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ABSTRACT

Scientists from nearly all disciplines face the problem of simultaneously evaluating many 

hypotheses. Conducting multiple comparisons increases the likelihood that a non-negligible 

proportion of associations will be false positives, clouding real discoveries. 

Drawing valid conclusions require taking into account the number of performed statistical 

tests and adjusting the statistical confidence measures. Several strategies exist to overcome the 

problem of multiple hypothesis testing. We aim to summarize critical statistical concepts and 

widely used correction approaches while also draw attention to frequently misinterpreted notions 

of statistical inference. 

We provide a step-by-step description of each multiple-testing correction method with 

clear examples and present an easy-to-follow guide for selecting the most suitable correction 

technique. 

To facilitate multiple-testing corrections, we developed a fully automated solution not 

requiring programming skills or the use of a command line. Our registration free online tool is 

available at www.multipletesting.com and compiles the five most frequently used adjustment 

tools, including the Bonferroni, the Holm (step-down), the Hochberg (step-up) corrections, allows 

to calculate False Discovery Rates (FDR) and q-values. 

The current summary provides a much needed practical synthesis of basic statistical 

concepts regarding multiple hypothesis testing in a comprehensible language with well-illustrated 

examples. The web tool will fill the gap for life science researchers by providing a user-friendly 

substitute for command-line alternatives. 
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INTRODUCTION

Technological innovations of the past decades enabled the concurrent investigation of 

complex issues in biomedical sciences and increased their reliance on mathematics. For example, 

high-throughput omics-based technologies (e.g., genomics, transcriptomics, proteomics, 

metabolomics) involving hundreds or thousands of markers offer tremendous opportunities to find 

associations with the phenotype. Analyzing a massive amount of data by simultaneous statistical 

tests, as in genomic studies, is a double-edged sword. Conducting multiple comparisons increases 

the likelihood that a non-negligible proportion of associations will be false positives while also 

increases the number of missed associations (false negatives) (1). The problem is not exclusive to 

biomedical sciences; researchers from nearly all disciplines face the problem of simultaneous 

evaluation of many hypotheses, where the chance of incorrectly concluding at least one significant 

effect increases with each additional test. Drawing valid conclusions require taking into account 

the number of performed statistical tests and adjusting the statistical confidence measures. 

Several strategies exist to overcome difficulties when evaluating multiple hypotheses. Here 

we review the most frequently used correction approaches and provide an easy-to-follow guide to 

facilitate the proper selection. We also summarize the basic concepts of statistical tests, clarify 

conceptual differences between exploratory and confirmatory analyses, and discuss problems 

associated with the categorical interpretation of p-values. 

To facilitate the interpretation of multiple hypothesis tests, we established a quick and user-

friendly solution for automated multiple testing correction that does not require programming 

skills or the use of a command line. Our tool available at www.multipletesting.com allows 

choosing from the most frequently used multiple-testing correction methods, including the 

Bonferroni, the Holm (step-down), the Hochberg (step-up) adjustments, calculation of False 

Discovery Rates (FDR), and q-values. 

Basic concepts of statistical inference

In a formal scientific method, the null hypothesis (H0) is the one we are seeking to 

disprove, representing no differences in measurements between two groups (e.g., there is no effect 

of a given gene on a trait of interest). The null hypothesis is compared with a statistical test to the 

alternative hypothesis (H1), the antithesis of the null, assuming differences between groups (e.g., 
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there is an association between a gene and a phenotypic trait). The procedure results in a statistical 

confidence measure, called a p-value, compared to the level of significance, α. When p is smaller 

than the confidence threshold α, the null hypothesis is rejected with a certain confidence, but the 

rejection does not "prove" the alternative hypothesis. If the p-value is higher than α, the null 

hypothesis is not rejected, although it does not mean the null is "true", only there is not enough 

evidence against it. 

Four outcomes are possible of a statistical test: the test rejects a false null hypothesis (true 

positives), the test rejects a true null (type I error or false positives), the test does not reject a true 

null (true negatives), or the test does not reject a false null (type II error or false negatives). The 

level of significance, α, controls the level of false positives. Historically, α values have been set at 

0.05 (2); this is the per comparison error rate. One can set α values at a more conservative level to 

further decrease the type I error, such as at 0.01. However, there will be a corresponding increase 

in a type II error, the failure to detect a real effect, therefore it is advisable to strike a balance 

between the two types of errors.

