
Multiplets, Models, and the Search for Meaning:
Improving Per-Test Fault Diagnosis

David B. Lavo
Agilent Technologies

Semiconductor Products Group
Santa Clara, CA

Ismed Hartanto
 Agilent Technologies

Semiconductor Products Group
Santa Clara, CA

Tracy Larrabee
Computer Engineering
University of California

Santa Cruz, CA

Abstract

The advantage to “one test at a time” fault diag-
nosis is its ability to implicate the components of com-
plicated defect behaviors. The disadvantage is the
large size and opacity of the diagnostic answer. In this
paper, we address the problems of per-test fault diag-
nosis by improving the candidate matching, introduc-
ing scoring and ranking techniques, and by developing
a method to translate the results into common defect
scenarios. Our experimental results on simulated and
introduced defects indicate that not only are the results
improved on complex behaviors, but by considering
passing test results we improve a common case where
per-test algorithms can perform significantly worse
than traditional diagnosis algorithms. Finally, our
method of candidate analysis provides a way to bridge
the per-test approach with traditional model-based
fault diagnosis.

1. Introduction

Fault diagnosis, especially in its initial stage, can be a
daunting task. Not only does the failure analysis engi-
neer not know what kind of defect he is dealing with,
but there may in fact be multiple separate defects, any
number of which may interfere with each other to
modify expected fault behaviors. The defect behavior
may be intermittent or difficult to reproduce. Also, the
size of the circuit may make application of all but the
simplest diagnosis algorithms impractical.

Given these facts, the single fault assumption – that
there is one defect in the circuit under diagnosis that
can be modeled by a single instance of a particular
fault model – apparently does not apply for modern
fault diagnosis. While it has simplified many diagnos-
tic approaches, some of which have worked quite well
despite real-world violations of the premise, the single
fault assumption has led to problems with two common
defect types: multiple faults, and complex faults. As
defined here, complex faults are faults in which the
fault behavior involves several circuit nodes, involves
multiple erroneous logic values, is pattern-dependent,
or is otherwise intermittent or unpredictable.

Traditionally, the single fault assumption has led to the
expectation of a certain internal consistency, or some
dependence between the test results, with regard to
defective circuit behavior. In cause-effect diagnosis, a
fault model is selected beforehand, and the observed
faulty behavior is compared, as a single collection of
failing patterns and outputs, to fault signatures obtained
by simulation. In effect-cause diagnosis, many algo-
rithms look for test results that prove that certain nodes
in the circuit are able to toggle, and are therefore fault-
free throughout the rest of the test set. In either case,
the assumption is that individual test results are not
independent, but are rather wholly determined by the
presence of the single unknown defect.

From the beginning, however, a few diagnosis tech-
niques eschewed the single fault assumption, especially
those that directly addressed multiple faults. These
approaches, either implicitly or explicitly, forsake in-
ter-test dependence and instead consider each test
independently. The advantage to such approaches is
that pattern-dependent and intermittent faults can still
be identified, as can the component faults of complex
defects. The drawback is that a conclusion drawn
about the defect from one test cannot be applied to any
other test, and the net result is (in effect) a diagnosis
for each test pattern. This can lead to large candidate
sets that are difficult to understand and use, especially
as guidance for physical failure analysis. Also, since
these algorithms no longer implicate a single instance
of a fault model, there is now the problem of con-
structing a plausible defect scenario to explain the
observed behavior.

This paper will attempt to address these drawbacks by
improving both the process and the product of per-test
fault diagnosis. First, the process will be improved by
including more information to score candidates, and
paring down the candidate list to a manageable num-
ber. Second, the product will be improved by
suggesting a way of interpreting the candidates to infer
the most likely defect type. The result is a general-
purpose approach to identifying likely sources of de-
fective behavior in a circuit despite the complexity or
unpredictability of the actual defects.

2. SLAT, STAT, and All That

While increasing in recent popularity, the idea of con-
ducting fault diagnosis one test pattern at a time is a
venerable one. Waicukauski and Lindbloom (WL)
[WaiLin89, EicLin91], and, more recently, the
POIROT [VenDru00] and SLAT [BarHea01] diagnos-
tic systems all suggest or rely on per-test fault
diagnosis to address multiple or complex faults. We
can, without too much license, state the primary axiom
of the one-test-at-a-time approach as follows:

For any single test, an exact match between
the observed failures (at circuit outputs or
flip-flops) with those predicted by a simulated
fault is strong evidence that the fault is pres-
ent in the circuit, if only during that test.

The underlying concept is uncontroversial, as it under-
pins both traditional fault diagnosis as well as scientific
modeling and prediction: A match between model and
observation supports the assumptions of the model or
implicates the modeled cause. The difference here is
that the traditional comparison of model to observed
behavior is decomposed into comparisons on individ-
ual test vectors, with a stricter threshold of exact
matching to produce stronger implications.

The statement that “the fault is present” should not be
taken too broadly. It does not mean that the fault (or
modeled defect) is physically present, or that any con-
clusions can be drawn about the defect in any other
circumstance other than the specific failing test vector.
Applied most commonly to stuck-at faults, all that can
be inferred from a match is that a particular node has
the wrong logic value for a particular test. However,
that node is not implicated as the source of any other
failures, nor is the node actually “stuck-at” any value at
all, since there is no evidence that it doesn’t toggle
during other test vectors.

Note also that the axiom cannot claim that an exact
match constitutes proof that a particular fault is present.
A per-test diagnosis approach can be fooled by
aliasing, when the fault effects from multiple or com-
plex faults mimic the response from a simple stuck-at
fault. This can happen, for instance, if the propagation
from a fault site is altered by the presence of other si-
multaneous faults, or due to defect-induced behaviors
such as complex bridging faults. The probability of
such aliasing is, in practice, impossible to determine,
given the variety of ways in which it could occur. Per-
test diagnosis approaches rely on the assumption that
this probability is small, and on the hope that, should
aliasing incorrectly implicate the wrong fault, that this
fault is not wholly unrelated to the actual defect and is
therefore not completely misleading.

