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Multiplex bioimaging of single-cell spatial profiles for precision

cancer diagnostics and therapeutics
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Cancers exhibit functional and structural diversity in distinct patients. In this mass, normal and malignant cells create tumor

microenvironment that is heterogeneous among patients. A residue from primary tumors leaks into the bloodstream as cell clusters

and single cells, providing clues about disease progression and therapeutic response. The complexity of these hierarchical

microenvironments needs to be elucidated. Although tumors comprise ample cell types, the standard clinical technique is still the

histology that is limited to a single marker. Multiplexed imaging technologies open new directions in pathology. Spatially resolved

proteomic, genomic, and metabolic profiles of human cancers are now possible at the single-cell level. This perspective discusses

spatial bioimaging methods to decipher the cascade of microenvironments in solid and liquid biopsies. A unique synthesis of top-

down and bottom-up analysis methods is presented. Spatial multi-omics profiles can be tailored to precision oncology through

artificial intelligence. Data-driven patient profiling enables personalized medicine and beyond.
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INTRODUCTION

Tumors arise from abnormal cells that acquire uncontrolled
proliferation and extensive differentiation abilities1. Tumor devel-
opment is dynamic and evolutionary. To adapt to environmental
changes in local cancerous tissues within a timed progression
window, tumors acquire spatial and temporal heterogeneity2. As a
result of this structural and functional complexity of tumors,
cancer therapies exhibit variable responses in distinct patients and
cancer types. Conventional chemotherapies are prone to fail due
to drug resistance. Tumor origin may be associated with foreign
infections, genetic causes, cellular diseases, evolutionary forma-
tion, and systemic perturbation of homeostasis3. As one of these
mechanisms for tumor initiation, a cancer cell can be considered
as a cancer stem cell, due to its similar features in self-renewal and
differentiation of normal stem cells4. In the cancer stem cell
model, therapeutic reagents may eliminate cancer cells with
limited proliferative potential but remain unsuccessful to target
multipotent cancerous cells. Cancer relapses after chemotherapies
in a majority portion of patients, because the resistance of cancer
stem cell to chemotherapies is a primary reason to relapses5.
Reprogramming of tumor cells during drug treatments may
explain drug resistance that leads to relapses6. Rare cells develop
unexpected epigenetic programs to acquire secondary mutations
for stable resistance. Secondary genetic alterations and proteomic
bypass mechanisms contribute to the resistance7. Therefore,
cancer heterogeneity and therapeutic variability indicate the need
for personalized medicine, wherein precision treatments are
designed based on an individual’s functional molecular profiles8.
Personalized medicine benefits from precise molecular profiles

of tumors in the form of solid and liquid tumors. Solid tumors are
composed of immobile cells, such as epithelial or mesenchymal
cells that accumulate multiple mutations. On the other hand,
liquid tumors contain mobile and invasive neoplastic cells with
less number of mutations9. Tumor genotypes are used for
therapies in hematologic and solid tumors. The current medical
practice focuses on single lesions, wherein invasive tumor biopsies

either from the bone marrow or from affected nodal/soft tissue
are targeted. However, the single-site tumor biopsies fail to
identify the entire mutational profile due to the limited genomic
heterogeneity of an individual’s disease. Solid biopsies also cause
biases in disease characterization and lead to erroneous
therapeutic decisions due to the difference in sampling locations
within biopsies. In the meantime, circulating free DNA (cfDNA) has
been widely explored since its identification in 194810. Cancer
patients have increased levels of DNA fragments in the blood
plasma frequently, which are possibly released from apoptotic or
necrotic cells11. Therefore, circulating tumor DNA (ctDNA) shows
the potential to represent genomic biopsy. Compared with single-
lesion tissue biopsies, liquid biopsies exhibit better performance
to elucidate acquired resistance. Next-generation sequencing
(NGS) has enabled profiling of ctDNA as a small fraction of total
cfDNA, opening new doors to use of liquid biopsies for disease
diagnostics12,13.
However, the lower quantity of ctDNA in cfDNA limits the

sensitivity of detection and imaging is not the optimum approach
for measuring DNA due to low signal levels. In addition to the
histological analysis of solid tumors, imaging circulating tumor
cells (CTCs), CTC clusters, and immune cells is an alternative way to
analyze the tumor’s molecular compositions. CTCs are considered
as real-time “liquid biopsy.” Both single CTCs and CTC clusters
present heterogeneous molecular characteristics. Also, CTCs in
liquid biopsies give a better representation of dynamic immune
profiles, such as PD-L1 expression, than tissue biopsies14. In
addition to PD-L1, the circulating T cells with different T-cell
receptors show the potential to be unique biomarkers for
immuno-oncology14. The heterogeneity presented by both CTCs
and immune profiles, and the limited number of CTCs emphasize
the need for effective biomarker-based detection methods, thus
developing automated, multiplex imaging methods are
promising15.
This perspective focuses on the applications of bioimaging

technologies to screen patients’ molecular heterogeneity in solid
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tumors and cellular constituents of liquid biopsies for predictive
and personalized medicine applications (Fig. 1). Two mainstream
approaches are discussed. The top-down method analyzes the
molecular characteristics that are measured in either liquid or solid
biopsies, wherein the architecture of the cells is maintained in
physiologically relevant conditions, while the bottom-up techni-
que generates highly reproducible data by patterning and
modifying the cells to resemble the dynamic features of the
native tissue using microwell and microfluidic interfaces16. These
complementary schemes elucidate the complexity and hetero-
geneity of tumor microenvironments. Spatial molecular analysis of
RNA and protein markers has great potential to dissect cellular
constituents and interactions in tumor microenvironments at the
tissue level, cell clusters, and subcellular scales. These high-
dimensional cellular image-omics profiles may show differences
between biopsies from the patients who either respond or resist
to therapies. Spatial maps of patient subgroups can be used as
training and learning datasets. Artificial intelligence platforms can
then predict a new patient’s response to drugs for personalized
treatment plans based on the spatial data collected from both
top-down and bottom-up approaches. This integrative framework
impacts precision medicine and therapeutic design.

SPATIAL HIERARCHICAL STRUCTURES FOR CANCER
MICROENVIRONMENTS

Molecular imaging is a ubiquitous and powerful approach to

rapidly monitor the progression of cancers at low cost. Several

imaging modalities are used by clinicians to detect, diagnose, and
stage human cancers including X-ray, ultrasound, and magnetic

resonance imaging (MRI). However, these imaging techniques
detect anatomical aberrations at the organ level without specific
genetic inference and with limited molecular information17.
Although positron emission tomography (PET) measures the

biochemical activity of cancer cells, it is limited to a few traces
that depend on cellular metabolism and that is insufficient to
understand the entire molecular profiles of human cancers18.

