZ =
0.83

H0.337

from tests with a membrane E = 450kPa, h = 0.32mm, and q = 15, 60, 135Pa; E = 500kPa, h =
0.62mm (note that there is an inconsistency within this paper, that the experimental-description reads
h = 0.52mm, and the graph-legend reads h = 0.62mm), and q = 60Pa; E = 1900kPa, h = 0.08mm, and
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Figure 2.18: The relationship between membrane fundamental frequency scaling constant βZ and the
membrane pre-tension parameter (top left) as measured by Zhang et al, (top right) as corrected for
added mass due to membrane oscillation, and (bottom) as reported in previous literature. The legends
apply: (M1-1/1, black-square) E = 450kPa, h = 0.32mm, q = 15, 60, 135Pa, and AR = 1; (M1-1/2,
white-square) E = 450kPa, h = 0.32mm, q = 60Pa, and AR = 0.5; (M2, blue-triangle) E = 500kPa,
h = 0.62mm, q = 60Pa, and AR = 1; (M3, red-square) E = 1900kPa, h = 0.08mm, q = 60, 135Pa, and
AR = 1, [202]; (#1, square) Timpe et al [177]; (#2, triangle) Zhang et al [203], (#3, circle) Hubner &
Hicks [91], and (#4, diamond) Scott et al [202]

q = 60, 135Pa, and correct this measured βZ value for the expected added mass caused by the membrane
oscillation to

βZ,AM =
0.961

H0.366

From their results, when H > 1, βZ,AM remains well between

0.5 ≤ βZ,AM ≤ 0.9

Applying the first order estimate that:

0.5 = βZ,AM,min ≤ βZ,AM ≤ βZ,AM,max = 0.9

and the estimation that the canopy-section tension in the span-wise direction Tb′ is likely on the order of

16.1N = Tb′,depower ≤ Tb′ ≤ Tb′,power = 104N

with an upper bound at 1900N, predicts that the canopy natural frequency will likely be on the order of

4.45Hz = fm,calc,min(Tb′,depower, βZ,AM,min) ≤ fm,calc ≤ fm,calc,max(Tb′,power, βZ,AM,max) = 20.4Hz

with an upper bound at fm,calc,maxBound(Tb′,power,maxBound, βZ,AM,max) = 87.1Hz.
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The canopy trailing edge flutter frequency can be found by multiplying the calculated linear-elastic
membrane natural frequency by the factor φRoj = 2 found empirically by Rojratsirikul et al [151]:

fTEF = φRojfm,calc

That is, the Rojratsirkiul Correction to the Zhang Method suggests that the maximum trailing edge
flutter frequency will be somewhere between 40.7Hz and 174Hz.

Strouhal-Locking Flutter Frequency Estimation Method The TUD-25mV3 surf kite has a char-
acteristic LEI tube diameter to chord ratio ΛLEI =

c
DLEI

= 13.15.

Figure 2.19: The shift between small ΛLEI and large ΛLEI behavior, as found by Shukla et al [161] for
a hinged splitter plate behind a cylindrical cylinder, where ΛLEI is written as ”L/D”, the splitter plate
oscillation amplitude is A and the cylinder diameter is D

Shukla et al [161] found that there is a marked difference in membrane flutter behavior at a threshold
value 3 ≤ ΛLEI ≤ 4. Consequently, the LEI ΛLEI values can be considered large. When ΛLEI is
large - the oscillation frequency of a membrane streamer (”eel”) behind a bluff body no longer depends
on the length of the membrane, but is highly dependent on the ability of the membrane to damp out
oscillations [13].

When ΛLEI is large and the Reynolds number is small, ie. (O(103)), membrane oscillations for an ”eel”
behind a bluff body will be infrequent, with small amplitudes [13].

For an intermediate-low Reynolds number and large ΛLEI , such as the values given by Allen et al [13]
(O(104) ≤ Re,LEI ≤ O(4·104)), any given Reynolds number is expected to correspond to a fairly constant
periodic membrane-oscillation Strouhal number. The Strouhal number increases with the Reynolds
number until it reaches a threshold value; for Allen et al’s particular experiment, this threshold value
is at approximately 0.16. At these intermediate-low Reynolds numbers, the membrane-oscillation is not
yet fully coupled to the flow, such that the membrane-tension damps the oscillations.
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Figure 2.20: Trends in the relationship between vortex shedding Strouhal number, the flow Reynolds
number based on bluff body width, and membrane-geometry, including the ratio between the bluff body
width and membrane ”eel” length, as measured by Allen et al [13].

When ΛLEI is large and the Reynolds number increases past the point where the Strouhal number
reaches the threshold value, the membrane oscillation frequency approaches the bluff-body vortex shed-
ding frequency with decreasing membrane stiffness - and consequently, for a membrane whose stiffness
is primarily determined by the membrane tension, rather than material stiffness - decreasing membrane
tension. The wavelength of membrane-oscillation is expected to trend to the van Karman street wave-
length behind the bluff-body alone; the membrane oscillation amplitude to tend to the wake width of the
van Karman street behind the bluff-body alone. In this region, the membrane oscillation amplitude is
constant as Reynolds number increases, and the membrane oscillation Strouhal number increases linearly
with the Reynolds number until it levels out at a maximum Strouhal number. This maximum Strouhal
number is a function of the bluff-body shape and the flow speed. [13]

The assumption that the kite canopy membrane oscillation frequency will approach (or ”lock” on to) the
vortex shedding frequency behind the LEI tube is restricted by the fact that the LEI tube diameter-based
Reynolds number range (2.53 ·105 ≤ Re,LEI ≤ 6.16 ·105) is within the region described by Lienhard [110]
where there is no one specific vortex-shedding frequency, but rather a spectrum of vortex shedding
frequencies. Lienhard gives an approximate range of relevant Strouhal numbers as 0.17 ≤ St,Lock ≤ 0.4.
As these values correspond to apparent velocities between 20m/s and 45m/s, the estimated locking-on

membrane flutter frequencies fTEF,Lock =
St,LockUA

DLEI
are between:

17Hz ≤ fTEF,Lock ≤ 90Hz

It should be noted, with respect to this Stouhal-locking estimation method, that Rojratsirikul et al [151]
suggest that the locking-on Strouhal number of membrane wings at the high incidences near- and post-
stall decreases proportionally (refer back to Figure 2.13) to the inverse of the sine of the the angle of
attack:

St ∝
1

sinα

If it is assumed that flow separation begins around 15o angle of attack for an LEI kite - which is an
intermediate value between the values reported in the literature - and the reported relationship extends
outside of the low Reynolds number flow regime of the Rojratsirikul test, the relationship would suggest
that the membrane flutter frequency range at high angle of attack may shift down by up to a factor of
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Figure 2.21: Strouhal Number vs. Reynolds Number for the Vortex Shedding van Karman streets behind
a rigid circular cylinder, as reproduced from Lienhard [110].

(
sin(15o)
sin(50o) = 0.34

)

. This would shift the maximum trailing edge flutter frequency, at high angles of attack,

down to
fTEF,Lock,High α ≤ 30.4Hz

which would still be within the audible spectrum.

Seam-Rippling Deformation Mode

Figure 2.22: A concept sketch and video frame-extraction from power-production operation demonstrate
the seam-rippling deformation mode on an LEI kite.

Seam-rippling (see Figure 2.22) is the small-scale travelling wave that occurs near the struts close to
the trailing edge, where the tension in the span-wise direction is much greater than the tension in the
chord-wise direction.

This deformation is extremely local in nature, and occurs faster than video analysis can confidently
capture at 30 frames per second. Confidence can only be given that a full seam-rippling wave period must
be less than 3 frames, so the characteristic time of this deformation mode must be less than t∗SR < 0.1s.
This corresponds to a confidence-limit of the characteristic deformation frequency at f∗SR > 10Hz.
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Because of the local nature of the deformation mode, and its small influence on the aerodynamic force
distribution over the whole kite, seam-rippling is a sub-scale behavior. Resolution of the seam-rippling
deformation mode is outside of the scope of this thesis.

Canopy Billowing Deformation Mode

Canopy billowing (see Figure 2.23) is the ”adaptive camber” of the LEI kite under strong aerodynamic
forces. This is a global deformation mode, and relevant to the power-production kite FSI problem.
Video analysis of typical kite power-production operation shows that this global deformation mode has
a characteristic time on the order of 0.6s. This corresponds to a characteristic deformation frequency on
the order of f∗CB ≈ 1.7Hz.

Jellyfishing Deformation Mode

Jellyfishing (shown in Figure 2.24) is the oscillatory behavior where the canopy arc flattens and tightens
repeatedly as the kite corners. This is a global deformation mode, and relevant to the power-production
kite FSI problem. Video analysis of typical kite power-production operation shows that this global
deformation mode has a characteristic time on the order of 0.7s. This corresponds to a characteristic
deformation frequency on the order of f∗JF ≈ 1.4Hz.

Figure 2.23: A concept sketch and video frame-extraction from power-production operation demonstrate
the canopy billowing deformation mode on an LEI kite.

Figure 2.24: A concept sketch and video frame-extraction from power-production operation demonstrate
the jellyfishing deformation mode on an LEI kite.
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Bunny-Ear Flapping Deformation Mode

Bunny-ear flapping (see Figure 2.25) is the oscillatory behavior where only one tip of the kite flaps in and
out repeatedly, as the kite corners. This deformation mode is distinct from the jellyfishing deformation
mode, as the jellyfishing mode flaps both tips of the kite synchronously. Bunny-ear flapping is associated
with the deformation that enables kite steering. Bunny-ear flapping is a global deformation mode, and
relevant to the power-production kite FSI problem. Video analysis of typical kite power-production
operation shows that this global deformation mode has a characteristic time on the order of 0.8s. This
corresponds to a characteristic deformation frequency on the order of f∗BE ≈ 1.3Hz.

Figure 2.25: A concept sketch and video frame-extraction from power-production operation demonstrate
the bunny-ear flapping deformation mode on an LEI kite.

Leading Edge Indentation Deformation Mode

Leading edge indentation (see Figure 2.26) is the behavior where the canopy attached to the LEI tube
is indented inwards at low angles of attack. This deformation is the initial phase of kite collapse, where
the deformation has not yet caused an irrecoverable aerodynamic-force direction change. Considering
LEI kite flight video for the cases where the leading edge indentation recovers, without leading to kite
collapse and crash, the deformation occurs over a characteristic time on the order of t∗IDM ≈ 0.9s, which
corresponds to a characteristic frequency on the order of f∗IDM ≈ 1.2Hz.

Leading edge indentation is a global phenomenon, and has a large effect on the aerodynamic force
distribution over the whole kite.

Collapse Deformation Mode

The collapse (shown in Figure 2.27) of an LEI kite is half of the low-lift bistable luffing instability typical
in membrane flow problems. In this case, the angle of attack decreases sufficiently for the the leading
edge indentation to push to the trailing edge. The kite inverts, such that the adaptive camber faces
ground-wards rather than upwards. Because the kite no longer responds predictably to the steering
commands, kite collapse nearly always crashes the kite.

In that collapse is a cause of mission-failure for power-production kites, it is important that the aerody-
namic model be able to predict this phenomenon.
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Figure 2.26: A concept sketch and video frame-extraction from power-production operation demonstrate
the leading edge indentation deformation mode on an LEI kite.

Video analysis of typical kite power-production operation shows that this global deformation mode occurs
over a characteristic time on the order of t∗Collapse ≈ 3s. Though the behavior is not even close to periodic,
an artificial characteristic frequency can be found 1/t∗Collapse = f∗Collapse ≈ 0.3Hz.

Figure 2.27: A concept sketch and video frame-extraction from power-production operation demonstrate
the collapse of an LEI kite.
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2.4.5 Justification of the Quasi-Steady Flow Assumption

The flight path and global deformation mode frequencies can be compared with the characteristic aero-
dynamic frequency of the kite in normal operating conditions.

[Hz]
10-2 10-1 100 101 102

f∗TEF

f∗SR

f∗CB

f∗JF

f∗BE

f∗IDM

f∗Collapse

f∗8

f∗FD

f∗a

resolved deformations
sub-scale deformations

Figure 2.28: Summary of relevant frequencies to the kite FSI problem, from the kite flight path in
standard operation and the observed kite deformation modes. Note that rainbow-colors correspond to
deformation mode frequencies and grey-tones correspond to flight-path frequencies. When deformation
mode characteristic frequencies are estimated with the singular average values found from video analysis,
the effect of this frequency is conservatively expected to be ”smeared” by ten percent in either direction.

With the frequencies relevant to the kite FSI problem ranging between 0.04Hz for the slowest expected
manoeuvre frequency f8 and approximately 1.7Hz for the canopy-billowing frequency fCB , and a typical
characteristic aerodynamic frequency of fa = 11.4Hz, the range of reduced frequencies relevant to the
kite FSI problem are:

0.0035 ≤ fR ≤ 0.15

This reduced frequency range should allow the kite FSI problem to be modelled under the assumption
of quasi-steady flow, when neglecting the sub-scale deformations.

The validity of the quasi-steady flow assumption for LEI kites under power-production conditions might
be criticized with the analogy that the quasi-steady assumption has been shown to be invalid [20] [70] for
yacht-sail FSI problems. However, Augier et al and Fossati & Muggiasca give values for the maximum
typical reduced frequency relevant to the yacht-sail FSI problem of 0.47 [20], 0.43 [70] and 0.33 [71],
which are rather higher than the maximum typical reduced frequency in the LEI kite FSI problem.
Intuitively, it would appear that because yacht-sails are constrained in the span-wise direction, the
primary deformations of a yacht sail must include the trailing edge flutter, a high frequency behavior
that is overshadowed by the other global deformation modes in the case of an LEI kite.

Ultimately, the fact that previous quasi-steady aerodynamic flow-models of LEI kites - such as Van
Kappel’s nonlinear extensions to a quasi-steady vortex lattice method [183] - have been successfully
validated against real performance data suggests that the quasi-steady assumption is acceptable.
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2.5 Further Modelling Assumptions

2.5.1 Material Assumptions

The canopy of the TUD-25mV3 kite is constructed from h = 0.08mm-thick Ripstop Nylon (Spinnaker),
whose material properties were tested by Dr. Cédric Galliot of the EMPA Center for Synergetic Struc-
tures [74].

The canopy areal mass density is ρm = 50g/m2 [74]. A thickness h = 0.08 · 10−3m, gives a volumetric
canopy density of ρm,V = 625kg/m3.

The canopy membrane has a stiffness in the warp direction km,warp = 111.8kN/m, and a stiffness in the
fill direction km,fill = 72.3kN/m [74]. In keeping with Bosch [28], the assumption will be made that we
can use an assumption for average canopy stiffness of km = 100kN/m.

The elasticity of a membrane is dependent on strain, such that it follows a j-shape stress-strain curve [15].
However, due to the inavailability of the original data and the fact that the measurement of the membrane
elasticity is outside of the scope of this thesis, the linearized value found by EMPA, and reported by
Bosch [28] will be used. Consequently, the Young’s modulus Em is assumed to be 1250MPa. A linear
Young’s modulus assumption is known to be reasonable for membrane wings when the canopy strain
is less than 10 percent [170] [202].

Despite the fact that membrane wing shape, and consequently the pressure distribution over the wing,
is very sensitive to the membrane length [53], the extension of the membrane as a result of aerodynamic
force is expected to be sufficiently small that the membrane can be assumed inextensible.

With a Young’s modulus Em = 1250MPa, expected apparent velocities UA between 20m/s and 45m/s,

and air densities ρair between 1.225kg/m3 and 1.112kg/m3, the membrane Cauchy number (Cy =
ρairU

2
∞

Em
)

can be conservatively expected to range between 3.55 · 10−7 and 1.98 · 10−6. As the membrane Cauchy
number described the extent of membrane deformation under the flow effects, the small membrane
Cauchy numbers supports the inextensible membrane assumption.

The canopy Poisson ratio, as measured by Galliot [74], is νm = 0.35.

Canopy porosity decreases the pressure difference between the suction and pressure surfaces, and con-
sequently decreases the lift on the canopy [138]. The porosity σm of the TUD-25mV3 canopy material
has not been measured. Such porosity tests, and the influence of porosity on the force distribution over
the canopy, fall outside of the scope of this thesis. For the purposes of this thesis, it is assumed that
the LEI-kite has a non-porous canopy (σm ≈ 0), despite the lack of material testing data for the exact
TUD-25mV3 Nylon Ripstop. This assumption follows the general suggestion by the published specifi-
cation sheet of Bainbridge [1], manufacturer of general kite-canopy fabrics. With respect to numerical
simulation validity, Newman [138] suggests that practical values of yacht-sail porosity - typically around
σm ≈ 0.03 - are small enough that the impermeable membrane assumption is generally valid,
producing only small errors.

For information about the kite inflated-beam frame, the reader is directed to the PhD theses of Breukels
[30] and Veldman [185].

2.5.2 The Smooth Surface Assumption

As long as the surface roughness elements are smaller than the viscous sublayer, the roughness may be
neglected. The viscous sublayer will become thinner as the Reynolds number increases, consequently,
the ”smooth surface” approximation becomes progressively less likely for a given surface as the Reynolds
number increases [32].

The critical Reynolds number Re,k,crit at which surface roughness becomes relevant is based on the
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average roughness-element size kre [32]:

Re,k,crit = 100 =
kre,critUA
νair

For the conservative estimate of maximum operational apparent velocity UA,max = 40m/s and minimum
operational atmospheric kinematic viscosity νair,min = 1.461·10−5m2/s, this suggests that for the smooth
surface assumption to be valid in the case of the kite, the surface roughness length must be less than:

kre < kre,crit = 3.6525 · 10−5m

As reported by Kawabata & Niwa [99] the geometrical roughness of a plane-woven material tends to be
between 1/40 and 1/100 of its fabric thickness.

Given that the canopy material has a thickness of h = 8 · 10−5m, the smooth surface assumption
appears reasonable, despite utilizing a Ripstop- rather than plane-weave.

2.5.3 Flow Envelope Assumptions

As the Reynolds number with respect to chord is significantly greater than one, we can say that that
intertial forces on the flow outside the boundary layer significantly outweigh the viscous forces on the
external flow. This is consistent with an inviscid external flow assumption.

As the turbulence intensity is expected to be low for the freestream flow, and the wind velocity is high
enough that the kite does not encounter its own wake, or other sources of externally-generated vorticity,
the flow outside the boundary layer can be assumed to fit a irrotational external flow assumption.

Given that the flow mach number (M ≈ UA

330m/s ≤ 0.14) is low, we can reasonably make an incompress-

ible flow assumption.

Flow - external to the boundary layer - which can be described as inviscid, irrotational and incompressble,
meets the requirements for the external potential flow assumption.

As found by Mendenhall et al [130] - who had access to unpublished Langley Research Center data for 2D
parawings with cylindrical leading edge booms, onto which a flat plate is connected tangent to the top
of the leading edge cylinder - the critical Reynolds number for such a combined parawing is equivalent
to the critical Reynolds number for the leading edge cylinder alone. The Reynolds number based on the
LEI tube diameter is expected to range between 2.53 · 105 ≤ Re,LEI ≤ 6.16 · 105. This would suggest
that Reynolds regime would be expected to include the transition between laminar- and turbulent- flow
regimes, as compared to critical cylinder Reynolds numbers on the order of 4·105 reported by Mendenhall
et al [130].

Figure 2.29: Schematic of Mendenhall et al [130] parawing cross-section, adapted to current nomencla-
ture.

However, 2D EllipSys2D CFD studies of LEI kite profiles at the Danish Technical University [146] found
that there is litte to no difference - for moderate angles of attack between −10o ≤ α ≤ 15o - in pressure
distribution and aerodynamic force generation when the model is forced to be fully turbulent or allowed
to transition at will (See Figure 2.30b). As these CFD studies were run at a Reynolds number of
0.195 · 106, this result suggests that the transition critical Reynolds number must be below this test
Reynolds number. That is, Re,crit < 1.95 · 105, such that the kite will always experience turbulent flow.
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(a) Difference between the 2D Lift Coefficient for a
Fully Turbulent vs. Transitioning Flow for an LEI
Profile, reproduced from Raj [146].

(b) Difference between the 2D Drag Coefficient for
a Fully Turbulent vs. Transitioning Flow for an
LEI Profile, reproduced from Raj [146].

The large difference between the Mendenhall et al [130] and DTU [146] results may be due to the influence
of the wind tunnel testing method on which Mendenhall et al did not comment, the DTU group’s
transition-prediction or SST k − ω turbulence modelling. This difference is unlikely to be the effect of
aeroelastic deformation or flow unsteadiness, as both models apply a rigid profile and a steady inflow.
To limit the scope of this thesis work, we will make a fully-turbulent boundary-layer assumption,
however this assumption introduces a great deal of uncertainty and would be worth assessing in a further
work.

Due to the low aspect ratio [152] and high anhedral [200] of the kite wing, we can expect that a highly-
three dimensional flow assumption would be reasonable (See Figure 2.31). Further, the separation
bubble expected in the wind-shadow region behind the kite canopy, and the separation region above the
canopy tail at high angles of attack, are associated with secondary flow vortices [179].

Figure 2.31: RANS-solution streamlines around a half kite showing recirculation and secondary-flow
under an LEI-kite, colored by velocity, as produced by May [126].

The analytical prediction of turbulent boundary layer separation locations [35] lies outside of the scope of
this work. Instead, we will make the assumption of a known steady-flow separation-line location.
Then, we can model the flow on the kite using pre-determined separation locations drawn either from
the existing literature - such as Deaves’ [51] RANS results, given previously - or a geometric argument.

The dimensionless mass ratioM =
ρm,V

ρair
relevant to this thesis varies between 510 ≤ M ≤ 562, depending

on the flight altitude. The mass ratio describes the relative importance of added mass caused by the
canopy motion on the system inertia. For these large values of M, it is fair to assume a negligible
inertial effect of added-mass [45].
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Chapter 3

Comparison of Aerodynamic Models
Applied to Membrane-Flow
Problems

There are many possible aerodynamic modelling methods. To select a method for the LEI-kite problem,
we should consider those models that have been previously used for membrane-flow problems, in terms of
their ability to satisfy both the practical requirements generated by the model’s intended use in iterative-
design and fluid-structure interaction modelling, as well as their suitability for the problem assumptions
described in the last chapter.

3.1 Fluid-Structure Interaction (FSI): A Concept Summary

In fluid-structure interaction (FSI) problems, the aerodynamic forces and structural deformations are
strongly coupled. That is, a given aerodynamic force will deform the body sufficiently to alter the
aerodynamic force, and so on. In the words of Waldman & Breuer [190]: ”[T]he wing loading depends
on the camber, which in turn depends on the wing loading.”

Because of its extreme flexibility, the in-flight behavior of an LEI surf-kite is an FSI problem.

3.1.1 Monolithic and Partitioned FSI Solvers

FSI solvers can be broadly divided into two groups: monolithic and partitioned FSI solvers [61].

In a monolithic FSI solver, the entire aeroelastic behavior of the system is modelled within one set of
equations, including both the structural deformations driven by and driving the aerodynamic forces.
Banerjee & Patil [22], Peskin [145], as well as Argentina & Mahadevan [17] are examples of monolithic
FSI solvers for membrane flows.
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Figure 3.1: Conceptual difference between a partitioned and monolithic FSI solver.

In a partitioned FSI solver, the aeroelastic model is divided into two separate models - for the fluid and
structural behaviors respectively - who exchange end information, but whose mechanics do not interfere.
Once the boundary conditions are determined appropriately, the aerodynamic model can calculate the
pressure distribution for a given body shape, and the structural model can calculate a deformation
for a given aerodynamic loading. It is assumed that while the aerodynamic forces are resolved, the
deformation is unchanged; and while the deformation is resolved, the flow is unchanged. A partitioned
FSI solver requires a coupling mechanism between the fluid solver and the structural solver, to ensure
that the boundary conditions are consistently applied. Without such consistency, it is unlikely for the
complete solver to be accurate and stable. The FSI code currently in use by the TU Delft airborne wind
energy group is a partitioned FSI solver, consisting of an FEM structural solver [28] and a 2D finite-strip
aerodynamic load model [30].

Monolithic solvers have the advantage that they can be customized to a particular problem, and are
certain to model all interface effects. However, it is logically more difficult to apply any given monolithic
solver to an arbitrary physical problem, and it is more difficult to update the FSI solver to reflect
field-specific advances.

