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Abstract: Infectious diseases contribute significantly to the global disease burden. Sensitive and
accurate screening methods are some of the most effective means of identifying sources of infection
and controlling infectivity. Conventional detecting strategies such as quantitative polymerase chain
reaction (qPCR), DNA sequencing, and mass spectrometry typically require bulky equipment and
well-trained personnel. Therefore, mass screening of a large population using conventional strategies
during pandemic periods often requires additional manpower, resources, and time, which cannot be
guaranteed in resource-limited settings. Recently, emerging microfluidic technologies have shown
the potential to replace conventional methods in performing point-of-care detection because they
are automated, miniaturized, and integrated. By exploiting the spatial separation of detection
sites, microfluidic platforms can enable the multiplex detection of infectious diseases to reduce the
possibility of misdiagnosis and incomplete diagnosis of infectious diseases with similar symptoms.
This review presents the recent advances in microfluidic platforms used for multiplex detection of
infectious diseases, including microfluidic immunosensors and microfluidic nucleic acid sensors. As
representative microfluidic platforms, lateral flow immunoassay (LFIA) platforms, polymer-based
chips, paper-based devices, and droplet-based devices will be discussed in detail. In addition, the
current challenges, commercialization, and prospects are proposed to promote the application of
microfluidic platforms in infectious disease detection.

Keywords: microfluidic platforms; multiplex detection; infectious disease diagnosis; immunosensors;
nucleic acid sensors

1. Introduction

Infectious diseases are caused by pathogens, including viruses, bacteria, and para-
sites [1]. As one of the greatest threats to human health and global security, infectious
diseases contribute the most to the global disease burden [2,3]. For example, according to
the World Health Organization, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) had infected 6 billion people and caused 6 million deaths by December, 2022 [4].
Compared to other diseases, infectious diseases are characterized by their high infectiv-
ity [1]. Managing their infectivity is crucial for preventing and controlling the pandemics
of infectious diseases [5–7]. It is reported that timely diagnosis can help control the source
of infection by isolating and treating infected individuals. A rapid, sensitive, and accurate
diagnostic assay is urgently required to effectively investigate and locate the source of
infection and control the spread of infectious diseases [7].

Laboratory tests usually detect infectious diseases with methods such as enzyme-
linked immunosorbent assays (ELISA), DNA sequencing, and qPCR [8]. These techniques
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usually require well-trained operators, professional procedures, and expensive testing
equipment [9]. For example, ELISA technology requires a complex labeling procedure
and a bulky optical reader [10,11]. As the other gold standard technology for nucleic acid
detection [12], qPCR is limited by its many manual steps and precise equipment such as
thermocyclers [13]. Therefore, current laboratory detection technologies are struggling to
meet the need for rapid mass screening and surveillance of infectious diseases, especially in
resource-limited settings. In addition, in many cases (e.g., to distinguish between the different
types of sepsis), clinical evidence based on a single biomarker is insufficient to adequately
diagnose a disease or monitor its treatment [14]. Moreover, simultaneous detection of infectious
diseases with similar symptoms (e.g., respiratory viruses) can rapidly identify the source of
infection [15]. In this context, there is a great need for multiplex detection platforms, that can
ensure the performance and quality requirements of diagnostics of infectious diseases that can
be performed in a short time by laypersons [14,16].

Recently, microfluidics has been highlighted and extensively researched due to its out-
standing advantages, such as fast operation (less than 1 h), low reagent volume (microliter
or even nanoliter), and high integration capability (integration of sample preparation, de-
tection, and analysis into the platform) [17]. In addition, the characteristics of microfluidic
platforms are well-suited for multiplex detection [14,18]. The general strategies of multiplex
detection include spatial separation of detection sites, discrete regions of a channel network
or array, or the detection of different markers in integrated microfluidic chips which can
effectively reduce the interference between different reaction systems in the simultaneous
detection of a large number of targets [14]. Moreover, because of the relatively independent
reaction space on the microfluidic platforms, the sensitivity and specificity of each assay
can be ensured in multiplex detection. Therefore, multiplex detection technology based
on microfluidic platforms shows great potential for the diagnosis and mass screening
of infectious diseases [19,20]. Although there are several reviews that comprehensively
discuss microfluidic detection technologies for infectious disease diagnosis [21–23], few of
them focus on microfluidic platforms for multiplex detection [21]. Therefore, this review
summarizes recent advances in various microfluidic platforms for multiplex detection
of infectious diseases (Figure 1). In particular, immunosensors and nucleic acid sensors
that are based on microfluidics for multiplex detection of pathogens are discussed. The
current challenges, commercialization, and prospects are also proposed to improve the
development of more efficient multiplex microfluidic platforms, especially in the rapid and
accurate diagnosis of infectious diseases.
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2. Multiplex Immunosensors on Microfluidic Platforms