A secondary axiom, implicit in the WL paper but stated
in different terms in the SLAT paper, is the following:

There will be some tests during which the de-
fect(s) to be diagnosed will behave as a single,
simple fault, which will, by application of the
primary axiom, implicate something about the
defect(s).

What this axiom states is that, for any defective chip,
there will be some tests for which the failing outputs
will exactly match the predicted failing outputs of one
or more simple (generally stuck-at) faults. This asser-
tion relies on the observation that many complex
defects will, for some applied tests, behave like stuck-
at faults that are in some way related to the actual de-
fect. For example, a bridging fault will occasionally
behave, on some tests, just like a stuck-at fault on one
of the bridged nodes.

The way that a per-test fault diagnosis algorithm pro-
ceeds is to find these simple failing tests (referred to in
the SLAT paper as SLAT patterns), and identify and
collect the faults that match them. The candidate faults
are arranged into sets of faults that cover all the
matched tests. The SLAT authors call these collections
of faults multiplets. As a simple example, consider the
following three tests, with the associated matching
fault candidates:

Test Number Exactly-Matching Faults
1 A
2 B
3 C, D, E

Figure 1. Simple per-test diagnosis example.

In this example, fault A is a match for test #1, which
means that the predicted failing outputs for fault A on
test #1 match exactly with the observed failing outputs
for that test. Similarly, fault B matches on test #2,
while for test #3 three faults match: C, D, and E. The
SLAT algorithm will build the following multiplets as
a diagnosis: (A, B, C), (A, B, D), and (A, B, E). Each
multiplet explains, or covers, all of the simple failing
test patterns. SLAT uses a simple recursive covering
algorithm to traverse all covering sets smaller than a
pre-set maximum size, and then only reports minimal-
sized coverings (multiplets) in its final diagnosis.

For comparison, the WL algorithm will report one set
of faults – (A, B, C, D, E) – in its diagnosis on the
above example, with a note that fault C, D, and E are
equivalent explanations for test #3. The POIROT algo-
rithm will produce the same results, with a score based
on how many tests are explained by each fault (in this
case, all faults would get the same score).

This paper proposes a new per-test algorithm, similar
in style to the SLAT diagnosis technique, but able to
use more information and produce a better, more quan-
tified, diagnostic result. The SLAT technique is
focused on determining fault locations, hence the
name: “Single Location At a Time”. The new ap-
proach will instead focus on the faults themselves, but
will, like SLAT, diagnose test patterns one at a time.
Borrowing the nomenclature, however, we will refer to
the process of per-test diagnosis as “STAT” – “Single
Test At a Time”.1 The new algorithm is called
“iSTAT”, for “improved STAT”. Like SLAT, the
iSTAT algorithm uses stuck-at faults to build multi-
plets, but differs from SLAT in two important ways.
First, it uses a scoring mechanism to rank (or order)
multiplets to narrow the resulting candidate set. Sec-
ond, it can use the results from both passing and
complex failing tests to improve the scoring of candi-
date fault sets.

3. Multiplet Scoring

The biggest problem with a STAT-based diagnosis is
that, since each test is essentially an individual diagno-
sis, the number of candidates can become quite large.
It can take many multiplets to explain the entire set of
failing patterns, and each multiplet will be composed of
multiple faults. This section presents iSTAT’s ap-
proach to this problem, a method to score and rank the
multiplets to indicate a preference between them.

The basic motivation of STAT-based approaches, as
expressed in the first axiom, is that an exact match
between failing and predicted outputs on a single test is
strong evidence for the fault. While this much seems
reasonable, it seems just as obvious that the evidence
provided by a failing test is diluted if there are many
fault candidates that match. For instance, in the simple
example given above, the evidence for fault A is much
stronger than that for any of faults C, D, or E, simply
because fault A is the only candidate (according to the
axiom) that can explain the failures of test #1. The
evidence provided by test #3 is just as significant as the
evidence from test #1, it is just shared among three
possible explanations.

This division of evidence can also be illustrated by
imagining failures on outputs with a lot of fan-in, or a
defect in an area with many equivalent faults. While
there will be a number of faults that match the failure
exactly, test results will not provide much compelling
evidence to point to any particular fault instance.

1 We will hereafter refer to the class of diagnosis algorithms that
includes WL, POIROT, SLAT, and the new iSTAT algorithm as
“STAT”, or “per-test”, diagnosis algorithms.

The first way that iSTAT improves per-test diagnosis is
to consider the weight of evidence pointing to individ-
ual faults, and to quantify and collect that evidence into
multiplet scores. The mechanism that iSTAT uses to
quantify diagnostic evidence is the Dempster-Shafer
method of evidentiary reasoning.

3.1 “A Mathematical Theory of Evidence”

A means of quantitatively manipulating evidence was
developed by Arthur Dempster in the 1960’s, and re-
fined by his student Glen Shafer in 1976 [Sha76]. The
Dempster-Shafer method is a generalization of the fa-
miliar Bayes Rule of Conditioning, in which prior and
conditional probabilities are multiplied to produce a
final posterior probability for purposes of estimation
and prediction.

The Dempster-Shafer method was developed to ad-
dress certain difficulties with Bayes Rule when it is
applied to the conditions of epistemic probability, in
which probability assignments are based on belief or
personal judgement, rather than its usual application to
aleatory probability, where probabilities are deter-
mined by chance.

The conditions of epistemic probability are familiar to
most people: a person will assign a degree of belief to a
proposition relative to the strength of evidence pre-
sented in its favor. There is an explicit and
unavoidable role of judgement in such a process. It is
possible or likely that no prior information or belief
about the problem exists before the evidence is consid-
ered. Finally, there is a possibility that a judgement
cannot be made, or belief will be reserved, in the case
of ignorance or lack of evidence.

The Dempster-Shafer method is designed with these
considerations in mind. It is best illustrated geometri-
cally: the basic element of the Dempster-Shafer method
is a belief function, which can be thought of as a divi-
sion of a unit line segment into various probability
assignments. Each assignment represents the belief
accorded to an individual element based on some evi-
dence; in addition, an explicit degree of doubt or
ignorance about the evidence can be assigned. The
total of all probability assignments equals one:

0 1

p1(a) p1(b) p1(c) p1(�

Figure 2. An example belief function.