Thus, emerging solutions are urgently needed for technological
advances in cancer diagnostics for the simultaneous detection of
hundreds of biological markers in tumors to decipher a wide
range of molecular drivers in human diseases.
Molecular profiles of cancers aid clinicians in designing

personalized treatment regimens and potentially open doors to

drug discovery research. Complementary imaging methods in
histological and pathological routines utilize specific protein-
targeting chemistry such as antibodies to detect molecular
profiles at the cellular level. Although these microscale imaging

efforts have identified vital biomarkers in cancers, they are
constrained by the number of markers that can be measured in
a biopsy sample. Recent advances utilize multiplex cellular

imaging systems that allow visualization of a larger number of
markers of up to 50 unique targets. Current research aims to
develop automated, multiplexed platforms to detect numerous
markers and to feed the information in an algorithm to diagnose

patients and to predict their response to therapies.

Fig. 1 Spatial bioimaging for precision cancer diagnostics at the single-cell and subcellular levels. Two approaches are involved in
analyzing solid and liquid tumors. The top-down approach collects human tissue biopsies and studies the tumor heterogeneity from human
tissue biopsies, maintaining the architecture of tumor cells. The bottom-up approach generates reproducible data by programming the
dynamics in the tumor microenvironment in controllable conditions such as cell cultures. Multiplex imaging techniques that leverage
immunohistochemistry (IHC), immunofluorescence (IF), fluorescence in situ hybridization (FISH), multiplexed ion beam imaging (MIBI), and
imaging mass cytometry (IMC) can then be applied to both approaches to profile molecular characteristics. From the molecular spatial-omics
maps, artificial intelligence categorizes responder and non-responder patient groups to predict the individualized therapeutic treatment for
an incoming patient. Created with BioRender.com.
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Tumor microenvironment

Cancer cells are the key constituents of tissue masses in tumors,
but they are also surrounded by a complex microenvironment
that comprises a heterogeneous mixture of stromal cells, immune
cells, cytokines, and extracellular proteins19. The tumor micro-
environment holds a wealth of information about the biochemical,
physical, genetic aberrations in cancers that can be used to design
patient-specific therapies. This information often remains
unlocked due to the limitation of the commonly used technolo-
gies. For example, routine lab assays often fail in maintaining
intact specimens of tissue samples or in detecting multiple
markers from one sample. Although sequencing and flow
cytometry have been informative about tumor microenvironment
(TME), spatially resolved profiles of genes and molecular products
such as RNAs and proteins are critical to uncovering molecular
drivers of cellular interactions in tumors (Fig. 2a)20. Thus, a
comprehensive study for TMEs necessitates multiplex imaging
methods for the regulation of RNA, protein, and metabolite
markers in patients.

Cell cluster microenvironment

Liquid biopsy has tremendous potential in deciphering the
genomic and proteomic signatures of the CTCs, which are the
cancer cells that escape from the primary tumor into the patient’s
bloodstream, and the disseminating tumor cells (DTCs), which are
a fraction of CTCs that resides in distant sites21. Medical care

providers track the disease progression and assess the treatment
efficiency in real-time using molecular and cellular profiles of CTCs
in liquid biopsies from cancer patients. One of the routine assays
that are used by clinicians is CellSearch, the only Food and Drug
Administration-approved test to identify, isolate, and enumerate
CTCs from a blood sample. However, CellSearch is only utilizing
limited markers to identify CTC, resulting in variable results due to
the dynamic nature of cancer cells and finally leading to
underestimating the density of CTC22. Thereby, multiplexed
imaging techniques are well-suited to study cellular constituents
of liquid biopsies by with higher accuracy and specificity to
understand their biological signatures.
CTCs also appear in the form of cell clusters that comprise

cancer cells and immune cells. Microfluidic interfaces have been
designed to isolate the CTC clusters from blood specimens of
cancer patients23. These CTC clusters provide information about
the tumor’s molecular evolution, their release mechanisms, and
location from which they are coming on primary tumors (Fig. 2b).
Immune cells in clusters also are related to tissue-derived
macrophages and other subtypes of immune phenotypes. These
molecular correlative studies between the CTC clusters and
primary solid tumors have been performed with RNA sequencing,
which provides limited information about their spatial regulation
in tumors. Thus, multiplex spatial bioimaging will be powerful to
decipher “CTC cluster microenvironments” in metastatic physical
progression for designing efficient therapies.

Fig. 2 Multiplex bioimaging of hierarchical spatial microenvironments in tumors. a Multiplexed imaging techniques can be used in solid
biopsies to understand the tissue microenvironment. Spatial protein and RNA profiles can be mapped directly in tissues. b Multiplexed
imaging can also be used for liquid biopsies to capture and analyze the circulating tumor cells (CTCs) and the immune cells, wherein
heterogeneity in cell clusters is studied by heatmaps and clustering. Microfluidic devices are developed for the isolation of CTC clusters, which
are then imaged to study the cell cluster microenvironment. c Single cancer cells or immune cells are isolated from liquid biopsies. The
subcellular microenvironment of single cells can be deciphered using multiplexed analysis. Imaging mass cytometry identified multiplex
phenotypes of circulating tumor cells from prostate cancer patients26. The subcellular microenvironment can further be studied by subcellular
imaging platforms to detect the signatures of chromatin folding and protein factors for distinct epigenetic states. Created with BioRender.
com.
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Subcellular microenvironment

Further, multiplexed imaging techniques can be used to decipher
the cancer heterogeneity in multiple levels ranging from cellular
clusters and down to the subcellular level. In solid tumors, the
“subcellular microenvironment” was measured and quantified to
decipher the functional differences of individual cells. For
example, a multiplexed imaging mass cytometry (IMC) system
detected 32 proteins and phosphorylation sites in formalin-fixed,
paraffin-embedded (FFPE) tissue samples from 20 breast cancer
patients. Several protein markers were uniquely distributed in
their subcellular volumes at different sites of the cancer masses,
such as the invasive front, center, and the periphery. The relation
between two mRNA transcripts was also explored in subcellular
regions that are commonly used as treatment targets (CK19 and
HER2) and their corresponding proteins24,25. In the tumor
microenvironment, a hierarchical regulation from subcellular
architecture to tissue composition regulates the cellular response
to diseases.
CTCs and immune cells circulate in the bloodstream under the

effect of serum and other growth factors. When treated with
drugs, these single cells receive messages from the suspension-
form micro-niches to respond or resist. Thus, the “subcellular
microenvironment” in single cells from liquid biopsies can be
profiled for functional analysis. Receptor interactions, signaling
networks, and chromatin/protein interactions contribute to these
subcellular and molecular microenvironments. Spatially resolved
methods achieve a subcellular resolution to assay intracellular
molecular distributions. For example, multiplexed IMC detected 16
protein markers associated with phenotypes of CTCs, DTCs, and
immune cells from liquid biopsies (blood and bone marrow) from
a metastatic prostate cancer patient (Fig. 2c). In this work, CTCs
and DTCs were isolated from blood and bone marrow samples,
and their genomic profiles were profiled. Patient-specific immune
signatures were also observed, which could potentially be used for
designing a personalized treatment plan26.
Another recent approach was an mRNA detection assay that

was used to profile CTCs for analysis of only viable CTCs that
contribute to disease progression27. Ten markers were combined
in an RNA panel for identifying CTCs that are functional in
metastatic breast cancer patients. In addition, super-resolution
imaging of chromatin state28 and spatially resolving protein
modifications29 in the epigenetic mechanisms further sheds light
on subcellular microenvironments (Fig. 2c). Multiplexed and
super-resolved bioimaging approaches30 are becoming highly
critical for functional studies of single cells in solid and liquid
biopsies.