The microfluidic immunosensor is a well-developed diagnostic tool for detecting
analytes at low concentrations, which use antibodies as the biological recognition element
to convert an antibody-antigen binding event into a measurable physical signal [24]. In
the microfluidic multiplex immunosensor, a series of discriminatory biomarkers are simul-
taneously recognized by the antibodies with high specificity and sensitivity, generating
signals in proportion to the antigen concentration in the samples [16,25–35]. For infectious
disease diagnosis, multiplex immunosensors based on microfluidic platforms mainly use
spatial multiplexing and barcode multiplexing strategies. According to the principle of
fluid propulsion, they can be classified into capillary, pressure-driven, centrifugal, elec-
trokinetic, and acoustic systems [36,37]. Among them, capillary force-driven microfluidic
platforms are widely used because they do not require external energy to enable con-
tinuous fluid automation, with lateral flow immunoassay (LFIA) being the most typical
representative [36].

LFIA has become one of the most successful analytical techniques because it meets the
ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free,
and delivered) criteria of the WHO [38]. The rapidity, simplicity, relative cost-effectiveness,
and the ability to be used by unskilled personnel have contributed to the widespread
acceptance of LFIA [38,39]. In fact, the global lateral flow assay market was estimated to
be approximately $5.98 billion in 2019 and is expected to reach $10.36 billion by 2027 [39].
Simultaneous detection of multiple analytes is mainly realized by arranging multiple test
lines (TL) in a single strip, which enables discrimination of different targets by spatial resolu-
tion [39,40]. There are three typical signal readout strategies for LFIA platforms, including
colorimetric signal, surface-enhanced Raman scattering (SERS) signal, and fluorescent
signal, which are discussed below.

Colorimetric LFIA is the most commonly used for simple and rapid detection of
pathogens [41,42]. The analytes (pathogens or their antigens) are first captured by anti-
bodies on the strip, followed by the recognition of detection antibody which is usually
conjugated with colorimetric readout elements such as gold nanoparticles (AuNPs) to
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produce a visible signal on the test line [42]. A number of LFIA platforms based on different
nanoparticles have been developed for multiplex detection of infectious diseases [26–28].
For example, a LFIA platform using a color-mixing encoding and readout strategy was es-
tablished (Figure 2A). After binding nanoparticles and IgM/IgG antibodies against dengue
virus (DENV) and chikungunya virus (CHIKV), labeled antibody-nanoparticle complexes
bind to the immobilized capture reagents on the different test lines in sandwich format to
show different colors. By processing RGB data (from photographs on the LFIA) captured
by the reader, the test results could be read semi-quantitatively. Furthermore, this platform
has been validated in 50 human plasma samples, demonstrating that it can be used for
infectious disease management by providing accessible, evidence-based laboratory diagno-
sis [27]. However, nanoparticle-based colorimetric assays have two inherent shortcomings:
limited sensitivity and poor quantitative capability [43]. To improve the sensitivity and
quantitative detection capability of LFIA in the diagnosis of infectious diseases, a SERS
signal-based system [29–31] and a fluorescence signal-based strategy [32,33,44] have been
recently reported. SERS-LFIA platforms integrate functional SERS-encoded nanoparticles
(NPs), also known as SERS nanotags, into the LFIA system instead of the commonly used
AuNPs as signal reporters [45,46]. This platform can provide specific (fingerprint feature),
strong (high sensitivity), and stable (no photobleaching) SERS signals [46]. For example,
Wang’s group developed a sensitive and quantitative SERS-LFIA platform using Fe3O4@Ag
nanoparticles as magnetic SERS nanotags (Figure 2B), which could simultaneously detect
human adenovirus (HAdV) and influenza A H1N1 viruses from human whole blood,
serum, and sputum samples. The limits of detection (LOD) for HAdV and H1N1 were
10 and 50 pfu/mL respectively, which is 2000 times higher sensitivity than the standard
colloidal gold strip method [29]. In general, fluorescent LFIA in which quantum dots (QDs)
are considered as one of the most commonly used signal labels, show higher sensitivity than
the conventional AuNPs-based LFIA due to their excellent luminescence properties [47].
A LFIA platform based on a dual-channel fluorescent immunochromatographic assay
(ICA) was developed for ultrasensitive and simultaneous qualification of SARS-CoV-2 and
influenza A virus. A high-performance quantum dot nanobead (QB) was fabricated by
adsorbing multiple layers of dense quantum dots (QDs) on the SiO2 surface and used as a
highly luminescent label of the ICA system to ensure the high-sensitivity and stability of
the assay. The LOD was 5 pg/mL for SARS-CoV-2 antigen and 50 pfu/mL for H1N1 within
15 min, respectively. In addition, this platform showed high accuracy and specificity in
throat swab samples with two orders of magnitude improvement in sensitivity compared
to a conventional AuNP-based platform [32].