The assignment S� �� UHSUHVHQWV� WKH� GHJUHH� RI� GRXEW
regarding the evidence or the assignments. The intro-
duction of a second piece of evidence results in the
creation of a second belief function, with a new as-
signment of probabilities to a possibly-different set of
elements:

0 1

p2(a) p2(c) p2(d) p2(�

Figure 3. Another belief function.

Dempster’s rule of combination performs an orthogo-
nal combination of these two belief functions.
Geometrically, the two line segments are combined to
produce a square, which represents the new total prob-
ability mass of the combination:

0 1

p1(a) p1(b) p1(c) p1(�

p2(�

p2(d)

p2(c)

p2(a)

Figure 4. The combination of two belief functions.

The total combined probability of an element is the
sum of all non-contradictory assignments to that ele-
ment; therefore, p3(a) = p2(a)p1(a) + p2(a)p1� �� �
p2� �S1(a). The final probability assigned to each ele-
ment is re-normalized by dividing by total probability
mass assigned to contradictory combinations:

∑

∑

=∩

=∩

−
=

0

,

,
21

)()(1

)()(

)(

ji

ji

BA

ji
ji

CBA

ji
ji

BpAp

BpAp

Cp

3.2 From Evidence to Scored Multiplets

Applying the Dempster-Shafer method to per-test di-
agnosis scoring is a relatively straightforward process.
Each failing test that is matched exactly by one or more
fault candidates results in a belief function; each candi-
date is assigned an equal portion of the belief assigned
by the test result. Also, some probability mass is re-
served to account for the possibility of aliasing,
discussed earlier. Since an exact match on a test result
is the strongest evidence implicating fault candidates,
this reserved belief is small.

A short example will illustrate the scoring process.
Figure 5 presents some test-matching results.

Test Number Matching Faults
1 A
2 A, D
3 B
4 C, D

Figure 5. Example test results with matching faults.

The result of test #1 results in a belief function in
which all evidence supports fault A. The amount of
ignorance regarding this test result (whether fault A is
really the cause of the behavior) is arbitrary; the iSTAT
algorithm uses the value S� �� � ������ VR� WKH� VXSSRUW
awarded to fault A for test #1 is p1(A) = 0.99.

For test #2, the evidence supports both faults A and D,
so the total belief is split between these faults:
p2(A) = p2(D) = 0.495. A geometric representation of
the combination of these belief functions is shown be-
low. The proportion of area allotted to S� �� LV
exaggerated in the figure for readability.

0 1

p1(A) p1(�

p2(�

p2(D)

p2(A)

0.99

0.99

0.495

p(A)

p(AD)

p(A)

p(A)

p(D)

p(�

Figure 6. Combination of evidence from the first two
tests.

The calculation of combined probabilities is as follows:

0001.0

)()()(

49005.0

)()()(

00495.0

)()()()()()()(

5049.0

)()()()()()()(

12

12

121212

121212

=
ΦΦ=Φ

=
=
=

Φ+Φ+=
=

Φ+Φ+=

ppp

ApDpADp

DpppDpDpDpDp

ApppApApApAp

As you can see, slightly more belief is distributed to
p(A) than p(AD), and a small residual belief is ac-
corded to p(D). After the application of the third test,
the results of which match with fault B, the revised
probabilities are:

000001.0)01.0)(0001.0()(

000099.0)0001.0)(99.0()(

0000495.0)00495.0)(01.0()(

0049005.0)00495.0)(99.0()(

0049005.0)49005.0)(01.0()(

4851495.0)49005.0)(99.0()(

005049.0)5049.0)(01.0()(

499851.0)5049.0)(99.0()(

==Φ
==
==
==
==
==

==
==

p

Bp

Dp

BDp

ADp

ABDp

Ap

ABp

The highest probability is assigned to (AB), which
makes intuitive sense given the test results so far. Fi-
nally, test #4 matches faults C and D, and the top two
combinations are (after rounding):

247.0)(

492.0)(

=
=

ABCp

ABDp

As a comparison, the SLAT algorithm reports the same
final multiplet candidates, (ABC) and (ABD). Intui-
tively, we prefer multiplet (ABD) to multiplet (ABC),
based on the notion that there exists more evidential
support for fault D than fault C. The calculations
above support this intuition, showing that the Demp-
ster-Shafer method assigns almost twice the support to
the multiplet containing fault D.

The application of this scoring alone makes the iSTAT
algorithm preferable to other per-test diagnosis algo-
rithms; all such algorithms produce essentially the
same candidate faults, but by assigning a probability
score to each candidate set it provides much more
guidance in selecting candidates out of what can be
large diagnoses. But, there is more information that
per-test approaches usually fail to consider and that can
be applied to produce even better final diagnoses.

3.3 Matching Passing Tests

Most STAT-based algorithms completely ignore pass-
ing tests, probably because passing tests don’t fit well
with the basic axioms expressed earlier: it is difficult to
infer a failure when no failure has occurred. But,
STAT algorithms will suffer a loss of resolution, espe-
cially when compared with traditional non-STAT
algorithms, when dealing with some defects.

For example, consider an observed behavior that mim-
ics a classic stuck-at fault. In such a case (which is
surprisingly common, for power or ground shorts, sig-
nal-to-signal shorts, and for opens), a traditional
diagnosis algorithm that matches both failing and
passing tests will produce either a single fault candi-
date, or a list of faults that are behaviorally equivalent
under the applied test set. But, a per-test algorithm that
ignores passing tests will produce the same equivalence
list, plus all fault candidates whose fault signatures are
supersets of the observed behavior. A simple example
is a non-controlling stuck-at fault on a gate input. Most
STAT algorithms will implicate a stuck-at fault on the
output of the gate as strongly as the (preferred) input
fault, simply because the output fault explains all the
failing test patterns.

There are many other examples of faults whose faulty
behaviors are supersets of those of other harder-to-
detect faults. In any case, it is especially disappointing
for STAT algorithms not to be able to perform as well
as traditional algorithms at distinguishing such simple
and classic behaviors as single stuck-at faults.