The advantage of a partitioned FSI solver is the modularity of the fluid and structural solvers. That is,
as long as the requirements of the structural solver are met, a developer is able to vary the fluid solver
at will, in order to improve accuracy or efficiency, or simply to test new concepts. Particularly during
the development of a fairly young concept, such as industrial kites for electricity generation, there exist
multiple directions which a solver can take. With the modularity of the partitioned FSI solver, it is
possible to determine the tradeoffs between model-accuracy and -speed under a range of conditions, thus
directing future development more than would be possible with a monolithic FSI solver.

This thesis will focus on an aerodynamic model for a kite-design-purposed partitioned FSI solver.

3.2 Kite FSI Structural Models

There are many classes of kite structural models, ranging in model complexity and calculation speed. [28]

These aerodynamic models are briefly described in Figure 3.4. For a more detailed description of the
assumptions behind various kite structural models, see Ruppert [153] and Bosch [28].

Kite FSI modelling requires the ability to simulate the deformation of the kite in both the chordwise
and spanwise directions. Consequently, kite structural models for FSI problems are typically restricted
to multibody or finite element models (FEM).
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Figure 3.2: Kite structural models by calculation speed and degrees of freedom, as adapted from Bosch
[28].

Figure 3.3: The Bosch FEM model depicting kite deformation behaviors [28].

Currently, the full-kite structural model intended for FSI consideration is the Bosch FEM built from
triangular elements in the spanwise direction, and five sections in the chordwise direction. The kite tip
mesh is built with a finer resolution than the canopy center, to model the large deformations during
steering and buckling. The ultimate model contains 107 beam elements, 360 shell elements, 222 nodes,
and 1332 degrees of freedom. [28]

A FEM detailed kite canopy-section is currently under construction by Berens, in order to study the
aerodynamic damping caused by kite deformation during flight, an effect neglected in the Bosch full-kite
FEM. The Berens canopy-section is modelled as a cantilevered flexible plate for quasi-steady, variable
flow. [25]

Because the Bosch FEM full-kite and the Berens FEM test-canopy are built to use the Breukels aerody-
namic load model (BALM), a discussion of which follows, they require aerodynamic forces distributed
across n=6 chordwise nodes as functions of kite surface node displacement and velocity. The force vectors
must be defined per node [28].
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Figure 3.4: A summary of kite structural models, as reproduced from Ruppert [153].
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3.3 Kite FSI Aerodynamics Models

An overview of aerodynamic models as applicable to kite FSI problems is given below. For further infor-
mation about the potential flow methods, please see - in order of increasing mathematical thoroughness
- the discussions in Katz & Plotkin [98], Cottet & Koumoutsakos [42], and Wu et al [199].

3.3.1 Black Box Model

Black box models (BBM) use lookup tables that connect or interpolate the state of the system from
aerodynamic force coefficients that have been experimentally determined. Though fast and accurate
when used with the kite for which they have been designed, it is not possible to use such BBMs for
design work, which must necessarily take place before wind tunnel or flight testing.

Fechner et al [64] uses a BBM to determine the lift and drag coefficients on a point-mass kite to predict
kite flight paths, however this model is not useful for design-purpose kite FSI modelling [183].

3.3.2 2D Finite-Strip Approximation

In 2D finite-strip approximation, a wing is assumed to be a spanwise assembly of 2D airfoil sections.
The flow around each of the 2D sections can be found with different - but typically inviscid - methods,
see particularly the sections on thin-airfoil theory and CFD. Because the entire wing is assembled from
sections of infinite-wings, 2D strip-theory does not include any finite-wing or 3D flow phenomena like
wing-tip effects or the interaction between wakes and lifting surfaces [137].

Two-dimensional strip-theory is most applicable where flow has a ”characteristic dominant direction”
[137]. Due to the low Aspect Ratio of the kite and the high angles of attack that occur in normal
flight, there is enough spanwise secondary-flow that the kite-flow does not have this ”characteristic
dominant direction” [109]. Further, because membrane wings deform under varying-flow conditions, it
is not possible to separate 3D drag effects from 2D profile drag [125]. Mendenhall et al [130] [129],
who preformed a strip-theory analysis of two-lobed para-wings with high slack, high aspect ratio and
prominent leading edge booms, found it difficult to model flow separation at high angles of attack with
2D strip-theory. It follows that the use of a 2D finite-strip method to model 3D kite aerodynamics will
leave ”a lot to be desired quantitatively” [125].

Smith [166] discusses the concatenation of inviscid 2D membrane theory by a finite-strip method, as used
by Nielsen [141], Sneyd [167], and Ormiston [142].

Because the strip-theory method is very simple and there exist correction methods for some 3D, viscous,
and unsteady [137] phenomena, corrected finite-strip approximations have been used to model kite-
aerodynamics where load-calculation speed is more important than accuracy.

Breukels Aerodynamic Load Model

The aerodynamic model currently used by the TU Delft Airborne Wind Energy group for kites is the
Breukels aerodynamic load model (BALM). The BALM is the only fast kite aerodynamic model that also
allows for section deformation. The BALM creates polynomials to approximate the aerodynamic loads
on a kite airfoil section along a number of discrete nodes (typically n = 6, after the sufficiency analysis
by Mendenhall et al [130]) in the chord-wise direction. The polynomials, and consequently the BALM
force distribution are a function of camber, angle of attack, and thickness. The spatial discretization
distributes forces - found from 2D CFD analysis for angles of attack between −20o < α < 20o, smoothed
into Spierenburgs flat plate empirical formulas outside of this range - according to weight factors such
that the discretized moment profile creates the same moment as the CFD analysis. This CFD analysis
used a RANS solver in Fluent for combinations of the independent variables used in the polynomial load
approximations: 15%, 20% and 25% thickness, 0%-12% camber, and 0o − 25o angle of attack [30].
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Unfortunately the BALM is set up such that the weight factors are the solutions of an underdetermined
problem - with n unknowns and only 1 known relationship from the moment constraint - and are
consequently considered somewhat arbitrary [27]. Further, it is unclear exactly what moment coefficient
polynomial the BALM uses as this constraint. The BALM suggests a distribution of weighting functions
that approximately recreates the force distribution on a generic kite, where the total force was validated
against line forces measured on two looping kites: the North Rhino 16m2, and the Naish Aero 6 [30].
However, the adaptation of the generic kite weight functions to specific kite use - particularly for initial
design work - has a great deal of confusion, as judged by the three distinct values of weighting factors
mentioned between the Breukels thesis, the Breukels code, and the Bosch adaptation of the BALM [27].

There are a number of functional criticisms of the BALM:

• The lift coefficient is high in comparison with that of rigid aircraft wings [28]. The fact that
membrane wings are typically found to be able to attain higher (L/D)max than rigid wings [52],
suggests that this criticism of BALM may not be valid.

• Increasing camber does not always increase the drag force [28].

• The moment coefficient curve is modelled as linear, where the Breukels CFD results suggest it
behaves nonlinearly [28].

• The influence of the span-wise velocity component is ignored, because the apparent velocity is
projected onto the airfoil section [28]. For a highly three-dimensional flow such as is expected over
a low aspect ratio kite, this is a significant concern.

• When the magnitude of the weighting function parameter a is very large, the lift forces point in
opposite directions, resulting in completely unrealistic force distributions [28].

• When the angle of attack is either very large in the positive or negative directions or very close to
zero, the pressure distributions are unrealistic [28].

• When local node deformation velocities are included in the apparent velocity calculation in order
to generate aerodynamic damping, the model becomes unstable [28].

• While RANS steady-state analysis is typically used for turbulent flows, it is not well-suited for
modelling flow conditions that are at-, near-, or post-stall [118]. Consequently, Breukel’s steady-
state RANS analysis of kite sections at high angles of attack - such as 20 degrees - cannot be
expected to provide accurate results.

• For LEI kites, the leading edge inflated tube diameter determines both the airfoil thickness and
camber, such that they are intrinsically linked [14]. The BALM force-approximation polynomial
treats thickness and chord as independent variables and may therefore be over-emphasizing the
effects of certain variable interactions.

Breukels mentions a 3D correction method for the BALM that relies on the assumptions that the lift
curve slope is linear, and that the relation between the lift curve slope and anhedral angle is independent
of airfoil shape [30]. These two assumptions are difficult to justify for kite flight, respectively, given the
near-stall flight regime and the large kite deformations. Further, this 3D correction method is based on
a Tornado vortex lattice method (VLM) analysis of a particular kite, and is not validated for other kite
shapes [183]. Bosch states that ”Discussions with [Breukels] led to the conclusion that the uncertainty
of the three dimensional correction is so significant that it is not clear whether this correction actually
improves the model or not” [28].

The BALM is certainly a valid kite aerodynamic model for applications where the requirement for
computational speed outweighs that for accuracy. However, it is less-than-ideal for design-purpose kite
FSI modelling.
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3.3.3 Method of Aerodynamic (Stability) Derivatives

The method of aerodynamic derivatives linearizes the nonlinear functions which determine forces and
moments from the equilibrium conditions and perturbations from equilibrium. Due to their speed,
aerodynamic derivatives are generally used in the analysis of aircraft dynamics [88]. De Groot uses the
method of aerodynamic derivatives according to the parameter identification technique to model the
dynamics of a rigid body kite [44].

Because the aerodynamic derivatives calculate global forces and moments - rather than local forces and
moments - they are not applicable to the study of highly-flexible kite FSI models. It should be mentioned,
however, that stability derivatives may be an analysis end-product - rather than analysis method - as in
Müller’s [134] ram-air parachute FSI study.

3.3.4 Potential Flow Methods

Potential flow methods reduce 3D flow to a surface problem, assuming the flow is irrotational, and
frequently also incompressible [172] or inviscid [97]. Physically, potential flow methods represent thin
shear layers in flows where the Reynolds number approaches infinity [8].

The basic principle is the superposition of source-sink doublets - each solutions to the linear Laplace
equation for the velocity potential - to create lift by circulating the flow. These source-sink doublets
are called ”vortex particles” or ”point-vortices” individually, ”vortices” when placed continuously along
closed loops, and ”vortex sheets” for continuous surfaces. At every point, the vortex induces velocity
according to the Biot-Savart law: proportional to the vortex strength, and inversely proportional to the
distance between the vortex and the point. Further, the lift generated by a vortex is proportional to
that vortex’s strength, as found with the Kutta-Joukowski equation.

The boundary conditions for the resulting underconstrained Laplace equation typically include: the
assumption that surfaces are impermeable such that surface flow is purely tangential such that the
surface-velocity from the global kite motion and the local membrane velocity must equal the surface-
normal velocity induced by the bound vortices on the surface and shed vortices in the wake

(UA +Umembrane) · n̂ = (Uind,surf +Uind,wake) · n̂;

that the flow at the trailing edge must leave smoothly as per the Kutta condition; and that disturbances
vanish in the far-field [22].

In order to conserve circulation and enforce the Kutta condition, vorticity is shed from some given
location in the domain - typically the leading and trailing edges where flow separation is anticipated,
or purely the trailing edge when the flow is expected to remain attached. The vorticity can be shed
discretely or continuously. If the vorticity is shed discretely, it is represented as point-vortices separated
by some finite distance; if the vorticity is shed continuously, it is represented as vortices in the 2D case
or as a vortex-surfaces in the 3D case [131].

Physically speaking: as the shed vorticity is convected downstream, it experiences a Kelvin-Helmholtz
instability, which causes the vorticity to roll up in large spirals. The rate at which the instability
grows is high for sharply increasing velocities, which is necessarily the case for the velocity-jump over a
potential-singularity [8].
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There exist a number of different wake-behavior models. The free-wake model is the most complex
wake model, as it convects the trailing wake vorticity according to the sum of the freestream velocity
and the velocities induced by all of the other vortices, in order to best represent the physical behavior
of the wake. In a free-wake model, there are multiple options for describing the wake-vortex velocity:
the Birkhoff-Rott equation [8], a smoothed version of the Birkhoff-Rott equation [9], the point-vortex
equation, the Brown-Michael equation, or the point-singularity equation [116]. These convected wake
vortices are usually tracked for distances up until eight or ten chord-lengths, after which it is assumed
that they can no longer influence the velocity-field over the model [22]. The prescribed wake shape
assumption forces the wake vortices to hold to either an empirically-found path, or just to convect with
the freestream velocity. Third, the flat-wake assumption assumes that the wake is a rigid plane regardless
of the shape of the flow obstacle [137]. Naturally, in the quasi-steady potential flow models, the wake is
fixed in time, though the vortices may be distributed as though they had been convected along free-wake,
prescribed-wake or flat-wake paths. Banerjee & Patil suggest that the wake-behavior of potential flow
problems involving large deformations are best modelled with free-wake models [22].

Potential flow models have the well-analyzed problem that the induced velocities near vortex locations
can be unrealistically high - causing artificially high circulations - particularly when two vortices become
close (as in the wake) or the wake runs into a lifting surface [137]. There exist techniques to avoid
these errors, by appropriately recursive sub-panelling or splitting a problematic vortex loop into multiple
smaller loops, or by merging (or pseudo-merging [154]) neighboring vortices [66]

Further, most potential flow computations are open to parallelization, as the calculations of the individual
induced velocities are independent operations [137].

The general consensus is that pure potential flow methods cannot solve membrane airfoil aerodynamics
for large angles of attack, because of their inability to model viscous effects and flow separation [30]
[151]. However, it is suggested that when viscous and separation corrections are added to potential flow
methods, it is possible to model membrane airfoil aerodynamics [15]. Van Kappel [183] successfully found
accurate results for kite aerodynamics with such a corrected potential flow method.

Vortex Particle Methods

In vortex particle methods, the vortex particles are placed in space, so as to represent the direction of
the flow. As the vortex particles represent, in an intuitive manner, the air particles, they are subject
themselves to the boundary conditions on the flow [197].

Thin-Airfoil Theory Thin-airfoil theory (TAT) models a 2D airfoil by placing vortex particles along
the camber-line of the airfoil. TAT makes the assumptions that the flow streamlines include the camber-
line; that the maximum camber and thickness are small (less than 30 percent [137]); and that the angle
of attack is small (α less than one degree) [55]. TAT is a purely 2D theory, and must be combined with
some method of three-dimensionalization - such as the 2D finite-strip theory - in order to represent a
finite wing.

Figure 3.5: Reduction of a thin airfoil to vortex particles along the camber-line, as reproduced from
Drela [55].

The classic integro-differential Thwaites [176] Sail Equation for the shape of a 2D inextensible, impervious
membrane is based on a linearized TAT model, assuming negligible viscous shearing force and a constant
membrane tension:
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Thwaites [176] also gives an expression of the Thwaites Sail Equation in terms of the sail geometry:
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and Ψ is a transformed version of the membrane slope (ψ = dζ/dx)
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Chambers [36] reformulated the Thwaites Sail Equation, such that the Kutta condition can be applied
to the leading-edge as well as the trailing-edge of the membrane. Nielsen [141] and Jackson [94] derived
similar results from the application of TAT to, respectively, a 2D Fourier-Series-shaped membrane, and
a 2D cubic-shaped elastic membrane. Further, Gerhardt et al [77] have used unsteady TAT to model the
flow interaction between two rigid, high aspect ratio sails

Argentina & Mahadevan [17] present a small-deflection, small-incidence, quasi-steady variation on the
classic TAT for the purpose of modelling flag flutter, which equates the frequency of oscillation of a freely-
hinged rigid plate that is approximately parallel to the freestream with the frequency of the lowest-mode
of free-bending vibrations of a flexible plate to find the critical velocity at which a flag will begin to
flutter. From the flapping instability frequency, they determine the strength of a quasi-steady vortex
whose bound filament is located at some unknown location along the chord, and whose shed filament is
at some unknown location in the wake on the axis of the LE.

Greenhalgh et al [82] found from experiments on a mylar membrane that Thwaites Sail Equation, the
Chambers reformulation, and the Nielsen and Jackson methods are, logically, only valid (see Figure 3.6)
where the flow is fully attached and outside of the low-lift hysteresis region. That is, these results are
only valid when, approximately, 5o ≤ α ≤ 8o.

Because of this inability to model separated flow, TAT is not particularly useful for 3D kite aerodynamic
modelling.

Point Vortex Method The point vortex method (PVM) is the conceptually-simplest, typically un-
steady, 3D vortex particle method - to the extent that it is alternately called the vortex particle
method(VPM). The point vortices are placed wherever the model wishes to describe vorticity, with
whatever level of uniformity is required to resolve the flow sufficiently. Frequently, these ”point vortices”
are modelled as bodies with some finite volume - called ”vortex blobs” - which contain some amount of
fluid [23]. The flexibility of this method means that it is well suited for the modelling of problems with
”unsteady flow around morphing bodies.”

Naturally, due to the independence of the individual point vortices, the system of equations required to
solve for the flow is very large. Even when the system has been reduced, possibly with the precorrected-
FFT algorithm (p-FFT) or the Fast Multipole Method (FMM), the solution requires O(N log(N)) op-
erations [197].
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Figure 3.6: Differences between TAT and wind-tunnel results for a 2D membrane wing with varying
excess lengths: ǫ = XL = 1.14%, 0.77%, 0.21%, and 0 (flat plate), as found by Greenhalgh et al [82].

Michelin & Llewellyn Smith [132] used a point vortex method to study the effect of flexibility on 2D
membrane wing-sections in an insect-flight-inspired heaving motion. Michelin et al [133] use a 2D point
vortex method to model the flutter of a flag at small angles of attack. Further, Charvet et al [37] modelled
the flow over a racing-yacht sail, including its interactions with other sails, yachts, and the sea-surface,
with a point vortex model.

Due to the fact that Van Kappel [183] showed that computationally-simpler methods are able to capture
the aerodynamics of the kite FSI problem, the computational cost of PVM is not considered necessary
for the kite FSI model.

Viscous Vortex Particle Method Part of the attraction of particle-type vortex methods are the
many method extensions to model viscosity. For details into the mechanics of these methods, the reader
is referred to Barba et al [23].

A viscous extension of the PVM - a viscous vortex particle method (VVPM) - was developed by Eldredge
[60] and demonstrated on the oscillation of a 2D fish tail. Eldredge’s particular VVPM variation uses
blobs of vorticity that are periodically remeshed in order to exchange particle strength.

As VVPM is more accurate than the inviscid PVM, but still computationally slower. It is not a good
choice for iterative-design kite-flow FSI problems.

Vortex Filament Methods

In vortex filament methods, vortex particles are arranged into a long string-like construct, called a vortex.
The vortices used in potential flow models must follow rules determined by Helmholtz and Kelvin. [98]

• Helmholtz’s First Theorem: circulation is constant along a given vortex.

• Helmholtz’s Second Theorem: a vortex must form a closed loop, end at a solid boundary or continue
on infinitely; it cannot end in a fluid.
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Figure 3.7: Vortex particles distributed through the wake of sails, as seen from the side and top, as
modeled by Charvet et al [37].

• Helmholtz’s Third Theorem: vortex strength is conserved in inviscid flow, such that an irrotational
fluid cannot become rotational without rotational forces.

• Kelvin’s Circulation Theorem: the circulation is constant over a closed curve containing an inviscid,
incompressible flow, acted upon by conservative forces.

Lifting-Line Theory The simplest of the 3D potential flow models, Prandtl’s classic lifting-line theory
(LLT) assumes that a wing in quasi-steady flow can be modelled with closed vortex loops, each with a
bound segment running spanwise through the wings quarter-chord line and trailing segments convecting
parallel to the freestream flow - called collectively horseshoe lattices - connected where the loop closes
(for quasi-steady flows, infinitely-far) downstream [56].

Figure 3.8: Vortex Arrangement for the Prandtl Lifting-Line Theory, reproduced from Drela [56].

Sugimoto [173] uses a combined LLT with thin-airfoil theory (TAT) sectional-flow to describe the flow
over inextensible, flexible and slack high-aspect ratio sails, with fully-attached flows and small angles-of-
attack and deformations.

There also exist unsteady versions of LLT, such as that described by Ahmadi and Widnall [6] for low-
frequency vertical oscillations of spanwise-flexible wings.
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Leloup [105] distributed the span-wise section loads calculated for an LEI kite using LLT, chord-wise
according to the 2D XFOIL section pressure-distribution. While this 3D LLT is fast, and has been vali-
dated against the Navier-Stokes solutions of Maneia [120] for curved paraglider wings for fully-attached
flow - in the linear cl-α region - the Leloup 3D LLT is less able to reproduce flow with separation.
Also, because the pressure distribution is determined according to 2D XFOIL analysis, it is not certain
that the influence of secondary-flow is well represented. Judging from the comparison between 3D LLT
calculated- and validation- lift coefficients, the 3D LLT method is restricted in validity to angles of attack
between −10o and +10o.

Modified LLT provides a promising method for fast aerodynamic modelling, however, the difficulty of
including separation effects in LLT prevent its general use in power-production kite FSI problems.

Vortex Panel Methods: Thickness-Free Panel Methods

Vortex panel methods tesselate a surface with closed vortex rings, to either model a thickness-free surface,
or wrap the entire contour of a body with this tesselate surface to account for thickness and camber.

Vortex Lattice Model The vortex lattice model (VLM) constructs lattice surfaces from - typically
quadrilateral - vortex ring1 elements, which have collocation points at their centers. The wake is typically
also represented by vortex rings. All of the vortices induce velocity on the collocation points, and the
collocation point velocities, in turn, determine with what apparent velocity the vortex rings will create
lift. It is at the collocation points that the impermeable-surface boundary condition is enforced. The
vortex lattice method is suitable for flows that only contain vorticity in the boundary layer and wake [20].

The system of equations for VLM typically take the form:

AΓ = Umembrane

where Γi is the strength of the vortex i, Umembrane,j is the surface velocity at collocation point j and A
determines the influence of each vortex on the collocation points by the Biot-Savart law [22].

The VLM cannot itself model thickness, and is best suited to thin bodies with small angles-of-attack
and sideslip [54], however there exist methods of joining vortex lattices in order to model finite body
thickness.

Smith [166] compares a VLM of flow over a 3D membrane wing with a CFD model in order to study
the effect of viscosity on membrane wing models at 103 < Re < 104 with fully attached flow. His vortex
lattice is sketched in Figure 3.9.

There exist versions and corrections of the standard quasi-steady, linear VLM that are corrected for
unsteady, nonlinear high incidence conditions. Van Kappel [183], in particular, demonstrated that kite-
deformation aerodynamics can be accurately modelled with Gaunaa et al’s [76] viscous angle of attack
correction method to a quasi-steady VLM. Further, de Matteis & de Socio [47] were able to model
laminar flow separation as well as the effect of elasticity and porosity of a 2D sail for angles of attack up
to 18 degrees with a 2D-Double Wake VLM concept.

Due to its relative simplicity, a quasi-steady VLM with appropriate viscous corrections could make for a
good model for kite FSI aerodynamics.

Viscous Angle-of-Attack Correction Method to the Vortex Lattice Method Van Kappel [183]
built a nonlinear viscous VLM (VLMN-VK) for kite analysis using a viscous angle-of-attack correction
method (VACM) with a standard XFLR5 VLM. The VACM, an iterative angle-of-attack correction
procedure, corrects for viscosity and thickness in the VLM.

1also called ”closed vortex frames” by Ginevsky & Zhelannikov [78] ”closed [vortex] loops” by Wu et al [199].
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Figure 3.9: Vortex Arrangement, as used by Smith [166] for a thin, elliptical wing with a fixed-wake
VLM.

For a profile, with known inviscid and viscous lift-vs-alpha curves, a given angle of attack corresponds to
different inviscid and viscous lift coefficents. Consequently, an inviscid lift coefficient can be adjusted to
the corresponding viscous lift coefficient for a given angle of attack. However, if the lift - and circulation
- changes, then the downwash experienced by the profile, and consequently the angle of attack of the
profile will change. That is, the change in angle of attack induced by the change in circulation strength
compensates partially for the change in lift resulting from the shift between the inviscid and viscous
solutions. The angle of attack can be iteratively found, stepping between the inviscid-viscous correction
and the induction-change correction, until the required angle-of-attack changes become small and the
solution converges. This method - VACM - is further described by its initial developers Horsten &
Veldhuis [87], and section 2.3 of Carqueija [34].