SPATIAL-OMICS TECHNOLOGIES FOR PRECISION ONCOLOGY

Multiplex imaging techniques meet TME studies with their
measurement capabilities in native tissues with a large target
panel, as summarized in Table 1. These methods detect multi-
parameter maps of cellular profiles in both fresh-frozen and FFPE
biopsies. Two mainstream approaches have been employed for
multiplex bioimaging of proteins, which are important markers for
functional analysis of cells in TMEs. To perform multiplexed
measurements, conventional fluorescence imaging platforms have
been combined with repeated labeling of the biopsy samples
using chemical bleaching/antibody stripping of labels or DNA
barcoded antibodies. CycIF was developed as a cyclic method that
used regular antibody and dye conjugates, where a mix of
bleaching cocktail (4.5% H2O2 and 24mM NaOH in phosphate-
buffered saline) was used to remove the signal from the prior
cycle, re-labeling of another set of antibodies, followed by imaging
and another signal bleaching31,32. This process of imaging,
bleaching, and re-labeling was then repeated for multiplexed
detection. CO-Detection by indEXing (CODEX) was then designed

as another sequential labeling method that utilized and rendered
dye-labeled DNA sequences that were conjugated to a library of
antibodies. CODEX rendering process was repeated up to 15
cycles to anneal and strip DNA barcodes for multiplexing proteins
in spleen samples33. A recent antibody–DNA barcoding technol-
ogy, Immuno-SABER (signal amplification by exchange reaction),
was combined with a unique signal amplification method for
multiplex imaging of lowly expressed markers in tissues30.
Fluorescence-based multiplexing methods are available for
individual laboratories using automated microfluidic and imaging
instruments.
Another direction for multiplexing proteins is by imaging of

mass-tag labeled antibodies. Isotope labels have created high-
dimensional profiles of cellular suspensions from biopsies to
decipher cellular regulations by a mass cytometry technique
(Cytometry by time-of-flight (TOF)) at the single-cell level34. This
platform has recently been extended to the spatial mapping of
proteins by IMC24,35. In this method, laser ablation was used to
raster scan the tissue sample, releasing vapors from specimens to
be analyzed by a TOF detector for identifying mass-to-charge
ratios (elemental types) and abundances of isotopes. As a
complementary effort, the second approach is multiplexed ion
beam imaging by the TOF (MIBI-TOF). In this technique, an ion
beam source was used to raster scan the tissues to generate
secondary ions that are detected by a TOF analyzer. MIBI-TOF
profiled 36 proteins in triple-negative breast cancer (TNBC) FFPE
samples from 41 patients. In this work, a structured view of
immune cell populations and checkpoints expression was
observed and overall survival was linked to immune profiles in
TNBCs20,36.
Multiplex visualization of RNA transcripts has been performed at

two distinct scales, using either genome-wide or targeted (subset
of genome) screens. The first approach has developed sample
preparation and barcoding techniques for encoding spatial
positions onto the DNA identifier sequence, followed by NGS of
positional barcoded transcriptional profiles. In this direction,
spatial transcriptomics (ST)37,38 has profiled genome-wide tran-
scriptional changes in tissues at sub-100 µm resolution. In the ST
platform, a barcoded substrate was prepared and the tissue
sample was digested directly on this interface. The resultant cDNA
sequences were analyzed by a sequencer. ST was applied to
prostate cancers from a high-throughput sample size of 6750
tissue regions, revealing the spatial gradient of stromal cells to
tumor regions39. The integration of bead chemistry with sequen-
cing has allowed higher resolution mapping of spatially resolved
RNA maps. Slide-seq utilized a relatively simplified protocol with
10-µm resolution in the mouse brain and other organs40. Another
implementation, high-definition ST (HDST), created spatially
resolved maps of histological sections at 2 µm resolution41.
Different enzymatic chemistry was also used to map transcrip-
tome using cDNA conversion based on fluorescent in situ RNA
sequencing (FISSEQ) technology42. Recent work introduced a
reconstruction framework, termed as DNA microscopy43, to
perform spatially resolved measurements in cells. DNA microscopy
allows RNA profiling at the single-cell level based on the relative
positioning of biomolecules that are barcoded by unique
molecular identifiers. ST and NGS-based transcriptional profiling
methods approach subcellular resolution with genome-scale
mapping, providing a convenient tool for cancers.
The latter approach has directly profiled a subset of the

transcriptome by imaging of hybridized oligonucleotides on
transcripts. Multiplexed error-robust fluorescent in situ hybridiza-
tion (MERFISH) and sequential FISH utilized single-molecule
barcoding of individual RNA molecules that were imaged, aligned,
and de-barcoded to perform spatially resolved transcriptomics up
to 10,000 gene targets44–49. These methods have provided
transcriptional profiles in cultures and brain slices to reveal the
spatial organization of cells. SeqFISH+ deserves special attention
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as the spatial resolution has been reported at the sub-diffraction-
limit, highest resolving power in RNA-profiling approaches46.
Signal amplification strategies have enabled spatially resolved
RNA measurements in breast cancer tissues and larger structures
such as zebrafish embryos and thicker brain slices50–52. Recently,
another ligation chemistry was developed for STARmap technol-
ogy to reconstruct three-dimensional (3D) distributions of
transcripts in the mouse brain53. Another technology simulta-
neously monitored DNA and RNA profiles in tissues using SABER
protocols54. To compute significance of spatial distributions,
statistical analysis methods are also being developed for both
NGS- and FISH-based technologies55–57. These targeted nucleic
acid profiling methods and their computational analyses are on
the rise for the analysis of tissues from cancer patients. Although
transcriptional profiles work robustly in mouse and fresh human
specimens, RNA transcripts in archival FFPE patient samples would
be relatively more challenging to measure compared with
multiplex protein analysis due to the rapid degradation of RNAs
over time.

