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Multiple-Window Spectrogram of Peaks due to
Transients in the Electroencephalogram

Maria Hansson*, Member, IEEE,and Magnus Lindgren

Abstract—In this paper, peak matched multiple windows
(PM MW) were used to estimate the spectrogram of the elec-
troencephalogram (EEG). We focussed on the ability to estimate
frequency changes, and especially resolving close peaks. A peak
of known frequency was evoked in the EEG in a predetermined
time interval. The PM MW spectrogram was compared to the
commonly used single Hanning window and to weighted over-
lapped segment averaging in simulations and for real-data. The
PM MW were shown to give estimates with good resolution and
low variance.

Index Terms—Electroencephalogram, multiple windows, spec-
trogram, spectrum analysis, spectrum peaks, transient.

I. INTRODUCTION

T HE Electroencephalogram (EEG) is the graphic represen-
tation of spontaneous brain activity measured with elec-

trodes attached to the scalp. The amplitude is in the range of
10–50 V and the frequency content of the scalp-recorded EEG
is assumed to be below 30 Hz.

The frequency content is usually estimated by succes-
sively averaged subspectra from different time epochs. Welch
introduced a method where samples were segmented into
overlapping sequences and each sequence was windowed, [1].
The algorithm, named weighted overlapped segment averaging
(WOSA), has been used in a very large number of applications,
including spectrum estimation of EEG. The overlap is often
50%, resulting in small correlation between the averaged
subspectra. The drawback of this method is that time resolution
is degraded due to the averaging. The variance in the estimate
is also large if the frequency properties of the EEG change.
Some events of short duration will be difficult to detect and the
onset and offset time of those events will be misinterpreted.
Such transient frequency changes are often of great interest.
In pharmacodynamic studies, for example, it might be crucial
to pin-point the start of an arousing effect. Also, event-related
changes in the spectrogram are of interest in cognitive studies,
[2]. In the time-domain, single-sweep analysis of event-related
potentials has been used to describe stimulant effects, [3]. For
development of new preparations of drugs with reasonably
well-known effects in the frequency domain, such as nicotine,
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[4], [5], the possibility to pin-point effect onsets is of great
interest.

Better estimation of transient events obviously calls for
improved time resolution. There are two main approaches to
obtain this. The first would be to shorten the window length,
which however would cause degraded frequency resolution.
The alternative is to reduce the number of windows included
in the averaging procedure. The variance then increases during
time intervals where changes in the EEG spectrum are small.
To reduce the variance estimate, Thomson has proposed the use
of multiple windows, [6]. With certain constraints on data, e.g.,
locally white spectrum, the window-shapes are designed to
give uncorrelated subspectra. The advantage of this method is
that the fully overlapping windows have different shapes. This
method has been used to estimate the multiple window spectro-
gram for EEG, [7]. However, Waldenet al., [8], has shown that
for a varying spectrum, e.g., a spectrum that includes peaks,
the performance of the Thomson multiple-window method
deteriorates due to cross-correlation between the subspectra.
When estimating transient peaks in the EEG, the multiple
windows should be designed to give uncorrelated spectra for
a peaked spectrum, which will give lower variance in the re-
sulting spectrum. In [9], the multiple windows are given as the
Karhunen–Loève (KL) basis functions of the covariance matrix
of a predefined peaked spectrum. The KL basis functions give
uncorrelated spectra at the peak frequency. They are, however,
not optimal windows with regard to leakage. To reduce leakage
from frequencies outside the main-lobe width, the side-lobes
are suppressed using a penalty function outside a predefined
frequency interval. The eigenvalue problem for the solution of
the KL basis functions is expanded to a generalized eigenvalue
problem where the covariance matrix of the penalty function
is included. The windows, named Peak Matched Multiple
Windows (PM MWs) can be designed for a certain peak shape
and frequency resolution. The PM MW spectrogram is used
in this paper, with windows designed for the peak shapes of
the EEG spectrum. The computational complexity of the new
method is about the same as the WOSA algorithm.

Section II defines the spectrogram and the windows used in
the analysis. In Section III simulations and variance analysis
are presented. Section IV contains examples of real-data and
Section V presents the conclusions.

II. SPECTRUMANALYSIS

The multiple window spectrogram of a real-valued
random process , where is the
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total data length, is defined by

(1)

It is assumed that the data is stationary for thesamples in

omitting index . Equation (1) is a sum of spectrograms
obtained by using the data windows

. The parameter is the step size of the data
and is the number of points in the discrete Fourier transform.