The VACM approach is based on the assumption that the behavior of a 3D-finite membrane airfoil is
similar to that of its infinite, rigid representation with an effective angle of attack correction. According
to Van Kappel [183]: There is no real background, neither theoretical nor experimental, to support this
approach. However, the results of Horsten (initial proposer of this method) and Gaunaa show significant
improvement on the results when compared to experimental and CFD data.

The VACM iteration used by Van Kappel follows the adaptation by Gaunaa et al [76] of Horsten &
Veldhuis’s method:

1. Perform an inviscid VLM calculation to find the Cl,ori for each spanwise section i.

2. Initialize the alpha correction ∆αi for each spanwise section.

3. Find the new effective angle of attack for each spanwise section: αeff,i = Cl,ori/Cl,α + α0 −∆αi.

4. Find Cl,α and Cl(α) from XFOIL for given profile shape, and the local Reynolds number Relocal =
V∞clocal

ν .

5. Calculate the angle shift αs =
∆Cl

Cl,α,inv

6. Update the flow-tangency condition velocity of the VLM for the new angle of attack αs, AΓ =
Umembrane = U · n̂(α).

7. Perform a new inviscid VLM calculation, to find a new Cl,new for each section.

8. Calculate for each spanwise section the new alpha correction: ∆αi =
1

Cl,α
(Cl,ori − Cl,new)− αs

9. Rerun steps 3-7 until convergence or the iteration limit is achieved

10. Use the found αeff to calculate the profile drag from an XFOIL viscous Cd(α) curve.
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Figure 3.10: The two-step viscous α correction method, applied iteratively until convergence.

Further the influence of kite dihedral is represented in VLMN-VK [183] by using the above-iterated angle
shift αs and section dihedral angle Γd to adjust the apparent velocity at the spanwise sections.

ux = cos(αs sin(Γd)) cos(α+ αs cos(Γd))
uy = cos(α+ αs cos(Γd)) sin(αs sin(Γd))
uz = cos(αs sin(Γd)) sin(α+ αs cos(Γd))

Van Kappel’s nonlinear VLM specifies the following XFLR5 program settings: Dirichlet boundary con-
ditions such that the total potential inside the body is equal to the freestream velocity potential, and a
free-wake Tilted Geometry to avoid the small angle of attack assumption made by a fixed-wake.

One criticism of VLMN-VK is a possible flaw in the calculation of the induced angle of attack. The
induced angles are, rather arbitrarily, divided by 2 in order to fix a discrepancy between the values found
with VLMN-VK and the values expected from 3D panel method and LLT. Though the VLMN-VK code
gives accurate end-results, in comparison to Gaunaas validation arc-kite CFD data, this arbitrary factor
of suggests that there may be a process-flaw in the calculation of the induced angle of attack.

A further criticism of VLMN-VK is the use of a rigid-profile polar, such that Cl,α is constant - for example
Cl,α = 2π/rad, while it has been known since Maughmer’s sailwing wind-turbine studies [125] that flexible
membrane wings have nonlinear, non-constant Cl,α(α). That is, a flexible membrane wing will have large
Cl,α for small angles of attack, and small Cl,α when less deformation is possible at large angles of attack.
However, the inaccuracy caused by this rigidity assumption appear to be small - in relation to wind
tunnel validation data - when the angle of attack is relatively small, such that the predictions of the
VLMN-VK are still very accurate. The author has not seen validation data comparisons for conditions
near the maximum angle of attack seen in normal operating conditions.

Graf et al [80] compared the aerodynamic force coefficient polars found in a windtunnel for rigid sails, a
3D RANS simulation, and a LLT model with a VACM and found that that the LLT-with-VACM model
was able to predict the loads about as well as the 3D RANS solver.
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Figure 3.11: A diagram of the VACM procedure implemented in the VLMN-VK, reproduced from [183]
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Overall, van Kappel’s implementation of the VACM was able to capture well the relationship between
total lift, drag, and angle of attack of an arc-shaped kite, as validated with Gaunaa’s CFD measurents -
though the CFD model assumes that the Reynolds number is constant over the span, and consequently
has higher local Reynolds numbers than the VLMN-VK.

Figure 3.12: General accuracy of a VACM on a rigid sail of Aspect Ratio 4.5, as compared to a Soedings
Estimate, a 3D RANS solution, and a wind tunnel measurement, as reproduced from Graf et al [80].

Within the overall accuracy of the VLMN-VK, the model over-predicts the lift and under-predicts the drag
at high angles of attack - e.g. by about 25% for α = 16o. Van Kappel [183] suggests that this discrepancy
is caused by the tendency for XFOIL to delay stall. Further, the VLMN-VK tends to overemphasize tip
losses, which results in a redistribution of lift from the tips to the span-wise center of the arc shaped
kite.

The main criticism of the VLMN-VK is its slow speed. As described, when the VLMN-VK is used as the
aerodynamic model in Bosch’s FSI solver, it has a real-time factor of 1100x, which results in a cost of
18.9 hours for 60 seconds of simulation time. This is too slow to be useful for iterative design work,
where an engineer may want to test the effects of potential design changes. In comparison, when the
BALM is used in the same FSI solver, it has a real time factor of 25x, and consequently a cost of 24
minutes for 60 seconds of simulation time.

Van Kappel calculates that approximately 96% of the computation time required by the VLMN-VK is
used to repeatedly determine the inviscid and viscous lift vs. alpha curves within XFOIL, often at high
angles of attack. Without this viscous correction method, Van Kappel gives a real-time factor - within
the Bosch FSI simulation - of 65x or 1.1 hours for 60 seconds simulation time. Unfortunately, he does
not give the expected loss in accuracy by neglecting this ”On-The-Fly XFOIL” method.

Van Kappel suggests some further possible methods to decrease computation time:
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• As XFOIL polars are found, save them to a database, to avoid running the simulation for the same
inflow and deformed profiles multiple times. Van Kappel suggests that the VLMN-VK computation
time (for a model with 640 panels and 32 spanwise sections) would asymptotically approach 200
ms, from the baseline 5000 ms.

• Assume a-priori a given pressure distribution, such as that used by the BALM. Van Kappel gives
no estimate for the approximate decrease in accuracy with this simplification.

• Improve the given VLMN-VK algorithm efficiency, though Van Kappel gives no estimates for the
potential resulting increase in computation speed.

• Only apply XFOIL where the section inflow and profiles vary significantly along the span, and
interpolate the 2D polars for intermediate sections. No estimates for increased speed and decreased
accuracy are given.

• Replace the viscous airfoil analysis program with a program faster than XFOIL. Again, no estimates
for increased speed and change in accuracy are given.

Schmehl [155] adds a possible method to decrease the computation time. Because it relies on open-source
programs, the VLMN-VK includes the XFLR5 gui functionality instead of purely the VLM core-solver
functionality, Schmehl suggests that an in-house purpose-built-for-FSI-iteration VLMN-VK solver without
XFLR5’s gui functionality and multi-purposing may increase the computation speed.

Ranneberg [147] incorporated a similar induction-correction for a kite VLM directly within the formula-
tion of the Kutta-Jouwkowski lift-circulation association:

d
2D
3/4 =

1

2π cos γs
Γ

c2Dl

(

α− arctan
(

d
3D
3/4Γ + d

2D
3/4Γ

))

= UA × Γ

where d
3D
3/4 is the 3D downwash experienced at the quarter-chord location, d2D3/4 is the 2D downwash

experienced at the quarter-chord location, and γs is the wing sweep angle. The use of the arctangent
adds the nonlinearity caused by the difference between the apparent velocity and induced velocity when
downwash is large in comparison with the free-stream velocity. Ranneberg’s method also relies on
applying 2D airfoil calculations to 3D kite wings, and therefore has some of the same uncertainties for
the self-cambering over membrane wing kites.

Unsteady Vortex Lattice Method Unsteady vortex lattice method (UVLM) is an unsteady expan-
sion to the classic VLM, where the wake vortex rings travel in both space and time. UVLM can model
both 3D effects and wake interference. Unless a correction method is used, UVLM is not appropriate for
modelling stall, viscous drag, or - less relevant to the kite aerodynamics - low Reynolds numbers or the
rarefied gases [137] present at altitudes above 80km [135]. UVLM is typically a good choice for problems
where the wake wavelength is on the order of the chord [137].

Shukla & Eldredge [160] extended Jones’ UVLM model [96] to a deformable 2D membrane section.
Though Jones’ method is described as a 2D vortex-sheet method [9] where the vorticity is distributed
continuosly over a panel rather than concentrated at the rim of the panel, the continuous distribution
in Jones’ two dimensional cross-section appears to have been replaced with discrete closed rings in the
Shukla & Eldredge extension.

A UVLM with viscous-corrections could accurately model kite aerodynamics. However, given that model
speed is a design driver and that the flow is quasi-steady, the choice must be to prefer VLM over UVLM.
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Doublet Lattice Method The doublet lattice method (DLM) is an analogue to UVLM, in that it
models the distribution of a solution to a Laplace equation along a thickness-free surface. However,
the singularity in the DLM is not a potential singularity, as is generated by the typical potential-flow
vortex particles, but a pressure singularity. Because the relationship between acceleration and a pressure
singularity is the same as the relationship between velocity and a velocity-potential singularity, also
known as a vortex particle, DLM is sometimes designated an ”acceleration potential” method [38]. That
is, there is a pressure - and consequently acceleration - jump across the pressure singularity, which
ultimately corresponds to the velocity jump across a vortex particle [26].

The DLM system of equations typically takes the form:

Dp = x′
membrane

where D is an aerodynamic influence coefficient matrix, p contains the pressures, and x′
membrane contains

the surface slope at the control points [86].

Holla et al [86] use DLM to model the fully-attached flow over a rectangular membrane wing with uniform
biaxial tension, whose frame is small such that its influence on the flow can be neglected, at angles of
attack less than 10 degrees.

DLM is not well suited to problems with large deformations. First, the shape of the wake is prescribed,
which is not typically appropriate for complex or large deformations. Similarly, the DLM boundary
conditions are linearized, and difficult to enforce on deformed geometry [137]. Consequently, DLM is not
an appropriate tool to model kite FSI.

Vortex Panel Methods: Finite-Thickness Panel Methods

2D Panel Method On a 2D airfoil, the countour is wrapped in finite-length vortex filaments between
a given number of nodes. The standard airfoil analysis code XFOIL, which contains a viscous-correction
option, is a 2D panel model [54].

Figure 3.13: An example of panels wrapped around a 2D airfoil, as reproduced from Drela [54].

Waldman et al [191] model the inviscid flow at Re < 105 about a bat membrane-wing, which bears a
remarkable resemblance to an LEI kite membrane-wing, using XFOIL 2D section aerodynamics and an
unspecified 3D composition method.

3D Panel Method On a 3D wing, the 3D Panel Method means that the upper, lower and edge
surfaces are modelled. The space interior to the vortex surface has one potential function, and the
exterior another, where the influence of the interior potential on the exterior domain must be zero.
One difficulty of the standard panel method formulation is that an accurate solution requires the panel
size to be comparable to the body thickness; for a very thin membrane, this makes the model very
computationally heavy [197]. Viscous corrections for the 3D panel method are still limited. There exists
a potential correction method using inviscid-viscous interaction which extend boundary layer methods,
but this method has only yet been fully explored for two-dimensional problems [41].

For three-dimensional flow, the 3D panel method is limited to small regions of separation [59] With large
regions of separation, as occur behind the leading-edge tube and canopy of the kite at high angles of
attack, 3D panel method algorithms become numerically unstable. Van Kappel [183] verified that this
instability occurs when kite aerodynamics were modeled with 3D panel method.
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In comparison, Den Boer [53] successfully modelled 2D double-membrane wings, which have neither a
large separation region behind the LEI tube nor a very thin body limitting the resolution required for
convergece.

The 3D panel method is not an applicable method to model the aerodynamics of kites.

Boundary Element Method Boundary element method (BEM) is a method of extending the sur-
face mesh into the surrounding space. The internal and external boundaries are discretized, and used
as boundary conditions to assumed fundamental solutions to the differential equation. Because BEM
only requires surface discretization, rather than volume discretization, it can be significantly less compu-
tationally expensive than other volume methods. Particularly, re-meshing during deformation is much
faster [186].

However, because of the requirement for a fundamental solution, BEM generally cannot solve nonlinear
problems [186]. Given the kite’s near-stall flight regime, BEM is not a safe choice of aerodynamic model.

Multiple-Wake Panel Methods

In a single-wake vortex method, vorticity is shed exclusively from the trailing edge. With a multiple-
wake vortex method (MWVM), vorticity is shed both from the trailing edge, and from the locations
of flow separation. The typical construction of an MWVM is a double-wake vortex method, with flow
separating from one separation-line on a single surface of the airfoil. It appears conceptually possible
to shed vorticity from one separation-line along the suction surface and one separation-line along the
pressure surface - representing an LEI airfoil at high incidence with additional separation behind the
LEI tube - though the author has not at present seen such an example in the literature.

It is uncertain that fully stalled flow can be modelled with multiple-wake vortex models [128], however
partially separated flow - even over flexible membranes at extreme angles of attack [133] - is generally
accepted to be well represented with multiple-wake vortex models. This restriction is not particularly
limiting even though separation is absolutely relevant to the kite FSI-problem, because full stall is not
expected to occur during normal power-kite operating conditions.

There are a number of 2D multiple-wake vortex methods modelling separated flow, particularly over
membranes.

• De Matteis & de Socio [47] were able to model laminar flow separation, from experimentally
determined separation locations, as well as the effect of elasticity and porosity of a 2D sail for
angles of attack up to 18 degrees with a 2D-Double Wake VLM concept.

• Wilkinson [196] uses a 2D triple-wake doublet-panel-method to model leading-edge flow separation
bubbles on the suction- and pressure- surfaces, as well as the trailing edge suction-surface of a
mast-and-sail combination, where separation is assumed to occur where the free-stream is tangent
to the mast, and the pressure within the separation bubbles is constant. Wilkinson enforced bubble
reattachment locations from experimentally-found values, as he found that assuming a constant
pressure within the separation bubble did not allow the flow to reattach on its own. This difficulty
in modelling reattaching flow is of some concern, as the separated flow behind the kite’s LEI
tube does typically reattach itself to the pressure surface of the canopy. See Figure 3.14a for the
separation regions in Wilkinson’s 2D mast-and-sail model.

• Cyr & Newman [43] use a double-wake model with a single vortex loop, with an unknown strength
and chordwise location, to reverse the flow and model trailing edge separation on a 2D slack
membrane wing. Notably, Cyr & Newman use a ”modified pressure” correction in the ”dead-
water” separated-flow region, based on the pressure at the separation point of the surface where
the flow is still attached. This ”modified pressure” introduction is shown in Figure 3.14b.
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(a) Separation regions and pressure distribution, as used by Wilkinson [196].

(b) Cyr & Newman [43] pressure distribution and trailing edge separation vortex
location.

Figure 3.14: Schematics of the Wilksinson [196] and Cyr & Newman [43] MWVM.
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• Bailey et al [21] model the separation bubbles next to a 2D mast-and-sail joint at small incidence
with two cubic arcs of point-vortices joined to a thin-airfoil-theory representation of the sail between
the reattachment points and the trailing edge; the cubic arcs stretch between the geometric center
of the leading-edge of the mast and given reattachment points on the upper and lower sail surface
calculated empirically from backward-facing step data.

• Shukla & Eldredge [160] extended Jones’ 2D double-wake model [96] to a deformable 2D membrane
section, producing results that are comparable with the results obtained by Heathcote et al [84]
for water-tank tests of a 2D oscillating membrane.

The primary concerns for a multiple wake vortex method are the determination of separation-location [47]
and rate of vorticity release [96], and wake smoothing [154].

When the numerical determination of separation-location - via a method of variable positions of nascent
vortices (MVP) - is outside of the scope of a project, a method of fixed positions of nascent vortices (MFP)
is applied for known separation locations [100]. These known separation locations can be imported from
a previously found separation locations as done by de Matteis & de Socio [47], or by fixing the minimum
pressure location of the single-wake solution, as suggested by Clements & Maull [39].

The rate of vorticity shedding is determined to satisfy Helmholtz’s third theorem which conserve the
total amount of vorticity in an inviscid fluid [112]. The addition of circulation into the boundary layer

dΓ

dt
=

1

2
U∗2

depends on a boundary layer characteristic velocity U∗ to use. This characteristic boundary layer
velocity can be determined from the velocity at the separation point outside of the boundary layer [39],
the velocity difference about the edge of the shear layer at the separation point [100], a combination of
the shear-layer velocities over multiple - such as, four - vortices near the separation point [100], or the
fore-aft surface velocity difference at the separation point [106]. A measure of how well the two wakes
approximate streamlines can be found by determining the change in mass-flow rate between the two
wakes at different locations downstream.

Wake smoothing may be required when the shedding-rate of the nascent vortices is sufficiently high that
the velocity singularity at a particular vortex begins to influence that vortex’s neighbors [154], causing
nonphysical, very-large velocities on the order of 100U∞ [39]. With respect to a multiple wake vortex
method representation of the flow in the shadow of a sharp obstruction, such as a back-wards facing step
or the LEI tube, shed vortices within some given distance - suggested as 0.005-0.05 obstruction heights
- of the shadowed surface can be removed unilaterally [39].

The fact that potential flow methods are - generally speaking - inviscid, it is standard practice to add
a simple profile-drag estimate to the calculated pressure distribution for membrane-flow vortex-method
models [19]. Fiddes & Gaydon [66] were able to successfully model flow over yacht sails by introducing
profile-drag calculated strip-wise with the Squire-Young drag formula. The Squire-Young drag formula
approximates the 2D drag coefficient based on the momentum thickness infinitely-far downstream as a
function of the boundary layer momentum thickness at the trailing edge, and is particularly accurate for
flows that include a transition region:

cd,SY = 2

(
θTE
c

)(
UTE
U∞

) 5+HTE
2

where θTE is the boundary layer momentum thickness at the trailing edge, and HTE is the boundary
layer shape function at the trailing edge, defined as HTE = δTE/θTE giving the ratio of the trailing edge
displacement thickness to momentum thickness [40].

It appears conceptually possible to use a 3D triple-wake vortex method to model leading-edge flow
separation bubbles on the suction- and pressure- surfaces, as well as the trailing edge suction-surface of
an LEI kite - though the author has not at present seen such an example in the literature.
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3.3.5 Transformation Methods

There are a number of not-necessarily related methods that rely on the use of transforming coordinates
to solve the potential flow problem.

Method of Conformal Tranformations

Conformal transformation maps a complex function in terms of a secondary complex variable - whose
definitions are required to be differentiable over the whole functional domain - such that angles remain
constant during transformation. Two dimensional flows that are incompressible and irrotational are
necessarily holomorphic - that is, valid as conformal mapping functions. Further, potential flow solutions
are harmonic, and harmonic functions remain harmonic over conformal transformations. Consequently,
potential flow solutions for arbitrary, 2D, simply-connected airfoils can be easily found by conformally
mapping the given airfoil to a circle, whose potential flow solution is known [83]. The typical form of
this 2D cusped-trailing-edge airfoil-to-circle conformal transformation is the Joukowski transformation,
using the relationship

w = w(z) =
1

2

(

z +
1

z

)

where z = x+ iy is the complex representation of dimensions in the 2D physical plane [119]. Conformal
mapping techniques are normally used for steady flow problems [122].

It is possibly to apply hyperdimensional (logically, with a particular focus on n = 3 dimensions) confor-
mal mapping techniques for certain [113] [114] [178] transformation types - homothetic transformations
comprising translations and homogeneous scalings, isometries comprising rotations and reflections, and
inversions - which limits the practical application of 3D conformal mapping to bodies of revolution.

Cyr & Newman [43] used Joukowski transformations to predict the potential flow around arbitrary 2D
membranes and Lorillu et al [117] use conformal mapping to solve for 2D flow about a sail with a
non-negligible mast, but 3D kite flow modelling is not possible with conformal mapping.

Hodograph Method

The hodograph method - as developed by Levi-Civita [107], and adapted by Dugan [58] for the analysis
of 2D sails with small deflections, and applied by Alben et al [11] to study the curl-up of a ”1D leaf in a
2D wind” - determines what sail-shape and surface velocity correspond to any given angle of attack and
tension, using a series of sequential conformal transformations. These conformal transformations occur
between a complex W plane that represents the potential- and stream-functions (Wplane = 1/(U∞c)(φ+
iψ)), an ’auxiliary’ t plane, and a complex ζ plane that represents the 2D velocities (ζplane = 1/(U∞)(u−
iv)). Dugan describes the advantages of the hodograph method, as compared to the vortex filament
methods: the influence of the wake is already included in the description of the flow and does not need
to be ’tracked’; the model is not limited to small angles of attack; and the model does not inherently
suggest that pressure drag is zero, as in d’Alembert’s paradox.

The hodograph method is an inverse method, meaning that the method solves for the shape around which
a given velocity-field exists [111]. Consequently, it is not particularly useful for kite FSI modelling, where
- by virtue of the partitioned FSI structure - the flow must be found for a given structural deformation.
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Method of Velocity Singularities

As developed by Mateescu [122] the method of velocity singularities (MVS) solves potential flow around
arbitrary 2D or 3D airfoils, by defining the velocity as the sum of complex symmetrical and anti-
symmetrical terms, whose real and imaginary components describe different directions. The flow is
determined by the influence on the Trefftz plane of velocity singularity points, such as at the leading
edge of the airfoil and at any geometrical discontinuities, such as flaps, ridges, camber, or - presumably
the LEI tube-canopy interface. It is assumed that the flow is quasi-steady and fully attached, such that
the impermeable boundary condition can be enforced for the airfoil’s given chordwise distribution of
camber and thickness. The MVS then applies a turbulent flat plate boundary layer correction.

The MVS appears to have been well validated for viscous - fully attached - effects, membrane wings [123]
and finite-span wings [124].

Given that the primary source of discrepancies between experimental and modelled flow over membrane
wings is separation, and that a LEI kite in power-kite operation certainly experiences separation, the
MVS does not appear to be a viable method of modelling LEI kite FSI aerodynamics.

3.3.6 Kernel-Function Method

The kernel-function method (KFM) is a 3D approximation method within the potential flow domain,
that approximates the lift distribution as a weighted sum of presupposed general lift modes that repre-
sent the general character of expected chord-wise and span-wise lift distributions, with the weights as
unknowns. To solve for the surface pressure distribution, the downwash distribution is expressed as the
correspondingly-weighted sum of definite integrals of the lift distributions [194].

There exist KFM extensions, such as the Vivian-Andrews [188] extension for non-planar wings with
blunt- and thick-leading edges, that might be applicable for kite-shaped wings. However, because KFM
is configuration dependent [137] by virtue of its dependence on prior knowledge of the lift modes, it is
not practical for design-purpose FSI modelling.

3.3.7 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) encompases the models that analyze flow not just over a surface,
but in the entire flow region. Though there are many possible CFD variations, each representing the
complete Navier-Stokes equations with different approximations, the most broad CFD model hierar-
chy includes the Euler, Reynolds-Averaged Navier Stokes, and Full Navier-Stokes models, in increasing
complexity [63].

These solutions tend to be quite accurate but very computationally expensive, particularly because they
require small spatial meshes near boundary layers. The mesh must be re-created every time the structure
deforms, which is particularly expensive for large deformations [137].

Particularly because it has been shown by Van Kappel that sufficient modelling accuracy can be achieved
without the flow solution in the full volume, the additional time required for CFD modelling cannot be
justified. CFD models are consequently not suitable for FSI problems concerning highly-flexible kites.

Euler Model The Euler model is the full Navier-Stokes model under the assumptions that the flow is
inviscid, and adiabatic [63].
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Lattice Boltzmann Method The Lattice Boltzmann method (LBM) is a first-order simplificiation of
the Navier-Stokes equations, over a non-adaptive grid that does not require re-meshing, where the fluid
is considered as a collection of colliding fluid elements. In comparison to the Navier-Stokes, the LBM is
viscous, but does not include a nonlinear convective term - convection arises from the advection of the
fluid elements - or solve the Poisson equation for pressure. LBM is well suited to parallization, and can
be used to solve problems involving multiple phases, complex geometries or material interfaces [103].

Lee & Lee used the LBM to solve the flow over a flexible, thickness-free, 2D plate at low Reynolds
numbers [103].

Reynolds-Averaged Navier Stokes Model The Reynolds-Averaged Navier Stokes (RANS) model
uses the full Navier-Stokes equation, under the assumption that the flow can be decomposed into a
time-averaged flow and a fluctuation flow.

