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Abstract

Background: Pooled library CRISPR/Cas9 knockout screening across hundreds of cell

lines has identified genes whose disruption leads to fitness defects, a critical step in

identifying candidate cancer targets. However, the number of essential genes

detected from these monogenic knockout screens is low compared to the number

of constitutively expressed genes in a cell.

Results: Through a systematic analysis of screen data in cancer cell lines generated

by the Cancer Dependency Map, we observe that half of all constitutively expressed

genes are never detected in any CRISPR screen and that these never-essentials are

highly enriched for paralogs. We investigated functional buffering among

approximately 400 candidate paralog pairs using CRISPR/enCas12a dual-gene

knockout screening in three cell lines. We observe 24 synthetic lethal paralog pairs

that have escaped detection by monogenic knockout screens at stringent thresholds.

Nineteen of 24 (79%) synthetic lethal interactions are present in at least two out of

three cell lines and 14 of 24 (58%) are present in all three cell lines tested, including

alternate subunits of stable protein complexes as well as functionally redundant

enzymes.

Conclusions: Together, these observations strongly suggest that functionally

redundant paralogs represent a targetable set of genetic dependencies that are

systematically under-represented among cell-essential genes in monogenic CRISPR-

based loss of function screens.

Background

The adaptation of CRISPR-Cas9 system to genome-wide knockout screens in mamma-

lian cells has greatly transformed the search for cancer-specific genomic vulnerabilities

that can be targeted therapeutically. Monogenic pooled library CRISPR-Cas9 knockout

screens revealed that mammalian cells have as much as 3–4 times more essential genes

than the previous RNAi technology was able to detect at the same false discovery rate

[1]. Moreover, through immense monogenic screening efforts, multiple groups
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revealed lists of ~ 2000 highly concordant human essential genes, and comparison of

CRISPR technology to orthogonal techniques such as random insertion of gene traps

also showed consistent results [2–4].

However, even with the CRISPR technology, the number of essential genes detected

through these screens is still far less than the number of genes constitutively expressed in

a given cell line. This phenomenon was previously observed in systematic gene knockout

studies in S. cerevisiae [5, 6], where only 17% of yeast genes were essential for growth in

rich medium [6]. A closer look at the biological characteristics that define essentiality re-

vealed a modular nature of gene essentiality [7] in which essentiality is not a characteristic

of the protein or gene itself, but is rather defined by the protein complex to which the

protein belongs. While genes that encode for members of a protein complex were shown

to be more likely to be essential, paralogous genes were less likely to be essential [8]. How-

ever, a later study showed that a binary classification of genes into essential and nonessen-

tial was misleading due to the context-dependent nature of gene essentiality and that 97%

of yeast genes showed some growth phenotype under different environmental conditions

[9]. A similar study in C. elegans [10] suggested that, at the organismal level, virtually

every gene is required for optimal growth in some condition.

Paralogous genes arise from gene duplications, an evolutionary mechanism to create

new genes. While gene duplication can result in two functionally distinct genes over

time, more frequently, the genes preserve a proportion of functional overlap through

the process of subfunctionalization [11, 12]. In yeast gene deletion studies, singletons

(genes without paralogs) were more than twice as likely as paralogous genes to be

essential [8], indicating the role of paralogs in genetic buffering and suggesting that

paralogs can affect how yeast cells respond to genetic and environmental perturbation.

The buffering ability of paralogs to each other’s loss is explained by their functional re-

dundancy. Double deletion studies of paralog gene pairs in yeast revealed that synthetic

lethality occurred with depletion of both paralog pairs, resulting in a fitness defect that

was more than the expected additive effect of individual gene depletions [13]. Further

analyses determined sequence similarity of paralog pairs as a predictive characteristic

for the level of functional redundancy [14]. A major open question remains whether,

and to what extent, these findings hold true for human cells generally and cancer cells

specifically.