There are various commercial LFIA products. Such as, ActiveXpress (Edinburgh
Genetics Ltd, Edinburgh, UK), Roche (SD Biosensor Inc./Roche Diagnostics, Basel, Switzer-
land), and Standard-Q (SD Biosensor Inc, Gyeonggi-do, Republic of Korea) [48]. Despite the
extensive LFIAs research and the availability of several commercial products for detection,
some challenges remain. First, the sensitivity should be enhanced by fabrication of high-
resolution instrumentation and label materials with high response signal [33]. Second, the
false positives may be reduced by multi-signal synchronous detection based on multiplexed
type and multi-signal type [49]. Third, the false negatives caused by mutations are required
to decrease through selecting new immune targets in a timely manner [50,51].
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Figure 2. The multiplex detection of infectious diseases using microfluidic immunosensors. (A) Rapid
diagnostic platform for DENV and CHIKV IgM/IgG antibodies, consisting of a multiplex color en-
coded lateral flow test strip and optical reader. Adapted with permission from Ref. [27]. Copyright
2019, American Chemical Society. (B) The multiplex detection of H1N1 and HAdV of the magnetic
SERS-LFIA. Adapted with permission from Ref. [29]. Copyright 2019, American Chemical Soci-
ety. (C) The multiplex detection of H1N1 and SARS-CoV-2 based on a dual-channel fluorescent
immunochromatographic assay. Adapted with permission from Ref. [32]. Copyright 2021, Elsevier.
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3. Multiplex Nucleic Acid Sensors on Microfluidic Platforms

Nucleic acid is another biomarker that can be used for the diagnosis of infectious
diseases, due to its unique and outstanding characteristics (e.g., molecular recognition,
biocompatibility, functionalization, and programmability), which endow nucleic acids with
potential application as powerful sensing elements and provide key information of specific
genes and species [52]. PCR is typically considered as the gold standard detection method
of nucleic acid-based diagnosis, but involves costly/advanced equipment and skilled
personnel, so it cannot be easily combined with microfluidic technology [53]. Therefore,
isothermal amplification and clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated proteins (CRISPR/Cas) system, which have the advantage
of low-cost, reliability, and do not require for bulky equipment, can be compatible with the
microfluidic platforms for nucleic acid detection [20,54]. Based on the spatial separation
of detection sites on microfluidic platforms, the multiplex detection of different nucleic
acids can be realized [14]. Multiplex nucleic acid sensors on microfluidic platforms mainly
include polymer-based microfluidic chips, paper-based microfluidic devices, and droplet-
based microfluidic devices [55]. They are characterized by cost-efficiency, portability,
low sample consumption (µL-fL), miniaturization (with dimensions of tens to hundreds
of micrometers chambers), simplicity (no training is required), and multiplex detection
(providing multiple spatially separated detection channels) [56]. In this section, we will
discuss nucleic acid sensors on microfluidic platforms for multiplex diagnosis of infectious
diseases [57–59].

3.1. Polymer-Based Microfluidics

Fabrication of microfluidic devices is an important step in integrated automated
nucleic acid sensing. In this regard, polymers (e.g., polydimethylsiloxane, PDMS) are
one of the most common materials, due to their advantages such as cost-effectiveness,
good biocompatibility, and simple fabrication protocol [20]. Polymer-based microfluidic
chip is highly automated (multistep continuous reactions can be realized via sophisti-
cated microstructures) and integrated, which has been widely used for infectious disease
detections [60].