Examples of RANS modelling of flow over membranes can be found for 2D stiffness-free convertible-
car roofs in Knight et al [101], and for inextensible, flexible 2D sails with varying excess lengths and
Reynolds number Re = 1.3 ·106 in Bunge et al [33]. Smith and Smith & Shyy et al used a pressure-based
RANS model with a k− ω turbulence model to study steady laminar [163], unsteady laminar [163], and
turbulent [165] flow on 2D and 3D [166] membrane wings.

Specifically in relation to kite-flow problems, Gaunaa et al [76] and Deaves [51] used incompressible
RANS solvers to consider the static flow over rigid arc-shaped kites, respectively with a standard airfoil
profile, and with an LEI-shaped profile, for various Reynolds numbers, angles of attack, and side-slip
angles. Maneia [120] also modelled steady flow over a Clark Y paraglider in the commercial RANS
STAR-CCM+ solver.

Large Eddy Simulation Large eddy simulations (LES) solve for large-scale turbulent phenomena,
but neglect small flow eddies to reduce computational cost.

De Nayer & Breuer [49] [48] model the aerodynamics of a cylinder trailing a flexible rubber splitter FSI
problem at Re = 30, 407 with LES.

Direct Numerical Simulation Assuming a perfect fluid that is a continuum and not moving at
relativistic speeds, the full Navier-Stokes (NS) relation contains one continuity equation, three momentum
equations, and an energy equation [63]. When the full NS relations are solved, without introducing an
explicit turbulence approximation, this is called direct numerical simulation (DNS).

Gordnier [79] and Visbal & Gordnier [187] use a sixth-order implicit Navier-Stokes solver to model a
2D membrane wing, and transition in the boundary layer along a 2D flexible panel, respectively, at low
Reynolds numbers between 2.5 · 103 ≤ Re ≤ 104.

3.4 Aerodynamic Model Selection

An aerodynamic model intended as the aerodynamic solver of a partitioned FSI solver must meet three
requirements: computational speed, physical accuracy in highly 3D flow with significant separation, and
the ability to non-empirically generate both span-wise and chord-wise pressure distributions.

The fast aerodynamic models suffer from one - or more - serious flaws with respect to the kite FSI
problem: an inability to model viscous effects such as separation; are by definition unable to describe
three dimensionality, whether due to limitations of geometry - as for transformation methods or the
resolution requirement for 3D panel method convergence - or due to an inability to describe cross-flow;
or are unable to generate chord-wise pressure distributions without resorting to empiricism. The high-
accuracy methods model flow very well, but are too slow to use iteratively. The suitability of the various
aerodynamic models previously used for membrane-flow problems for steady LEI-kite FSI-analysis and
iterative-design is summarized in Figure 3.15.
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Figure 3.15: A summary of the aerodynamic models suggested by a literature survey in terms of their
suitability to a kite FSI problem.

Separation on 2D membranes - notably without the kite’s leading-edge inflated tube, which adds a
region of semi-permanent separation - has been well modelled with a double-wake VLM. Van Kappel
demonstrated that a viscosity-modified VLM is capable of predicting flow over a 3D surf-kite.

The success of the separate 2D multiple-wake VLM membrane models and van Kappel’s 3D surf-kite
VLM model lead the author to believe that a 3D multiple wake vortex lattice method (VLMMW) can
successfully model the 3D, separated flow in the surf-kite FSI problem. It is the success-criterion of this
thesis-work (see Chapter 1) to be able to evaluate to what degree that belief is accurate.
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Chapter 4

Program Specifics in the
Implementation of this Method

The VLMMW code was written to be easy to read and understand. This chapter describes this code for
a potential future user:

• the high-level code logic;

• the detailed architecture of the code: the programming language, the data structures, and the
required inputs and outputs, especially considering the influence of the LEI-shape and flow sepa-
ration;

• the direction, sign and normalization conventions that a user needs in order to provide the inputs
and interpret the outputs; and

• the geometries-and-flows which are available as test-cases, each having a corresponding comparison
(validation) dataset from experimentation or CFD modelling.

4.1 Internal Logic

The internal logic of the VLMMW follows the process conceptualized in Figure 4.1. The details of these
process steps are described in the report sections noted next to the step name.

4.2 Architecture

4.2.1 Language Selection

The programming language may have a large influence on the computational speed for any given model
resolution, considering the potentially large size of aerodynamic-influence coefficient matrices. The de-
velopment language of the VLMMW was chosen to be Matlab for a few reasons:

• greater development efficiency due to the author’s familiarity with the language;

• increased convenience in future integration of the VLMMW into the pre-existing TU Delft AWE
FSI code-base, which is predominantly written in Matlab; and

• greater confidence during development due to the existence of the open-source LLT model Wake
Induced Dynamics Simulator (WInDS) [157] - which can be used for method comparison.
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To address the concern that Matlab is not known for its speed, we consider that this thesis is a proof-
of-concept for the VLMMW, rather than the method’s final form. Code-speed up may be a future
development step depending on how the VLMMW fits into the code base of the AWE group. In the
meantime, computational speed can be increased by compilation of the code into -mex form.

4.2.2 Data Structure

Variables are either used as scalars or arrays of various sizes.

• Scalar-Constants for global constants, such as the incompressible air density ρair.

• Vector-Constants for constants that have both magnitude and direction, but do not change over
the spacial volume, such as the apparent velocity UA.

• Scalar-Variables for values that do not have an associated direction, but change in space and are
defined at particular locations. An example would be the circulation strength of a particular vortex
ring, Γ.

• Vector-Variables for values that do have an associated direction, and change in space. An example
would be the flow velocity at a point, U.
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• Geometric Matrix of Scalar-Variables stores the Scalar-Variables according to their location within
the vortex lattice. The storage indices describe the associate node location with a span-wise index
and a chord-wise - or downstream-location1 - index. Considering a generic variable v:

v = v





span-wise node index
︷︸︸︷
nb
︸︷︷︸

1→NB

,

chord-wise node index
︷︸︸︷
nc
︸︷︷︸

1→NC





or

v = v





span-wise node index
︷︸︸︷
nb
︸︷︷︸

1→NB

,

downstream node index
︷︸︸︷
nw
︸︷︷︸

1→NW+1





For example, the circulation strength of the vortex-ring around the point (nb, nc) would be stored
as Γ(nb, nc) = Γnb,nc

.

• Geometric Matrix of Vector-Variables stores the Vector-Variables according to their location within
the vortex lattice and a dimension index describing their x̂, ŷ, ẑ components. Considering a generic
variable v:

v = v





span-wise node index
︷︸︸︷
nb
︸︷︷︸

1→NB

,

chord-wise node index
︷︸︸︷
nc
︸︷︷︸

1→NC

,

dimension index
︷︸︸︷
nk
︸︷︷︸
1→3





or

v = v





span-wise node index
︷︸︸︷
nb
︸︷︷︸

1→NB

,

downstream node index
︷︸︸︷
nw
︸︷︷︸

1→NW+1

,

dimension index
︷︸︸︷
nk
︸︷︷︸
1→3





For example, the y-component of the surface position at the fourth span-wise node and third
chord-wise node of the kite, would be stored as x(4, 3, 2).

• Column Matrix Rearrangement of Scalar-Variables is the rearranged form of the Geometric Matrix
of Scalar-Variables. It contains the same information, but is reformatted such that the entire body
of data is suitable for matrix multiplication. The index of the column matrix counts first along the
chord-wise index, then along the span-wise index. Considering a generic variable v:

ṽ






chord-wise, then span-wise
︷︸︸︷
nj
︸︷︷︸

1→NJ=(NB−1)(NC−1)

, 1




 = v

(

floor

(
(nj − 1)

(NC − 1)

)

+ 1,mod (nj − 1, NC − 1) + 1

)

The circulation strength and surface-normal velocity are contained in column matrix rearrange-
ments for multiplication processes, then returned back to the geometric form for legibility. This
column matrix contains no new information, but is simply a rearrangement of the indexing locations
of the existing data; this is a direct data transfer rather than an interpolation or ”table-lookup”
step.

• Influence Coefficient Matrix is the container of the VLMMW’s linear equation. Down the column
we see the influence of the vortex rings on a specific point; across the row we see how much influence
a specific vortex ring has on the evaluation points. Each of the entries is a scalar.

A =

1→NΓ=(NB−1)(NC−1)
︷ ︸︸ ︷












A1,1 A1,2 · · · A1,nγ
· · · A1,NΓ

A2,1 A2,2 A2,nγ
A2,NΓ

...
...

. . .
...

...
Anj ,1 Anj ,2 · · · Anj ,nγ

· · · Anj ,NΓ

...
...

...
. . .

...
ANJ ,1 ANJ ,2 · · · ANJ ,nγ

· · · ANJ ,NΓ



















1→NJ=(NB−1)(NC−1)

1In comparison to the span-wise and chord-wise indices which count respectively from 1 to NB and from 1 to NC , the
downstream-location index counts from 1 to NW + 1. This is because NW designates the number of nodes within the
free-wake region. The (NW + 1)th node sits ”infinitely-far” downstream of the Nth

W node, and cannot be set by the user.
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4.2.3 Program Inputs and Outputs

Due to the intention of ultimately using the VLMMW as a modular aerodynamic model within the
Airborne Wind Energy Group’s FSI code base, the inputs and outputs of the VLMMW must be as
generic as possible and open to easy reorientation.

aerodynamic flow
properties including

Kite Apparent Velocity

and

Position and Velocity of
Surface Geometric

Mesh Nodes

and, if separation
modelling is desired,

Separation Line Location(s)

(wrt. a body-fixed ref-
erence frame x̂, ŷ, ẑ)

VLMMW

Pressure Distribution

for the input geometric panels,

and for convenience

Net Aerodynamic
Force Coefficients

Figure 4.2: Conceptualized inputs and outputs of the VLMMW.

4.2.4 Requirements on the Geometric Mesh

It is fairly logical how to determine or allocate the chord-wise node index to a thickness-free geometry
without much wrapping and fully attached flow. However, the introduction of a finite-thickness body
and separation modelling require some care when defining points in the chord-wise direction.

Finite-Thickness Indexing

There are several methods that can be used to model thickness with panel methods:

• Crossing two distinct vortex-ring surfaces at the centroid of the thick body and evaluating the
boundary conditions at the edges of these surfaces [57]. This model is useful to roughly redirect
flow around an obstacle without resolving the flow at the surface. Since we are actively concerned
with the effect of the separation on the surface, this is not a good choice.

Figure 4.3: Sketch of a ”hook” wrapped airfoil with control elements, taken from Smith & Bhateley [162].

• The ”hook” wrapping (see Figure 4.3) of the finite-thickness geometry with a thickness-free vortex
lattice, such that the suction surface and the portion of pressure surface with strong curvature are
covered [162]. This method of modelling thickness is attractive here, because we could easily shed
vorticity from the edge past the curved-over LE sheet in a ”wind-shadow curtain.” However, it is
not possible to enforce flow conditions along the back portion of the LEI tube. Further, the risk is
that misjudging the separation location may effectively eliminate the separation region all-together.
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• The complete wrapping of the finite-thickness geometry with a looped thickness-free vortex lattice
that joins the loop’s ”beginning” and ”end” at the intersection location (nc = 1) where the geometry
becomes thickness-free. For a thick airfoil, this intersection point is the trailing edge; for an LEI
kite the intersection point is at the meeting location of the LEI tube and the canopy. This allows
for the placement of vortex rings and control points at every point on the geometry where a velocity
shear is materially expected. Consequently, the flow boundary conditions can be enforced over the
entire body. This is a necessary ability for a multiple-wake vortex method, to prevent the separated
vortex lattices from convecting themselves through the body.

nc = 1

nc = NC = NL +NP + 1

nc = NC, SSS + 1

nw = 1 nw = 2

nc = NC, PSS

nw, SSS = 1

nw, PSS = 1

nw, PSS = 2

nw, SSS = 2

nc = NC, SSS

nc = NP + 1

nc

nc = NC, Sep

nc = 2
nc = 1

nc = NC

nc = NC, Sep + 1

nc = NC − 1
nw, Sep = 1

nw, Sep = 2

nw = 1 nw = 2

Figure 4.4: Chord-wise indexing in finite-thickness situations

It is reasonable, then, to model finite-thickness regions by wrapping. The chord-wise indexing pattern
that corresponds to geometries that contain finite-thickness regions is depicted visually in Figure 4.4.

One critical point, is that care must be taken that the ”beginning” and ”end” vortex nodes must be placed
exactly overlapping at the intersection point. If there is a small offset between these node placements,
the induction from each intersection vortex ring may cause unphysical2 pressure distributions.

Separation Indexing

In order for the flow to leave the surface smoothly at the separation line, we must be able to set the net
vortex strength at the separation line to zero. The only way this is possible is if we are able to directly
control the discretized vorticity at the separation line. This requires that there always be a vortex
filament at the separation line. Consequently, the separation line must be at a constant chord-wise
index. That is:

NC, Sep.(nb) = NC, Sep.

This has two follow-up points:

• There may be bunching of vortex rings depending on the chord-wise location of separation. That
is, if the suction surface separation line is at twenty percent of the chord (0.2c) at root, then the
vortex rings at the root will tend to be shorter - in the chord-wise direction - before the separation
line than the vortex rings after the separation line.

2Sometimes manifesting as negative drag forces, to the delight of those concerned with energy efficiency.
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separation line at constant nc = NC, Sep.

separation line not at indexed nodes

b̂

b̂

ĉ

ĉ

separation line at varying nc
b̂

ĉ

Figure 4.5: Separation line must be at a constant chordwise index

• If the flow separates at any point on one of the two surfaces, the flow must be considered to separate
at every span-wise index on that surface. We are unable to model two shed vorticity surfaces
from the same location, because this implies two additional unknown shed vortex strengths at the
separation location and only one constraint.3 Consequently, if there is a situation where flow is
attached at some span-wise locations and separated at other span-wise locations, the separation
location on the attached-flow sections must be assumed to sit some small distance in front of the
trailing edge.

The separation mechanism and the enforcement of the smooth-separation assumptions can be found in
Chapter 5.

3See Section 5.5.1 for more details.
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Figure 4.6: A demonstration of the vortex lattice bunching for a possible suction surface separation line.

4.3 Direction, Sign, and Normalization Conventions

4.3.1 Coordinate Systems

The main body of the code uses a standard right-handed body-fixed reference frame, defined with x̂
along the root chord line, ŷ drawn between the kite tips, and ẑ pointing up through the kite. These
reference frame axes are shown in Figure 4.7.

As certain geometries are easier to visualize in a 2D format, a cross-sectional right-handed reference
frame is also defined, where x̂′ is along the section chord, ŷ′ points through the LEI tube, and ẑ′ is up
through the section. The origin of this cross-sectional reference frame is at the center of the LEI tube.

ŷ

x̂

ẑ

UA

x̂′ŷ′
ẑ′

Figure 4.7: Expected Kite Coordinate Systems

The uniform freestream velocity is used as the kite’s apparent velocity, oriented according to an angle of
attack α and a side-slip angle β, both taken with respect to the body-fixed reference frame.

UA = UA〈cos(α) cos(β), − sin(β), sin(α) cos(β)〉
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4.3.2 Panel Corner Naming Convention

The boundaries of a geometric panel or vortex ring are at corner nodes, which are defined - for convenient
correspondence with a clockwise vortex ring direction - starting at the leading-edge and y-negative edge
of the panel, travelling clockwise over the y-positive edge to end at the trailing-edge and y-negative edge.

Panel TE

Panel TEPanel LE

Panel LE

Panel NE

PE

LEPE

TEPE

TENELENE

Panel PE

Panel NE

Figure 4.8: Corner Definitions for a Kite Geometric Panel or Vortex Ring

The area of such a quadrilateral, not-necessarily-planar panel can be approximated as the sum of the
areas of two diagonal triangles. As the norm of the cross product describes the area in the rectangle
between the two multiplied vectors:

Sj ≈ 1

2
(SLEPE,LENE,TENE + STENE,TEPE,LEPE)

≈ 1

2
||(xLEPE − xLENE)× (xTENE − xLENE)||+

1

2
||(xTENE − xTEPE)× (xLEPE − xTEPE)||

4.3.3 Positive Surface Normal Vector

The surface normal vector is defined as positive such that a flat plate at zero incidence will have a normal
vector pointing n̂ = ẑ. Consequently, the normal vector is defined as the cross of the vector from the
TENE corner to the LEPE corner with the vector from the TEPE corner to the LENE corner.

normal vector

B

A

n̂ = A×B

|A×B|

(a) Surface Normal Vectors

0

0.5

1

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

x

SFVR Geometry CaseVisualizationwithNormal Vectors

y

z

(b) The normal vector of a single flat vortex ring and co-
incident geometrical panel

Figure 4.9: Normal vector conventions illustrated

70



n(nb, nc, :) = (xg(nb + 1, nc + 1, :)− xg(nb, nc, :))× (xg(nb + 1, nc, :)− xg(nb + 1, nc, :))

= (xTEPE − xLENE)× (xLEPE − xTENE)

n̂ =
n

|n|

4.3.4 Positive Vortex Strength

If the strength of the vortex ring is positive, then the front filament will push fluid upwards, and the
back filament will push fluid downwards. (See Figure 4.10 for a visualization of the flow behavior around
a single flat vortex ring with positive vortex strength.) That is, the front filament of a positive-strength
vortex ring causes positive lift and the back filament of the positive-strength vortex ring causes the
accompanying downwash. This requires our vortex ring to be defined positive with positive circulation
clockwise, when looking down.

The mechanism of the flow redirection - or induction - is described in Chapter 5.

4.3.5 Aerodynamic Coefficient Normalization Conventions

It is standard to normalize the aerodynamic coefficients against the product of a characteristic area and
characteristic dynamic pressure.

Here, the characteristic area is chosen to be the projected area of the geometry on the x − y plane.
This is due to the design choice that the VLMMW be able to model geometries that are not LEI kites.
Projected area can be determined for any collection of xg geometric mesh-points with the same simple
algorithm regardless of how many folds or finite-thickness regions the geometry contains. That is:

S∗ = S = bmaxcMAC , where:

bmax = max
nc

(xg(nb with maximum y value, nc, 2) + xg(nb with minimum y value, nc, 2))

cMAC = mean
nb

(xg(nb, nc with maximum x value, 1) − xg(nb, nc with minimum x value, 1))

The normalization characteristic dynamic pressure term is the dynamic pressure term found within
Bernoulli’s pressure relation evaluated in the freestream flow:

q∗ = q∞ =
1

2
ρair||UA||2
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(a) top view
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x̂
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ẑ

(b) isometric view

ẑ
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(c) front view

ẑ
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x̂
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(d) side view

Figure 4.10: Visualization of the flow-field for a uniform freestream velocity in the x̂ direction and a
Single Flat Vortex Ring (SFVR) with positive circulation strength.
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4.4 Available Test Cases

The VLMMW will run for a user-input geometric mesh that fits the requirements mentioned previously
in this chapter. However it can be handy for a user to have some geometries which have previously
been ”built” into the code and compared to experimental- or higher-order computational model- results.
These available geometry cases, the increase in code functionality demonstrated by each progressive case,
and the dataset against which the geometry case results can be compared are described below.

Note that the VLMMW is a vortex method that is not coupled to a boundary-layer-integration method,
and predicts results for flow at the Euler limit, where the Reynolds number is infinite.

4.4.1 Two-Dimensional Flat Plate (FP2D)

There is an analytical solution to the circulation distribution on a two-dimensional flat plate with fully
attached, potential flow. As a part of this analytical solution, we know the pressure distribution on the
2D plate, as well as the relationship between the lift- and drag- coefficients at small angles of attack.

We can test that the VLMMW produces this analytical solution by considering the behavior at the root
of a rectangular flat plate with a large aspect ratio (here AR = 20). This test geometry is named the
”FP2D” geometry case.

The FP2D case is included in order to ensure that the Biot-Savart and Kutta-Joukowski formulations
are working correctly.

10

5

FP2D Geometry CaseDiscretization

0

x̂

-5

-10
-10

-5

0

ŷ

5

10

Figure 4.11: Example of an FP2D Geometry Case with Vortex Lattice and Collocation Points

4.4.2 Unity Aspect Ratio Flat Plate (FP3D)

Normal force polars for angles of attack between 0o and 90o are given for a rectangular flat-plate of
unity aspect ratio (FP3D), as shown in Figure 4.12, by both Winter [198] and, more recently, Ortiz
et al [143]. Both polars were determined experimentally, Winter, in a closed wind-tunnel at Reynolds
number 1.7 · 106; Ortiz et al, in an open-jet wind-tunnel at Reynolds number 2.1 · 105. Further, Winter
gives the pressure distribution for the unity-aspect ratio flat plate at 8o and 30o angle of attack.

This test case is included to ensure that the model is able to demonstrate the influence of tip-vortices
and correctly predict wake roll-up.
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1

FP3D Geometry CaseDiscretization

0.5

x̂
0

-0.5

0

ŷ

0.5

Figure 4.12: Example of an FP3D geometry.

4.4.3 Clark Y Arc-Shaped Wing (CYKG and CYKW)

In order to test the ability of the VLMMW to model the effect of a wing’s arc-shape and thickness, the
quarter-circle curved extrusion of a Clark Y airfoil was used. There are two available geometry cases
built into the VLMMW: the CYKG case, a thickness-free model of the wing where vorticity is discretized
purely on the camberline; and the CYKW case, a fully wrapped wing, where vorticity is discretized over
the full surface of the Clark Y wing.

Both Leloup [105] and Maneia [120] used this thick-and-arced wing as test geometries for their kite-
modelling work. Leloup’s results are from a viscous 3D lifting line model: vorticity discretized at the
quarter-chord of the wing, and a fixed wake shape. In Leloup’s 3D LLT model, pressure distributions are
determined by viscous XFOIL boundary-layer coupling, applied in a viscous angle-of-attack correction
method. Maneia uses the RANS solver of STAR-CCM+ with a Spalart-Allmaras turbulence model.
Leloup and Maneia use a Reynolds number of 3 · 106.
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(a) Example of the fully-wrapped finite-thickness
CYKW geometry
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(b) Example of the camber-line thickness-free CYKG
geometry.

Figure 4.13: The arc-shaped Clark Y extruded wing geometries.

It is important to remember when comparing the results of the VLMMW to the Leloup and Maneia
data-sets that both are found with computational models rather than live experiments. Consequently,
we must consider such a comparison to be less of a ”validation” and more of a ”analysis to determine
whether the general trends are equivalent”.
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4.4.4 Leading-Edge Inflatable Kite (TUDX)

The included LEI kite geometry is the TUDX4 geometry case, based on Deaves’ [51] representation of
the TUD-25mV2 25m2 kite. Details of how this geometry is ”built” can be found in Appendix A.

Due to the difficulty in extracting separation lines from the pressure plots presented by Deaves, due
mainly to the graph perspective for the suction-surface, and the fact that the pressure-surface separation
point is within the area smoothed in Deaves’ profile representation (described below, see Figure 4.15),
separation5 is assumed to occur where the free-stream flow is tangent to the surface. There are three
reasons for this assumption, despite it not making full use of Deaves’ work:

• First, the collection of flow visualizations presented in van Dyke [181] for flow separation around
bluff bodies indicates that increasing Reynolds number drives the separation location to this
freestream-surface-tangent point. The LEI tube is such a cylindrical bluff body, and it would
appear logical the experimental flow results might be applicable here.

• Second, it is important to the methodology that the initialization of the separation-surface wake
nodes place these nodes on the correct side of the geometry, with respect to their separation
locations. Since the initial convection of the wake nodes is only due to the free-stream velocity, with
the selection of the separation line as the line of freestream-surface-tangent points it becomes much
more difficult for the separation-surface initialization method to seriously misplace the wake nodes.
The requirements of this initial convection are described in some further detail in Section 5.5.2.

• Third, it would appear to be better - from a physical understanding - to model the separation
point too early on the chord than too late. If a line before the true separation-line is chosen, the
theoretical fluid element that leaves from the selected line would physically convect itself close to
the surface until the true separation-line actually occurs, at which point it would separate from the
surface. However, if the selected line is after the true separation-line, then the fluid element which
leaves from the selected line would - physically-speaking - already be caught in the recirculation area
behind the separation line, and might well never end up convecting along the separation surface.
Since the freestream-surface-tangent line is farther towards the leading edge than (by inspection)
the separation lines given by Deaves, it appears that the selection of the freesteam-surface-tangent
line as a separation line is a conservative option.
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Figure 4.14: Example of a TUDX geometry, with separation lines assumed to be where the freestream
flow is tangent to the surface at α = 0o, NB = 13, and NP = NL = 30.