Beyond the central dogma, metabolites also play an important
role in the cellular response to therapies. Compared with RNA and
protein profiling, it is rather complicated to determine spatially
resolved metabolite distributions in native tissues, because
metabolites remain noncompatible with amplification methods,
the labeling toolkits for metabolites are limited, and the chemical
compositions are complex to be deconvolved from mass spectra.
Although conventional mass spectrometry imaging (MSI) has
provided 5–20 µm resolution for profiling metabolites, recent
advancements in instrumentation have allowed acquisition of
1–2 µm spatial features58. One such device is atmospheric
pressure matrix-assisted laser desorption/ionization (MALDI) that
achieved 1.4 µm resolution for imaging metabolites, lipids, and
small peptides in single-celled organisms59. Another instrument
modification was transmission-mode MALDI (t-MALDI-2) that
reduced the imaging pixel size to 0.6 µm when recording lipid
profiles in mouse organs such as the brain and kidney60. A
separate instrument was also designed as OrbiSIMS to perform
high-resolution imaging of cells and tissues for mapping lipids
and neurotransmitters in mouse brain tissues. NanoSIMS, a

Table 1. Spatial-omics technologies. Single-cell technologies for spatially resolved measurements in cells and tissues. Multiplex protein imaging is

largely targeted technologies based on mass spectrometry and fluorescence cyclic imaging. RNA imaging is performed either at the full genome-

scale or targeted panel for a subset of genomic markers. Metabolic imaging was achieved by mass spectrometry imaging at different resolution

levels.

Spatial omics Target Read-out Modality Resolution Coverage Refs.

CODEX Protein Cyclic imaging Fluorescence Optical ( × 20) Targeted 33

MIBI Protein Mass Spectrometry SIMS 260 nm Targeted 20,36

CycIF Protein Cyclic imaging Fluorescence Optical ( × 20 to × 60) Targeted 31,32

IMC Protein Mass Spectrometry Laser ablation 1 µm Targeted 24,25

MxIF Protein Cyclic imaging Fluorescence Optical ( × 20) Targeted 129

Immuno-SABER Protein Cyclic imaging Fluorescence Super Resolution Targeted 30

GeoMx DSP Protein Sequencing Fluorescence Single cell Full/targeted 67

GeoMx DSP RNA Sequencing Fluorescence Single cell Full/targeted 130

Spatial transcriptomics RNA Sequencing Fluorescence 100 µm Full 37

SLIDE SEQ RNA Sequencing Fluorescence 10 µm Full 40

HDST RNA Sequencing Fluorescence 2 µm Full 41

DNA Microscopy RNA Sequencing Fluorescence 10 µm Full 43

FISSEQ RNA Sequencing Fluorescence Nucleotide Full 42

STARMAP RNA Cyclic imaging Fluorescence Single cell Targeted 53

SEQUANTIAL FISH RNA Cyclic imaging Fluorescence Optical ( × 60) Targeted 44,45

SEQUENTIAL FISH+ RNA Cyclic imaging Fluorescence Super Resolution Targeted 46

MERFISH RNA Cyclic imaging Fluorescence Optical ( × 60) Targeted 48,49

osmFISH RNA Cyclic imaging Fluorescence Optical ( × 100) Targeted 131

SABER-FISH RNA Cyclic imaging Fluorescence Optical ( × 100) Targeted 54

MALDI Metabolite Mass Spectrometry MALDI 1.4 µm Discovery 59

t-MALDI-2 Metabolite Mass Spectrometry t-MALDI-2 0.6 µm pixel Discovery 60

OrbiSIMS Metabolite Mass Spectrometry SIMS 0.3 µm Discovery 82

TOF-SIMS Metabolite Mass Spectrometry SIMS 100 nm Discovery 132

NanoSIMS Metabolite Mass Spectrometry SIMS 50 nm 7-Channel 61

Read-out: Cyclic imaging is the repeated labeling of the same cells using either automated fluidics or manual protocols. Mass spectrometry and next-

generation sequencing allow direct multiplex detection.

Modality: The contrast reagent that is detected by an instrumental imager such as fluorescence imaging, secondary ion beam spectrometry (SIMS), Laser

ablation, and matrix-assisted laser desorption/ionization (MALDI).

Resolution: “Optical (20×)” refers to low-magnification and lower numerical aperture imaging on a fluorescence microscope, while “Optical (60×)” implies

significantly higher magnification and higher numerical aperture on the similar microscopes. “Super Resolution” is short for super-resolution microscopy that

achieves the highest resolution in the order of sub-100-nm. “Nucleotide” is not an optical resolution but the read-out resolution that is obtained by labeling

chemistry. “Single cell” refers to decent cellular detection with limited subcellular details.

Coverage: “Full” is the entire genome mapping of a cell without the need for target information, on the other hand, “targeted” requires priori information

about panel design to select a subset of the entire genome. “Discovery” also refers to the full molecular mapping of isotope-mass channel without the need

for a prior target identity. “7-Channel” denotes technically available channels but not the fundamental limitation of the technology.
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commercially available device, has also been used to profile
metabolites, lipids, and sugars for only seven selected channels at
50–100 nm spatial resolution61. Multiplexing metabolites in the
same measurement with RNA and protein profiles should impact
the current medical practice for cancer diagnosis and treatments.
Simultaneous imaging of RNA and proteins has been imple-

mented in single-cell analysis for mostly in experiments that utilized
disassociation of cells and barcoding with nucleic acids62–66.
Although there is an increasing interest in multiplex RNA and
proteins in spatially resolved analysis technologies, only a few
transcripts were detected together with multiplex protein maps
using mass cytometry and a decent resolution was achieved for
simultaneous RNA and protein detection by digital spatial profiling
technology25,67. Spatial RNA mapping is key to decipher short-
time response of transcription activity per gene and spatial protein
map is crucial to reach functional state of a cell of interest.
Technically, RNA-targeting protocols and protein-staining experi-
ments have distinct needs, making it difficult to unify in a simple
experiment. First, the blocking steps include serums such as
bovine serum albumin, which degrades the quality of RNA
molecules during the washes and treatments. Second, the fixation
and permeabilization protocols vary to optimize RNA and protein
detection protocols. RNAs require gentle permeabilization meth-
ods such as cold ethanol to keep transcripts intact, whereas the
proteins need harsh treatments such as methanol and triton that
might break RNAs into fragments. RNAs are more sensitive to
nuclease activity and RNase might degrade RNA quality; on the
other hand, proteins are more robust even in RNase-containing
buffers. In addition, metabolite imaging in single cells is highly
invasive and the samples are ablated during the image acquisi-
tion. Therefore, the ideal spatially resolved multi-omics platform
would need to perform RNA targeting “first” and protein staining
“second”, and metabolite imaging as the “last” step. Technological
and biochemical advances would be required to realize such a
truly multi-omics platform for spatial analysis of individual cells.