To remedy this, the iSTAT algorithm must deal with
passing tests. The process of matching passing patterns
is very similar to matching simple failing patterns:
candidates that predict a passing test will share in belief
assigned based on that test. These belief values are
combined according to Dempster’s rule of combina-
tion, as with the failing tests.

An important difference in dealing with passing tests is
that only multiplets (candidate fault sets that explain all
simple failing tests) are considered, not individual
faults. The reason is that passing tests don’t, according
to the per-test axioms stated earlier, provide any evi-
dence for individual faults. Rather, they only imply the
lack of fault sensitization or unmodeled fault behavior.

It is difficult to infer much about the conditional prob-
ability of a set of faults given a passing test result.
Obviously, if all of the component faults are predicted
to pass on a particular passing test, that result provides
some evidence in support of that multiplet. If, how-
ever, some of the component faults of a multiplet
predict failures for a passing test, it is possible that
none of these faults were activated, or if any such fault
was sensitized then none of its failures propagated to

observable outputs. Either condition could occur due
to interactions between multiple faults. The likelihood
of interference with sensitization or propagation is dif-
ficult to calculate, especially for larger multiplets.2

It seems reasonable to assume that the likelihood of no
sensitization and propagation is proportional to the
number of components in a multiplet that predict a pass
for any test. For each passing test, then, a multiplet
will be assigned an initial belief value, from a maxi-
mum of 1.0 (all faults predict a pass) to a minimum of
0.0 (all faults predict some failure). This initial score is
divided by the total score over all multiplets, so that the
total belief accorded over all multiplets is equal to 1.0.

Since the evidence provided by any passing test is
relatively weak, any inference made from one is not
strong, and so the degree of doubt or ignorance as-
signed to a passing test should be high. The iSTAT
algorithm uses a value of S� �� � ����� � 7KH� EHOLHI� Ln-
vested in each multiplet is therefore adjusted one last
time, by multiplying by 0.5, to re-normalize the total
belief to 1.0.

3.4 Matching Complex Failures

The SLAT algorithm ignores any failing test pattern
that doesn’t match exactly with one or more candidate
faults. If we refer to the easily-matched patterns as
simple failing tests, then the question becomes what to
do with the complex failing tests, or tests that don’t
match exactly with any stuck-at fault.

The POIROT algorithm uses a greedy covering algo-
rithm on such failing output sets, using individual
faults to explain subsets of the failing outputs. The
iSTAT algorithm takes a different approach. First, as
with passing patterns only multiplets are considered
when trying to match the failing outputs, and not indi-
vidual stuck-at faults. Second, instead of trying to
match subsets of the failing outputs, we attempt a much
simpler and more conservative matching process, as
explained below.

Determining which outputs are predicted to fail by a
multiplet is not easy, because we have no way of
knowing how the fault effects of the individual fault
components will interact for any test vector. The fault
effects of one activated fault could prevent the propa-
gation to some outputs of a second activated fault. Or,
one fault could prevent the sensitization of another
fault completely, or cause another fault to become sen-
sitized that normally would not.

2 If per-test IDDQ pass-fail information were available, it would indi-
cate whether a logical pass actually indicates the absence of a defect
or not. On a test that passes scan tests but fails IDDQ, then, a multiplet
that predicts failure would not be subject to a scoring penalty.

It is not practical to investigate all of the various per-
mutations of these fault interactions, especially if
electrical effects such as drive fights or variable logic
thresholds are concerned. So, iSTAT ignores these
complications and instead chooses a conservative path
of matching by combining all the failing outputs and
then ignoring misprediction (or overprediction) of the
observed failing outputs. For example, if the following
faults are contained in the multiplet (A, B, C):

Fault Predicted Failing Outputs
A 1, 5, 8
B 2, 5
C 2, 10

Figure 7. Example of constructing a set of possibly-failing
outputs for a multiplet.

The total list of failing outputs for this multiplet is (1,
2, 5, 8, 10). A successful match, then, is a match with
any subset of these outputs, such as (1), (2, 5, 10), (1,
10), and so on. A match with any subset is considered
an “explanation” of the failures, but any non-subset,
such as (1, 2, 6) is not. It is possible that fault interac-
tion could cause such an unexpected propagation and
therefore a mismatch, but iSTAT will tolerate this (as-
sumed small) probability of error if it generally aids in
ranking candidate multiplets.

This matching on complex failing tests results in either
a success or a failure for each multiplet on each test.
The degree of belief assigned to each matching multi-
plet is 1.0 divided by the number of matching
multiplets. As with passing tests, the evidence pro-
vided by a complex failing test is not perfect, and so
iSTAT assigned a degree of doubt S� �� �����DQG� WKH
belief assigned to individual matching multiplets is
normalized by multiplying by 0.9.

3.5 Size is an Issue

In addition to matching all the simple failing tests, the
SLAT paper implicitly introduces another criterion for
judging multiplets, namely multiplet size: only mini-
mal-sized multiplets are considered in the final
diagnosis. Consider an example:

Test Number Matching Faults
1 A
2 A
3 B
4 B, C, D

Figure 8. Multiplets (A,B), (A,B,C), and (A,B,D) explain
all test results, but (A,B) is smallest and so preferred.

A minimally-sized multiplet that covers all of the fail-
ing vectors is (A, B). But, it is also possible to cover
the failing vectors with the multiplet (A, B, C) by

choosing fault C to explain the failures on test #4. The
same is true for multiplet (A, B, D). Intuitively, (A, B)
seems to be the best, and more likely, candidate due to
the evidence for fault B from test #3. There is also the
principle of Occam’s Razor [Tor38], which states
“Causes shall not be multiplied beyond necessity”, or
more commonly, “The simplest answer is best”3. The
application of Occam’s Razor therefore argues for
choosing multiplets of minimal size.

Test Number Matching Faults
1 A, B
2 A, C
3 A, C
4 A, B

Figure 9. The choice of best multiplet is difficult if (A)
predicts additional failures but (B, C) does not.