4The TUD7 case is a special sub-geometry of the TUDX case, where no interpolation is needed in the span-wise direction
to generate the geometric mesh, because NB = 13 is consistent with the Surfplan datafile generated by Deaves.

5unless explicitly mentioned to be otherwise, as in Figure 4.6
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Deaves [51] uses a Semi-Implicit Method for Pressure Linked Equations in OpenFOAM to solve the
RANS equations for steady-state flow over half of the V2 kite. He uses a Menter SST turbulence model
due to its suitability to flow with adverse pressure gradients, and assumes a fully turbulent field. The
Reynolds number at which these results are found is not specified for the LEI kite, but is assumed to be
3 · 106 as continued from his validation test-cases. The tested angle-of-attack domain is from −6o to 24o.

(a) Deaves’ ”Tight” LEI profile. (b) Deaves’ ”Filled” profile.

Figure 4.15: ”Tight” vs. ”Filled” LEI profiles, and their meshes used by Deaves [51].

It should be mentioned that Deaves uses both the physical LEI geometry, as well as a smoothed ”filled-
in” profile which has no sharp concave corners. The difference between the profiles can be seen in
Figure 4.15. Deaves suggests that the net aerodynamic coefficients for both geometries are within ten
percent of each other between 0o and 30o, but the relationship is irregular and does not lend itself to
a great deal of confidence in curve-fitting above 15o (See Figure 4.16). Consequently, the comparison
data-set used further along is that data set which Deaves explicitly gives: that of the ”filled” geometry.

Figure 4.16: Difference-polar between the net aerodynamic coefficients found from a RANS solution for
a LEI kite of ”tight” and ”filled” profiles. [51].

One additional comment with respect to the comparison of steady flow results against Deaves’ aerody-
namic coefficients: Deaves normalizes his coefficients using the flat area of the kite as the characteristic
area. This is a good choice given the deformation of the kite in unsteady situations. As previously
mentioned, the VLMMW normalizes the aerodynamic coefficients with the projected area of the kite.
The TUD-25mV2 has a flat area of 25m2 and a projected area of 16.718m2. Any comparison between
Deaves’ results and results generated with the VLMMW must correct for this significant normalization
difference.
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Again, we need to keep in mind that steady-state RANS in a situation with significant separation [92] is
already an approximation to the ”true” flow solution, such that it would be methodologically inaccurate
to speak of ”validating” the VLMMW results against RANS results. Instead, we will ”compare” the two,
with the understanding that steady RANS is - in the case of kite geometries - the closest to a ”true”
solution we have now and are likely to have in the near future. If, at some point, there becomes available
a set of LES results or wind tunnel results where both wall-effects and scaling-difficulties are minimized,
they could then be used to properly validate this model for LEI kite-flow.
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Chapter 5

Implementation of a Multiple-Wake
Vortex Lattice Method

5.1 The Vortex as Discretized Vorticity

Vortex methods arise from discretizing the flow vorticity - the representation of the angular momentum
of a fluid element within the flow, and defined mathematically as ω := ∇× u - into distinct containers
called vortices. In a phrasing heavily influenced by Wu et al [199], we define1 a vortex as a connected,
tube-shaped fluid region with a relatively high concentration of vorticity in comparison to an external
flow with a relatively low concentration of vorticity. Because a vortex is a container for the discretized
representation of the flow rotation, the vortex has the property of ”inducing” rotation in the flow field,
in a vague analogy with the ability of a current-carrying wire to induce a rotational velocity on charged
particles within its magnetic field. Stated another way, the vortex induces a tangential velocity jump
between the flow to one side of the vortex and the flow on the opposite side of the vortex.
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Figure 5.1: The vortex (black) and its induced velocity (red), decreasing in magnitude as the distance
from the vortex increases.

1For a detailed description of the difficulty in creating a quantitative definition of a vortex, and the criteria for identifying
a vortex in ”real-life” as opposed to modelled and highly idealized flows, the reader is referred to Section 6.6 of Wu et
al [199].
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The following derivation for the induced velocity is abbreviated from that suggested by de Oliveira [50],
where the process of reaching the Poisson equation for vorticity follows Howe [89], and the Biot-Savart
solution follows Katz & Plotkin [98].

Let us decompose a three-dimensional flow-field velocity into a scalar and a vector potential, as must be
possible according to Helmholtz’s Theorem:

u = −∇ϕ+∇×ψ

If the flow is incompressible, then continuity holds that ∇ · u = 0. The continuity equation can then be
re-written:

∇ · (−∇ϕ+∇×ψ) = 0

By the distributive property, and the mathematical identity that the divergence of a gradient is zero,
this reduces to:

∇2ϕ = 0

For homogeneous boundary conditions - that is, an inviscid flow without mechanical work being done on
or by the flow - the scalar ∇ϕ is equivalent to the freestream, such that:

u = U∞ +∇×ψ

As a convenience within this quasi-steady aerodynamic model, the kite apparent velocity can be treated
as an effective freestream velocity.

u = UA +∇×ψ
We can again use Helmholtz decomposition on ψ, and the rule that the curl of a gradient is zero:

u = UA +∇×ψ = UA +∇× (−∇ϕψ +∇×ψψ) = UA +∇×∇×ψψ

Combining the above two statements:
ψ = ∇×ψψ

Because the derivative of a constant is zero, if we take the curl of the velocity:

ω = ∇×∇×ψ = ∇ (∇ ·ψ)−∇2ψ

Then, because the divergence of a curl is zero, we end up with a Poisson equation.2

ω = ∇ (∇ · ∇ ×ψψ)−∇2ψ = −∇2ψ

It follows that the vorticity is a Poisson equation, for which three things are known:
1. The solution to a Poisson equation is a Green function.
2. The solution exists.
3. The solution is unique for a particular set of boundary conditions.

The 3D Green function for the Laplacian - a linear differential operator - is:

G(x− x0) =
1

4π

1

|x− x0|

where x0 is the infinitesimal point where vorticity is generated. Then, we can integrate over our field V
to find the vector field ψ:

ψ =

∫

V

G(x− x0)ωdV

We can then retrieve our velocity field from the apparent velocity and the vector potential:

u = UA +

∫

V

∇×G(x− x0)ωdV

2As an aside, you could also reach this point by skipping the Helmholtz decomposition step, and directly assuming the
existence of a vector potential that satisfies u = ∇×ψ. This is the process given in Section 2.11 of Katz & Plotkin. [98]
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Let’s pause to define a scalar3 quantity Γ called ”circulation” as the flux of vorticity through some area
S:

Γ =

∫

S

ω · dS

For an infinitesimal volume - determined by the expanding the infinitesimal normal area along the
infinitesimally-short vector pointing along the vorticity vector at some point, that is: dV = dS dl - we
can rewrite the argument of the integral:

∇× 1

4π

ω

|x− x0|
dV =

1

4π
∇× Γ

dl

|x− x0|
If we carry out this vector differentiation with dl, x0 and - due to Helmholtz’s circulation conservation
along a given vortex - Γ constant:

1

4π
∇× Γ

dl

|x− x0|
=

Γ

4π

dl× (x− x0)

|x− x0|3

Consequently, we find the velocity field:

u = UA +
Γ

4π

∫
dl× (x− x0)

|x− x0|3

That is, our solution is the sum of a uniform flow field UA and a particular solution dependent on a
certain Γ value and a certain vortex location x0. As already stated, the Poisson equation is linear,
so we can assemble any flow field as the superposition of the uniform flow and the sum of particular
solutions, by correctly placing vortices corresponding to certain circulation values at certain discrete
locations within the field.

The vortex lattice method adheres quadrilateral, straight-edged, not-necessarily-planar, closed (for Helmholtz’s
Second Theorem) vortex rings, each with constant circulation strength (for Kelvin’s Circulation Theo-
rem) to the geometric body in the flow. Vortex rings, with circulation and dimensions consistent with
the assumption of steady flow, are modelled as having been convected to locations downstream at times
prior to the ”time-snapshot” that our steady model represent.

Section 5.2 describes the placement of those vortices found - at the current ”snapshot” in time - on
the geometric body in the flow. Section 5.3 describes the relationship between the circulation strength
of the vortices within the modelled volume and the placement of those vortices who have already been
convected away from the body. Section 5.4 then describes the solution method to ensure that the chosen
circulation strengths and vortex placements do describe the flow about the geometry in question.

5.2 Geometry Discretization and Grid Generation

If we look microscopically at the surface of a body in a flow, we see that the imperfections in the surface
- even down to a molecular scale - impede the motion of the fluid directly next to it. This is the basis
for the observation that there is ”no-slip” - no tangential velocity - immediately on the surface. That
is, the surface of the geometry causes a sharp growth in the tangential velocity of the flow within the
boundary layer.

If the boundary layer is thin, we could approximate the situation to say that there is a tangential velocity
jump on the surface itself. Being as tangential velocity jumps are the inherent effect of a discrete vortex
placement, we could represent the surface in the flow by placing a collection of vortices immediately
onto it. If our surface is very thin - practically ”thickness-free” - we can ignore the fact that there is a
boundary layer on both the suction and pressure surface, and combine both into a single surface onto
which vortices are placed.

3It can occasionally be handy to speak of a circulation vector Γ, but this is actually the product of the circulation scalar
and the unit vector pointing along the vorticity vector Γ := Γ ω̂. This combination vector should not be confused with the
geometric-matrix and column-matrix-rearrangement of scalars - which we will write as, respectively, Γ and Γ̃ - that store
the scalar circulation strengths according to their geographical location in the programmed ”universe”.
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Because the vortex is a discretization of a quantity that is associated with angular momentum - a
conserved quantity in a flow assumed to be inviscid - we know that the vortex must be either infinitely4

long, or a closed loop. It is conceptually more intuitive5 to see the relationship between vortex strength
and force-distribution on a surface if the surface is covered in small vortex-rings - like quadrilateral
doughnuts whose edges have merged while being fried close to one another - than if the surface is covered
in large vortex-rings, each one with one edge placed ”infinitely-far” downstream. Both methods of
describing a vortex lattice are equivalent in terms of the ultimate flow superposition, but it is the former
which will here be used.

5.2.1 Determine the Bound Vortex Lattice Nodes

The placement of the vortex in a geometric panel represents the location where the true-solution flow
vorticity is integrated and discretized with the Green function integral Dirac delta.

Vortex lattice methods typically lay their bound vortex lattice over the geometric mesh in one of two
ways, mostly concerning the location of the first vortex ring leading edge.

Quarter-Chord Overlaying

The quadrilateral bound vortex-ring has each corner at a neighboring vortex lattice node. The vortex
filaments in the chord-wise direction lie on the the geometry panel edges. The vortex filaments in the
span-wise direction lie one quarter of the way down the panel-edges. The placement of the vortex lattice
nodes that define a vortex ring’s corners, defined on an arbitrary 3D surface, is graphically explained in
Figure 5.2.

This location can be determined intuitively by considering that the vortex is that conceptual structure
which causes lift, that aerodynamic forces on a real airfoil are summed at the center of pressure cp to
balance the aerodynamic moment, and that a thin airfoil has its cp at the quarter-chord location.

For the geometric panel bound by the geometric meshpoints xLENE , xLEPE , xTEPE , and xTENE as in
Figure 5.2, the quarter panel-length position on the y-negative side is at

x = xLENE +
1

4
(xTENE − xLENE)

and the same pattern is true for the y-positive side.

Then, the chord-wise filaments of the vortex ring will pass between the quarter panel-length position of
one panel to the next.

This method is very well suited to thin (or thickness-free) wings, and - for a correct collocation point
placement - automatically ensures that the flow leaves the trailing edge smoothly.

Co-incidental Overlaying

In the case of co-incidental overlaying, the bound vortex lattice coincides exactly with the geometric
mesh. This can be seen in Figure 5.3.

With co-incidental overlaying, we lose the automatic placement of the leading-edge filament of a single
vortex ring placed onto a rectangular, thin, symmetrical wing at the quarter-chord location. However,
this method of discretizing the surface vorticity allows us to join the vortex lattice at the trailing edge
with a clean connection, without the overhang of the suction-surface trailing edge over the pressure-
surface trailing edge. Consequently, co-incidental overlaying is typically more appropriate for wrapped
finite-thickness bodies.

4Anything which is truly infinite in length is difficult to model numerically, so those vortices which we might like to
model as infinitely-long can be considered loops which close so far away from the body that the distance is practically
”infinite” in the modelling universe. That is, there is a computational difference between an infinite-length vortex and a
vortex ring which closes ”infinitely-far” downstream, but the physical difference is very, very small.

5in the author’s opinion
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Figure 5.2: A sketch of the Quarter-Chord Overlay of Bound Vortex Node Locations found on an
Arbitrary 3D Surface: dotted black is the presumed true surface, cyan is the bound vortex lattice, and
magenta are the collocation points.

Because a LEI kite has both finite-thickness and thickness-free sections, it is more appropriate to use
co-incidental overlaying than quarter-chord overlaying. Unless otherwise specified, this is the overlaying
method used from here on.

s/2

s

r/2 r

Vortex Rings Bound to Surface

Vortex Rings Shed as Wake

BC’s Enforced at Collocation Points

UA

Figure 5.3: A sketch of a Co-incidental Overlay of Bound Vortex Node Locations found on an Arbitrary
3D Surface: dotted black is the presumed true surface, cyan is the bound vortex lattice, and magenta
are the collocation points.
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5.2.2 Determine the Collocation Points

The collocation point (CP) is the location where the problem boundary conditions are enforced. In the
standard case, this is that the body represented is impermeable - that the velocity of the body must be
the same as the velocity of the flow, determined as the sum of the free-stream and induced velocities.

Because the enforcement of the boundary conditions - described further along in Section 5.4 - gives us
the NJ equations to which there are NΓ unknowns, each the strength of one bound vortex ring, our
ability to find a solution requires that there be as many collocation points as there are bound vortices.

It is standard for panel methods to place the collocation points at the centers of the vortex rings. This
is because the enforcement of the Kutta Condition - the boundary condition that the flow along the
pressure- and suction-surfaces must be equivalent and purely tangential at the trailing edge - for a 2D
flat plate with quarter-chord overlaying of a single vortex ring requires that the collocation point be
placed three-quarters-chord down the flat plate.

Again, referring to the sketch in Figure 5.3, the collocation point is placed at the midpoint between two
helping edge points:

xj =
1

2
(xj,NE + xj,PE)

xj,NE = xLENE +
1

2
(xTENE − xLENE)

xj,PE = xLEPE +
1

2
(xTEPE − xLEPE)

5.2.3 Determine the Surface Velocity at the Collocation Points

The surface velocity at the collocation points is a similar average of the surface velocities defined at the
geometric meshpoints.

Um,j =
1

2
(Um,NE +Um,PE)

Um,NE = Um,g(xLENE) +
1

2
(Um,g(xTENE)−Um,g(xLENE))

Um,PE = Um,g(xLEPE) +
1

2
(Um,g(xTEPE)−Um,g(xLEPE))

5.3 The Dynamics of a Vortex Lattice

It is the circulation strength of a vortex ring which determines the magnitude of the velocity induced by
the ring’s filaments, just as it is the location of the vortex ring corner-nodes which determine the direction
of the induced velocity. With a guessed circulation distribution over the bound vortex lattice, we can
then predict the strength and shape of the wake, and the flow field everywhere within the modelled
”universe”.

5.3.1 Bound Circulation Initialization

The initial circulation is chosen to produce a guessed span-wise-section lift distribution using Kutta-
Joukowski:

cl =
2Γ0,(nb,Σ)

UAc∆b
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where cl is the 2D lift coefficient at the spanwise-section, Γ0,(nb,Σ) is the initial bound circulation for the
row of bound vortex loops within the spanwise-section, and ∆b is the width of the spanwise-section.

It is assumed that the initial span-wise-section circulation Γ0,(nb,Σ) is then distributed over the chord-
wise bound vortex loops according to some simple distribution method to find the initial circulations of
all of the bound vortex loops Γ0,(nb,nc):

1→(NC−1)
∑

nc

Γ0,(nb,nc)∆c = Γ0,(nb,Σ)c

where ∆c is the chord-wise length of the vortex loop. The simplest method is to assume that the vortex
loops within a span-wise-section have an initial circulation distributed according to their chord-wise
length, such as:

Γ0,(nb,nc) = Γ0,(nb,Σ)
c

∆c

The initial span-wise-section 2D lift coefficient can be taken from any aerodynamic model that generates
such cl values. As a simple - consequently fast - example, the 2D lift coefficient can be generated by
assuming a uniform force distribution of the 3D lift coefficient measured by Ruppert [153] for power kite
operation to approximate cl ≈ CL.

5.3.2 The Kutta Condition and Wake Circulation Strength

Up until this point, we have mainly discussed the circulation strength Γ as a property of a given vortex
ring, rather than the net circulation strength ΓF at any given location on the geometry.

Due to the property of superposition, we know that the vortex-strengths of co-incidental vortex filaments
is summed. This summation is simple, as long as there is no difference in vortex core size between the
two filaments6, as is the case on our bound vortex lattice.

Consequently, when we need to consider the net circulation strength at a given location, we use vector
addition of the vectors created by multiplying the filament strength and filament direction.

When a given line-segment in space only ever contains filaments from two vortex rings - as is the case for
a thickness-free geometry without separation - we can determine the net circulation by subtracting the
strength of that filament which points from the ring positive-edge to the negative-edge, from the strength
of that filament which points from the ring negative-edge to the positive-edge. Said another way: to
evaluate the net circulation experienced at any vortex lattice node requires the difference between the
circulation of the loop for which the node is on the leading edge, and the loop for which the node is on
the trailing edge. That is, travelling chord-wise from nc = 1 to nc = NC − 1:

ΓF (nc) =

{

Γ(nc) : nc = 1

Γ(nc)− Γ(nc − 1) : 2 ≤ nc ≤ NC − 1

Implicit in this definition is the fact that - because we defined the core-radius-size of the first wake panel
to be equivalent to the core-radius-size of the trailing-edge bound panel - the net circulation strength at
the trailing edge is also such a summation:

ΓF (NC) = Γw(1)− Γ(NC − 1)

6It is unfortunately less simple when the vortex core radius differs between the two vortex filaments, such that we cannot
simply cancel out the effects of all of the interior wake vortex filaments, and must still compute their respective Biot-Savart
inductions.
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Figure 5.4: Flow at Reynolds number 7000 over a 2D NACA 64A015 airfoil at 5o angle of attack
demonstrates smooth separation in the tangential direction of the flow at the separation point on the
suction surface, and at the trailing edge. Reproduced from van Dyke [181].

It is with this trailing-edge circulation that we are able to enforce the Kutta condition at the separation
location, which requires that the flow separate ”smoothly.” What this ”smoothness” criteria means, in
effect, is that there cannot be a tangential-velocity jump in the flow before and after, or above and below
in the case of trailing edge separation, the separation location. That is, the flow at a separation point
doesn’t rotate around the separation point. We can intuitively-speaking convince ourselves that the
Kutta condition has a physical basis7 by admiring how flow always leaves tangentially to the separation
locations in photos8 of fluid motion. See Figure 5.4 for an example. Since a vortex is by definition
an instantaneous tangential velocity-jump, we know that the net circulation strength at the separation
location must be zero.

Enforcement of the Kutta condition on a thickness-free geometry then requires that ΓF (NC) = 0. This
constraint on our net circulation strength can be re-formulated as a constraint on our wake vortex
strength:

Γw(1) = Γ(NC − 1)

Of course, since this is a steady, inviscid and incompressible simulation with conservative forces9,
Helmholtz’s Third Theorem says that the vortex strength must be equivalent for all of the vortex rings
shed from a certain separation location. Consequently, row of trailing vortex loops behind a given
separation bound-vortex loop have the same circulation strength:

Γw(nb, nw) = Γ(nb, NC − 1)

In the case that we have more than two vortex rings with filaments sharing the same space - as is the
case for separation from a thick trailing edge (or from the surface-interior), we need to re-consider the
vector-summation method that determines the net circulation strength. This is sketched in Figure 5.6.

Net Circulation at the Intersection of a Finite-Thickness and Thickness-Free Geometry

One further comment concerning the determination of the net circulation strength for an LEI geometry:
the intersection point between the LEI-tube and the canopy contains three vortex filaments, two of
which are leading-edge filaments. Since it is important that we not double-count the circulation at this
intersection point, it would be reasonable to place all of the net circulation on the suction-surface index
(nc = NIntersect), and none of the net circulation on the pressure-surface index (nc = 1). This assignment
is sketched in Figure 5.7.

7In addition to the numerical basis in which the Kutta condition gives one additional boundary condition for the
additional unknown of the separated wake circulation strength.

8Van Dyke’s Album of Fluid Motion [181] is strongly recommended for this purpose.
9At least, for the inviscid model to which the flat-plate drag correction has not yet been added, as we as describing now.
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Based on Helmholt’s Third Theorem, Vortex Strength is Equivalent

”Infinitely-Far” Downstream at r∞

ΓF (NC) = 0 = Γw − Γ(NC − 1)

Γw(1)

Γ(NC − 1)

Figure 5.5: A concept sketch demonstrating the Kutta condition at the trailing edge of the thickness-free
canopied LEI kite, and the resulting wake circulation strength.

ΓF (TE) = ΓF (nc = NC) = 0

Γ(nc = NC − 1)

Γ(nc = NC − 1)

Γw = Γ(nc = NC − 1)− Γ(nc = 1)

Γw = Γ(nc = NC − 1)

Γ(nc = 1)

Figure 5.6: The Kutta condition and net circulation summation for smooth separation at the trailing
edge.
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ΓF (nc = 1) = 0

ΓF (nc = NIntersect) = Γ(nc = NIntersect) + Γ(nc = 1)− Γ(nc = NIntersect − 1)

Figure 5.7: Net circulation at the intersection of a finite-thickness and thickness-free geometry.

5.3.3 Wake Relaxation into Free-Wake and Fixed-Wake Regions

To limit the computation required, the wake nodes are freed only up to a certain threshold distance
from the trailing edge rw. Within the free-wake region, the nodes are convected by the total experienced
velocity - the sum of velocities induced by the vortex lattice and the the apparent velocity at the node
location. Outside of the free-wake region - that is, in the fixed-wake region - the nodes are assumed to
convect from their neighboring upstream node according to the kite apparent velocity.

As a first-order estimate, the free-wake in the kite-flow problem could be reasonably fixed at about
5.6 chord lengths - or 15m - downstream from the trailing edge. From Kutta-Joukowski and a 3D
lift-coefficient CL,max = 0.7:

L′ = |ρairUAΓ| ≈
(1/2)CLρairU

2
AA

b

This statement can be solved for an estimate of the circulation Γ:

Γ ≈ CLUAc

2

Applying the 2D Biot-Savart:

U2D
i,θ =

Γ

2πrw

When the induced velocity is assumed to be less than pv = 0.01 = 1 percent of the apparent velocity
(U2D

i,θ = pvUA), then the influence range of a vortex - expressed in chord-lengths - is:

rw
c

≈ CL
4πpv

≈ 5.57

The vortex rings extend to a length ”infinitely-far downstream” from the kite. For computational
purposes, this ”infinite” length must be set as some finite value. Sequeira et al suggest this ”infinite”
length r∞ be set to 40 chord lengths [159].
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convection velocity to this point based on velocity at upstream node

convection startpoint at previous node

convection distance determined by pseudo-timestep τw

free-wake radius rw

fixed-wake radius r∞

Figure 5.8: A concept sketch of the convection of a free-wake vortex lattice node

5.3.4 Wake Convection

A wake vortex lattice node is convected downstream from the wake node immediately upstream; the
velocity with which it is convected is the total velocity at the upstream location node. Within the solver,
this requires iteration until the induced velocity at the node locations convects the node to that particular
location. As an initialization step, all of the vortex node locations experience no induced velocity, only
the global apparent velocity.