MULTI-SCALE BIOENGINEERING PLATFORMS FOR SPATIAL
DYNAMICS OF CELLS

To understand the molecular pathogenesis, two complementary
directions are presented in this perspective, top-down and
bottom-up models. The top-down approach targets intact
biopsies that maintain the physiological structures of tumors,
providing direct representation of the pathology of the tumor. In
this direction, tissues are sectioned from solid tumors and CTCs/
CTC clusters from liquid biopsies are isolated, followed by
visualization of molecular dynamics at the cellular level with
multiplex imaging16. On the other hand, the bottom-up model
utilizes limited types of cell lines (immortal or patient-derived
cells) to form a biomimetic tissue environment by culturing
monoclonal cells, two-cell types or three-cell types in controlled
environments such as artificial gels, microwells, and prototyped
microfluidics interfaces. For both models, solid and liquid biopsies
show the spatial heterogeneity in different regions of the same
tumor or different locations of distinct tumors in the same
patient68. This perspective will focus on the use of spatial
multiplex bioimaging to explore the dynamics and complexity
of these top-down and bottom-up approaches as a unified
framework to decipher disease mechanisms and progressions.

Top-down spatial bioengineering

This approach begins with isolating solid or liquid biopsies from
patients. Thin tissue specimens are then obtained from tissue
blocks that are embedded in preservative chemicals such as
paraffin. A microtome is then used to slice the tissue into 5–10 µm
sections (Fig. 3a). These tissue slices are then analyzed by
multiplex bioimaging techniques. Molecular information is

gathered from either tumor biopsies or CTCs. Both of these
biopsies reveal genomics, proteomics, and metabolomics markers
to study pathogenesis in tumor microenvironments69. Although
many other efforts utilize ensemble level sequencing and
cytometry solutions, the presented work will focus on spatially
resolved measurements indirectly sectioned and isolated patient
samples at the single-cell level.
Spatial analysis of tissue specimens has classically been

performed by immunohistochemistry (IHC) to analyze histopatho-
logical features of prognostic factors in distinct tumors. IHC is a
colorimetric staining assay based on antibody and color/fluores-
cence generation chemistry (e.g., horseradish peroxidase) to
measure one biomarker at a time on tissues, followed by bright-
field imaging and digital analysis of biomarker expression levels
on distinct cell types. In breast cancers, prognostic factors
measured by IHC remain as traditional histopathological features
for predicting patients’ diseases70,71. Quantum dots have been
used in immunofluorescence (IF) histochemistry (QDs-IHC) to
create five-color IHC maps with a brighter signal72,73. QD-IHC
exhibits more accurate and sensitive results in detecting HER2 in
breast cancer than conventional IHC74. QDs can be also
conjugated with aptamers to target molecules in a single cancer
cell75. A spectral imaging (Vectra, Perkin Elmer) and Tyramide
signal amplification (TSA) scheme have enabled simultaneous
eight-color IHC maps in tissue sections from multiple cancers76.
The same TSA-based reagent labeling was also automated by
Ventana for five-color IHC detection in tissues77. Multiplex IHC
technologies have been implemented up to eight markers so far
and clinically have been tested. However, multiplex IHC solutions
fail to meet the need for uncovering the complexity of a
tumorecosystem that contains up to 50 to a 100 distinct cell
types and compositions in diseases.
Another conventional method for analysis of tissue sections is IF

to study tumor microenvironment. The microscopic examination
enables an understanding of molecular information from tissue to
single-cell levels. IF allows measurements for more than three
biomarkers using antibody sets that are conjugated to distinct
spectral dyes78. Although IF has been part of ample clinical and
research projects, it is still critical to achieving multiplex IF for
more data-driven cellular research in immunology and cancer
biology. As the genome is composed of about 20,000 protein-
coding genes, ideally multiplex IF should get closer to these
multiplexing levels for ultimate profiling solution. Furthermore,
antibody-based detection of targets suffers from crosstalk among
antibodies due to nonspecific binding events. In practice, multi-
plexing of IF protocols has detected up to 30–50 protein markers
in a single experiment. Cyclic labeling and fluorescence imaging
methods30,31,33,79,80 (CODEX, CycIF, MxIF, and Immuno-SABER) and
one-shot MSI of isotope labeling techniques20,35 (IMC and MIBI)
have delivered this premise of measuring up to 56 markers in FFPE
tissue sections. For instance, tissue-optimized CycIF profiled a
24-marker panel in patient specimens from pancreatic cancers,
providing anti-correlated single-cell distributions of E-cadherin
and Vimentin32. These spatially resolved protein-imaging methods
are the initial efforts for a spatial proteomics vision81 that impacts
next-generation histological analysis.
Alternative spatially resolved profiling methods can be applied

to the top-down analysis. Spatial genomics and transcriptomics
technologies with genome-scale mapping (ST, HDST, and others in
Table 1) and with targeted mapping (STARMAP, seqFISH, MERFISH,
and others in Table 1) provide gene expression measurements in
tissues as a molecular activity. For instance, in situ sequencing of
amplified signals of individual transcripts was profiled in breast
cancer tissues using direct hybridization of targeted markers50.
Spatial maps of prostate cancers were also generated based on ST
technology39. Complementarily, spatial metabolomics approaches
also provided region-specific small molecule and lipid profiles by
mass spectrometry analysis in esophageal tissues58. Instrumental
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advances59,60,82 in MSI methods (MALDI and SIMS) will be
applicable to human tissues to distinguish between health and
disease form metabolic alterations at sub-micrometer resolution
levels.

Top-down cellular dynamics

Although in vivo research could provide physiological information
about the effects of drugs and mechanisms directly from patients’
responses, molecular underpinnings can be studied more
extensively and produce more reproducible data by controlling
and modifying the cultured cells after the live specimens are
isolated from humans. Ex vivo model incorporates the advantages
of both in vivo and in vitro models. As ex vivo research is based on
tissue biopsies, the architecture of the cells is maintained to
preserve the in vivo conditions16. In the meantime, in vitro models
are based on cultured cells that can be used for systematic
dissection of dynamic cellular interactions in controlled experi-
mental conditions. For example, isolating tumor-cytolytic T cells
directly from the patient’s bloodstream maintains the cytolytic
potential and provide physiologically relevant samples for study-
ing adoptive cellular immunotherapy after ex vivo expansion83.
Experiments with 3D ex vivo models recapitulate tumorigenesis

from early genetic events before phenotypic changes. Further-
more, ex vivo models have the potential to study the individual
cellular and humoral component contributing to the tumorigen-
esis each at a time84. Therefore, ex vivo platforms can be
interfaced with imaging techniques to identify the spatial and
epigenetic changes from the subcellular level under an experi-
mental condition that is similar to the in vivo molecular and
cellular states. Multiplex bioimaging methods are well-suited to
study ex vivo platforms for deciphering dynamics of combinatorial
drug treatments and their molecular response in the RNA, protein,
and metabolite levels at the single-cell level.