Depending on the presence or absence of moving mechanical parts, fluid flow support
techniques for polymer-based microfluidic chips are generally divided into mechanical
drive (e.g., centrifugal force drive and micropump drive) and nonmechanical drive (e.g.,
electric drive and capillary force drive) [61,62]. The mechanical drive chips have the
advantages of easy large-scale integration, high drive pressure, wide range of flow rates,
and high adaptability. For example, Nguyen et al. designed a centrifugal disc equipped
with a glass filter extraction column and multiple reaction chambers. Such a portable
analyzer could simultaneously detect four pathogens of upper respiratory diseases within
90 min (Figure 3A) [63]. The non-mechanical drive is also suitable for integration, operation,
and accurate control [61,63,64]. A pump-free microfluidic chip with capillary force drive
was developed by Ciftci et al., which could directly collect the nucleic acid amplification
products through the extraction solution without loading or washing procedures, enabling
accurate diagnosis of the Ebola, Zika, and dengue viruses simultaneously [64].

The other key element for multiplex detection of infectious diseases is the design of
microfluidic channels. The general processing technology of the polymer-based microfluidic
channel includes the hot pressing, injection molding, photolithography, and laser etch-
ing [65]. For example, Huang et al. used laser cauterization to fabricate a basement layer
consisting of two sides: side A contained microstructures for the recombinase polymerase
amplification (RPA) reaction, and side B for the loop-mediated isothermal amplification
(LAMP) reaction. Thus, the two-step of isothermal amplification could be completed on the
chip to achieve a higher detection sensitivity (10 copies/µL) [66]. Similarly, Choi et al. devel-
oped a CRISPR/Cas strategy nucleic acid amplification-free on a polymer-based microfluidic
chip. The activated CRISPR-Cas 12a in the presence of viral DNA was combined with a
Raman-sensitive system consisting of ssDNA-immobilized Raman probe-functionalized
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AuNPs on the graphene oxide/triangle Au nanoflower array. Using this platform, simul-
taneous detection of hepatitis B virus (HBV), human papillomavirus 16 (HPV-16), and
HPV-18 could be achieved with high sensitivity range from 1 aM to 100 pM without any
amplification steps [67]. However, these methods require sophisticated instrumentation
and high cost, and are difficult to achieve rapid prototyping [68]. To address this problem,
three dimensional (3D) printing technology has been gradually adapted for the fabrication
of polymer-based microfluidic chip manufacturing [69]. For example, our group used 3D
printing technology to develop a sensitive, multiplex colorimetric detection (SMCD) method
for the detection of pathogens in wastewater samples (Figure 3B). This SMCD method
integrated nucleic acid extraction, RPA, LAMP, and colorimetric detection into microflu-
idic chips, and detected multi-gene targets of SARS-CoV-2 and multiple human enteric
pathogens from the wastewater. The detection time was about 60 min, which was half of the
time required for the qPCR method. Moreover, a smart, connected, and on-site detection
was achieved with a reporting framework embedded in a smartphone-based detection plat-
form, which exhibited the rapid spatiotemporal epidemiological data collection potential
regarding the transmission and persistence of infectious diseases [70].

Biological manufacturers have developed several polymer-based microfluidic com-
mercial devices [e.g., Revogene (Meridian Bioscience, Cincinnati, OH, USA) and GenPlex®

(BOHUI, Beijing, China)] for the diagnosis of infectious diseases [1,71–73]. Nevertheless,
weakness of polymer materials includes thermal conductivity and low thermal resistance.
The surface modification of polymers also needs to be further explored [74,75]. In addition,
a practical solution for the processing and integration of the whole microfluidic system
should be presented and optimized [74]. Finally, microfluidic devices need to be tested in
large-scale clinical trials before being commercialized [75].

3.2. Paper-Based Microfluidics

The paper-based microfluidic device is a miniature laboratory analysis system that
utilizes a paper substrate to replace the conventional substrates (e.g., quartz, silicon, and
glass) [76]. There are several advantages of paper-based microfluidic devices: (1) paper is
cheaper than conventional substrates; (2) the paper itself has a capillary effect, which can
guide reagent flow without external forces; and (3) the flexibility and elasticity of paper
facilitate customization [77,78]. Therefore, paper-based microfluidic devices, including
lateral flow assays (LFA) and microfluidic paper-based analytical devices (µPAD) are widely
applied to the multiplex detection of infectious diseases [79].