With one window, , the variance of the spectrogram
is too large to be useful in frequency analysis, as the variance
is . With more than one window, the variance is re-
duced if the correlation between the windowed periodograms
(subspectra) from the windows and , is small for all
frequency values . There are different ways to achieve small
correlation between the subspectra.

A. WOSA

In the WOSA algorithm, [1], the overlap of the sequences
can be varied but it has been shown that 50% overlap is a good
choice. The windows are then defined as

(2)

where often is a Hanning
window and the number of windows is the largest in-
teger where . With these windows
the data samples are divided into overlapping sequences

and
each sequence is windowed with the same data window. It is
assumed that the random samples of data giveuncorrelated
subspectra which are then averaged.

B. Peak Matched Multiple Windows, PM MW

The PM MW, [9], are designed to give low correlations be-
tween subspectra when the spectrum of the random process in-
cludes peaks and notches, i.e., a spectrum corresponding to a
process with large dynamics. The solution with respect tois
given by the generalized eigenvalue problem

(3)

where the eigenvalues are ordered in decreasing magnitude,
. The maximized power is given by the

windows , corresponding
to the largest eigenvalues. The Toeplitz covariance
matrix has the elements

, where is the covariance function of a de-
sired peaked spectrum process ,
and denotes the convolution operator. The choice of desired
peaked spectrum corresponding to is

(4)

which gives the peak (0 dB) and
dB. The covariance matrix corresponds to the

penalty frequency function

(5)

which is used to reduce the leakage from the side-lobes outside
the frequency interval , and where the value of
indicates the suppression factor. Minimization of mean square
error (mse) is fulfilled if is weighted with , i.e.,

, which is used in this paper, [10].
The parameters of the PM MW are not sensitive to the shape

of the spectrum. However, for an optimal detection of peaks the
windows should be designed to fit the application. An average
of spectra can be used to select the parameterto obtain a good
fit between the desired spectrum and the original spec-
trum. In order to minimize leakage from frequencies of large
power, the bandwidth should not be too wide. For spectra
with large power variations in small frequency intervals 2 Hz
is recommended. For smoother spectra the bandwidth can be
three or four times larger. The choice of the suppression factor

outside this bandwidth is determined by the magnitude of
the power variations in the spectrum. Usually 10–30 dB
is recommended. The combination of parameters will decide
the number of windows, which in turn influences the variance
properties of the algorithm. Larger bandwidthand smaller
suppression factor will increase the number of windows, re-
sulting in smaller variance.

To illustrate the frequency shape of the different choices of
parameters, a few examples are given in Fig. 1. The window
spectra are given as where is
the Fourier transform of the window . The frequency scale
is given in hertz for the sampling frequency 64 Hz. In
Fig. 1(a) the PM MW spectra are depicted for 30 dB and
different examples of the suppression factorand bandwidth

. The solid and dashed lines represent windows where the sup-
pression factors are 20 dB and 0 dB, respectively. The
shape of the spectrum is peaked which will contribute to the re-
solving of close peaks. The dash-dotted line is the window spec-
trum with a main-lobe width 2/64. This window spectrum
has a shape similar to the Hanning window but the number of
windows is 3. This will reduce the variance in the spec-
trum estimate compared to the single Hanning window (dotted
line). In Fig. 1(b), the dashed line represents the window spec-
trum of the WOSA for 3 windows. The main-lobe width is
4 Hz and the shape of the spectrum will not help resolving close
peaks. With fewer windows (solid line) or longer total window
(dash-dotted line), the main-lobe width will be reduced.

III. SIMULATIONS

The purpose of this section is to show that the PM MWs
can increase the time resolution further with preserved vari-
ance properties, compared to the WOSA algorithm. The
simulated signal is created as a time-variable autoregressive
moving average (ARMA)-process where the parameters of the
process change at certain time points. The ARMA-process is
defined as shown in (6) at the bottom of the next page, where
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(a) (b)

Fig. 1. (a) Window spectrum, (solid line= PM MW,M = 128,I = 4,B = 4/64,C = 30,G = 20; dashed line}= PM MW,M = 128,I = 4,B = 4/64,
C = 30,G = 0; dash-dotted line}= PM MW,M = 128,I = 3,B = 2/64,C = 30,G = 20; dotted line= Hanning window,M = 128); (b) Window spectrum,
solid line}=WOSA,M = 128,I = 2; dashed line=WOSA,M = 128,I =3; dash-dotted line=WOSA,M = 192,I = 3; dotted line= Hanning window,
M = 128).