Bottom-up spatial bioengineering

Tissue engineering field has adopted bioengineering platforms for
recapitulating clinically relevant biophysical and the biochemical
crosstalk between cells and their extracellular environment. One
common approach is the “bottom-up”, in which tissues are
fabricated with a few types of cells to resemble the micro-
architecture features of the native tissue. Bottom-up platforms
were designed by several techniques that include culturing cells in
hydrogels, molded microwells, and microfluidic models. Con-
trolled cell aggregation is the most common technique that is

Fig. 3 Multi-scale spatial bioengineering of tumors with top-down and bottom-up models. a The top-down approach utilizes solid and
liquid biopsies that were isolated from patients, followed by fixation, paraffin embedding, and sectioning. Thin tissue specimens were then
profiled by spatially resolved imaging methods. Spatial protein profiling in pancreatic cancers using CycIF technology32. Spatial genomics
analysis of transcriptomes in prostate tumors39. Spatial metabolomics analysis of small molecules and lipids in esophageal tissues58. b Bottom-
up research is performed in culture conditions such as hydrogel cultures, microwell molding, and microfluidics-based models. Hydrogel
cultures were used to decipher the impact of hypoxia on epithelial–mesenchymal transition in breast cancer cells123. Microwell molding was
used to quantify the effect of combination chemotherapy on breast cancer cell migration and proliferation124. A microfluidic model was used
to measure the impact of EGF on breast cancer cell migration125. Molecular analysis of organs-on-chip devices was performed. Located in the
airway-on-chip device, the time-lapse images showed the ciliary beat frequency of individual cilia in the absence or presence of smoking126.
The multi-layer microfluidic device, tube-on-chip, comprised the transverse views of a representative hollow fiber section of renal proximal
tubule using immunofluorescence staining92,127,128. Bottom-up information constructs simplistic interfaces for deciphering tumors and
facilitating disease modeling. Created with BioRender.com.
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used to create biomimetic modular tissues with a specific
microarchitecture85. Microscale models of tissues can then be
converted to macroscale biomimetic models of tissues and organs
using advanced technologies such as tissue printing, cell-sheet
fabrication, and cell-laden hydrogels fabrication86. Bottom-up
models provide insightful information about the cellular interac-
tion and tissue compositions, but they exhibit shortcomings due
to the limited cellular types that are used in the model, and the
variant mechanical and structural properties. For example, an
in vitro breast cancer model was developed on a chip that
mimicked the interaction between several factors of the extra-
cellular matrix (ECM) with the breast cancer cells (Fig. 3b). This
model was used to study drug perturbation of a nanoparticle-
based drug delivery system. This microfluidic-based model
allowed the evaluation of drug transport and its cytotoxic effects
in engineered microscale conditions87. Multiplex bioimaging can
be interfaced with these engineered microsystems to system-
atically understand downstream and upstream molecular drivers
of two-cell or three-cell interactions. Molecular changes of
monoclonal cell lines also can be elucidated based on multiplex
imaging profiles of specific gene sets that differentially change on
the micro-engineered cellular platforms.

Bottom-up dissection of organs-on-chips

Designing improved cancer diagnostic tools and therapeutic
agents require a better understanding of the complex interaction
between cancer cells and the surrounding microenvironment. To
address this challenge, organ-on-chip models are used to
recapitulate the intricate multicellular architecture of human
cancers. Organs-on-chips are microfluidic, multichannel cell
culture chips, and they contain several hallow channels with
distinct organizations to simulate the biochemical and the
biophysical features of diseases at the organ level (Fig. 3b)88. For
example, a human-based in vitro lung cancer model was
developed to study the process of tumor growth in response to

the mechanical stress/strain of breathing. The process of breath-
ing was modeled to determine mechanically active tumor models.
Distinct cell invasion and drug response profiles revealed that the
tumor microenvironment can significantly influence cancerogen-
esis89. Organs-on-chips are superior to conventional bottom-up
approaches, as it recapitulates more features related to tissue
architecture and multicellular interaction. Organ-on-chip can also
benefit from the power of multiplexed imaging to visualize spatial
maps of cells organization and to analyze the distribution of
stromal cells in the TMEs.

Spatial bottom-up analysis of cell-based therapies

Another revolutionary approach in the field of tissue engineering
and precision medicine is cell-based therapies. In this technique,
intact living cells are harvested from patients or donors to be
modified within in vitro conditions (Fig. 4). The engineered cells
can then be implanted, injected, or grafted into patients to cure a
pathological condition. This approach has many promising
applications including fighting cancers through the cell-
mediated immunotherapies and addressing cardiovascular and
musculoskeletal conditions. However, this technique suffers from
several risks associated with disease transmission, heterogeneity
of the implanted cellular materials, and immune rejection. Routine
imaging techniques are used to detect few makers associated with
severe immune responses, but that is insufficient to ensure the
safety and the efficacy of cell-based therapies90. Thereby, cell-
based therapies can greatly benefit from multiplexed imaging
techniques to detect many markers associated with cellular
heterogeneity, ensuring the safety of cellular implantation.

Complementary domains of top-down and bottom-up approaches

Top-down research approach is excellent in capturing the tissue
complexity in its native conditions as presented in Table 2.
However, it is challenging to get reproducible data from the same
sampling site or from the same donor due to the heterogeneity of

Fig. 4 Applying multiplex spatial imaging to patient-derived cell therapy. Spatially resolved omics profiling can also be applied to the
process of cell/gene therapy. Patient-derived cells are harvested and reprogrammed to iPSCs in vitro conditions. By screening the spatial
molecular maps of the iPSCs before (discovery) and after (quality control) gene-editing the cells, quantitative and bioinformatics analysis can
identify the efficacy of the targeted drugs in patients and determine heterogeneity across iPSC populations. iPSCs can then be engineered
and differentiated to the healthy phenotypes. Created with BioRender.com.
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disease pathology among patients, and even in the same patient.
As top-down research approaches capture native tissues from
patients’ biopsies, it produces a myriad of information about the
proteomic and the genetic profiles, which can lead to discoveries
of new biomarkers associated with diseases or potential targets
for drugs. Given the dynamic nature of human diseases, it is
challenging to get biopsies at all stages of a disease, which makes
it challenging to make definitive conclusions about disease
progression. Top-down research yields results with higher clinical
relevance, but getting human biopsies can be expensive, invasive,
and ethically controversial. On the other hand, bottom-up
research approaches study biological behaviors within well-
studied, controlled conditions, which makes it easier to analyze
the data and to draw conclusions. Using a limited number of
variables also makes it possible to discover the interdependence
of biological behaviors. Nonetheless, bottom-up research
approaches can oversimplify biological processes, which make it
challenging to capture patients’ heterogeneity and to transfer
data to clinical settings.