Instead of representing the metric of "truth" or "significance", in reality, a p-value of 0.05 

means that there is 5% chance to get the observed results when the null hypothesis is true, when 

statistical results may not be translated into biologically relevant conclusions. For example, if we 

measure 20 different health parameters at p = 0.05 in a patient where all the nulls are true, one out 

of 20 will statistically deviate from the normal range, but without biological relevance (false 

positive). Following the same logic, when 20,000 genes are analyzed between two samples, the 

expected number of false positives increases to a substantial 1000. The elevated number of 

simultaneous statistical tests increases the danger that the number of irrelevant false positives 

exceeds the number of true discoveries; therefore multiple-testing correction methods are required. 

Misinterpretation of statistical significance 

A great concern is that the p-value is frequently treated as a categorical statistical measure, 

also being reflected in reporting of the data: instead of being disclosed with precision (e.g. p = 

0.081 or 0.8), p-values are described as categorical inequalities around an arbitrary cut-off (p > 

0.05 or p < 0.05). The greatest concern is that results below the statistical threshold are frequently 

portrayed as "real" effects, while statistically non-significant estimates are treated as evidence for 

the absence of effects (3). Such dichotomization represents a severe problem in the scientific 
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literature: findings interpreted as "real" are frequently inflated in reports, privileged in 

publications, and even may bias the initial choice of data and methods to reach the desired effects 

(3). Nevertheless, p-values are not to be banned because unfounded claims could promote bias, 

but more stringent thresholds are needed, and clear rules should be set before data collection and 

analysis (4). 

Conceptual differences between confirmatory and exploratory hypothesis testing

One always must consider the test statistics when interpreting p-values. If the sample size 

is too large, small and irrelevant effects might produce statistically significant results. Small 

sample size or large variance may, on the contrary, can render a remarkable effect to be 

insignificant. 

Another principle is to differentiate between an exploratory and confirmatory hypothesis 

test and the resulting p-values. As their name suggests, exploratory analyses explore novel 

information within a data set to establish new hypotheses and novel research directions. To fulfill 

this purpose, all comparisons should be tested, followed by an appropriate adjustment of p-values. 

Consequently, exploratory analyses are suitable to generate hypotheses but do not "prove" them. 

Confirmatory analyses, on the contrary, are testing "a priori" identified, specific 

hypotheses, intending to confirm or reject a limited number of clearly articulated assumptions, 

where significance levels are also established beforehand (5). For example, to promote best 

practices in clinical sciences, protocols and hypotheses of clinical studies are required to be 

registered ahead, e.g., at ClinicalTrials.gov. When testing multiple hypotheses, the p-values should 

be corrected in confirmatory analyses as well. 

To choose a suitable correction method, one must consider the exploratory or confirmatory 

nature of the conducted statistical tests. A decision tree depicted in Figure 1 helps to guide and 

refine the selection of appropriate correction tools for exploratory vs. confirmatory types of 

statistical analyses. 

Methods of multiple-testing corrections
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The common denominator across the various methods dealing with multiplicity is that all 

of them reject the null hypothesis at the smallest p-values; still, there is a difference in the number 

of rejected hypotheses. 

Single-step methods for multiple-testing correction

In single-step corrections, equivalent adjustments are made to each p-value. The simplest 

and most widely used correction method is the Bonferroni-procedure, which accounts for the 

number of statistical tests and does not make assumptions about relations between the tests (6-8). 

The Bonferroni-procedure aims to control the family-wise error rate (FWER), referring to the 

probability of committing at least one type I error amongst multiple statistical analyses. Family-

wise error rates thus allow very few occurrences of false positives (Supplemental Table 1).

There are two approaches to calculate the adjusted p-values with the Bonferroni-procedure. 

According to the first method, one may divide the per analysis error rate by the number of 

comparisons (α/n). Only p-values smaller than the adjusted p-value would be declared statistically 

significant. For example, if we have five measurements and α=0.05, only p-values < 0.01 (five 

divided by 0.05) would be reported significant.

According to the second method, the p-value of each test (pi) is multiplied by the number 

of performed statistical tests (n): npi. If the adjusted p-value is lower than the significance level, α 

(usually 0.05), the null hypothesis will be rejected, and the result will be significant (Supplemental 

Table 1). For example, if the observed p-value is 0.016 and there are 3 measurements with α = 

0.05, the adjusted p-value would be 0.016 * 3 = 0.048, which is less than 0.05, and the null 

hypothesis would be rejected. 

Another well-known one-step correction method is the Sidak-correction (9, 10) (for the 

formula and explanation, see Supplemental Table 1). The method assumes that the performed 

tests are independent of each other, thus may not be appropriate for every situation. Moreover, 

when facing a large number of tests, the results of the Sidak-correction can be reasonably 

approximated with the Bonferroni-adjustment (11).