The downstream distance between the wake nodes is dependent on a user-dependent pseudo-timestep
τw. This pseudo-timestep designates the time that it would have taken the node to convect to its current
position, if the simulation actually experienced time. As the simulation is steady, there is no need for a
”true” timestep. This pseudo-timestep is set to allow NW wake nodes - in the downstream direction - to
be placed within the free-wake radius rw of the chordwise last bound vortex - that is, within the region
where the wake shape changes in response to the velocities induced by the vortex lattice.

Where there exists a meaningful free-wake area - that is, NW > 1 such that the wake is not fixed
everywhere - the pseudo-timestep can be found:

τw =







0 nw = 1
rw

NW−1
1

||UA|| if 2 ≤ nw ≤ NW
r∞−rw
||UA|| if nw = NW + 1

That is, the first node is placed at the separation location - here, the trailing edge; the last node is placed
”infinitely-far” downstream, and the intermediate nodes are placed regularly within the free-wake radius.

In comparison, when the wake is fixed everywhere, there is no particular wake discretization - the wake
vortex ring begins at the trailing edge of the wing, and extends ”infinitely-far” downstream according to
the apparent velocity:

τw,∞ =
r∞

||UA||

The convection velocities are determined at the node immediately prior, following the example of Fiddes
& Gaydon [66]:

xw(nb, 1, :) = x(nb, NC − 1, :)

xw(nb, 2 ≤ nw ≤ NW , :) = x(nb, nw − 1, :) + τw(nw) (Ui,w(nb, nw − 1, :) +UA)

xw(nb, NW + 1, :) = x(nb, NW , :) + τw(NW + 1)UA

At this ”infinitely-far downstream” location, the last vortex ring is closed.

The difference between the convected behavior of a free- and fixed-region can be seen in Figure 5.9.
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(a) Free- and fixed-wake convection

(b) Close-up of the wake roll-up allowed in the free-wake region.

Figure 5.9: The free- and fixed-wake regions in a simulation of the flow over a CYKG wing with quarter-
chord vortex-lattice overlaying: α = 4o, NB = 40, NC = 8, NW = 40.
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5.3.5 Vortex Models and the Modified Biot-Savart

The standard Biot-Savart expression of the Kernel function induces infinite velocity near the vortex. To
eliminate this unphysical result of the vortex representation, the Biot-Savart function can be modified
to give finite velocities within some small core-radius rc of the vortex.

There exist many modified forms of the standard Biot-Savart. Cut-off models simply disregard all
induction within r < rc of the vortex; smoothing models prescribe a decay in the induction within the
core radius intended to preserve a desired feature of the flow.

Where the surface distances are small, the choice of which modified Biot-Savart to use can have a large
influence on the vortex method solution. Particularly when the scale of relevant distances approaches
the core-radius, the decision to use a cut-off vortex model may end up hiding relevant behavior. [182]

Some of the standard choices for vortex smoothing model include:

• The Rankine Vortex is the simplest vortex core model, with a discontinuous tangential induced
velocity. The tangential induced velocity within the core behaves as a solid rotation, with a linear
radial characteristic. [115]

U2D
i,θ (r) =

{
Γ

2πrc
r
rc

if − rc ≤ r ≤ rc
Γ

2πr otherwise

• The Lamb-Oseen Vortex is a solution to the 1D laminar Navier-Stokes equation with the vorticity
distributed radially as a Gaussian normal with the peak vortex at rc. [115]

U2D
i,θ (r) =

Γ

2πr

(

1− exp

(

−a
(
r

rc

)2
))

• The Scully Vortex, also known as a Kaufmann vortex, is a simplification of the Lamb-Oseen vortex.
[104]

U2D
i,θ (r) =

Γ

2πrc

r

(1 + r2)

In order to easily assess the effect of changing the vortex core model, it was determined to use the Vatistas
Core Model. The Vatistas Core Model (VCM) is the result of a dimensional analysis of the Navier-
Stokes z-direction cylindrical coordinate momentum equation; see Vatistas [184] or Leishman [104] for a
derivation. In a 3D vector format, modified to prevent divide-by-zero errors, from that used by Sebastian
& Lackner [157], the VCM calculates the induced velocity as:

U3D
i = Cν

Γ

4π

(|r1|+ |r2|) (r1 × r2)

|r1||r2| (ǫOT + |r1||r2|+ r1 · r2)

with a divide-by-zero prevention epsilon10 ǫOT to avoid singularities when either r1 or r2 approaches 0,
and an introduced effective viscous parameter Cν that depends on a Vatistas parameter nV CM . Notice
that a small vortex core radius causes Cν to approach 1.

Cν =

(

(|L||r1|)2 − (L · r1)2
|L|2 + ǫOT

)(

r2nV CM
c +

(

(|L||r1|)2 − (L · r1)2
|L|2 + ǫOT

)nV CM
)−1/nV CM

Here, for nV CM = 1, the VCM gives a Scully vortex; for nV CM = 2, a Lamb-Oseen vortex; for nV CM →
∞ a Rankine vortex. [201]

10Units are [m] or [m2] as applicable; suggested values are less than the vortex core radius size but greater than 10−10

[m] or [m2]. Values much smaller than 10−10 tend to cause asymmetric induction when this divide-by-zero epsilon comes
into play. This is a danger during wake-convection near the tips, and when the bound chord-wise resolution becomes very
high, as is the case when the modelling of flow separation requires the bunching(See Section 4.2.4) of geometric nodes.
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Figure 5.10: The Vatistas Core Model

It should be stated explicitly that the Vatistas core model is only valid for finite, real parameter values
nV CM ≥ 1. For smaller parameter values, the solution experiences singularities. The use of a complex
parameter value would distort the circulation within the core. [184] Instead, the VLMMW considers all
non-valid parameters (ie, 0) as requests for the implementation of a cut-off vortex model.

In the case that a cut-off vortex model is used, the altitude aV of the evaluation point from a vortex
filament is determined, and used as the condition deciding which induction formula to use:

sV =
1

2
(|r1|+ |r2|+ |L|)

aV = 2

√

sV (sV − |r1|) (sV − |r2|) (sV − |L|)
ǫOT + |L|

U3D
i =

{

0 if aV < rc
1
4π

(r1×r2)
(|r1×r2|+ǫOT )

(

L ·
(

r1

ǫOT+|r1|
− r2

ǫOT+|r2|

))

if aV ≥ rc

5.3.6 Vortex Core Radius

Too large11 of a vortex radius will cause the circulation strengths to oscillate in sign (see Figure 5.11) as
a result of the sharp magnitude and sign-change of the induced velocity within the modelled core.

To prevent this oscillation, the vortex core radius should be set as small as possible. There is a practical
limit, however, given by unpredictable rounding errors occurring when r2nV CM

c is small; it is strongly
suggested that values of rc less than 10−10 be avoided.

11Note that the vortex particle method convergence requirement that the vortex cores overlap is not in effect here, despite
the fact that the vortex filaments are still convected according to their own induction and so may bunch and twist under
the large strains they themselves create. [121] [23] The accepted alternative, as presented by Katz & Plotkin [98] for steady
simulations is simply to limit the number of wake-convection updates in effect. This is discussed further in Section 5.4.1.
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Figure 5.11: Influence of Vortex Core Radius on the Chordwise Circulation Distribution at the Root of
an FP2D geometry. (Here, the dimensional form of rc [m] and the non-dimensionalization with respect
to the unity-length chord are equivalent.)

Change in Vortex Ring Length from LV R,0 to LV R

Figure 5.12: The change in vortex ring filament length downstream.

When the wake vortex nodes shift position, the length of each vortex ring changes. To prevent the
accidental generation of circulation that might result from this change in vortex length, the core radius
can be changed to compensate for the change in vortex length such that the effective vortex strength
remains constant. The effective core radius reff,c can be found by comparing the length of the vortex
ring LV R(nb, nw) with the length of the last bound vortex ring which determined the circulation strength
LV R(nb, NC − 1) = LV R,0. Using the vortex stretching model used by Sebastian & Lackner [157]:

reff,c(nb, nw) = rc

(
LV R(nb, nw)

LV R,0

)−1/2

Consequently, if the vortex ring expands as it ”travels” downstream, reff,c is smaller than rc, and the
region where the majority (approximately 70 percent [184] for nV CM = 2) of the vorticity occurs will be
shrunk, inducing less tangential velocity on the total body. If the vortex ring contracts, reff,c is larger
than rc, and the region with the majority of the vorticity will be expand.

To find the length of a vortex ring, the magnitudes of the vectors between the edge points are taken:

LV R(nb, nw) = |xLEPE − xLENE |+ |xTEPE − xLEPE |+ |xTENE − xTEPE |+ |xLENE − xTENE |
= |x(nb + 1, nw)− x(nb, nw)|+ |x(nb + 1, nw + 1)− x(nb + 1, nw)|...

+|x(nb, nw + 1)− x(nb + 1, nw + 1)|+ |x(nb, nw)− x(nb, nw + 1)|
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Vector magnitudes are not directional, so the direction of the subtraction is irrelevant; however, the
same clockwise direction as used to evaluate the induction by the directional vortex ring is used here for
consistency.

5.4 The Vortex Lattice Method

The induced velocity at a point is the superposition of the induced velocities at that point from all of
the vortices in the domain. That is, for the induced velocity at a point xj :

Ui(xj) = Uind,surf (xj) +Uind,wake(xj)

=

(NB−1)(NC−2)
∑

nγs

Ui,nγsxj
+

(NB−1)(NW+1)
∑

nγw

Ui,nγwxj

=

(NB−1)(NC−2)
∑

nγs

ai,nγsxj
Γnγs

+

(NB−1)(NW+1)
∑

nγw

ai,nγwxj
Γnγw

Ui(xj) · n̂(xj) =

(NB−1)(NC−2)
∑

nγs

(
ai,nγsxj

· n̂(xj)
)
Γnγs

+

(NB−1)(NW+1)
∑

nγw

(
ai,nγwxj

· n̂(xj)
)
Γnγw

=

(NB−1)(NC−2)
∑

nγs

Anγsxj
Γnγs

+

(NB−1)(NW+1)
∑

nγw

Anγwxj
Γnγw

Because the wake circulation strength is the convected circulation strength of the last (TE) bound
vortex ring, the normal induced velocity at the point xj can be written as a summation of the products
of influence coefficients and the unknown bound circulation strengths.

Ui(xj) · n̂j = (Asj +Awj) Γ̃ = AjΓ̃

The equation to be solved requires that there be no normal velocity through the kite surface. The
boundary conditions are therefore Neumann conditions over the bound vortex lattice.

As the kite surface is moving - at every point on the surface:

(UA +Ui) · n̂ = Um · n̂

As the collocation points are where the boundary conditions are enforced, it is there that the induced
velocities must be calculated.

The Vortex Lattice Method consequently solves the following equation at the defined collocation points:

Ui · n̂ = ((Um −UA) · n̂)
AΓ̃ = ((Um −UA) · n̂)
Γ̃ = A−1 ((Um −UA) · n̂)

The normalized net circulation distribution for the FP2D validation case - comparable to the inviscid 2D
flat plate whose circulation can be determined from an infinitely long vortex at the quarter-chord of a
thin-airfoil to be πUAc sin(α) - can be seen in Figure 5.13 Left. Note how the normalized net circulation
strength at each of the root measurement locations sums to approximately one - approaching the total
circulation for the flat plate. When the net-circulation found for a flat-plate lifting-line model with a
high aspect ratio (LL2D), as seen in Figure 5.13 Right, the net circulation at the root of the wing is close
to the invisid 2D flat plate net circulation.

The span-wise distribution can be seen not to extend fully to either wing-tip; this is because the repre-
sented circulations are at the span-wise center of their respective vortex rings.
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Figure 5.13: The chordwise net circulational distribution of a chordwise-and spanwise-discretized FP2D
Geometry (left); and a spanwise net circulation distribution of an LL2D Geometry (right). (Results from
a quarter-chord overlayed bound vortex lattice.)

5.4.1 Convergence Criteria

Because Awj depends on the relative vectors between the wake - deforming within the free-wake radius
due to the changing circulation strength - and the body fixed collocation points, Awj must be recalculated
for every consecutive guess at the circulation strength.

Ideally, this loop of determining the influence coefficient matrix, recalculating the vortex strength, re-
determining the influence coefficient matrix, etc. would continue until the wake-node locations would
no longer change. However, because the vortex rings are convected according to the velocities that they
themselves induce, the system can tip from stable to dynamically unstable.

The wake vortex lattice location - determined through convection mainly by the circulation strengths
of the trailing vortex rings - has its greatest effect on the inductions of those bound vortex rings near
the trailing edge, and therefore influences itself in progressive iterations. Consequently, it can be that
disturbances in the wake shape can create a positive feedback loop with the wake circulation, without
necessarily having a large influence on the bound circulation distribution.

Further, this instability is exacerbated by insufficient resolution in the tip region. Especially near the
center of the convected tip-vortices, the rapid jump from a strong upwards induced velocity to a strong
downwards induced velocity can cause the wake-node locations to explode. Since it is not always practical
to require a high model resolution - due to the fact that vortex methods without special speed-up
algorithms typically require a computational time proportional to O(N2), where N here is the total
number of filaments - we must take extra care to limit the growth of this model instability.

Katz & Plotkin [98] suggest that the ”safe” way to deal with this dynamic instability is to cut the wake-
updating cycle after some fixed number iterations, where this fixed number is sufficient to capture the
majority of the flow down-wash but the unstable effects are still small. They suggest that the industry
standard number of iterations is NI = 3.

5.4.2 Aerodynamic Coefficients for Pressure and Force

The general form of the Kutta-Joukowski relationship between aerodynamic force-per-unit-span12 and
circulation is:

∆F′ = ρU× ΓF

12designated by the ”prime” accent in F
′.
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The Kutta-Joukowski formula refers to the vortex filament across the leading edge of the vortex ring,
with a circulation strength given by the net circulation ΓF . The strength of this vortex filament is given
as a vector (ΓF ) to include, not only its circulation strength, but also the direction of the filament.

ΓF = ΓF
(xLEPE − xLENE)

||xLEPE − xLENE ||

Further, the general Kutta-Joukowski referes to the total flow velocity at the point in question.

U = Ui +UA

To find the aerodynamic force on a panel, then:

∆Fµ = ∆F′
µ∆b = ρUµ × ΓF∆b

The subscript ”µ” is included here to indicate that the velocity is evaluated at the center of the leading-
edge vortex filament. The ∆b here is the spanwise width of the panel. For further details, the reader is
referred to equations 9.17 and 9.30 of Katz & Plotkin. [98]

The pressure difference between the pressure- and suction-surfaces of the panel must be the aerodynamic
force normal to the surface acting over the area of the panel. The pressure coefficient then normalizes
this pressure difference against the dynamic freestream pressure.

CP,µ = −∆Fµ · n̂j
Sj

1

q∞

The normal force is the integration of the pressure over the body. Note that there’s a sign change, to
direct a positive normal force along the positive normal-vector. This also serves to indicate a positive
normal force when the lift - the dominant force in this inviscid model - is positive:

CN =
∑

µ

CN,µ =
1

q∞S

∑

µ

(∆Fµ · n̂j)

The lift, drag, and steering force coefficients are, by an analogous method, the integrated normalized
projections of the aerodynamic panel force. The lift, drag, and steering directions are determined geo-
metrically. The drag acts in the direction of the apparent velocity, along the unit vector D̂; the steering
force acts in the positive ŷ direction, along the unit vector Ŝ; the lift force acts perpendicular to both,
along L̂.

CL =
∑

µ

CL,µ =
1

q∞S

∑

µ

(

∆Fµ · L̂
)

CD =
∑

µ

CD,µ =
1

q∞S

∑

µ

(

∆Fµ · D̂
)

CS =
∑

µ

CS,µ =
1

q∞S

∑

µ

(

∆Fµ · Ŝ
)

Again, the normalization area S is the projected area found by multiplying the maximum span by the
mean aerodynamic chord. The dynamic pressure q∞ is found with the free-stream velocity, such that:

q∞ =
1

2
ρair||UA||2

We can demonstrate the aerodynamic forces found with the VLMMW by considering the forces predicted
to be acting on a 90 degree extruded Clark Y arc-shaped wing (CYKW). A polar of the lift and drag
coefficients found for the CYKW geometry - with various model choices - can be seen in Figure 5.14, as
well as those results for the same geometry reported by Leloup [105] and Maneia [120].

Some characteristics of the forces predicted by the VLMMW for fully attached flow can be seen:
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vs. finite-thickness geometry for the Clark Y arc-shaped wing on the aerodynamic coefficient polar. Note
that the thickness-free results (magenta and green) are so close that the green result is very difficult to
see.
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• We see that the slope of the CL vs. α curve is equivalent to that given by both a viscous angle-of-
attack correction method (VACM) applied to a lifting-line theory (LLT) and a Reynolds-Averaged
Navier-Stokes (RANS) solution, at angles of attack where the flow is expected to remain attached.

• We can further see that the VLMMW, as it has been described up until this point, cannot predict
the forces on the wing under the effects of flow separation. The size of the error between the RANS
result and the combined free-and-fixed-wake, finite-thickness VLMMW model (yellow) increase as
the size of the separation region increases. This is particularly apparent in the drag polar at angles
of attack greater than 10o.

• That is, the fully-attached flow form of the VLMMW predicts a linear CL vs. α relationship, and
a parabolic CD vs. α relationship as we would expect, for an inviscid potential flow method.

• The difference in predicted results between a fixed-wake model (depicted by green and black in
Figure 5.14, with NW = 1) and a model with a combined free-and-fixed-wake (shown in Figure 5.14
as pink and yellow, where NW > 1) are small when the magnitude of the lift on the body is small
and the influence of downwash is small. Conversely, the ability to free the wake will represent
downwash and pull the solution at high angles of attack closer to the viscous LLT solution.

• When a thickness-free discretization of the bound vortex lattice on the camberline (green and pink)
is used to model a thick airfoil like the Clark Y, there is a tendency to underpredict the lift. This
is logical, as a thicker airfoil effectively tightens the neck of the half-venturi tube through which
the flow is forced, increasing its local velocity and decreasing its corresponding static pressure.

• The inclusion of a boundary layer model has the same effect as increasing the thickness of the
airfoil, from the perspective of the potential flow exterior to the boundary layer. Consequently,
a vortex method without a boundary-layer model - such as the VLMMW - must be expected to
under-predict the lift in comparison to models that include a boundary-layer - such as a LLT model
with an applied VACM via a coupled boundary-layer-potential-flow solver, and a CFD model.

• The drag source for a vortex method with fully attached flow is induced drag, which is related
to the square of the lift. When the vortex method lift coefficient is positive, then the effect of a
lift under-prediction will manifest as a drag under-prediction. However, when the lift coefficient is
negative, the effect of the lift under-prediction will cause a drag over-prediction, in comparison to
a model that represents the boundary-layer. However, in comparison to a vortex model to which
the iterative VACM is applied, the drag prediction is not subject to wild overshooting when the
vortex model predicts negative lift values.

We can say that the fully-attached form of the VLMMW behaves as we would expect from an attached
flow vortex method.

5.4.3 Coefficient Distributions

The aerodynamic coefficients can be evaluated purely for a subset of the full body - such as over the panels
in the middle of the span to give a chord-wise force distribution at the root, or for the combined influence
of all of the panels at each span-wise location to give a span-wise force distribution - by replacing the
area-normalization with the area of the subset panels and only summing the coefficients of that subset.

If we plot an example of such a span-wise force distribution for the CYKW finite-thickness arc-shaped
wing, as in Figure 5.15, we can see that it behaves qualitatively as we would expect:

• We can see that lift force behaves almost like an elliptical wing, except for near the wing tips. This
is reasonable, since the flattened kite has an elliptical shape.

• Further, we see that the induced drag increases towards the edges of the kite, before decreasing
again where the local-chord-to-mean-aerodynamic-chord ratio becomes small at the tips. This is
also an expected result, as the influence of the tip vortices will be strongest near the tips - due to
the 1/r2 Biot-Savart induction relation.
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• We can see that the lift- and drag- coefficients are even functions of the span, and the steering
force is an odd function of the span. This is because the steering force is defined positive in the
positive ŷ direction. The aerodynamic force on positive camber airfoil at a positive angle of attack
will tend to be in the positive-positive quadrant of the x̂′, ẑ′ plane, which changes ŷ signs when
rotated into the body-fixed coordinate system.

• Further, we can see that there is a fairly large change in the lift coefficient at the root between a
fixed-wake model and a model which includes downwash. The influence of downwash converges as
the wake resolution increases, showing little difference in the force distributions between a NW = 30
and NW = 40 model.

5.4.4 Resolution for Computational Speed and Accuracy when Modelling
Fully-Attached Flow

Increasing the number of panels in the chordwise and spanwise direction on the fixed-wake, single-wake
VLM over the FP2D geometry causes the circulation at the root to approach the 2D flat plate circulation
ΓFP = πcUA sin(α) quickly. The difference in circulation between the low resolution and high resolution
normalized circulation at root is small, on the order of .01 percent for the chordwise resolution, and order
of .1 percent for the spanwise resolution.

The chordwise resolution converges from the bottom as the impermeability of the wing is enforced across
more points of the chord. The spanwise resolution converges from the top, as the tip vortices are better
represented. Further, the spanwise resolution has a toothed pattern, due to the fact that the ”circulation
at root” is evaluated at the panel closest to root. That is, for an odd NB , corresponding to an even
spanwise panel number NB−1, the panel closest to root is determined to be the panel with its y-negative-
edge at the root. Consequently, the influence of the tip vortices is effectively increased ”at root” for odd
NB simulations in comparison to ”at root” for even NB simulations.

As the chordwise resolution increases, the FP2D pressure distribution at root converges quickly to the
expected 2D flat plate pressure distribution.
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Figure 5.15: Span-wise distribution of the aerodynamic coefficients for a CYKW wing at α = 2o, with
increasing resolution of the free-wake region. NB = 30, NC = 41, nV CM = 2, rc = 10−4m, ǫOT = 10−8m.
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5.5 The Inclusion of Separation

Under the influence of an adverse pressure gradient, it can occur that a fluid element - decelerating as
it travels from the leading-edge towards the trailing edge of a surface13 - meets a fluid element that
was accelerated from the trailing edge in the direction of the leading edge. Rather than collide at this
intersection point, these incompressible fluid elements instead turn and begin to travel away14 together.

A curious feature is that the surface which includes the following collection of points:

• the almost-collision-point where the two fluid elements left the surface (called the separation point),

• the separation line made up of those separation-points along the span of the surface, and

• continuing between the paths of the two separated fluid elements

is a stream surface. [199] In a steady15 situation, this means that fluid elements from either side of the
separation stream-surface will never pass through the separation stream-surface. The points immediately
next to the surface have no velocity normal to the stream-surface as well as, due to fluid viscosity, the
same velocity tangential to the stream-surface.

However, we know that fluid elements that are further away from the stream-surface do not share this
common stream-surface-tangential velocity. The extreme demonstration of this fact can be found far
upstream of the geometry in the flow. This implies that there is a tangential-velocity change the occurs
centered on the separation stream-surface. If we assume that this tangential-velocity change occurs over
a short distance, we could model the separation stream-surface by overlaying it with vortices, as we did
for the surface itself.

Due to our ”in-universe” assumptions of steady, inviscid flow with conservative forces, Helmholtz’s Third
Theorem says that the vortex rings which have been convected from the same separation line must have
the same circulation strength, accounting for the stretching of the vortex rings as they are convected.

If we know how to determine the vortex strength of the separation-surface vortex rings, we can better
predict the velocity in a separated flow.

5.5.1 The Additional Kutta Condition

Luckily, the Kutta condition applies just as much to a separation line on the geometry’s surface, as it
does to the separation line at the trailing edge. We can see that the flow still separates tangentially to
the surface and does not rotate around the separation line. Again, this lack of rotation implies that the
net circulation strength of the vortex filament which lays on the separation line must be zero. This is
sketched in Figure 5.18.

Consequently, we can determine the strength of the separation-surface vortex rings with vector addition.
That is:

ΓF (nc = NC, Sep.) = 0

Alternatively formulated:

Γw(nw = 1) = Γ(nc = NC, Sep. − 1)− Γ(nc = NC, Sep.)

With the inclusion of the condition the Kutta condition be satisfied at the separation point, we add one
equation to compensate for what would otherwise be an additional unknown: the circulation strength of
one downstream-direction row of vortices in the separation stream-surface.