TABLE I
PARAMETERS OF THESIMULATED TIME-VARIABLE ARMA-PROCESS

64 Hz and is a normalization factor which gives
constant total power. The parameters are presented in Table I
for the three different time epochs, 1, 2, 3, where the
different processes are active during the time periods 3
s to s, 0 s to 2 s and 2 s to 7 s, respectively. Notice
that . An example of a simulated signal is
shown in Fig. 2(a). Fig. 2(b)–(d) shows the amplitude spectra
of the infinite impulse response-filters. Fig. 2(b) is dominated

by delta and theta activity, an EEG from a slightly drowsy
subject with closed eyes. Fig. 2(c) shows a spectrum where
the alpha activity has increased and a 9-Hz flicker has been
introduced. This gives two close peaks, which call for good
frequency resolution properties of the spectrum estimation al-
gorithms. In Fig. 2(d), the spectrum is again more dominated
by theta and the alpha peak is reduced. The introduced 9-Hz
signal is not present in this time interval.

(6)
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(a)

(b) (c) (d)

Fig. 2. Simulated data where the process parameters change att = 0 s andt = 2 s; (a) An example of a data sequence; (b) ARMA1 (t = �3–0 s); (c) ARMA2
(t = 0–2 s); (d) ARMA3 (t = 2–7 s).

A. Calculation of Bias and Variance

The bias and variance can be calculated since the true
ARMA-spectrum is known. A comparable measure for dif-
ferent frequencies is obtained if the bias and variance are
divided by , and , respectively. This
implies that small valued estimates are related in the same way
as large valued estimates. Bias is defined as

Bias (7)

where the expected value of the spectrogram estimate is calcu-
lated to be

(8)

In (8), is
the Fourier transform matrix. The variance of the spectrogram
estimate is given by all combinations of the different subspectra
covariances

(9)

Denoting and assuming to be Gaussian
gives the covariance as

(10)

according to Waldenet al., [8].
The covariance matrix will be symmetric and Toeplitz in

the stationary case, i.e., when the data samplesis the result of
only one process. In the nonstationary case

(11)

where and is resulting from different processes, the matrix
is defined by the real-valued matrix

(12)
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Fig. 3. Peaks of the expected values of the spectrogram for different methods,(solid line= E[Ŝ(n; k)]; dotted line= S(n; k)).

which is a non-Toeplitz, symmetric matrix including the
and Toeplitz covariance matrices

and , and the cross-covariance matrices

...
...

(13)

and . The transient effects in the changes of
processes are assumed to be small.

B. Evaluation

The evaluated methods should be able to resolve all the peaks
of the spectra and especially the alpha peak and the introduced
signal at 9 Hz, which are quite close to one another.

For the PM MWs the desired spectrum parameter 30
and the penalty function parameter 20 dB. The length of
the windows is 128 which corresponds to 2 s of data with
the sample frequency 64 Hz. Three different predefined
peak shapes are tested by defining 4/64, 3/64, and 2/64
which gives a number of 5, 4, and 3 multiple windows, re-
spectively. The methods are named PM MW128, PM MW128
and PM MW128.

For the WOSA method, different total window lengthsare
used as well as different numbers of windows. The combi-
nations are named WOSA . In the case of WOSA192and
WOSA256 it is interesting to note that the length of the Han-
ning windows is 128 in both cases, which implies that

the resolution of these two algorithms is the same as the single
Hanning window, Hanning128.

The resolutions of the different methods are compared in
Fig. 3. The dotted lines represent the true frequency location of
the peaks of the spectra in Fig. 2. The four peaks of the process
ARMA 1 are plotted as dotted lines for s. Between
0 and 2 s the dotted lines are changed to the pattern of the
process ARMA 2 which has two close peaks at 10 Hz. These
two peaks are represented as the two parallell lines at 10 Hz
between 0 and 2 s. For s the spectrum peaks are located
as for the process ARMA 3. The solid lines represent the
frequency location of the peak values of the different methods.
The peak values are found from the calculation of the expected
values, (8), and by searching the zero-crossing of the difference