The Bonferroni-adjustment works well in settings where the number of statistical tests does 

not exceed a couple of dozens to a couple of hundreds, as in candidate gene studies or genomewide 

microsatellite scans, respectively. Nevertheless, the Bonferroni-correction is the most stringent 
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method with the major disadvantage of over-adjusting p-values, erroneously increasing the 

probability of false negatives, and overlooking positive signals when evaluating a large number of 

tests. For example, in genomic studies testing for 40,000 genes, the adjusted p-value would 

decrease from p = 0.05 to the impossibly low p = 0.00000125. Novel statistical approaches are 

available to avoid over-adjustment.

Sequential methods for multiple-testing correction

The Holm-correction, also called the step-down method, is very similar to the Bonferroni-

adjustment with a similar family-wise error rate, but is less conservative and applied in stages (12). 

The p-values are ranked from the smallest to largest; then, the smallest p-value is multiplied by 

the number of all statistical tests. If the adjusted p-value is less than α (usually 0.05), the given test 

would be declared statistically significant and removed from the pool of investigated p-values. The 

sequence will be continued in this fashion (with the adjustment of n-1 corresponding to the rank) 

until no gene is significant. 

For example if we conducted n = 500 statistical tests with the three smallest p-values being 

0.00001, 0.00008, 0.00012, and α = 0.05, the following adjustments are concluded:

Rank#1: 0.00001 * 500 = 0.005, 0.005 < 0.05, the test is significant, reject the hull hypothesis

Rank#2: 0.00008 * 499 = 0.0398, 0.0398 < 0.05, the test is significant, reject the hull hypothesis

Rank#3: 0.00012 * 498 = 0.0596, 0.0596 > 0.05, the test is not significant, and none of the 

remaining p-values will be significant after correction.

The Hochberg-correction, also called the step-up method, is based on a reverse scenario 

when the largest p-value is examined first. Once a significant p-value is identified, all the 

remaining smaller p-values would be declared significant (13). For example, if n = 500, the largest 

p-values are 0.0015, 0.00013, 0.00001, and α = 0.05, the following adjustments are concluded:

Rank#1: 0.0015 * 500 = 0.75, 0.75 > 0.05, the test is not significant

Rank#2: 0.00013 * 499 = 0.0649, 0.0649 > 0.05, the test is not significant

Rank#3: 0.00001 * 498 = 0.0498, 0.0498 < 0.05, the test is significant, reject the hull hypothesis, 

and all of the remaining p-values will be significant after correction.
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Generally, the Hochberg-correction retains a larger number of significant results compared 

to the one-step and Holm-corrections. The Holm- and Hochberg-corrections are beneficial when 

the number of comparisons is relatively low while the effect rate is high, but are not appropriate 

for the correction of thousands of comparisons.

Controlling the False-Discovery Rate (FDR)

The widespread application of RNA-seq and microarray-based gene expression studies 

have greatly stimulated research on the problem of massive hypothesis testing. Controlling the 

False-Discovery Rate described by Benjamini-Hochberg provides a right balance between 

discovering statistically significant effects and limitations by false positives and is the least 

stringent of all the included methods (14). The FDR is particularly appropriate for exploratory 

statistical analyses testing multiple hypotheses simultaneously, used extensively in fields like 

genetics where some true effects are expected to be seen among the vast number of zeros, such as 

when assessing treatment effects on differential gene expression. 

The FDR is calculated as the expected proportion of null hypotheses falsely rejected among 

all tests rejected, thus calculating the probability of an incorrect discovery. To clarify the 

distinction between the error rate and FDR, the error rate of 0.05 means that 5% of truly null 

hypotheses will be called significant on average. In contrast, FDR controlled at 5% means that out 

of 100 genes considered statistically significant, five genes will be truly null on average. 

In practice, the procedure is based upon the ranking of p-values in ascending order after 

which each individual p-value's Benjamini-Hochberg critical value is calculated by dividing the 

p-value's individual rank with the number of tests, multiplied by the False Discovery Rate (a 

percentage chosen by the researcher) (Supplemental Table 1). For example, in case of n = 100 

statistical tests, for the smallest p-value 0.0001, the critical value at FDR = 5% is calculated as 

1/100 * 0.05 = 0.0005. Since the p-value 0.0001 < 0.0005, the test is significant at 5% FDR. 