13Just above the surface where the no-slip condition would be in a viscous ”universe.”
14They can’t turn in towards the wall, unless the wall is porous.
15Reiterating an assumption made at the beginning of this report because of the oddness to the idea of a ”steady”

assumption concerning separation at Reynolds numbers that are associated with turbulent flow, we have restricted the
scope of this thesis to speaking about time-averaged terms. Unsteady behavior falls within the sub-scale that is not
included in this model.
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Γ(nc = NC,Sep)

Γ(nc = NC,Sep − 1)

Γw(nw = 1)

ΓF (nc = NC,Sep) = Γ(nc = NC,Sep)− Γ(nc = NC,Sep − 1) + Γw(nw = 1)
= 0

Figure 5.18: The Kutta condition and net circulation summation for smooth separation, as demonstrated
on the suction surface.

Note that the enforcement of the Kutta condition in unsteady situations is more complicated that what
is applied here, as the separated flow needs to convect away the vorticity as it is generated on the surface,
and therefore requires a time-derivative. Further, this model assumes that the separation line is known,
and does not include the additional solver loop which would iteratively refine a separation location.

5.5.2 Resolution Concentration for the Separated Wake

Because the VLMMW is set up to first convect all of the wake vortex nodes according to purely the free-
stream velocity, then iteratively determine the circulation strengths of the vortex rings and re-convect
them according to the velocities they induce on themselves, there are some practical concerns in regards
to the resolution of the wake.

First, however the vortex nodes are convected in their initial placement, they must be on the correct side
of the various vortex lattices in play. That is, a nodes for a suction-surface separation stream-surface
should not initially be placed below the geometry nodes, the trailing edge stream-surface nodes, or
the pressure-surface separation stream-surface nodes. Similarly, nodes for a pressure-surface separation
stream-surface should not be placed above the geometry nodes, the trailing edge stream-surface nodes or
the suction-surface separation stream-surface nodes. Logically, the inductions at these locations would
be such to drive the relevant nodes further away from their physical location.

Second, other than the summed induced velocities of the modelled vortex rings, there is nothing prevent-
ing convected wake nodes from travelling through the geometry or other vortex lattice stream-surfaces.
Since, by physical definition, stream-surfaces should not cross, there is a practical requirement that the
vortex lattices must have a resolution high enough that any given shed node would be repelled away
from other vortex-lattice stream surfaces in the direction consistent with the convection of a continuous
flow.

Because the danger that the stream-surfaces might cross due to insufficient resolution is much higher
above the geometry and the portion of the trailing edge shed vortex lattice close to the geometry, the
VLMMW ”concentrates” or ”bunches” the wake nodes of the surface-separated vortex lattices within a
shortened free-wake radius. That is:

rw, Sep. = fSrw

where fS < 1 is the separation concentration factor.

102



The separation concentration factor is a parameter available to the VLMMW user, where values between
one-half and one-fifth are suggested. The value fS = 1

2 corresponds to about 2.8 chord lengths, and
the value fS = 1

5 corresponds to about 1.1 chord lengths. Given that the furthest-forwards a separation
line can lay is at the leading edge, the selection of a concentration factors smaller than one-fifth may
not cover the full chord-length of the geometry, and miss the region behind the trailing edge where
downwash is concentrated. An example concentrated resolution of a separation vortex-lattice can be
seen in Figure 5.19.

5.5.3 Demonstration of Separation for a 3D Flat Plate

We can demonstrate the aerodynamic forces found with the double wake VLMMW by considering the
normal force predicted to be acting on a unity-aspect ratio rectangular flat plate (FP3D) over a 90
degree range of angles of attack. These results can be compared (see Figure 5.20) to results for the same
geometry, as reported by Winter [198] and Ortiz et al [143].

From these results, we can see the same general trends as were depicted in the demonstration lift- and
drag-polars of the CYKW geometry. The flow at small angles of attack (α ≤ 5o) is well approximated
with a fully-attached (single wake) VLMMW with a combined free-and-fixed wake. At larger angles of
attack where the flow is still attached, the lack of a boundary layer method causes an under-prediction of
the normal force, due to the missing thickness of the boundary layer from the perspective of the external
flow.

Further, we can see the influence of the Kutta condition on the flow at 90o angle of attack. Potential
flow without the influence of the Kutta condition has no reason to redirect flow asymmetrically around
a geometry, causing the drag of a bluff body to be zero. Since at 90o, a flat plate will not generate any
lift, the normal force at 90o without the Kutta condition would be zero. However, we can see a non-zero
form16 drag. Consequently, we can state that the VLMMW has the ability to predict form drag, however
much it under-predicts this form drag.

The under-prediction of form drag for a multiple-wake vortex method is expected. Fage & Johanson [62]
who used a double-wake vortex method to predict the normal force on a 2D flat plate and also performed
wind tunnel testing of this same flat plate17, also predict a normal force at 90o angle of attack which
is about a factor of two (2.45, reportedly) below their wind tunnel measurement. This missing drag
is possible due, in part to the neglected skin friction of an inviscid vortex method, and also due to
the fact that the area within the wake is not truly the irrotational ”dead-water” whose velocity can be
well predicted by summing the free-stream velocity and the induction by the modelled vortex lattices.
Ultimately, skin friction and the flow-properties within a wake are pieces of information that a detailed
boundary layer model might be able to provide.

The VLMMW requires an assumed flow separation location. In order to generate a polar including the
effect the separation line moving forwards after separation, we need to combine the ”fully-attached” and
”separation at leading edge” polars. When we have wind tunnel estimates for the angles of attack when
the flow first separates and when the flow separation occurs at the leading edge, we can make a best
guess polar. Such a combined ”best-guess” polar can be found in Figure 5.21.

One effect of the additional Kutta condition can be seen very clearly on the resulting pressure distribu-
tions generated with the multiple-wake form of the VLMMW. That is, the aerodynamic pressure, for a
panel whose vortex ring’s leading edge filament lies on the separation line, must be zero. This is a direct
result of the Kutta-Joukowski formulation of Bernoulli’s pressure relation:

∆F′ = ρU× ΓF

16this term also includes skin friction, but the magnitude of the skin friction on a flat plate normal to the flow should be
significantly smaller than the form drag behind the same bluff obstruction.

17This would have been a fantastic validation data-set except that the author is suspicious of their reported normalization
values. That is, Fage & Johanson [62] report the normal force coefficient in the Engineering style kN [2], despite appearing
in a British Royal Society journal, and normalizing by ρU2

∞
, making no mention of an area term. In any case, the ratios

between coefficients reported within the same paper ought to be trustworthy.
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Figure 5.20: The normal force polar predicted for a unity-aspect ratio flat plate (FP3D) by the
VLMMW with either fully attached flow or separation at the leading edge and trailing edge, and a
fully-fixed or combined free-and-fixed wake, in comparison to the experimental results of Winter [198]
and Ortiz et al [143].
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Figure 5.21: A guess at constructing a normal force polar for a unity-aspect ratio flat plate (FP3D) with
the VLMMW allowing the separation line to travel forwards, in comparison to the experimental results
of Winter [198] and Ortiz et al [143].

Consequently, when analysing the pressure-distribution results of the VLMMW, we have to keep in mind
that the pressure distribution of the panels at nc = NC, Sep. are unreliable. This could, in theory, be
avoided by applying a very high chord-wise resolution to the NC, Sep. panel, but this is not practical in
terms of computational expense.
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We can see the unreliable pressure-distribution immediately following the separation location by compar-
ing the pressure distributions on the FP3D geometry as given by Winter [198] and as generated by the
double wake VLMMW with flow-separation at the leading edge. This comparison is shown in Figure 5.22.

In the α = 8o result, we can see the influence of the leading edge pressure spike, as well as the gradual
increase in pressure towards the trailing edge. We don’t see the smaller pressure spikes that Winter
measures at the side edges and trailing edges of the plate. In the α = 30o case, we do not predict the
leading-edge pressure spike to be spread over a longer chord-wise area than in the α = 8o case, as is
measured by Winter. It is here, in the center of the plate, that the majority of the error visible in the
force polars occurs.

It appears that the VLMMW is able to predict the trends in the flow, when separation locations are
known a priori, but the magnitudes of the force coefficients are not very reliable when the boundary
layer significantly influences the flow. Further, with finite chord-wise resolution, the pressure distribu-
tion at those panels immediately following a separation line are likely to be suspect. In the end, the
VLMMW relies heavily on the assumption that boundary layers are thin, and that tangential velocity
jumps within the length-scale of the vortex core radius.

5.5.4 Resolution for Computational Speed and Accuracy when Modelling
Separated Flow

For increasing spacial resolution, the double wake VLMMW approaches an asymptotic solution, though
this asymptotic solution still has an offset from experimentally-determined values. The magnitude of
this asymptotic error depends on the degree of influence of the boundary layer character on the potential
flow solution, as discussed in the previous section.

It is important to remember that the resolution of the bound vortex lattice is directly responsible for
the number of places where we can enforce the boundary condition. If the boundary condition is not
sufficiently enforced, there will be mass flow through the geometry in the normal-direction. In that
surface-normal mass-flow is associated with separation18, this means that an insufficient resolution will
behave as though the degree of separation is greater. Since separation has the effect of decreasing the
experienced lift, and the VLMMW already under-predicts the forces on the geometry, an insufficient
resolution will cause an increased error.

Increasing our spacial resolution increases our run-time. If we assume that this relationship is propor-
tional to O(N2), we can approximate that:

runtime ∝ (NB(NC + 2NW ))
2

for a double-wake model. We can see then that increasing the span-wise resolution will have a larger effect
on runtime than increasing the chord-wise resolution. Further, increasing the downstream resolution will
also have a large effect on the runtime, though not quite as much as the span-wise resolution. These
relationships are demonstrated the run-times found for certain combinations of NB , NC , and NW in
Figure 5.24.

At a certain point the additional runtime for a higher spacial resolution will not justify the increased
model accuracy. This trade-off point is dependent on the geometry in the flow and the amount of
separation in play.

For an aspect ratio 1 flat plate with leading edge separation, it is suggested - based on the combination
of Figures 5.23 and 5.24 - that it is unlikely that that the trade-off point will be reached for a span-wise
resolution NB < 20 and a downstream resolution less than NW < 10.

18In fact, one empirical method of including the effects of separation on vortex lattice methods is to relax the flow
tangency requirement at the collocation points. [18]

106



(a) Experimentally measured FP3D pressure distributions, reproduced from
Winter [198]. Note that only half of the square plate is shown and that the
leading edge is positioned away from the viewer.
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(b) VLMMW FP3D pressure distribution at α = 8o.
Leading edge to the left.
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Figure 5.22: Comparison of experimental to predicted pressure distributions for a FP3D geometry with
leading-edge separation.
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Chapter 6

Results for a Leading-Edge
Inflatable Kite

We can use the VLMMW to predict the pressure-distribution over a sample LEI-kite, such as the TUDX
geometry described in Chapter 4.

An aerodynamic coefficient polar can be seen in Figure 6.1. This polar demonstrates certain model
behaviors:

• The VLMMW generally overpredicts lift for the TUDX kite in comparison to the RANS result.
This would seem unusual since the previous validation tests suggested that the missing boundary
layer influence within the VLMMW caused an underprediction of lift. However, we should consider
that - in the 3D flat plate case - only the results for positive angles of attack were shown. For
positive angles of attack in the FP3D case, the separation recirculation region lies above the wing;
for the TUDX case, the primary separation recirculation region lies under the wing. Consequently,
the direction of the pressure difference caused by the combined missing boundary-layer thickness
and ”dead-water” behavior will reverse.

• As we would expect, the degree to which the fully-attached flow VLMMW model under-predicts
drag increases as the angle of attack increases. This would appear to be consistent with the lack
of boundary-layer modelling.

• Deaves [51] reports an uncertainty on the order of 10 percent due to the influence of profile
smoothing on steady-state RANS results. At high angles of attack, the overprediction of lift
by the VLMMW falls into this uncertainty region. This is an important indication that such an
VLMMW may - for development phases past this feasibility study - be an effective method to esti-
mate aerodynamic force at high angles of attack, and may be a useful tool within the AWE group’s
aerodynamic modelling code-base.

• If we attempt to model a suction-surface separation for a small incidence, such as at α = −5o,
we significantly mispredict the aerodynamic coefficients. One possible response to this result is
that suction-surface separation at such a small angle of attack is very unphysical. However, that
interpretation raises the question of why this misprediction doesn’t occur for the other tested angles
of attack less than the 14o cut-off found by Deaves [51]. One explanation may consider that the
slope of the TUDX canopy after the maximum ẑ point is fairly constant. Because we have assumed
that separation occurs at the surface-freestream-tangent location, a negative angle-of-attack may
initialize the suction-surface separation vortex lattice placement almost directly over the remaining
canopy. This overlaying may require large negative circulation strengths in the effected bound
vortex rings in order to satisfy the boundary conditions, without including the suction-surface
separation circulation strength in the net-circulation strengths of those bound vortex filaments
which have been overlaid.

109



C
L
[

]

Lift to Drag Polar: TUDX geometry

C
D
[

]

Deaves (2015): RANS results, as reported

Deaves (2015): results corrected for difference in area normalization,

NW:50,NL+NP=NB:32, PSS and SSS

NW:50,NL+NP=NB:32, PSS but not SSS

NW:50,NL+NP=NB:32, SSS but not PSS

NW:50,NL+NP=NB:32, fully-attached flow

with 10% profile-smoothing uncertainty

α[o]

0 10 20 30
α[o]

0 10 20 30

0

0.5

-0.5

-1.0

-1.5

0

0.5

-0.5

-1.0

1.5

1.0
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a pressure-surface separation vortex lattice and the key ”SSS” includes a suction-surface separation vortex
lattice, in comparison to the coefficients reported by Deaves [51], and the Deaves coefficients accounting
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• Another interesting note is that the drag coefficients are predicted to be negative when there is either
pressure-surface separation modelled at small angles-of-attack or there is suction-surface separation
modelled in general. This behavior resembles strongly the result for a finite-thickness wing (such as
the CYKW) when the suction-surface and pressure-surface trailing edge filaments do not coincide.
It is supposed that these occurrences are related, as a moderate instance of the suction-surface
separation expression for small angles of attack. That is, in these cases some percentage of the
separation vortex lattice lies quite close to the body geometry, without being counted into the net
circulation strength. Effectively, this behavior is an occurrence of the reattachment problem (see
Section 6.1).

• Interestingly, the results predicted when separation is not modelled and the flow is assumed to
be fully attached (yellow) do not appear to be significantly different from those predicted when
pressure-surface separation is modelled without suction-surface separation (black) at moderate
angles of attack. This is also assumed to occur as an expression of the reattachment problem.
We know that the effect of a pressure-surface separation region will be a decrease in the normal
force on the geometry1. If a separation vortex lattice is under the geometry for approximately half
of the geometry’s chord-length, and above the geometry for approximately half of the geometry’s
chord, it is logical that the total decrease in (upwards) normal force where the separation vortex
lattice is above the body might compensate for the total increase in (upwards) normal force where
the separation vortex lattice is below the body. If - at the same time - the panel whose leading-
edge filament is the presumed separation line is small, then the effect on the Kutta-Joukowski
force determination of forcing a non-zero net circulation to be zero will be small. Consequently,
the fact that modelling pressure-surface separation does not significantly change the aerodynamic
coefficient polar, is - quite possibly - an expression of the reattachment problem.

6.1 Resolution and the Reattachment Problem

Reattachment problems appear to be common for multiple wake vortex methods applied to membrane-
problems with bluff leading edges of significant thickness. At least, Wilkinson [196] also mentions ex-
plicitly problems with the modelling of flow reattachment. The behavior of the relevant vortex lattices
for an example of a pressure-surface separation reattachment-problem is shown in Figure 6.2.

Figure 6.2: The reattachment problem as the pressure-surface separation vortex lattice passes through
the bound vortex lattice at α = 0o.

1from the results on the FP3D case, but also intuitively because separation is equivalent to a relaxation of the boundary
conditions
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This comes down to the problem mentioned in Section 5.5.2 that the only method of preventing one
vortex lattice from passing through another is the resolution of each vortex lattice. When the distance
between the nodes is large enough, then the vortex lattice nodes near a potential reattachment location
- who are convected based on the velocity at their upstream neighbor node - overshoot and pass through
the next vortex lattice. When this happens over the body, the net circulation at the bound leading-edge
vortex lattice filaments should be - but are not - compensated for the additional vortex filaments that are
close by. The reattachment problem is an inherent difficulty in the method, because the vortex lattices
represent either material surfaces - which are assumed to be impermeable - or stream-surfaces - which
ought not cross-one another.

The LEI shape - or the sail-and-mast configuration of Wilkinson [196] - is particularly susceptible to
the reattachment problem, because the separated flow from both of the surfaces takes the form of a
separation bubble rather than an open-separation (refer back to Deaves’ predicted separation regions,
shown in Figure 2.11) for a large portion of the relevant flight angles-of-attack.

This reattachment problem demonstrates itself - not only by visually inspecting whether one vortex lattice
passes through another - but also by unreasonable aerodynamic coefficients, including negative drag
values. The wake vortex lattice which passes through the surface induces velocities with both a surface-
normal and surface-tangential component. The bound vortex lattice must assume larger circulation
strengths to cancel the surface-normal flow, but the compensating wake vortex circulation strengths are
not explicitly considered in the net circulation strengths of the bound vortex rings to which they are
near. Consequently, this reattachment induces a larger magnitude surface-tangential velocity. When the
Kutta-Joukowski relation for aerodynamic force is applied to the velocity at the force-evaluation points
- the sum of the surface-tangential components of all of the induced velocities and the apparent velocity
- this increased velocity and circulation strength cause a spike in the pressure at the location where the
wake vortex lattice passes through the bound vortex lattice.

This reattachment point is likely to be on the canopy. We can logically refine this estimation to say that,
because flow reattachment occurs smoothly2, and because recovery means that the separation bubble
surface will curve in towards the surface rather than flatly following the free-stream, we expect the
reattachment points to occur closer to the trailing edge than the freestream-canopy-tangent point. The
further that the reattachment point is behind the freestream-canopy tangent point, the more the surface-
normal vector will shift into the freestream direction. Remember that the Kutta-Joukowski aerodynamic
force relation always determines forces which are perpendicular to the leading-edge filament, due to the
cross product in the relation. Since drag is defined as being the component of the aerodynamic force
that is parallel to the free-stream, we logically expect that the influence of the separation vortex lattice
passing through the bound vortex lattice will have a larger effect on the drag than the lift.

Ultimately, it appears that when reattachment should happen, it is very difficult both, to adjust the
boundary conditions to reflect the Kutta condition on a thickness-free membrane, and also to sufficiently
resolve the geometry to properly enforce those boundary conditions. The fact that vorticity is discretized
in vortex methods, rather than behaving continuously as is physical, allows vortex sheets to disregard
flow tangency, while nominally satisfying the Neumann-boundary condition computational constraints at
the collocation points. That is, the reattachment problem - the inability of the VLMMW to model reat-
tachment, instead allowing stream-surfaces to pass through one another - is a result of the discretization
process of the flow vorticity, and is particularly relevant to thickness-free geometries with a reattachment
line - on one surface - crossing a separation line - that should lay on the other surface.

2where reattachment, again, should satisfy the Kutta condition at the reattachment point, though it may not be possible
to enforce this condition due to the thickness-free model for a membrane wing.
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6.2 Possible Avenues to Solving the Reattachment Problem

It would be logical that one method of resolving this problem is to set the resolution sufficiently high
that that the downstream-direction distance between the wake vortex lattice nodes is small. However,
as previously mentioned, the runtime scales with the number of vortex filaments squared. Consequently,
it occurs that the elimination of the reattachment problem may require an extraordinary computational
expense. In the VLMMW’s current form, this additional expense is such that the run-time can exceed
the run-time required for a RANS - approximately 30 hours, from Deaves’ [51] work - simulation, and
risks that the VLMMW, run on a desktop version of Matlab, may hang prior to completion.

If we cannot sufficiently increase the resolution with the current form of the VLMMW, there are a few
possible avenues to tackling the reattachment problem which would be suggested for further study. These
possible avenues could be used separately or together.

6.2.1 Speed-Up

That which makes it infeasible from a practical perspective to sufficiently increase the resolution to
probably eliminate the reattachment problem, is the run-time of the VLMMW in its current form. Some
adjustments which could be made to the method that may enable code speed-up, might include:

• language selection Matlab is not known for being an extraordinarily fast language. Were a future
VLMMW written - or compiled - into another language, such as C, C++, or Fortran, it is likely
that code-speed up could be significant.

• code vectorization The current form of the VLMMW was developed as a proof-of-concept, where
the ability to easily read and develop the code functionality was judged to be more important
than computational speed. This led to methods of matrix allocation which are not ideal from
a computational speed perspective. For example, a coefficient matrix A is assembled from a
summation (over every modelled vortex lattice) of for-loop summations of NJ single rows, each
corresponding to a single boundary-condition. There are, in effect, many nested for-loops which
run from nc = 1 to nc = NC + 1 and from nb = 1 to nb = NB + 1. It should be possible to gain a
code speed-up by swapping these for-loop computations to a vector-algebra form.

• parallelization One of the advantages of potential-flow methods is their suitability for massive par-
allelization. Those for-loops which are not-well suited to vectorization might benefit from parallel
loop computation3, to be run on a multicore system.

• information transfer Repeatedly passing large matrices into and out-of multiple functions cannot
be expected to be computationally fast. Unfortunately, from the perspective of speed, many of the
functions within the VLMMW, in its current form, are built for modular testing. The result, is that
the geometric vortex-lattice matrices are passed into the functions in their entire form, rather than
in a trimmed form containing purely the relevant matrix index values.

• warm-starting Those portions of the large influence coefficient matrices which do not change - or
change very little - for small changes to model geometries or small wake deformations would benefit
heavily from warm-starting.

• geometric simplification for symmetry If it were decided that the input kite geometry would always
be symmetric about ŷ, it would be possible to remove half of the kite and geometrically determine
the additional influence coefficients to add to the influence coefficient matrix based on a mirroring
of positions. This would half the number of span-wise nodes required for a constant span-wise
resolution. Since run-time scales with N2

B , assuming a symmetric kite could potentially save up
to three-quarters of the computation time. However, this possibility would prevent the application
of a future-form VLMMW to the asymmetric deformation-modes that are a natural product of
non-zero side-slip angles.

3as with parfor in the Matlab parallel computing toolbox
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• alteration of wake structure It might be useful to reconsider the discretization of vorticity in the
wake, either by grouping nearby vortex nodes in a manner similar to a Fast Multipole Method
(FMM), for whom runtime is known to be scale with O(N logN), or to progressively increase the
pseudo-timestep for vortex rings as they travel downstream, rather than splitting the wake into
the free-wake and fixed-wake regions applied here. It is possible that altering this wake structure
might decrease run-time for a given effective resolution. However, it does not appear that either of
these methods would be able to decrease the cost of increasing resolution within the area relevant
to the separation vortex-lattice behavior - at the risk of losing information rather than increasing
computational speed - in comparison to the wake resolution-concentration which is already applied
in the described VLMMW.

6.2.2 Include Reattachment

It would be tempting to think that the reattachment problem could be solved by including those wake
leading-edge vortex-ring filaments which are close to the body into the bound net-circulation calculations.

However, this step may not be as trivial as it might appear, due - as hinted at above - to the thickness-free
modelling geometry for the canopy.

It is particularly difficult to model flow reattachment for membrane wings. On a membrane wing, there
is no distinction between the suction- and pressure-surfaces in the modelling of the bound vortex lattices.
This requires that the separation line on the suction surface and the reattachment line on the pressure
surface may occupy the same space. Unfortunately, if the reattachment line - which should lay on the
pressure surface - and the separation line - which should be on the suction surface - cross, then the
lines cannot occupy constant chord-wise geometric node indices. That is, if the canopy is modelled
as a thickness-free geometry, then it is not possible to include crossing pressure- and suction-surface
separation- and reattachment-lines onto non-crossing constant-chord-wise-index geometric node lines. If
this is the case, then the net circulation at the separation and/or reattachment lines cannot be adjusted to
reflect the Kutta condition. Then, on this thickness-free surface4, the flow requirements for reattachment
may not be enforceable.

We know from Van Kappel [183] that attempting to model an LEI kite entirely as finite-thickness surface
has convergence problems, due to the resolution requirement caused by the small thickness.