Generally, the LFA consists of a sample pad, a conjugate pad, a nitrocellulose filter
membrane, an absorbent pad, and a back card. Each part has varied degrees of overlapping
to ensure the continuity of sample flow [80]. Simultaneous detection of different targets
can be achieved by fixing and modifying multiple identification elements and signal trans-
duction elements on the LFA test strip [58]. Zhang’s group reported that SHERLOCKv2
can simultaneously detect dengue and Zika virus single-stranded RNA using a fantastic
CRISPR/Cas detection system on the LFA platform [81,82]. Similarly, a CRISPR/Cas9-
mediated triple-line LFA (TL-LFA) was combined with a multiplex RPA to achieve rapid
and simultaneous detection of the E and ORF1ab genes of SARS-CoV-2 in a single strip test
(Figure 4A). The TL-LFA showed high sensitivity with an LOD of four copies/mL. The
total detection time, including sample pretreatment and analysis, was within 60 min [58].

In 2007, Whiteside’s group at Harvard University first proposed the concept of
µPAD [83]. Generally, the fabrication technologies of µPADs are categorized as photolithog-
raphy, PDMS stamping and printing, laser cutting, engraving, plasma treatment, screen
printing, and vapor phase deposition [84]. The µPAD can simultaneously quantify multi-
component objects, which is hardly achieved by conventional test papers [84,85]. Therefore,
µPAD has gained significant interest as a promising analytical platform for point-of-care
testing in the last ten years [85]. Nae Yoon Lee’s group developed a series of µPADs for
the detection of several infectious diseases [86,87]. For example, a µPAD based on LAMP
was fabricated to detect Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus,
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and Cochlodinium polykrikoides, followed by on-chip fluorescent readouts (Figure 4B). This
platform can detect as low as 0.12 ng/µL and 0.13 ng/µL for S. aureus and E. coli O157:H7
DNA, respectively [86]. Moreover, a slidable µPAD contained three layers to accomplish
DNA extraction, LAMP reaction, and multiplex colorimetric signal output sequentially
(Figure 4C). A novel colorimetric fuchsin-based method was used to detect LAMP ampli-
cons. The limit of detection of Salmonella spp., Staphylococcus aureus, and Escherichia coli
O157:H7 were 3.0 × 101, 3.0 × 102, and 3.0 × 101 CFU/sample, respectively [87].
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centrifugal microfluidic chip equipped with a glass-filter extraction column for purifying nucleic acid
and multiple reaction chambers for multiplex detection. Adapted with permission from Ref. [63].
Copyright 2021, Elsevier. (B) A 3D printed microfluidic chip integrated on-chip nucleic acid extraction,
two-stage isothermal amplification, and colorimetric detection. Adapted with permission from
Ref. [70]. Copyright 2021, Elsevier.

There are several successful commercialized LFAs (e.g., urine dipstick and pregnancy
test kit) [88,89] and µPADs (e.g., Diagnostics For All and INSiGHT) [90,91]. However,
problems remain. Firstly, the LFAs often allows only qualitative/semi-quantitative results,
and thus researchers have tried to solve this by introducing smart phone attachments to
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achieve more accurate result analysis [92]. In addition, the insufficient validation on their
compatibility with real sample matrices may cause discrepancy between the detection
results obtained from real samples and standard samples and can eventually require major
modification of the device design [93]. Thus, the examination of µPADs using clinical
samples in a real environment is deemed to be essential [90]. Finally, the integration degree
of the µPADs can be improved by adding sample processing modules which can simplify
the operational steps and improve the integrated capability of the devices [94].
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(A) The multiplex detection for E and ORF1ab genes of SARS-CoV-2 based on CRISPR/Cas9-mediated
LFA. Adapted with permission from Ref. [58]. Copyright 2021, WILEY. (B) Fluorescent µPAD-based
LAMP was prepared by simple craft-cutting for the simultaneous detection of four pathogens.
Adapted with permission from Ref. [86]. Copyright 2018, Royal Society of Chemistry. (C) The
colorimetric slidable µPAD was prepared by etching method for simultaneous detection of Salmonella
spp., Staphylococcus aureus, and Escherichia coli O157:H7. Adapted with permission from Ref. [87].
Copyright 2019, Elsevier.
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3.3. Droplet-Based Microfluidics