for each time sample.
The Hanning128 has the resolution needed to estimate the

close peaks of ARMA 2 which is active during the time period
0–2 s. The PM MW methods have about the same performance
as Hanning128 and it can be concluded that the PM MW method
is not sensitive to choice of parameters as long as the desired
peaked spectrum is reasonably similar to a total average EEG
spectrum. The WOSA128, WOSA192 , and WOSA256 all
fail in resolving the peaks at 9 Hz and 10.2 Hz. The reason is
that the windows are too wide and the two peaks become one.
The WOSA192 and WOSA256 have the same performance
as Hanning128 for the stationary case. The total window length
is 3 and 4 s, respectively, instead of 2 s, which means degraded
time resolution. This is seen as certain frequencies last too long
and start too early, especially for the WOSA256. The ability
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Fig. 4. Calculated expected values of spectrogram estimates for different methods for two time points: Time= �2.5 s (upper row) and 1 s (lower row),
(solid line= E[Ŝ(n; k)]; dash-dotted line= E[Ŝ(n; k)] � std[Ŝ(n; k)]; dotted line= S(n; k)).

(a)

(b) (c) (d)

Fig. 5. (a) Average of MSE forf = 0–12 Hz; (b) normalized bias; (c) normalized variance; (d) normalized mse,(solid line= PM MW, dashed line=WOSA ;
dashed-dotted line= WOSA ; dotted line= Hanning window).
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Fig. 6. Real-data examples from channel Pz where a 9-Hz flickering light is introduced during the time interval between the dotted lines.

Fig. 7. Spectrum at different time points of real-data 1.

to track a changing frequency will also be impaired, e.g., 1 Hz
changing to 2 Hz and back again. If the lengthof the data
included in the WOSA is increased beyond 4 s to enlarge the
number of windows in the estimate with preserved resolution,

the algorithm will no longer be able to track a short frequency
change, e.g., 1 Hz to 2 Hz.

From now on we study four of the methods, which are able
to resolve the close peaks at 9 Hz and 10.2 Hz and which have
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Fig. 8. Spectrum at different time points of real-data 2.

sufficient time resolution to track the change from 1 Hz to 2 Hz.
For reasons of simplicity we name them as follows: The Han-
ning128 is Hanning, PM MW128is PM MW, WOSA192 is
WOSA and WOSA256 is WOSA . In Fig. 4, the expected
value is depicted as the solid line for the four methods and for
two time points: Time 2.5 and 1 s. The expected value
plus and minus one standard deviation is depicted as the dash-
dotted line, and the true spectrogram is the dotted line. The ex-
pected values and standard deviations of the PM MW, WOSA
and WOSA are similar, but for the Hanning spectrogram the
standard deviation is , which makes the lower bound
equal to zero and the upper bound . The first case in
the upper row is when the low-frequency dominant spectrogram
is stationary. The second case in the lower row is in the middle
of the time period 0–2 s when the 9-Hz flicker is present. These
snap-shots in time of the spectrogram show that the PM MW
have a shape similar to those of the Hanning window, WOSA
and WOSA. The variance is somewhere between the variances
of WOSA and WOSA. The time resolution for the PM MW

is, however, better than for the WOSA
and WOSA .

The mses are normalized with the squared expected value for
every frequency value. The average over the frequencies 0–12
Hz of this measure is shown in Fig. 5(a). The WOSAmethod
(dash-dotted line) has the lowest value for the stationary part of
the signal. The window length is however 4 s, which makes the
transient start shortly after2 s and end close to 4 s. The solid
line is the PM MW method, which has a slightly larger mse in
the stationary region, but the transient is shorter as the window
length is 2 s, which is the same as that given by the Hanning
window (dotted line) and shorter than both the WOSA(3-s
average) and the WOSA(4-s average).

In Fig. 5(b)–(d), the normalized bias, variance, and mse of the
peak frequency 9 Hz is plotted for the four different methods. In
the stationary part the PM MW method (solid line) has a larger
bias than the Hanning window (dotted line), WOSA(dashed
line) and WOSA (dash-dotted line), but as the variance is low,
the mse of the PM MW method is about the same as for the
WOSA and WOSA methods.

IV. REAL DATA EXAMPLES

To show the performance for real-data, three EEG samples
from channel Pz were studied. In all three samples, a 9-Hz flick-
ering light (Grass Photic stimulator Model PS22C) was intro-
duced at different time points. The light stimulation lasted be-
tween 1 and 2 s. Data was recorded using a Neuroscan system
with a digital amplifier (SYNAMP 5080, Neuro Scan, Inc.).
Amplifier bandpass settings were 0.3 and 50 Hz. The sample
rate was 256 Hz. EEG was converted into 2.0-s epochs, and
subsequently exported from the Neuroscan system for further
analysis. The data was then downsampled to a sample rate of 64
Hz.