Recent studies investigated paralog dependencies in monogenic genome-wide CRIS

PR-Cas9 knockout screens in human cells, revealing differential effects of paralogs on

cellular fitness. One study showed that paralogs are less likely to be essential in whole-

genome CRISPR knockout fitness screens than singleton genes [15], while another

study demonstrated that some paralogs that form heterodimers are more deleterious to

the cell compared to non-heterodimer forming paralogs [16]. However, these studies

did not take into account the effect of tissue-specific expression of the paralog pairs.

In this study, using publicly available genome-wide screen data of genetically hetero-

geneous cell lines from the Cancer Dependency Map initiative [17, 18], we investigate

paralogs among constitutively expressed never-essential genes as a set of targetable

genetic dependencies that are systematically excluded in monogenic CRISPR-Cas9

knockout screening. We further demonstrate experimentally, using CRISPR/enCas12a

multiplex knockouts, that dual-gene screens reveal synthetic lethality among targeted

paralogs.
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Results and discussion

As part of our ongoing effort to understand differential gene essentiality, we looked at

the relationship between gene expression and gene essentiality across hundreds of can-

cer cell lines. We looked at gene expression from all cell lines in the Cancer Cell Line

Encyclopedia (CCLE) [19] and considered the role of tissue-specific vs. constitutive

gene expression. We took the mean and standard deviation of gene expression across

684 cell lines with high-quality CRISPR screens from the Avana 19Q4 data release [17]

and modeled the joint distribution with a linear combination of 2-d Gaussian mixture

models. We find that three elements correspond to the three major populations in the

data: constitutively expressed genes (high expression, low variance), never-expressed

genes (low expression, low variance), and genes that show variable, sometimes tissue-

specific gene expression (“sometimes expressed” genes, high variance) (Fig. 1a).

We evaluated the fraction of essential genes in each population. We defined essential

genes as those with a BAGEL-derived BF > 10, a high-confidence threshold correspond-

ing to a posterior probability of essentiality of ~ 99%. Common essential genes are

largely constitutively expressed, as expected, while context-dependent essential genes

are divided across the constitutive expression and tissue-specific expression. Interest-

ingly, among constitutively expressed genes, many are never-essential in any CRISPR

knockout fitness screen (3032 of 7282; 42%; Fig. 1b). These observations regarding the

Fig. 1 Paralogs are under-represented in CRISPR-Cas9 screens. a Scatter plot of mean vs. standard deviation

of log (TPM) gene expression in CCLE. Color coding by component of a 3-element Gaussian mixture model.

b Fraction of context and common essentials as a function of gene expression. c Paralog pairwise sequence

identity among constitutively expressed paralogs. d Fraction of common essentials with a paralog vs.

fraction of never-essentials with a paralog, by paralog similarity
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constitutively expressed genes raised the question about why we observe so few essen-

tial genes in these genetically heterogenous screens. Based on work in yeast and nema-

todes [10], we naively assumed that all constitutively expressed genes should be

essential in some context and hypothesized that some combination of environmental or

genetic buffering masks the fitness consequences of individual gene knockouts.

An important study by De Kegel and Ryan observed that paralogs are less likely to be

essential in whole-genome CRISPR knockout fitness screens than singletons [15]. This

work discovered more than 200 instances where higher essentiality in one paralog was

accompanied by lower gene expression in the other, supporting the assertion that para-

log buffering masks monogenic knockout fitness effects. We sought to extend this ob-

servation to include constitutively expressed genes. We obtained the list of the paralogs

of human protein-coding genes from Ensembl Biomart [20] along with protein sequence

similarity information (see the “Methods” section). After filtering for constitutively

expressed genes, we observed that paralogs show a wide range of amino acid sequence

similarity, with the majority showing relatively low identity (Fig. 1c). To evaluate whether

paralogs are enriched in constitutively expressed never-essentials (hereafter “never-essen-

tials”), we adopted a sliding scale of sequence identity and measured, at each threshold,

the fraction of never-essentials and the fraction of common essentials captured. As shown

in Fig. 1d, as sequence similarity stringency is relaxed, never-essentials are more likely to

have a paralog than common essentials. At 35% or greater sequence similarity, nearly a

third (27.9%) of constitutively expressed never-essentials have a paralog, compared with

only 11.6% of common essentials (P < 10−89, Z-test for difference in proportions).