But consider a slightly less simple scenario, demon-
strated in Figure 9. While iSTAT will build and score
the multiplets (A) and (B,C), SLAT will only consider
the multiplet (A). At first glance it would appear that
multiplet (A) is a simpler and therefore better choice
than (B, C). But suppose that fault A is also predicted
to fail other tests that don’t fail on the tester, while
faults B and C are only predicted to fail on tests #1
through #4. We would then be faced with the choice of
explaining the behavior with either an intermittent
stuck-at fault (A), or a well-behaved pair of stuck-at
faults (B, C). In such a case, Occam’s Razor may not
be the best tool to slice out the best or simplest answer.

For the example above, the iSTAT algorithm will as-
sign the following probabilities to the two multiplets
after processing the simple failing tests:

4998.0)(

5002.0)(

=
=

BCp

Ap

If, however, test #5 is a passing test and faults B and C
are both predicted to pass while fault A is predicted to
fail, the multiplet probabilities are adjusted to the fol-
lowing:

6665.0)(

3335.0)(

=
=

BCp

Ap

The actual values calculated will depend upon the
value of S� ��DVVLJQHG�IRU�SDVVLQJ�WHVWV��ZKLFK�LQ�WXUQ
is determined by the judgement of the algorithm de-
signer or user.

The iSTAT algorithm follows the SLAT convention of
rejecting multiplets with redundant or superfluous

3 Or, less commonly, “Nunquam ponenda est pluralitas sine necesi-
tate”.

faults, such as (A, B, C) in the example of Figure 8.
But, by allowing such non-minimal multiplets as (B, C)
in the second example, the iSTAT algorithm can con-
sider a wider range of defect scenarios than can SLAT
and many other per-test algorithms.

4. Experimental Results – Multiplet
Ranking

This section presents results on some simulated defects
in an industrial circuit. These defects were created by
modifying the circuit netlist and simulating the test
vectors to obtain faulty behaviors. Only logical fault
simulation was done; in none of the cases was any
electrical-level (or SPICE-level) simulation performed.
The idea was to create defects of varying complexity,
and of the types that per-test diagnosis algorithms usu-
ally target: multiple and intermittent stuck-at faults,
wired-logic bridging faults, and faults clustered on nets
and gates.

The iSTAT algorithm was performed on each simu-
lated defect, including all of the matching and scoring
methods described earlier. For each trial, a diagnosis
consists of a set of multiplets. For each diagnosis, Ta-
ble 1 below reports the type of defect we simulated and
the size of the multiplets, where the size indicates the
number of component faults in each multiplet. All
SLAT multiplets contain the same number of faults (by
construction); for these experiments, so did all top-
ranked iSTAT multiplets.

The next column reports the number of SLAT multi-
plets, built according to the SLAT algorithm. There is
one difference, however, between the SLAT multiplets
described here and those described in the SLAT paper:
These multiplets contain stuck-at faults (describing a
circuit node and fault polarity), while original SLAT
multiplets consist of only faulty circuit nodes (faults of
opposite polarity on the same node are collapsed into
one “location”).

For each diagnosis, we then report the number of top-
ranked iSTAT multiplets. This value gives the number
of multiplets that all receive the same top score. A
higher number indicates lower resolution, as the algo-
rithm expresses no preference among these candidates.
The comparison of this number with the number of
SLAT multiplets indicates the improvement in resolu-
tion over the SLAT algorithm. The next column
reports whether the diagnosis was a success or not,
defined as the correct multiplet receiving the highest
score.

Defect
No.

Simulated Defect Faults in
SLAT and

Top-Ranked iSTAT
Multiplets

SLAT
Multiplets

Top-Ranked
iSTAT

Multiplets

Success?

1 Single stuck-at fault 1 7 4 Y

2 2 independent stuck-at faults 2 21 8 Y

3 2 independent stuck-at faults 2 1 1 Y

4 2 interfering stuck-at faults 2 9 4 Y

5 3 interfering stuck-at faults 3 2 1 Y

6 4 stuck-at faults, 3 interfering 4 2 1 Y

7 Two-line wired-OR bridge 2 2 1 Y

8 Two-line wired-AND bridge 2 2 1 Y

9 Two-line wired-AND bridge 2 1 1 Y

10 Two-line wired-XNOR bridge 3 13 7 Y

11 Two-line dominance bridge 1 3 1 P

12 Two-line dominance bridge 1 2 1 P

13 Net fault (3 branch stuck-at faults) 4 90 1 Y

14 Net fault (3 branch stuck-at faults) 3 4 1 Y

15 Gate replacement (OR to AND) 1 1 1 Y

16 Gate replacement (OR to NOR) 2 11 7 Y

17 Gate replacement (MUX to NAND) 2 3 2 Y

18 Gate output inversion 1 3 1 Y

19 Multiple logic errors on one gate 1 1 1 Y

20 Multiple logic errors on one gate 2 27 10 Y

Table 1. Results from scoring and ranking multiplets on some simulated defects.

For the two-line bridging defects, the result can be a
partial (“P”) success if only one node of the bridge is
identified by the faults in a multiplet. A complete suc-
cess (“Y”) requires that both nodes be represented in
the multiplet. Therefore, it is very unlikely that the
diagnosis of a dominance bridge can be anything but a
partial success, because no faults ever originate from
the dominating node. Also, the implication of both
nodes of a non-dominance bridging fault is highly de-
pendent upon the test set. In order for both nodes to
appear in a multiplet, the test set will have to propagate
failures from both nodes and put opposite logic values
on those nodes during the detecting tests.

On other defects, a successful diagnosis is expected to
identify exactly the faults inserted. So, if two stuck-at
faults were inserted, the correct multiplet should have
two faults of the correct polarity. One exception was
defect #13, where the diagnosis was judged a success
even though three faults were inserted, since the fourth
implicated fault was the stem of the net fault.

Overall, both the SLAT algorithm and the iSTAT algo-
rithm produce a correct diagnosis on all trials. This is a
remarkable success rate even for this small trial size,
given the complexity of some of the defect behaviors.
The number of times that SLAT produced a small di-
agnosis was surprising (4 multiplets or fewer on 13 of

20 trials), but in all cases iSTAT was able to improve
this resolution, in some cases dramatically.