For the second smallest p-value, the critical value would be calculated as 2/100 * 0.05 = 

0.01. With the Benjamini-Hochberg procedure, we are searching for the highest p-value that is 

smaller than the critical value. All the p-values lower than the identified p-value would be 

considered significant.
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Various alternative methods have been developed to provide a more precise estimation of 

the FDR (15). A modification has been proposed by Storey, called the positive FDR (pFDR), 

assuming that at least one positive finding has occurred (16). Storey's method adopts a rank scheme 

similar to the Benjamini-Hochberg procedure, except it introduces the estimated proportion of true 

nulls (π0) (for the formula, see Supplemental Table 1). π0 can be estimated as 2/N times the 

number of p-values greater than 0.5 (17) or twice the average of all p-values (18, 19). The pFDR 

controls the expected proportion of false positives in each experiment, and since the probability of 

R > 0 is ~ 1, in most genomics experiments, pFDR and FDR are very similar. 

The Benjamini-Hochberg method is sufficient for most cases, especially when tests are 

independent and p-values are uniformly distributed. Simulations suggest that multiple testing 

correction methods perform reasonably well even in the presence of weak positive correlations, 

which is common in genetic studies (20, 21). However, to incorporate the presence of associations, 

Benjamini and Yekutieli developed a refinement that controls the FDR under arbitrary dependence 

assumptions by introducing a function of the number of tests depending on the correlation between 

tests (21) (Supplemental Table 1). 

When the assumption of independence among p-values is not fulfilled, another method 

developed by Fernando et al. can control the proportion of false positives (PFP) among all positive 

test results. To estimate PFP, it is necessary to calculate the proportion of true nulls. The method 

is similar to FDR and pFDR calculations, but PFP does not depend on the correlation among tests 

or the number of tests (Supplemental Table 1) (22). 

The local False Discovery Rate

The FDR introduced by Benjamini and Hochberg is a global measure and can not assess 

the reliability of a specific genetic marker. Contrarily, the local FDR can quantify the probability 

of a given null hypothesis to be true by taking into account the p-value of individual genetic 

markers, thus assessing each marker's significance. The method is particularly suitable if the 

intentions are to follow up on a single gene. However, the method requires an estimation of true 

nulls (π0) and the distribution under the alternative hypothesis (23), and in general, it is quite 

difficult to estimate precisely. 

The q-value
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The q-value is the FDR analog of the p-value in multiple hypothesis testing; adjusted p-

values after FDR corrections are actually q-values. The q-value offers a measure of the strength of 

the observed statistic concerning the FDR; it is defined as the minimum FDR at which the test 

would be declared significant; in other words, it provides the proportion of significant features that 

turn out to be false leads (Supplemental Table 1) (16, 17). The estimated q-value is a function of 

the p-value for that test and the distribution of the entire set of p-values from the entire family of 

simultaneous tests (24); thus, q-values are increasing according to p-values. The q-value has been 

extensively used in the analysis of microarray and sequencing data.

Calculating false positives according to p-values considers all statistical tests, while q-

values take into account only tests with q-values less than the chosen threshold. The concept is 

illustrated with the following scenario: in a genomic study with 5000 statistical tests, geneX has a 

p-value of 0.015 and a q-value of 0.017. In the dataset, there are 500 genes with p-values of 0.015 

or less. According to the 1.5% false-positive rate, 0.015 * 5000 = 75 genes would be expected to 

be false positives. At q = 0.017, 1.7% of genes with p-values as small or smaller as geneX's will 

be categorized as false positives; thus, the expected number of false positives is 0.017 * 500 = 8.5, 

which is much lower than the predicted 75. 

To choose a multiple testing correction method

Multiple hypothesis testing corrections help to avoid unjustified "significant" discoveries 

in many fields of life sciences. Besides the introduced simple adjustment tools, additional more 

complex strategies are available that require extensive skills in both statistics and programming. 

The question remains: which method should be used for a particular analysis? It depends on the 

trade-off between our tolerance for false positives and the benefit of discovery. The exploratory 

and confirmatory nature of the planned research is also indicative. Asking the proper questions 

before the analysis will narrow down the number of possibilities, as illustrated with a decision tree 

in Figure 1. 

CONCLUSIONS

Choosing and successfully conducting appropriate multiple testing corrections may require 

extensive literature and background investigations with a steep learning curve. We hope the current 

summary provides a much needed practical synthesis of basic statistical concepts regarding 
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multiple hypothesis testing in a comprehensible language with well-illustrated examples. The most 

widely used tools are implemented into our online calculator accessible at 

www.multipletesting.com (data are available upon request). We believe our tool will be a valued 

resource for life science researchers and fills the gap, especially for those with limited 

programming experience.
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FIGURES

Figure 1. A decision tree to facilitate the selection of suitable methods for multiple testing 

correction. The initial decision relies upon the statistical analysis's exploratory or confirmatory 

nature, while subsequent steps narrow down the list of appropriate methods.
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