To identify functionally redundant paralogs, we explored the Avana and Sanger data

to find cases where loss of function of one member of a paralog pair resulted in in-

creased dependency on the other (Fig. 2a). We limited the search for functional redun-

dancy to genes classified as constitutively expressed according to our model, which

excludes false associations arising from tissue-specific expression of paralog family

members. The search is further constrained by requiring that one member of the pair

show loss of function, either through predicted deleterious mutation or by severe de-

crease in gene expression (see the “Methods” section), in a sufficient number of cell

lines to result in a statistically significant difference in gene essentiality of the other

member. By applying this test to 628 gene pairs in the Avana data and 295 gene pairs

in Project Score (Fig. 2a, Additional file 2: Table S1), we detected a total of 66 such

cases of putative functional buffering at a P value < 0.01, of which 32 (48%) are com-

mon between the two sets (Fig. 2b, c). Two well-described cases in the BAF (mamma-

lian SWI/SNF) complex were immediately apparent: mutations in SMARCA4 are

strongly associated with dependency on paralog SMARCA2 (P < 10−10; Fig. 2d), and

mutations in ARID1A are associated with ARID1B dependency (P < 10−9; Fig. 2e).

Expanding loss-of-function to include significantly depleted gene expression also re-

veals an emergent dependency on RPP25L when RPP25 is depleted (P < 10−52; Fig. 2f).

The two genes encode redundant subunits of RNAse P, a ribonuclease critical for mat-

uration of tRNA, whose functional buffering was previously observed [4]. A fourth ex-

ample is FAM50A/FAM50B putative functional redundancy (Fig. 2g). Interestingly,

virtually nothing is known about the biological role of these genes.

Unfortunately, the cell lines screened by CRISPR knockout libraries only contain

LOF alleles of a fraction of the candidate paralogs, limiting this discovery avenue to a
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few dozen pairs. A comparison with De Kegel and Ryan [15] shows that more than half

of our computationally derived hits (39 of 66, 59%; Additional file 1: Fig. S1) are present

in their study, indicating strong concordance between the two approaches. Neverthe-

less, the large number of hits unique to each approach clearly indicates that neither ap-

proach is saturating, and additional approaches, both computational and experimental,

are required to discover the complete catalog of paralog synthetic lethals.

Given the limitations of this computational approach, we sought to expand our

knowledge of paralog buffering through systematic dual-gene CRISPR knockout screen-

ing. Cas12a, formerly Cpf1, offers an endogenous RNA endonuclease function that

Fig. 2 Computational detection of constitutively-expressed paralog buffering. a Method overview: loss of

function in one paralog gives rise to gene essentiality in the other. Chart indicates number of pairs testable

by this method. b Summary of results by dataset. c Overlap between Sanger (Project Score) and Broad

(DepMap) computationally derived synthetic lethals. d–g Scatter plots of Bayes Factors of paralog pairs,

with loss of function (LOF) labeled
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enables processing and utilization of multiple gRNA from a single polycistronic tran-

script [21] and the modified enCas12a enzyme offers superior performance in genetic

screens in mammalian cells [22, 23]. A key advantage of this system is that specific

guide pairs can be synthesized in a single oligo, allowing one-step library design, a

major advantage over multiplex Cas9 systems [24–27]. We therefore sought to apply

the enCas12a multiplex knockout system to systematically identify paralog synthetic le-

thals. In our hands, cells with enCas12a effectively knocked out EGFP (Additional file

1: Fig. S2A) and achieved ~ 80% double knockout in a dual-guide construct targeting

two cell surface markers (Additional file 1: Fig. S2B).