Another observation is that it was difficult to create
gate faults that looked like anything other than (possi-
bly-intermittent) stuck-at faults on the gate outputs.
The inability to create truly “complex” gate fault be-
haviors most likely has to do with pattern-dependent
fault detection, since output faults on gates can often
swamp faults on the gate inputs unless enough tests
with the right logic values are applied. The same is
true for the bridging faults where, while the maximum
multiplet size is 4 (both faults on both nodes detected),
the algorithm mostly produced 1- to 2-fault multiplets.

5. Finding Meaning (and Models) in Mul-
tiplets

The main problem with the diagnoses returned by most
per-test diagnosis schemes is one of interpretation. The
end product of these algorithms can often be a large
collection of sets of faults (multiplets), any of which
can be used to explain the observed faulty behavior. If
you show even a single multiplet, consisting of several
faults or nodes, to a failure analysis engineer, the likely
response is “But what does this mean?”

The SLAT method does make an attempt to make its
diagnoses more understandable. The SLAT authors
propose the construction of splats, which are sets of
(apparently) equivalent nodes common to all multi-
plets. But, this only serves to identify fault
equivalencies; each multiplet must still be investigated
as a possible defect scenario. A more ambitious analy-
sis method, called “SLAT Plus”, was recently proposed
[BarBha01]. This method analyzes logic-value rela-
tionships across all nodes of the circuit during observed
failures, in an attempt to infer possible bridging de-
fects. That work, however, is preliminary, and
involves a different and more extensive type of analy-
sis than is proposed here.

The WL algorithm also makes a simple attempt to in-
terpret its results, by classifying a diagnosis into one of
three categories. Class I is an exact match with a sin-
gle stuck-at fault. Class II is a match on all failing tests
with a single stuck-at fault but not all passing tests.
Class III indicates multiple stuck-at faults that match
only inexactly, a category that consists of a wide range
of defects.

The POIROT algorithm attempts something of a com-
promise: it decomposes the matching operation into
single tests, but also applies a set of pre-built signatures
for certain fault models in addition to the stuck-at
model. It is, in fact, much like the WL algorithm with
the addition of bridging fault and net fault candidates.
Since it explicitly targets these additional models, it
doesn’t require any interpretation of its results when
one of the more specific candidates (bridge or net fault)
is implicated. However, by relying on a a-priori set of
candidates, it suffers from the candidate selection

problem. For example, there are

2

n possible two-line

bridging faults in a circuit, where n is the number of
signal lines and can be quite large. There are also 2n
individual stuck-at faults, and O(n) open faults. The
result is that, with only 3 candidate types considered,
the POIROT algorithm can quickly become infeasible
for large circuits.

The purpose of this section is to find a way to discover
meaning in multiplets. The idea is to analyze each
multiplet in a diagnosis to determine whether the com-
ponent faults are in some way related to one another, or
if they appear to be simply a collection of random
faults. In the first case, an algorithm should then be
able to infer a defect mechanism; in the second case,
either the meaning escapes (due to unmodeled behav-
ior) or perhaps the circuit behavior really is the result
of a collection of unrelated defects.

But how can candidate faults be related to each other,
and a meaning extracted from the observed behavior?
The traditional answer for explaining defective behav-

ior has been the use of fault models. The stuck-at fault
model, various bridging fault models, and the transition
fault model are all examples of using abstractions to
simplify what can be complex defect behaviors. These
fault models have the advantage of being relatively
easy to understand and (with some translation) identify
as part of failure analysis.

It seems intuitive, then, to interpret multiplets by cor-
relating them with common fault models, calculating
for every multiplet a correlation score for each fault
model. A high correlation score implicates a likely
defect scenario for that multiplet. A low correlation
score for every candidate multiplet in a diagnosis indi-
cates either that the defect is not well represented by
any of the fault models, or that the defect consists of
multiple fault instances.

5.1 Plausibility Metrics

To judge this correlation, the most natural scoring,
mathematically speaking, is the plausibility of a match
between a multiplet and a fault model, or the upper
probability limit that a multiplet represents an instance
of a particular fault model. For each multiplet, the
proposed iSTAT analysis algorithm computes a plausi-
bility score for each fault model, with a maximum
score of 1.0 (complete agreement of faults to defect
assumptions) and a minimum score of 0.0 (no agree-
ment). A description of each fault model considered
and the details of the plausibility calculations follow.

A. Single or intermittent stuck-at fault

This case is trivial: if the multiplet consists of a single
fault candidate, it will be classified as a stuck-at or
intermittent stuck-at fault on a single node. While this
is a simple classification, many defect types mimic
intermittent stuck-at faults. Depending upon the test
set, bridging faults, gate faults, open faults and transi-
tion faults could all look like stuck-at faults. In the
SLAT paper, the authors found that 37% of the defects
they diagnosed looked like stuck-at faults, which is not
inconsistent with our industrial experience of diagnos-
ing actual failures. So, this defect class is likely to be a
catch-all for many defects that aren’t activated multiple
times by the test set.

Plausibility: 1.0 if multiplet is size 1; 0.0 oth-
erwise.

B. Node/transition fault

If a multiplet consists of two fault candidates of oppo-
site polarity on the same node, it is classified as a node
fault. The most likely defects for this scenario are a
dominance bridging fault, a transition fault, or some
open faults.

Plausibility: 1.0 if multiplet is size 2, and faults
involve the same node; 0.0 otherwise.

C. Net fault

If examination of the netlist determines that most or all
of the component faults of a multiplet are the branches
or stem of a common net, then it can be identified as a
net fault. This type of fault was proposed by the
authors of the POIROT system to cover open defects
that affect nets with fanout.

Plausibility: 1.0 if multiplet is size 2 or greater,
and all faults are on the same net (including
fanout); if size 3 or greater, percentage of faults
on the same net; 0.0 if multiplet is size 1.

D. Gate fault

If we find by examining either the faultlist or the cir-
cuit netlist that most or all of the faults in a multiplet
involve a common gate or standard cell, then it will be
classified as a gate fault. Some possible defects that
could look like intermittent faults on a gate’s outputs
and inputs are transistor stuck-on or stuck-off, internal
shorts, clocking problems, or some other logic error.

Note that since gate faults are a superset of node faults,
any multiplet that gets a node fault score of 1.0 will
also get a gate fault score of 1.0. While this classifica-
tion is slightly redundant, it does reflect the fact that
any defect on a node can also reasonably be attributed
to its connected gates.