The subject was supine with closed eyes on a bed in a silent
laboratory. Ambient light was dimmed. At irregular intervals,
flickering light was flashed at the subject from a distance of
approximately 1 m.

The data samples are seen in Fig. 6.
The four methods, PM MW, WOSA, WOSA , and Hanning

window were tested on the real-data sequences and the spec-
trum estimates are depicted for different time points. The idea
of depicting the result of these four methods is to show that the
PM MW behave similarly to the WOSAand WOSA in the
stationary time intervals. In the transient time intervals, when



292 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 48, NO. 3, MARCH 2001

Fig. 9. Spectrum at different time points of real-data 3.

the flickering light was flashed, the goal is to show that the PM
MW behave similarly to the Hanning window from a time res-
olution viewpoint. In Fig. 7, the result of the first sequence is
shown. The Hanning window has spectrum estimates with large
variations over the frequency scale. This is caused by the large
variance in the method and is not relevant to the transient fre-
quency changes. At time points 4.875 and 12.25 s, the
three methods, PM MW, WOSA, and WOSA, have similar
spectra which confirm the reliability of these three methods in
stationary intervals. The 9-Hz flicker starts at 6.8 s, which means

that the frequency values at 9 Hz should be fairly small in the
interval preceding that time-point. This is true for the Hanning
window and the PM MW method, which is to be expected as
these methods have a better time resolution than the WOSA
and WOSA. The WOSA shows a 9-Hz peak already at
5.875 s and the WOSAat 6.125 s. This is not a desir-
able result. The same behavior is seen at 8.5 s where both
WOSA and WOSA show a 9-Hz peak.

In the second data example, the 9-Hz flicker starts at
10.4 s and stops at 12.2 s. The result is seen in Fig. 8 where
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time samples from 7–12 s are shown. From 7 s to 11 s a
rise of delta activity is seen. All methods are comparable for this
slow change over time. A faster change in theta activity at about
4 Hz can also be seen. This change does not show as clearly for
the WOSA as it does for the other methods. The drawback of
the WOSA is that it cannot detect fast changes with time. Theta
activity falls back again when the flickering starts at 10.4 s.
The 9 Hz is clearly visible at 11 s for all methods.

In the third example, the 9-Hz flickers starts at 4.7 s and
stops at 5.7 s. The spectrum at 2.125 s and 3.375 s,
has similar appearance for all methods. This is a stationary time
interval and all methods are similar from a time resolution view-
point. The largest difference is seen for the Hanning window
as the variation over frequencies are large. As these changes
are caused by the large variance of the method, these spectrum
changes are not relevant. The 9-Hz peak is visible in the results
of all methods at 4.75 s and is no longer seen for the Han-
ning window and the PM MW at 6.875 s, which is to be
expected as half the window length is 1 second. For the WOSA
methods it takes about 1 s more before the peak is gone. It is
also interesting that the start of the flicker initiates alpha ac-
tivity. This is seen in Fig. 9 especially around 5.5 s where
a double peak at 9 and 10 Hz is seen more or less clearly for
the different methods. The alpha activity lasts somewhat longer
than the introduced 9 Hz, then the spectrum is again dominated
by delta and theta activity.

V. CONCLUSION

The ability to estimate transient peaks in the EEG has been
investigated using the multiple window spectrogram. The mul-
tiple windows were designed to give uncorrelated spectra at the
peak frequencies which result in low variance estimates. The
proposed method is not very sensitive to the choice of parame-
ters as long as the desired peaked spectrum used for the window
estimation has a shape similar to the average EEG spectrum. For
the purposes of this paper, a frequency resolution of 1–2 Hz was
desired. The bandwidth of the desired spectrum was chosen ac-
cordingly. When a lower resolution is sufficient, a wider band-
width can be chosen. The larger number of windows will result
in a reduced variance. The time- and frequency-resolution of the
windows can be designed for specific applications. Specific hy-
potheses about frequency changes in given time segments can
thus be tested through dedicated windows. For instance, in nico-
tine studies it can be of interest to study changes in the sensitive
alpha 2 band (10–12 Hz), and corresponding windows can be
applied to EEG data. The different spectrum shapes are robust,
which means that they can be used across subjects in a clinical
study. Simulations show that the PM MWs give smaller variance
and better time resolution than the commonly used single Han-
ning window and the WOSA method for the same frequency
resolution. The real-data examples confirm that the proposed
method could be used in applications where transient peaks are
present in the EEG and where both time and frequency resolu-
tion is important.
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