We chose 400 candidate paralog pairs to test experimentally. Gene pairs were se-

lected based on several criteria, including amino acid sequence similarity, mRNA

expression and co-expression, and whether either gene is frequently essential in

DepMap. We manually added five additional candidate gene pairs from the litera-

ture: SMARCA2-SMARCA4, CDH1-CDH3, ME2-ME3, BCL2L1-MCL1, and BRCA1-

PARP1, for a total of 405 targeted gene pairs. For each gene, up to three CRISPR

RNA (crRNA) were selected using a library designed by DeWeirdt et al. [28]. Each

gene pair was targeted with all 9 combinations of guides, in both A-B and B-A ori-

entations, for a total of 18 clones targeting each pair. To evaluate single-knockout

phenotype, we paired gene-targeted crRNA with three guides drawn from a pool of

guides targeting 50 nonessential genes (Fig. 3a). We additionally targeted 50 essen-

tial genes, paired with random nonessential guides, as quality controls for the

screens.

We transduced the library into enCas12a-expressing cells from three cancer cell lines

of diverse origins: A549, a KRAS-driven lung cancer cell line; HT29, a BRAF-mutant

colorectal cancer cell line; and OVCAR8 ovarian cancer cells. Cells were passaged in

three replicates for 10 doublings and the relative abundance of each dual-guide con-

struct was measured by 75-base single-end sequencing of the target amplicon, with fold

changes measured relative to abundance in the plasmid pool. Quality control steps in-

cluding abundance and distribution of read counts, clustering of raw read counts and

fold changes, and separation of essential and nonessential control genes indicated ef-

fective screen performance (Fig. 3c and Additional file 1: Fig. S2). Additionally, high

correlation of A-B and B-A guide pairs (Fig. 3d) indicates negligible positional bias in

the enCas12a guide arrays. We therefore included both A-B and B-A pairs in all subse-

quent fitness calculations.

To calculate genetic interaction/synthetic lethality, we measured the single mu-

tant fitness (SMF) for each gene as the mean fold change of the gene-control con-

structs. For control essential genes, SMF in our enCas12a screen correlates with

BAGEL-derived Bayes Factor scores for the DepMap screens in the same cell lines

(Fig. 3e). We then calculated the observed double mutant fitness (DMF) as the

mean log fold change of the dual-gene knockout constructs (18 constructs per

gene pair) and compared it to the expected DMF, the sum (in log space) of each

gene’s SMF (Fig. 3b). As has been widely observed in genetic interaction screens,

most digenic knockouts do not result in an unexpected phenotype; here we observe

that the distribution of “delta log fold change” (dLFC) values has most of its mass

around zero (no synthetic effect), with a long tail of negative (synthetic sick/lethal)

dLFC scores (Fig. 3f).
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Fig. 3 Multiplex gene knockout with enCas12a. a Experimental design. EnCas12a crRNA dual-guide array

design. Each construct targets two genes; each gene is targeted by 3 crRNA; each candidate paralog gene

pair is targeted by 18 gene-gene constructs, with six gene-control constructs per gene (including both A-B

and B-A orientations). b Evaluating synthetic lethality. Single mutant fitness (SMF) is the mean log fold

change of control guides targeting a single gene. Expected double mutant fitness (DMF) is the sum of SMF.

Observed DMF is the mean log fold change of dual-targeting constructs. Delta log fold change (dLFC) is

the difference between observed and expected fold change. c QC plot showing separation of SMF of

constructs targeting control essential and nonessential genes. d Scatter plot of all mirror constructs (same

crRNA in A-B and B-A orientations) showing lack of positional effects. e SMF in this screen vs. gene BF in

Avana data. f Distribution of dLFC scores for 403 gene pairs in each cell line
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To compare across screens, we converted dLFC scores to a Z score, zdLFC, by trun-

cating the top and bottom 2.5% of dLFC scores (Additional file 1: Fig. S2J, Add-

itional file 3: Table S2, Additional file 4: Table S3). At a zdLFC score < − 3, all three

screens showed high concordance, with 19 of 24 (79%) synthetic lethals present in at

least two out of three cell lines and 14 of 24 (58%) present in all three (Fig. 4a, b). Fif-

teen of the 24 hits (62.5%) are ohnologs, gene copies resulting from whole-genome du-

plication [29], compared to 246 of the 405 gene pairs tested (60.7%), indicating neither

enrichment nor depletion of synthetic lethals among ohnologs (P = 0.86, Z-test for dif-

ference of proportions). Despite prior work suggesting simple difference in log fold

change is not an effective measure of genetic interaction [30], we find that zdLFC is

highly correlated with more detailed approaches such as GEMINI [30], with R2 values

ranging from 0.59 (A549) to 0.74 (OVCAR8), and the two methods offer essentially no

difference in hit calls (Additional file 1: Fig. S3).