One hope, then, might be to restrict the multiple-wake method to flow conditions where the separation-
line and reattachment-line do not cross, such that the Kutta condition is enforceable. The difficulty,
then, would be in predicting which flow conditions are allowed under this restriction, and which flow
conditions are disallowed.

Unhappily, for the LEI-kite case, we know from Deaves [51], that the reattachment line on the pressure-
surface of the canopy frequently passes through those points where the separation bubble on the suction-
surface can be found.

The alternative, then, may be to force the kite geometry to hold a finite-thickness representation where
the separation-bubble would lay. This possible goal could be achieved by profile-smoothing along the
wind-shadow curtain found in a two-iteration application of the VLMMW.

6.2.3 Wind-Shadow Curtain Double-Step Method

The method for eliminating the reattachment problem which the author believes to be the most promising
is to skip the problem entirely by running the VLMMW twice per LEI-kite simulation.

4It is relevant to mention that the reattachment problem does not seem to be typical for finite-thickness wings, such
that multiple wake vortex methods are frequently used for wind-turbine blades - a fact which partially inspired the initial
proposal of this method as a potential solution-method for the LEI-kite aerodynamics problem.

114



In the first run, the geometry mesh could be built to resemble the physical deformation state, with
known separation locations. The locations of the separated wake nodes until the predicted reattachment
locations could be extracted from the results of this first run. With these node locations, a wind-shadow
curtain5 could be added to the LEI-kite geometry, effectively smoothing the profiles as done by Deaves.

This smoothed LEI-kite could be re-entered as an input into another aerodynamic model - reasonably
speaking, the VLMMW again - for a second run to better determine the pressure distributions.

This double-step method would of course increase the aerodynamic-model runtime, but it is rather likely
that this runtime would still be noticeably less than the runtime for a CFD simulation while producing
results which are ”close-enough” to be useful for the rough iterations of FSI-based design work.

The primary difference between the uncertainty in such a double-step profile-smoothing method than
in the assumed profile-smoothing used in many existing models - such as in Deaves [51] is that the
smoothed profile generated by such a double-step would be a function of the inflow, rather than an
assumed geometry. This may potentially decrease the uncertainty caused by introducing this profile-
smoothing.

While VLMMW does have the error - explicitly in comparison to RANS results - caused by the lack
of a boundary-layer model that VACM methods, such as van Kappel’s VLMN-VK, do not have, the
VLMMW also is not susceptible to the unpredictable integration-step convergence-failure which makes
VACM methods difficult to apply to significant-separation problems. Further, qualitatively-speaking,
the general lift and drag coefficients found with the VLMMW, in cases without a significant reattachment
problem, appear to be reasonably in accord with the RANS results.

6.3 Resolution for Computational Speed and Accuracy on a
Leading Edged Inflatable Kite

Of course, assessments of the engineering trade-off between computational expense and accuracy require
quantitative analysis in addition to qualitative comparisons.

In Figures 6.3, 6.4, and 6.5 we can see the error in predicted lift and drag coefficients for various angles-
of-attack, in comparison with the normalization-area corrected results from Deaves’ [51] RANS study of
the same geometry.

Notably, we can see that the influence of the reattachment problem can be very large, prompting maxi-
mum CL errors on the order of 104 and maximum CD errors on the order of 106. However, errors on the
order of 1.0, 0.1 and 0.001 also appear to be possible for various resolution selections, largely dependent
on the behavior of the separation-region at a given angle-of-attack.

Here, increasing the computational-time has a less obvious correlation with increasing model accuracy
than can be seen in the results for the FP3D case (Figure 5.23) again, because including separation
modelling under the influence of the reattachment problem can produce a result that is numerically
similar to the VLMMW result for fully-attached flow - but with, naturally, a runtime that is a factor of
two or three larger, dependent on the number of separation surfaces modelled.

5As far as the author is aware, the credit for the term ”wind-shadow curtain” in relation to LEI-profile smoothing
belongs with Anderson [14].
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Figure 6.3: The difference between VLMMW and RANS predicted CL values, as function of angle of
attack and runtime. Note that the bubble coloring corresponds to angle-of-attack.
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Figure 6.4: The difference between VLMMW and RANS predicted CD values, as function of angle of
attack and runtime. Note that the bubble coloring corresponds to angle-of-attack.
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Figure 6.5: The model resolutions corresponding to the runtimes in Figures 6.3 and 6.4.
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6.4 Demonstration of Pressure-Distribution Predictions

While net aerodynamic coefficients are useful for assessing the accuracy - in comparison to RANS - of
the VLMMW, they are not themselves the intended output of the aerodynamic model. Rather, if this
method6 were applied to the LEI-kite FSI problem, the pressure distributions themselves are needed.

An example of such a pressure distribution can be seen in Figure 6.6.

Notably, we can again see the CP = 0 line where the Kutta condition is enforced, though in this case, the
separation line is taken as the line of the surface-freestream-tangent. We can also see where the pressure
coefficients are large on the thick LEI-tube; the pressure growth where the separation bubble is at it’s
thickest; and the pressure spike when the separation vortex lattice becomes close to the surface, prior to
its pass though the bound vortex lattice (refer again to Figure 6.2).

(a) Top View (b) Front View

(c) Bottom View
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Figure 6.6: TUDX Pressure Distribution with NB = NL +NP = 60, NW = 10, and fS = 1/5 at α = 0,
including pressure-surface separation, but not suction-surface separation.

6though in a accelerated form rather than this proof-of-concept form
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Chapter 7

Conclusions

We can assess the hypothesis of this thesis, proposing that:

The ability of a quasi-steady multiple-wake vortex lattice method to quickly and accurately model surf-
kite aerodynamics is heavily limited by the method’s inability to model reattachment, though the results
for the double-wake method appear promising, depending on the respective understanding of ”quickly”
and ”accurately”.

Notwithstanding the reattachment problem and the neglected effects of the boundary-layer, it appears
that a careful selection of resolution parameters for the LEI-kite geometry can bring errors for net lift
and drag coefficient predictions with the VLMMW to approximately ten percent of the RANS simulation
results. That is, it appears possible for the VLMMW to have the same order of uncertainty with respect
to RANS results as is generated by profile-smoothing in Deaves’ [51] RANS study.

However, the model is strongly limited by an inability to enforce the Kutta condition on a reattachment-
line when this reattachment-line crosses a separation-line in the thickness-free representation. Further,
the model appears to require - near a reattachment-location - a very high body- and wake-resolution
to extend the proper enforcement of the flow-tangency constraint to the space between the collocation
points and ensure that geometric surfaces are impermeable to the separation stream-surfaces.

Given that reattachment is expected on both the suction- and pressure-surfaces of the LEI kite in the
majority of its flight regime, the reattachment problem constitutes a serious modelling restriction.

Based on the results found with this code it would appear promising to further develop this method,
primarily with the hope of finding a path around the reattachment problem. The following questions
may be part of such an exploration:

• What is the influence of the quasi-steady flow assumption on the pressure distributions predicted
by the VLMMW?

• How would we validate the predictions of quasi-steady aerodynamic models intended for LEI-kite
geometries, such as the VLMMW, against wind-tunnel test results?

• What is the influence of assuming that transition does not occur in the boundary layer on the
pressure distributions predicted by the VLMMW?

• How does the selection of different vortex core models (from the nV CM = 2 used in the presented
results) effect the VLMMW predictions?

• How would the code speed-up methods described in Section 6.2.1 influence the tradeoff between
compuational-cost and accuracy (again, with respect to a RANS solution)?
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• Can the introduction of a double-step wind-shadow curtain solution step, as mentioned in Sec-
tion 6.2.3 eliminate or minimize the effect of the reattachment problem when the VLMMW is
applied to an LEI-kite?

• Would a multiple-wake vortex method constructed such that separation surfaces are always assumed
to be bubble-shaped, but occasionally pop ”infinitely-far” downstream - rather than the current
method where separation surfaces are assumed to be open-separation representations, of which
combinations occasionally end up bubble-shaped - be less suceptible to the reattachment problem?

• How would the addition of an MVP separation-location solution-loop, based on the pressure-
coefficients found in a primary run, influence the tradeoff between computational-cost and accuracy
(again, with respect to a RANS solution)?

The author believes that with further development the LEI-kite aerodynamic modelling method concept
tested in this proof-of-concept thesis could be a useful module within the AWE’s FSI-modelling code-
base. However, in its current form, good engineering judgement is necessary to restrict the use of the
VLMMW to situations where flow-reattachment is either avoided or does not coincide with a separation-
location, and where boundary-layer effects are small.

Based on the quantitative result evaluating the proof-of-concept form of the VLMMW for computational
speed and model accuracy, in comparison to windtunnel measurements for a unity-aspect ratio flat plate
(FP3D), and CFD results for the extruded Clark Y arc-shaped wing (CYKW) and an LEI-kite geometry
based on the TU Delft AWE group’s TUD-25mV2 25m2 kite (TUDX), that this thesis work has satisfied
its stated success criteria.
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Appendix A

Leading-Edge Inflatable Kite
Geometric-Mesh Generation from
TUD-25mV2 Datafiles

The LEI-geometries TUD7 and TUDX are based on the seven-profiles-at-thirteen-spanwise-locations-fit
determined and used by Deaves [51] to the TUD-25mV2 25m2 kite. These geometric points are given as
seven coordinate tables in the x̂′, ẑ′ cross-sectional reference frame plane, and a table giving the locations
of the profile leading- and trailing-edge in the body-fixed reference frame, as well as an orientation vector
for the ẑ′ vector.

It should be mentioned that Deaves uses a rotated set of body-fixed axes. To convert from his body-fixed
coordinates x̂MD, ŷMD, ẑMD to the body-fixed coordinates used here x̂, ŷ, ẑ:

x̂ = −ẑMD

ŷ = −x̂MD

ẑ = ŷMD

When we have the locations of the leading-edge point xLE , xTE and z in the body-fixed reference frame
used here, we can geometrically find the cross-sectional axes:

c = xTE − xLE

→֒ x̂′ =
xTE − xLE

||xTE − xLE ||
→֒ c = ||xTE − xLE ||
→֒ ĉ =

c

c

ẑ′ =
z

||z||

Then, we can convert a point xg = x′gx̂
′ + y′g ŷ

′ + z′g ẑ
′ in the cross-sectional reference frame to the

body-fixed reference frame xg = xgx̂+ yg ŷ + zg ẑ:

xg =
(
x′gcx

′ + z′gcẑ
′
)
+ xLE

If we write a system of 2 equations for the x′ and z′ terms, we can find the conversion in the opposite
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direction:

xg =
(
x′gcx

′
x + z′gcẑ

′
x

)
+ xLE

zg =
(
x′gcx

′
z + z′gcẑ

′
z

)
+ zLE

l

x′g =

(
zg − zLE

c
ẑ′x −

xg − xLE
c

ẑ′z

)

(ẑ′xx
′
z − x′

xẑ
′
z)

−1

z′g =

(
xg − xLE

c
x′
z −

zg − zLE
c

x′
x

)

(ẑ′xx
′
z − x′

xẑ
′
z)

−1

The next concern is to find the assumed separation point on the profile. With uncertainty about the sep-
aration locations, we make the assumption that the flow separation location occurs where the freestream
is tangent to the surface.

This tangent location can be found in a fairly straightforward manner by minimizing the norm of the
cross-product of the estimated the unit-surface-parallel vector and the unit-freestream-velocity vector.

For the pressure-surface separation point - which will always be on the LEI tube, with this assumption
of a surface-freestream-tangent separation-point:

xsep,PS = x

∣
∣
∣
∣
min
x

(

(sin(θ)ĉ− cos(θ)ẑ)× ÛA

)

If the suction-surface separation point is on the LEI tube, it will be at the opposite radial position
(θsep,SS = θsep,PS + π) from the pressure-surface separation point. If the suction-surface separation
point is on the canopy:

xsep,SS = x

∣
∣
∣
∣
min
x

((

c+
dy

dx
z

)

× ÛA

)

Then, we distribute the geometric nodes evenly between the intersection point, the pressure-surface
separation point, the intersection point, the suction-surface separation point, and the trailing edge. Note
that if the suction-surface separation point is on the LEI tube, then the second intersection-point node
will occur after the suction-surface separation point, in the prior list.

There are, then NC = NP +NL + 1 nodes in a profile.

In order to build a kite from these 13 profiles, we apply some interpolation scheme to the ŷ points, evenly
distributed according to the kite-arc angle.

yinterp =
1

2
(1− cos(βXZb(nc)) + min(y(nc))

It is strongly suggested that a simple interpolation scheme for xinterp and zinterp be used. In the input
files generated here, linear interpolation is used.

It is further, strongly recommended that spline interpolation not be used, as there is a risk of generating
unexpected geometries near the leading edge - particularly in cases where the suction-surface separation
point shifts between the leading-edge tube and the canopy.
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Appendix B

Artificial Geometric-Mesh
Generation

It can occasionally be handy to have a method that will create an ”arbitrary” geometry with the notable
topological features of an LEI kite but without the complexities of an LEI kite interpolated from multiple
datafiles with assumed separation lines. This is especially true when debugging.

In order to test the VLM without a true matrix of surface-point locations, a geometric mesh can be
generated for an idealized kite. This artificial kite is built by placing LEI-profile kite sections along a
LEI centerline, so that the center of the LE tube of the profile sits on the LEI centerline, and the profile
is rotated in the body-fixed reference frame according to the angle of the LEI centerline in the spanwise
direction and the desired pitch of the section profile.

B.1 The Artificial LEI Centerline

The centerline is assumed to contain the origins of the cross-sectional reference frame coordinate system,
where b is the kite wingspan - for the TU Delft V2 kite b = 6.662m - and hK is the kite arc-height - for
the TU Delft V2 hK = 3.577m..

The ycntl points of the centerline can be distributed either linearly in the ŷ direction, or with a sine
distribution (ycntl =

b
2 sin(θX) so that the geometry is described with higher resolution near the tips of

the kite.

The xcntl points of the centerline are defined to allow for sweep in the downwards direction. This can
be:

• elliptical such that:

xcntl = xcntl(tip)−
xcntl(tip)

b/2

√

b2

4
− y2cntl

• linear with a given sweep angle γs, expressed in radians:

xcntl = |ycntl| tan γs

• no-sweep where by default, the centerline xcntl is linear with a sweep angle of γs = 0 rad.

The zcntl points of the centerline are defined to allow an elliptical centerline that covers some given
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arc-angle of an ellipse θXZ . Then:

βXZ = arcsin

(

b/2

RI tan
(
1
2θXZ

)

)

RO =
b/2

cos(βXZ)

zcntl,0 =
b/2

tan
(
1
2θXZ

)

zcntl = RI sin

(

arccos

(
ycntl
RO

))

− zcntl,0

θXZ

RI

βXZ

RO

b

hK

ẑ

ŷ

Figure B.1: The y-z relationship of the elliptical centerline.

B.2 The LEI-Profile Family

The points M, N, O, P, and S are defined according the 2D section geometry coordinates x̂′, ẑ′:

x′(O) = 〈0, 0〉
x′(M) = 〈−rLEI , 0〉
x′(N) = 〈x′cLEI , − z′cLEI〉
x′(P ) = 〈c− rLEI , 0〉
x′(S) =

rLEI
rCanopy − rLEI

〈−x′cLEI , z′cLEI〉

Applying Pythagoras, with the definition that a = c− rLEI − x′cLEI :

(rCanopy − rLEI)
2 = z′2cLEI + x′2cLEI

r2Canopy = z′2cLEI + a2

124



r
C
anopy

c− rLEI

r
C
anopy −

r
L
E
I

a
x′cLEI

c = 1

r
L
E
I

z′cLEI

P

N

O

S

M

Figure B.2: 2D LEI Kite Section Geometry

Solving these two expressions for x′cLEI and z′cLEI gives:

x′cLEI = − (−c2 + 2crLEI − 2r2LEI + 2rCanopyrLEI)

(2(c− rLEI))

z′cLEI =
(−c(c− 2rCanopy)

√

(c− 2rLEI)(c+ 2rCanopy − 2rLEI))

(2(c− rLEI))

Then, the 2D canopy follows the large-circle arc between points S and P as (x′g−x′cLEI)2+(z′g+z
′
cLEI)

2 =
r2Canopy, and the 2D LEI tube follows the small-circle as x′2g + z′2g = r2LEI .

O

S

A

rLEI
a

n

Figure B.3: Close up at connection between 2D LEI tube vortex lattice and canopy vortex lattice

From two known points x′(A) and x′(O). and a circle aboutO of radius rLEI , a Pythagorean identity and
the equation of the circle can be solved simultaneously to give the location of the tangential intersection
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point S can be found:

a =
√

((x′A − x′O)
2 + (z′A − z′O)

2)

n =
√

((x′S − x′A)
2 + (z′S − z′A)

2)

a2 = n2 + r2LEI

(x′S − x′O)
2 + (z′S − z′O)

2 = r2LEI

This determines the coordinates of x′(S) = 〈x′S , z′S〉:

x′(S) =

(
1

(x′2A − 2x′Ax
′
O + x′2O + z′2A − 2z′Az

′
O + z′2O)

)

〈r2LEIx′A − r2LEIx
′
O − 2x′Ax

′2
O + x′2Ax

′
O + x′Oz

′2
A + x′Oz

′2
O

+x′3O − rLEIz
′
A

√

(−r2LEI + x′2A − 2x′Ax
′
O + x′2O + z′2A − 2z′Az

′
O + z′2O)

+rLEIz
′
O

√

(−r2LEI + x′2A − 2x′Ax
′
O + x′2O + z′2A − 2z′Az

′
O + z′2O)− 2x′Oz

′
Az

′
O,

r2LEIz
′
A − r2LEIz

′
O + x′2Az

′
O + x′2Oz

′
O − 2z′Az

′2
O + z′2Az

′
O

+z′3O + rLEIx
′
A

√

(−r2LEI + x′2A − 2x′Ax
′
O + x′2O + z′2A − 2z′Az

′
O + z′2O)

−rLEIx′O
√

(−r2LEI + x′2A − 2x′Ax
′
O + x′2O + z′2A − 2z′Az

′
O + z′2O)− 2x′Ax

′
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Figure B.4: 2D Vortex Lattice Nodes Distribution over the LEI Tube

The LEI tube can be represented geometrically as a regular polygon, drawn clockwise to end with its
last cross-sectional meshpoint at the intersection point S:

x′
g(1 ≤ nj ≤ NP ) = x′

g(O) + rLEI〈cos(θΣ), − sin(θΣ)〉

where

θΣ = θP − θ0 − θshift

θP =
2π

NP
(np − 1)

θ0 =
π

2
− arctan

(−Sx
Sz

− 2π

NP

)

θshift =
π

NP
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In order to ensure that the LEI tube is a closed body, the first cross-sectional meshpoint (np = 1),
should then be moved onto the canopy. Depending on the relative dimensions of the geometry, the
distance moved is likely to be small wrt. the LEI tube radius. Consequently, it is proposed to keep the
x̂′ coordinate of the polygonal location, and calculate the ẑ′ coordinate according to the canopy circle
formula.

B.3 Assembly of the LEI-Profiles along the LEI Centerline

The chord of this idealized kite is assumed to vary between its root and tip values, croot and ctip
respectively. This variation can be:

• elliptical for an elliptical planform:

c(ycntl) = ctip + (croot − ctip)

√

1−
(
ycntl
b/2

)2

• linear for a linear chord distribution:

c(ycntl) = croot −
(croot − ctip)

b/2
|ycntl|

• cosine as the cosine of the span-wise location:

c(ycntl) = ctip + (croot − ctip) cos
(π

b
|ycntl|

)

To rotate a vector between the sectional reference frame and the body-fixed reference frame, two ro-
tational angles are needed. The pitch angle θR is given to vary linearly between the root and the tip
of the kite. The roll angle ψR is determined from the arc-tangent of the derivative of the centerline

ψR = arctan
(
∂zcntl

∂ycntl

)

. Note that no yaw angle is given, because body yaw asymetries are assumed to be

included into the inflow conditions.

A rotation matrix MR can be determined:

MR =





cos(θR) sin(θR) sin(ψR) sin(θR) cos(ψR)
0 cos(ψR) − sin(ψR)

− sin(θR) cos(θR) sin(ψR) cos(θR) cos(ψR)





To place a point P′ from the cross-sectional reference frame into the body-fixed reference frame:

P = 〈xcntl, ycntl, zcntl〉+MRP
′

B.4 Generation of an Idealized Kite Geometry

An idealized kite 2D cross-section is generated to test the above descriptions, with the following dimen-
sions:

Reference Symbol Value

Chord c 1
LEI Radius rLEI c/10
Canopy Radius rCanopy 5c

Note how the airfoil chord - despite being shifted forwards by the choice of coordinate origin - is still one,
as the LE sits at the leftmost point of the LEI tube, and the TE sits at the rightmost canopy collocation
point.
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Figure B.5: An Arbitrary Kite Profile Generated and Discretized According to the Described Rules

B.4.1 Matlab Geometrical Kite Generation and Discretization

Again, to test and demonstrate the above descriptions, a 3D kite is generated as an elliptical connection
of idealized LEI-profile sections. This idealized 3D kite is generated following the dimensions of the kite
TUD-V2.

Reference Symbol Value

Kite Arc-Span b 6.662m
Kite Arc-Height HK 3.577m
Sweep Angle γs 0rad
Chord at Root croot 2.724m
Chord at Tip ctip 1m
LEI Radius rLEI 0.1m
Canopy Radius rCanopy 5croot
Span-Wise Discretization Nodes NB 20
Polygonal LEI-Tube Discretization Nodes NP 5
Canopy Discretization Collocation Points NL 5

4

LEI Kite Geometry Case Discretization
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ŷ
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Figure B.6: An Arbitrary 3D Kite Generated and Discretized According to the Described Rules, with
and without Panel Normal Vectors Displayed
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B.4.2 Alternate Geometry Generation

For testing purposes, it can be useful to allow alterations to the standard geometry.

To flatten the ellipse in the ŷ, ẑ plane, the arc height can be set to zero. Some of these coordinate
transformations must be rewritten to prevent singularities:

∂f

∂z
= 0

ŷ′ = 〈0, 0, 1〉
ẑ′ = 〈0, − 1, 0〉

To flatten the canopy in the cross-sectional plane, the canopy radius can be set to be very large in
comparison to the chord. For practical purposes, three orders of magnitude rCanopy = 1000c is obviously
very large in comparison to chords between one and ten meters.

To remove the LEI tube, NP and rLEI can be set to zero.

A linear chord distribution can be generated by applying:

c(y) = croot − (croot − ctip)
|y|
1
2b

An elliptical chord distribution can be generated, with ctip is set as some small non-zero number (ie,
10−5) in order not to cause singularities in the tip vortex-filament influences:

c(y) = ctip + (croot − ctip)

√

1− (y − y0)2
(
1
2b
)2

FP2D: 2D Flat Plate Geometry

Altering the following dimensions from their default (kite) values and applying a linear chord distribution:

Reference Symbol Value

Chord at Root croot 1m
Chord at Tip ctip croot
Aspect Ratio AR 20
Kite Arc-Span b AR · croot
Kite Arc-Height HK 0m
Canopy Radius rCanopy 1010croot
Polygonal LEI-Tube Discretization Nodes NP 0

W12F: Warren 12 Planform with Flat Plate Profile Geometry

Altering the following dimensions from their default (kite) values and applying a linear chord distribution
to an odd number of chord-wise geometric meshpoints, we can generate a flat plate in a Warren 12 [4]
configuration.
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Reference Symbol Value

Kite Arc-Span b 2
√
2m

Kite Arc-Height HK 0m
Sweep Angle γs 0.9344rad
Chord at Root croot 1.5m
Chord at Tip ctip 1m
Canopy Radius rCanopy 1010croot
Polygonal LEI-Tube Discretization Nodes NP 0

W12F Geometry Case Discretization
ẑ
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Figure B.7: A Warren 12 Planform with Flat Plate Profile Geometry (W12F) Generated According to
the Described Rules

ELFW: Elliptical Planform with Flat Plate Profile Geometry

In order to test the effects of the free-wake, the lift coefficient can compared to the lift coefficient formula
given by McCormick [127] for an elliptical wing with wake deflection due to downwash.

Applying the same alterations as an FP2D geometry, including an elliptical chord distribution - and an
aspect ratio AR = 18 for comparison with the results of Sebastian & Lackner [157] - will give an ELFW
geometry.
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