Plausibility: 1.0 if multiplet is size 2 or greater,
and all faults are on ports of the same gate; if
size 3 or greater, percentage of faults on the
same gate; 0.0 if multiplet is size 1.

E. Two-line bridging fault

The identification of a two-line bridging fault relies on
a multiplet containing faults on two nodes. Also, due
to the nature of two-line shorts, tests that detect faults
having opposite polarity should fail, and tests that de-
tect faults of the same polarity should pass.

Plausibility: if multiplet is size 2, 3, or 4, and
all faults are on (exactly) two nodes, then com-
bine a) percentage of common tests for faults of
opposite polarity that fail, with b) percentage of
common tests for faults of same polarity that
pass4; 0.0 otherwise.

4 In previous publications, we have referred to these metrics as “re-
quired vector” and “restricted vector” scores, respectively.

F. Path/path-delay fault

If netlist examination find that the component faults of
a netlist can be found on a single path by tracing back
from failing outputs, then the defect is classified as a
path fault. The as-yet unproven assumption is that
path-delay faults can be identified in this manner.

Plausibility: 1.0 if multiplet is size 2 or greater
and all faults exist on a path from an output to
an input; if size 3 or greater, percentage of
faults on the same path; 0.0 if all faults are on
the same node, gate or net, or if multiplet is size
1.

These plausibility calculations were designed so that
the information they require could be determined dur-
ing the normal iSTAT algorithm operations of limited
path tracing and fault simulation. For the bridging
fault model, these calculations are a subset of those that
a normal bridging fault diagnosis algorithm would per-
form; the same is true for node and net faults. At this
stage, however, no specific fault simulation is done,
other than normal STAT-based stuck-at simulation.
These calculations, then, are a sort of “first-order”
model-based diagnosis on the multiplet candidates, and
the plausibility numbers express how reasonable it is to
pursue a more intensive diagnosis for any fault model.

5.2 Proximity Metrics

The plausibility calculations for the models that in-
volve electrical shorts could be significantly improved
if information about physical proximity of the faults is
available. For a traditional stuck-at fault, the implica-
tion is that a signal line is shorted to power or ground;
whether this is plausible depends upon the proximity of
a supply wire to the signal line. Similarly, the plausi-
bility of a two-line bridging fault is highly dependent
upon the proximity of the two lines. This information,
however, is not normally used during traditional fault
diagnosis, which usually only works with netlist infor-
mation and test data, and so it was not included in the
calculations specified above or in the experiments de-
scribed below.

But the issue of proximity raises an interesting avenue
of fault interpretation. Not all correlations or fault re-
lationships can be expressed by traditional fault
models. There are complicated defect scenarios that
affect isolated areas of a die, such as large spot defects,
physical damage, or poor localized implantation
[NighVal98]. No current fault model could properly
capture such a scenario, even though a STAT-type di-
agnosis might implicate faulty circuit nodes in the area
of the defect.

An additional type of correlation, then, would be useful
for interpreting a multiplet: the physical proximity of

the component faults. This proximity can be calculated
from an analysis of the layout or artwork files. When
faced with a set of multiplets in a diagnosis, the prox-
imity measure would tell the failure analysis engineer
how localized the faults for each multiplet are in sili-
con. Given the limits to how much area physical
investigation can reasonably cover, a high physical
proximity correlation could very well be the most valu-
able information to an FA engineer, more valuable
perhaps than any fault model.

Another type of proximity measure that would be in-
teresting for multiplet analysis is logical proximity, or
the number of gates or cells that separate the set of
faults in the multiplet. This information would be eas-
ier to calculate than physical proximity, since it can be
determined from the same netlist file used for fault
tracing and simulation. Some of this proximity infor-
mation is captured in the node, net, and gate fault
classes, but some more complicated defects may in-
volve several gates. In any case, both the logical and
physical proximity measures could indicate how re-
lated a particular set of faults in a multiplet are, which
may help in limiting the search for root cause to an area
of the die or to an area of functional logic.

These proximity calculations were not performed as
part of the experiments reported in this paper. How-
ever, they are likely to play an important part in
continuing research on fault interpretation, and so re-
main an area of further development.

6. Experimental Results – Multiplet
Classification

Table 2 gives the results of multiplet classification on
the same simulated defects from Table 1. For each
simulated defect, the plausibility of the top (correct)
multiplet is calculated vis-à-vis each defect class.

As expected, some of the defects are classified as
stuck-at faults simply because the multiplet size is 1.
For the bridging and gate faults that are classified as
stuck-at, the result is highly dependent on the test set –
if the tests don’t activate the other faults or fault po-
larities, then these defects will look like stuck-at faults.

Generally speaking, a fault that received a 0.0 plausi-
bility score for all defect classes was a case of multiple
unrelated stuck-at faults. It is possible, however, for
two unrelated stuck-at faults to get a non-zero bridging
fault score, as happened with defect #3. For that de-
fect, the stuck-at faults in the multiplet are of opposite
polarity, and all vectors common to the two fault sig-
natures fail, so there is nothing in this behavior that is
inconsistent with a two-line bridging fault. On the
other hand, the component faults for defects #2 and #4
are completely inconsistent with a bridging fault. In
either case, this analysis can only judge the consistency
of the behavior with a bridging fault; it would take ei-
ther layout analysis, or a bridging-fault diagnosis
algorithm, or both, to judge whether the bridging fault
is actually a good explanation for the behavior

Defect
No.