Many top-scoring hits show strong concordance with other data corroborating a

functional buffering/synthetic lethal relationship. RNA helicases DDX19A and DDX19B

show characteristics of synthetic lethality as described by De Kegel and Ryan [15]

across DepMap cell lines; DDX19A is strongly essential only when DDX19B is

expressed at low levels (Fig. 4C). Similarly, TIAL1 low expression is associated with

Fig. 4 Synthetic lethal paralogs. a Overlap of 24 hits with zdLFC < − 3 in any of the three cell lines. b

Heatmap showing zdLFC score for the 24 hits. c DDX19A gene essentiality (BF) vs. DDX19B gene expression

(logTPM) in Avana data. d Selected co-complex interactions in CCR4-NOT complex shows gene essentiality

of several subunits and synthetic lethality of nonessential, alternate subunits CNOT7/CNOT8. e Co-complex

interactions of COPS9 signalosome complex, showing strong gene essentiality of required components and

synthetic lethality of alternate subunits COPS7A/COPS7B. f Synthetic lethality of CCNE1/CCNE2 in OVCAR8

cells, where CDK2 is highly essential. g Synthetic lethality of CCNT1/CCNT2, not shown in B (zdLFC = − 2.6),

and essentiality of CDK9
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TIA1 increased essentiality. Genes CNOT7 and CNOT8 encode alternate subunits of

the CCR4-NOT complex, a critical regulator of eukaryotic gene expression [31]. Other

subunits are sporadically essential in our three cell lines (Fig. 4d) but frequently essen-

tial across DepMap data [17, 18, 32], consistent with a constitutively essential protein

complex. Moreover, CNOT7 essentiality is weakly but significantly anticorrelated with

CNOT8 mRNA expression (Pearson correlation coefficient − 0.21, P < 10−6). Likewise,

COPS7A and COPS7B encode alternate, replaceable subunits of the COP9 signalosome

complex; other subunits are irreplaceable and are uniformly essential in these cell lines

(Fig. 4e).

Importantly, we note that synthetic lethality, even among paralogs, can also be

context-dependent. Cyclin paralogs are often redundant interaction partners with their

cognate cyclin-dependent kinases; here, CCNE1 and CCNE2 are synthetic lethal where

CDK2 is highly essential, especially in OVCAR8 (Fig. 4f). Similarly, CCNT1-CCNT2

show weaker but significant synthetic lethality (zdLFC < − 2.5 in A549 and < − 1 in the

other two cell lines) while their binding partner, CDK9, is highly essential in all three

(Fig. 4g). Though the synthetic lethal relationships between SWI/SNF complex mem-

bers ARID1A/ARID1B and SMARCA2/SMARCA4 are well described in the literature

and are detected in large scale screening data, their synthetic lethality only occurs

where the SWI/SNF complex is itself essential. We test four paralog pairs in the BAF

complex: ARID1A/ARID1B, SMARCA2/SMARCA4, SMARCC1/SMARCC2, and SMAR

CD1/SMARCD2, but we detect no synthetic lethal interactions, most likely because the

complex itself is not essential in the cell lines we tested.

Synthetic lethality between our hits is corroborated by a dual-gene knockout screen

using the CHyMErA hybrid Cas12/Cas9 system [33]. The 678 paralog pairs evaluated

in the CHyMErA screens contain 110 pairs targeted in our library, including 12 of the

24 hits we defined. Our results are generally consistent, with TIA1/TIAL1, SAR1A/

SAR1B, PITNA/PITNB, and CNOT7/CNOT8 scoring strongly in both assays (Additional

file 1: Fig. S4). In contrast, MAPK1/MAPK3 and CCNE1/CCNE2 are only hits in our cell

lines. As with gene essentiality, synthetic lethality is often highly context-dependent.