A droplet-based microfluidic device is an alternative strategy for large-scale and
parallel biological and chemical reactions [95]. The key technology is to generate small and
mono-dispersed droplets (picoliter to nanoliter level) under high frequency (∼kHz) and
precise control. Generally, microdroplets are generated from two incompatible liquids as
a continuous phase and discrete phase, respectively, and different size distributions can
be formed by controlling the microsphere structure and flow ratio of the two phases (the
volume of microdroplets varies greatly from microliters to femtoliters) [96]. Meanwhile, the
spatial separation of detection sites on the chips can be used as independent bioreactors to
effectively distinguish different reactions [95,96]. Therefore, high-throughput droplet-based
microfluidic devices enable the large-scale screening and multiplex detection of infectious
diseases [97].

Depending on the mode of droplet generation, droplet-based microfluidic devices can
be divided into active and passive modes. The passive mode requires additional energy
input to generate droplets, while the active mode generates droplets without external
propulsion [98]. The passive modes, which do not require programmable syringe pumps
or other automated instrumentation to control fluid flow, have been designed to construct
droplet-based microfluidic devices [99]. For example, the first combination of droplet
digital PCR technique was developed to simultaneously detect ORF1ab and N genes of
SARS-CoV-2 (Figure 5A). Compared with the standard qPCR method, the droplet digital
PCR system showed similar accuracy but with a lower turnaround time and a lower
false-negative results [100]. In another study, a microdroplet platform integrating multiple
LAMP, scorpion-shaped probes, and fluorescence microscopic counting, was developed
using the flow-focusing method. The platform successfully detected Hepatitis C virus
(HCV) and HIV from clinical plasma samples, with an LOD of four copies/reaction [101].
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In contrast, active designs enable on-demand generation of droplets with a short
response time and a better control of droplet size, content, and motion [102]. Specifically,
compared with a few seconds or even minutes in a passive approach, the response time can
be reduced to a few milliseconds in an active method. In addition, active methods control
droplet size and production rate with higher flexibility and additional handles, and allow
on-demand droplet generation, thus greatly promoting practical applications of microflu-
idic droplets [103]. However, in the passive approach, it is almost impossible to control
droplet size and generation frequency independently because they are interrelated through
mass conservation [99,102]. To date, the cutting-edge active techniques mainly apply mag-
netic, electrical, thermal, optical, mechanical, and centrifugal methods, by which magnetic,
electrical, and centrifugal forces are introduced, and the viscosity, flow, interfacial tension,
fluid density, and channel wettability are varied [104]. A cost-effective and automated
multiplex micro-droplet detection platform was created using 3D-printed structural parts
incorporated with off-the-shelf mechanic/electronic components (Figure 5B). The platform
used magnetic force to control the linear displacement of the multichannel array chip,
and seamlessly integrated multiple steps including bacterial lysis, RNA extraction, and
amplification through droplet combination. The sample–answer assay could be completed
within 42 min, with 100% concordance with qPCR [59]. In addition, the combinatorial
arrayed reactions for multiplex evaluation of nucleic acids (CARMEN) were developed
for scalable and multiplex pathogen detection. As a result, the platform simultaneously
detected 169 human-associated viruses with at least 10 published genome sequences. In
addition, SARS-CoV-2 was also detected by incorporating CARMEN-Cas 13a and an ad-
ditional crRNA. The multiplex and throughput abilities of CARMEN made it practical
to scale-up, as miniaturization reduced reagent cost per test by more than 300-fold [2].
Therefore, CARMEN enables large-scale CRISPR-based diagnosis, which is an important
step toward routine, comprehensive infectious disease surveillance to improve patient care
and public health [105,106].

Significant progress has been made in droplet-based microfluidics and some commer-
cial products (e.g., 10× g and Drop-seq) have been developed [107,108]. To largely facilitate
commercialization, several challenges remain to be addressed. For passive mode, it occurs
at quite low flow rate ratio, tip-streaming is stable typically in less than few minutes,
and then is destabilized by the variation in flow rate of syringe pumps [103]. Thus, it is
indispensable to design a system that facilitates a stable tip-streaming over a long period
of time [103,109]. In active design, the system should be parallelized and miniaturized.
Furthermore, the piezoelectric dispenser and pulse laser-driven droplet generation show
great potential to develop the fast-responding actuation and smart design of microfluidic
junctions [108].