Simulated Defect Single
Stuckat

Node
Fault

Net
Fault

Gate
Fault

2-Line
Bridge

Path
Fault

1 Single stuck-at fault 1.0 0.0 0.0 0.0 0.0 0.0

2 2 independent stuck-at faults 0.0 0.0 0.0 0.0 0.0 0.0

3 2 independent stuck-at faults 0.0 0.0 0.0 0.0 1.0 0.0

4 2 interfering stuck-at faults 0.0 0.0 0.0 0.0 0.0 0.0

5 3 interfering stuck-at faults 0.0 0.0 0.0 0.0 0.0 0.67
6 4 stuck-at faults, 3 interfering 0.0 0.0 0.0 0.0 0.0 0.75
7 Two-line wired-OR bridge 0.0 0.0 0.0 0.0 1.0 0.0

8 Two-line wired-AND bridge 0.0 0.0 0.0 0.0 1.0 0.0

9 Two-line wired-AND bridge 0.0 0.0 0.0 0.0 1.0 0.0

10 Two-line wired-XNOR bridge 0.0 0.0 0.0 0.0 1.0 0.0

11 Two-line dominance bridge 1.0 0.0 0.0 0.0 0.0 0.0

12 Two-line dominance bridge 1.0 0.0 0.0 0.0 0.0 0.0

13 Net fault (3 branch stuck-at faults) 0.0 0.0 1.0 0.0 0.0 0.0

14 Net fault (3 branch stuck-at faults) 0.0 0.0 1.0 0.0 0.0 0.0

15 Gate replacement (OR to AND) 1.0 0.0 0.0 0.0 0.0 0.0

16 Gate replacement (OR with NOR) 0.0 1.0 0.0 1.0 0.0 0.0

17 Gate replacement (MUX - NAND) 0.0 0.0 0.0 1.0 0.0 0.0

18 Gate output inversion 1.0 0.0 0.0 0.0 0.0 0.0

19 Multiple logic errors on one gate 1.0 0.0 0.0 0.0 0.0 0.0

20 Multiple logic errors on one gate 0.0 0.0 0.0 1.0 0.0 0.0

Table 2. Results from correlating top-ranked multiplets to different fault models.

7. Analysis of Multiple Faults

By correlating multiplets to individual fault classes, the
classification procedure implicitly invokes the single
fault assumption, which is that the observed behavior
can be attributed to a single fault mechanism. But, one
of the strengths of per-test approaches is that they
should be able to implicate the components of multiple
simultaneous defects.

The signal for the likely presence of multiple faults is
low plausibility scores for all fault classes. This would
indicate that the multiplets don’t match up well with
any single fault scenario and the behavior may be due
to multiple faults. There are several ways, then, to re-
analyze the candidates to infer multiple fault groups.

Some of the fault classes define partial correlation
scores, and for these classes a non-zero score might
indicate that some of the faults in a multiplet fit the
defect scenario. These are the path, net, and gate fault
classes, and if a multiplet gets an imperfect but non-
zero score for any of these classes, the faults that do
correlate well can be separated and the rest of the faults
re-analyzed to infer the presence of a second defect.

Another way to infer multiple defects is by applying
the proximity measures introduced in the last section.
Groups of individual faults that have high mutual
proximity imply a high probability that they are related
in a single defect mechanism. These proximity meas-
ures can be used to identify likely groups of faults,
which can then be re-analyzed to correlate with the set
of fault classes.

Finally, some of the fault classes have a defined cardi-
nality, or a certain number of expected individual fault
components. These are the two-line bridge fault class
and the node class, and any multiplet that contains ex-
actly two faults (node fault) or two, three or four faults
(bridge fault) will automatically get a plausibility score
of 0 for these classes. If multiple defects are involved,
however, the multiplet could contain a viable node or
bridge candidate mixed in with other candidate faults.

For these two fault classes, an exhaustive search has to
be performed for large multiplet sizes. The case of
node faults is simple: unless two faults of opposite po-
larity on the same node (e.g. A-sa-0 and A-sa-1) are
contained in the multiplet, there is no evidence for a
node (or transition) fault. For bridging faults, given a
multiplet of k otherwise-uncorrelated stuck-at faults,

there are

2

k possible bridging candidates. For most

multiplets, this is an easily-handled number: for multi-
plets of size 20 it is 190 candidates, for size 50 it is
1,225 candidates, and for size 100 it is less than 4,950
candidates.

8. Conclusion

Per-test fault diagnosis techniques are a surprisingly
effective and yet simple way to diagnose complex fault
behaviors. We have presented several ways to further
improve per-test fault diagnosis results by ranking can-
didates, considering more test results, and classifying
multiplets into likely defect classes. Our experimental
results on simulated defects indicate that our algorithm
provides accurate and small diagnoses on a variety of
defect types, and does a good job of interpreting multi-
plets as understandable fault models.

An additional observation is that a main advantage of
STAT diagnosis is that it solves one of the major
problems of model-based diagnosis: the problem of
candidate extraction or selection. By using a STAT-
based diagnosis algorithm that can identify likely fault
components, and a way to translate the components
into candidate fault models, model-based algorithms
can be applied on much-reduced candidate spaces and
produce much more precise diagnoses.

References

[WaiLin89] J. Waicukauski and E. Lindbloom. Failure di-
agnosis of structured VLSI. IEEE Design and Test of
Computers, pages 49-60, August 1989.

[EicLin91] E. Eichelberger, E. Lindbloom, J. Waicukauski
and T. Williams. Structured Logic Testing. Prentice Hall,
New Jersey, 1991.

[VenDru00] S. Venkataraman, S. Drummonds. POIROT: A
Logic Fault Diagnosis Tool and Its Applications. Proceed-
ings of the International Test Conference, pages 253-262,
IEEE, 2000.

[BarHea01] T. Bartenstein, D. Heaberlin, L. Huisman, D.
Sliwinski. Diagnosing Combinational Logic Designs Using
the Single Location At-a-Time (SLAT) Paradigm. Proceed-
ings of the International Test Conference, pages 287-296,
IEEE, 2001.

[Sha76] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, New Jersey, 1976.

[Tor38] S.C. Tornay. Ockham: Studies and Selections.
Open Court Publishers, La Salle, IL, 1938.

[BarBha01] T. Bartenstein, J. Bhawnani. SLAT Plus:
Work in Progress. 2nd International IEEE Workshop
on Yield Optimization and Test, Nov. 1-2, 2001.

[NighVal98] P. Nigh, D. Vallett, A. Patel, J. Wright, F. Mo-
tika, D. Forlenza, R. Kurtulik, W. Chong. Failure Analysis
of Timing and IDDQ-only Failures from the SEMATECH Test
Methods Experiment. Proceedings of the International Test
Conference, IEEE, pages 43-52, 1997.