PRECISION MEDICINE BY SPATIAL MULTI-OMICS AND
ARTIFICIAL INTELLIGENCE

Personalized medicine has been a long-lasting interest for
clinicians and researchers for many years91. Precision therapies
for a particular patient at the right time is the definition of
personalized medicine that dates back to Hippocrates92. In the
post-genomic era, Human Genome Project elucidated an indivi-
dual’s genomic profile at a deeper molecular level in 2001 and
NGS has enabled rapid genome-wide mapping of patient’s
samples at low cost93. In 2008, officials initiated regulatory efforts
on the nationwide need for personalized medicine to address the
costs and quality of life associated with critical diseases including
cancers94. These personalized health initiatives have become an
integral part of the National Institute of Health to enable
innovative oncology treatment options based on an emerging
“cancer knowledge network” that can then be expanded to other
diseases such as chronic conditions95. Awareness of precision
medicine for a clinical model that integrates genomics profiles
and patient-related information to improve health outcomes is on
the rise96.
Multi-omics approaches in personalized medicine have become

the recent paradigm in medical practice. Although the advances in
genome sequencing have piqued the interest for individualized
treatments, other molecular profiling methods to measure the
epigenome, transcriptome, proteome, and metabolome, along
with environmental factors, have impacted clinical decision-
making97. Technological advances in instruments and computa-
tional approaches have made it possible to combine multi-omics
profiles into an integrated metric for defining health and
disease98. These multiparameter patient profiles routinely create
big data that allows highly specific patient stratification, biomarker
discovery, and functional drug kinetics99. Patient subtyping lies at
the heart of personalized treatments100. For a specific treatment
plan, patients either respond or resist chemotherapy, small

molecule therapy (hormone and signaling), and immunotherapies.
These patients are mainly classified as “responders” and “non-
responders,” which are then used as part of the disease
knowledge libraries. This classification can further be converted
to decision trees based on the molecular and characteristic
information of the individual patients.
Most of the multi-omics studies in clinics are based on

conventional ensemble level measurements. However, cancers
are regulated by the cellular interactions in tumors, wherein the
subcellular responses determine personalized treatment options.
Single-cell sequencing and single-cell mass cytometry methods
have provided disease-associated cellular phenotypes and their
abundances in various cancers101,102. These methods utilize
cellular suspensions from patient-derived blood and sorted cells
to study the drug resistance in therapies. Single-cell variations
uncovered the principles of tumor compositions and specific
immune subtypes that differentially change in distinct cancers. For
instance, natural killer cells showed the cytolytic activity in lung
adenocarcinoma, an emerging cellular phenotype for immu-
notherapies103. These single-cell methods still lack one more
dimension, the spatial extent of cellular interactions101,104. Spatial-
omics technologies that are presented in this perspective are ideal
platforms for designing personalized treatments. Single-cell
phenotypes and their local interactions are both captured in
spatially resolved proteomics, genomics, and metabolomics
technologies in patient specimens. Spatial multi-omics approaches
will be the ultimate molecular profiles of resistant and response
patient groups, together with patient characteristics (Fig. 5).
Artificial intelligence is a branch of computer science that

develops and applies advanced mathematical and computational
approaches to “learn” the complex clinical data structure and to
“predict” a therapeutic metric from that data set based on
measurable features, providing ample opportunities for precision
medicine105. Patient stratification is an important aspect of
personalized therapies to model the complex heterogeneity of
individuals. Machine-learning and deep-learning frameworks have
enabled subtyping of patients based on molecular data (geno-
mics, proteomics, and metabolomics), pathological maps, and
molecular imaging data106,107. Although these datasets are from
the same patients, there is still a challenge of combining these
multi-omics data with different characteristics. The performance of
patient classifications suffers from these incompatible data
types105. To address these issues, spatial multi-omics approaches
offer high sensitivity and direct visualization of transcript, protein,
and metabolite profiles that will potentially improve the patient
stratification. Spatial profiles are well-aligned at the cellular level,
making them consistent across individual patients or across
patient cohorts. Another significant challenge for machine
learning in medicine is the size of the datasets. Although
genome-level sequencing results are valuable, spatial single-cell
data generates massive molecular maps at the subcellular and
single-cell levels. This cellular big data generated by the spatially
resolved analyses will then enhance the performance of
automated stratification of patient groups. Generated from spatial
multi-omics platforms, smart patient classifications can then be

Table 2. Multi-scale spatial bioengineering. Comparisons of the “Top-down” and “Bottom-up” research approaches that are integrated with

multiplexing bioimaging technologies.

Top-down advantages Top-down drawbacks Bottom-up advantages Bottom-up drawbacks

Complexity Intact tissues and many
cell types

Intricate cellular analysis Systematic study of cell interactions Limited number of cell types

Dynamics Biomarker discovery Challenges to collect tissue
biopsies

Discover responses of controlled
cell groups

Lacks patient-related
heterogeneity

Clinical Direct medical use High cost, ethical, invasive
procedures

Generation of reproducible data Difficult to transfer to clinical
practice
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integrated with drug response to a given therapy. This compre-
hensive information about patient groups (responder vs. non-
responders) and correlation to molecular subtypes of patients
(proteomics, epigenetics, spatial maps, and other targets) will
serve as “training” of the machine- and deep-learning algorithms,
initial step of the precision oncology framework (Fig. 5).
Using artificial intelligence solutions, prediction of patients’

treatment outcome has been applied to imaging data and
molecular maps in particularly radiology and pathology108.
Response to neoadjuvant therapy was predicted from pretreat-
ment PET images with quantitative features that were analyzed by
convolutional neural networks in esophageal cancers109. Survival
patterns of patients were predicted from spatial distance
measurements in MRI images from subjects with glioblastoma
multiforme tumors110. The likelihood of recurrence was also
predicted from a classifier algorithm that quantified tumor-
infiltrating lymphocytes in pathology images111. An integration
of pathological spatial features and molecular genome-wide data
in thousands of patients allowed predictions of clinical out-
comes112. Further, multiplexed single-cell proteomic profiles were

measured in pediatric diseases and a machine-learning model
(regularized elastic-net approach) was used to incorporate cellular
developmental aberrations to predict the relapse of leukemias113.
Similarly, a subset of glioblastoma cells were identified as the
response predicter from single-cell signaling profiles without the
need for prior information about the expected cell clusters on
bioinformatics maps114. When combined with spatial multi-omics
technologies, bioimaging features (cellular positions, interaction
frequencies, tissue structural variations, and subcellular distribu-
tions) from single-cell analysis and molecular imaging will
continue impacting predictive outcome studies in precision
medicine.
Another benefit of the machine-learning algorithm is to design

a personalized dose for therapy. A deep profiler framework was
developed using pretreatment CT scan images that identified
radiotherapy dose requirements for individual patients115. The 3D
dose–response in 120 patients with head and neck cancers was
predicted by a deeply connected U-net method, providing
accurate 3D distributions of the radiotherapies in the head and
neck regions116. In addition to personalized dose design, artificial