4. Conclusions and Future Prospects

Recent research on multiplex microfluidic detection platforms (Table 1) have demon-
strated their potential for developing accurate, convenient, and rapid diagnoses of infec-
tious diseases. LFIA is known as an ideal diagnostic assay characterized by fast, easy
operation, durable stability, and low cost. Polymer-based microfluidic chips are a highly
automated and integrated microfluidic platform. Paper-based microfluidic devices offer
advantages such as ease of processing, control of reagent flow without external forces,
and ease of customization. Droplet-based microfluidic devices are an alternative strategy
for large-scale and parallel biological and chemical reactions, providing advantages of
high throughput, low-cost, and multiplex detection. The industrialization of microfluidic
platforms is also still in its infancy, and challenges such as liquid leakage and difficulties
in reusability need to be improved by enhancing functional modularity of sample pro-
cessing and target detection, as well as by automating platform fabrication and finding
cost-effective substrate substitutes. Moreover, to improve the sensitivity and specificity of
detection, the combination of two or more technologies may enhance the signal output or
minimize interference [22]. Finally, cross-contamination and sensitivity attenuation of mul-
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tiplex detections, and biosafety, data security, and privacy issues of microfluidic platforms
should also be examined. A cohesive collaboration of industry and academic institutes will
be increasingly desired to put microfluidic platforms into mass production and market
distribution. In summary, microfluidic platforms have the outstanding advantages of inte-
gration, miniaturization, automation, and high-throughput, and the detection assays own
the capabilities of portable signal readouts, simplicity, sensitivity, and specificity. Therefore,
it is expected that microfluidic platforms integrated with various detection methods will
provide a conceptually novel tool for infectious disease diagnoses.

Table 1. Summary of multiplex microfluidic platforms based on sensor types.

Type of Sensors Infectious Disease Sample LOD Assay
Time (min) Ref

immunosensor

H1N1 and HAdV
whole blood,
serum, and

sputum
50 and 10 pfu/mL 30 [29]

DENV and CHIKV serum 100 ng/mL 30 [27]
YFV, DENV, and ZEBOV serum 150 ng/mL - [26]
SARS-CoV-2 and H1N1 throat swab 5 pg/mL and 50 pfu/mL 15 [32]

anti-SARS-CoV-2 IgM and IgG serum 1 and 0.1
ng/mL 15 [30]

SARS-CoV-2 spike and
nucleocapsid protein antigens

saliva and nasal
swab 0.5 pg/mL 35 [33]

nucleic acid sensor

FHV, MPF, BDB and CDF oropharyngeal
samples

1 × 104, 1 × 103, 1 × 103,
and 1 × 103 copies/µL

90 [63]

SARS-CoV-2 and measles nasopharyngeal
swab 10 copies/µL 60 [66]

HBV and HPV (16.18) plasmid 1 aM 20 [67]
SARS-CoV-2 and human enteric

pathogens Waste-water 1 × 102 GE/mL and
5 × 102 CFU/mL

60 [70]

gene E and ORF1ab gene of
SARS-CoV-2

nasopharyngeal
swab 4 copies/ml 60 [58]

Escherichia coli O157:H7,
Salmonella spp. and

Staphylococcus aureus,
milk 0.13 ng/µL, 1.7 × 102

CFU/mL and 0.12 ng/µL
70 [86]

Salmonella spp., Staphylococcus
aureus, and Escherichia coli

O157:H7
juice and milk 3.0 × 101, 3.0 × 102 and

3.0 × 101 CFU/sample
75 [87]

ORF1ab and N genes of
SARS-CoV-2 throat swab 5 and 10 copies/test 5 [100]

HCV and HIV plasma 4 copies/reaction 60 [101]
MP, CA-16 and EV-71 urine 102 copies/reaction 42 [59]

Notes: H1N1, influenza A; HAdV, human adenovirus; DENV, dengue virus; CHIKV, chikungunya virus; YFV,
yellow fever virus; ZEBOV, Zaire Ebola virus; FHV, feline herpesvirus 1; MPF, Mycoplasma felis; BDB, Bordetella
bronchiseptica; CDF, Chlamydophila felis; HBV, Hepatitis B virus; HPV 16 and 18, human papillomavirus 16 and 18;
HCV, Hepatitis C virus; HIV, human immunodeficiency virus; MP, Mycoplasma pneumoniae; CA-16, Coxsackievirus
A type 16; EV-71, Enterovirus 71.
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