Fig. 5 Precision oncology with artificial intelligence using spatial multi-omics. Patient biopsies are profiled by spatial bioimaging
technologies that integrate proteomic, genomic, epigenetic, and architectural (structural and cell groups) data for analysis of tumor
compositions. The therapeutic response or resistance of individual subjects is then used to classify the patient subgroups. An artificial
intelligence framework leverages patient characteristics and spatial multi-omics profiles as training datasets. Spatial features comprising
cellular positions, interaction frequencies, tissue structural variations, and subcellular variations are included in the machine-learning analysis.
The treatment plan for a new subject will be predicted based on the training set and will be supervised by oncologists and pathologists for
accuracy. Personalized doses of radio/chemo/immunotherapies and combination drugs will be tested and validated in next-generation
clinical trials. Created with BioRender.com.
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intelligence aids the development of combinatorial drug treat-
ments. Tumor cell lines were studied in response to a high-
throughput drug screening assay, wherein a deep neural network
model showed higher efficacy for more than two-drug combina-
tions. Synergistic combinations of drugs were also explored by a
DeepSynergy algorithm that utilized machine learning on experi-
mental and clinically approved drugs on cell cultures117. The
presented framework in this paper that combine top-down and
bottom-up approaches can benefit from personalized dose
predictions on multiplex histological analysis from patient
biopsies, and at the same time, combinatorial drug treatments
can be optimized by spatial-omics maps on high-throughput cell
cultures to reveal synergistic drug groups in cancer treatments.
The prediction model in spatial multi-omics data can greatly

enhance the accuracy and sensitivity compared with the classical
omics data as the dynamic range of cellular phenotypes and their
corresponding functional differences can be mapped out with
finer details. The rare and dominant cellular subgroups can be
classified into two distinct clusters in the prediction to balance the
dynamic range differences of heterogeneous cellular populations.
In other words, the average spatial multi-omics data already
contains information that would be captured by conventional
sequencing approaches, but now also with additional sub-
composition information as an additive parameter in the model.
The larger and the more intricate the input data is, the finer the
predictions will be for precision oncology. For instance, in a
supervised prediction model, the spatial extent of biopsies can be
calculated to define immune- and tumor-enriched regions. These
larger-sized tissue architectures can then be separated into
cellular distributions for a given area. For each cell, subcellular
variations can be computed to further regularize predictions. Of
note, these hierarchical structures are connected and reach the
full extent of biopsy samples at different spatial details. Briefly, the
tissue neighbors would show data that is split into, e.g., 10 × 10
regions. The single-cell distributions would split into 100 ×
100 spatial features and subcellular differences would further
classify the same tissue to 1000 × 1000 data points. A supervised
model can then use this well-defined data structure to output
consistent predictions for personalized therapies.
The projected use of artificial intelligence algorithms for

modeling spatial multi-omics data is feasible based on spatial
imaging features such as 3D distributions, lateral and axial
dimensions, orientation in 3D space, and encoded colors118.
However, it necessitates stringent processing conditions for
robustness and performance comparisons with classical
machine-learning algorithms such as support vector machines
and random forest trees for validation119. Comparative analysis of
complex models120 from conventional multi-omics data and
computational predictions121 from emerging spatial multi-omics
data would be one of the central debates for next-generation
precision oncology contexts.
Finally, spatial features from tissue compositions, cellular

positions, and their relative distributions, and subcellular hetero-
geneity would need a “reference framework” to construct relative
spatial maps for each individual patient. Previously, a dynamic
immune system was modeled by a “scaffold” framework to define
reproducible cell populations in mouse and human immune
systems across various organs122. Such a reference map handles
high-dimensional mass cytometry data from single-cell details.
The relative positioning of immune-cancer cells from fine
pathological data can be incorporated into landmarks, creating a
spatial reference framework per patient. The cellular neighbor-
hood approach also was introduced in the CODEX proteomic
analysis to define normal and diseased spleen architecture from
multiparameter single-cell maps33. Spatial multi-omics datasets
can use a hybrid model to compute hierarchical neighborhoods
and a reference framework to capture patient-to-patient varia-
tions. Graphical representations and network biology would be

the single-cell route to visualize and handle this spatial complexity
without overfitting issues.

CONCLUSIONS

Tumors are complex ecosystems that are composed of multiple
cell types interacting with each other. Cancer cells respond to
therapies under the effect of other cell types in the tumor
microenvironment. To decipher heterogeneity of drug treatments
in distinct patients, cellular compositions need comprehensive
molecular characterization at the single-cell level. During the
metastasis, these cellular types leak into the bloodstream until
they reach a secondary location. Through liquid biopsies, analysis
of clustered cells and isolated cells in the bloodstream also
provides complementary information about the patient’s pheno-
type and potential for therapeutic design. To this end, spatially
resolved bioimaging technologies reveal genomic, proteomic, and
metabolic variability of individual cells in both solid and liquid
biopsy samples. This approach provides a top-down approach to
study disease progression.
To recapitulate the heterogeneity of tumor microenvironment,

an increasing number of approaches have been developed to
mimic patient samples in artificial on-chip environments. Tissue-
engineered platforms and organs-on-chip are designed to study
cellular interactions with a controlled in vitro model to understand
one-cell, two-cell, or multi-cell groups for monitoring dynamics
and combinatorial drug treatments. Multiplex bioimaging meth-
ods can elucidate upstream and downstream factors in these
bottom-up bioengineering platforms, providing complementary
information about the molecular profiles and response character-
istics of patient-derived cells.
Multiple biomarkers in the tumor, cell cluster, and subcellular

microenvironment will be measured in a group of patients who
respond or resist therapies. An artificial intelligence method such
as a machine or deep learning will then use these spatial multi-
omics maps with significant features as training datasets.
Learning-based predictions will then make it possible to group
and personalize the new patient’s treatment according to the
spatial-omics information that associates the physical, genetic,
and biochemical properties of the tumors. The presented AI-based
high-dimensional histological analysis pipeline will be validated in
clinical trials with expected outcomes and matching predictive
scores, demonstrating the use of a precision medicine approach
and beyond.
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