Conclusions

CRISPR technology has revolutionized mammalian functional genomics and cancer tar-

geting by leveraging endogenous DNA repair machinery to generate gene knockouts on

a genomic scale. Extensive screening of cancer cell lines has been performed under the

DepMap and Project Score initiatives to identify context-specific weaknesses and can-

cer biomarkers. Analyses of this data have revealed activation of oncogenic pathways

and oncogene dependencies [18] as well as biomarker type dependencies such as

Werner helicase, WRN, in colorectal and ovarian cell lines with MSI [34, 35]. However,

despite these efforts, questions about what might be systematically missing from these

data have, to our knowledge, not been rigorously explored.

We note that there are about 7000 genes that are constitutively expressed in each

cell, but only about half of these are ever detected as essential. Studies in model organ-

isms suggest that virtually every gene shows a growth phenotype under some environ-

mental condition [9, 10]. It is unknown whether this holds true for individual

mammalian cells, though tumors are often modeled as though they are colonies of

single-celled organisms. It is also the case that most genetic screens of tumor cells are
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carried out under permissive growth conditions, minimizing nutrient and oxidative

stress to maximize growth rate and improve detection of dropouts. Thus, the degree of

environmental buffering is largely unknown for these constitutively expressed never-

essentials.

However, these never-essentials are highly enriched for paralogs. They are ~ 3 times

more likely to have a paralog than always-essentials, suggesting that functional redun-

dancy by related genes masks detection of a substantial population of genes in mono-

genic CRISPR knockout screens. This has profound implications for efforts to match

targeted drugs with tumor genotypes, and to discover new candidate drug targets. Tar-

geted small molecules often do not discriminate, or discriminate poorly, between

closely related paralogs, and it is often their promiscuity rather than their specificity

that renders them effective. For example, MEK inhibitor trametinib effectively targets

the protein products of both MAP2K1 and MAP2K2, redundant kinases downstream of

RAS/RAF oncogenes, but the functional redundancy of these genes renders them both

invisible to monogenic CRISPR screens, even in RAS/RAF backgrounds [36].

Recent developments in CRISPR screening technology enable effective genetic target-

ing of multiple genes simultaneously. Cas12a, previously known as Cpf1, is able to

process a polycistronic mRNA to generate multiple CRISPR RNAs (crRNAs). This

makes multiplexing much easier compared to inefficient Cas9 based multiplex systems

which requires each guide RNA to be expressed by its own promoter. The improved

version of this enzyme, enCas12a [22], coupled with an effective guide design algorithm

[28] presents a powerful platform for multiplex genetic perturbation. Multiplex guide

libraries can be synthesized directly, without requiring additional targeted or random

mixing cloning steps, allowing direct assay of specific gene pairs as described here with

roughly the same level of effort as a now-standard Cas9 monogenic screen. The robust-

ness of predicted guide cutting efficiency remains untested relative to Cas9, given the

relatively small amount of enCas12a data available, suggesting adopters of this technol-

ogy should err toward caution when deciding on parameters for new experiments (e.g.,

number of guides per gene, number of gene-vs-control guide pairs). Nevertheless, as

we demonstrate here, this platform holds enormous potential for exploring the stability

and plasticity of genetic interactions in human cells.

Methods

DepMap essentiality data

A raw read count file of CRISPR pooled library screens for 690 cell lines using Avana

library [17] (Broad DepMap project 19Q4) was downloaded from the data depository

(https://depmap.org/portal/). Also, we downloaded Project Score (Sanger) screen [34]

raw read counts for 323 cancer cells from the data depository (https://score.depmap.

sanger.ac.uk/). We filtered the dataset to keep only the protein-coding genes for further

analysis and updated their names using HGNC [13] and CCDS [37] database. We dis-

carded sgRNAs targeting multiple genes in Avana library to avoid genetic interaction

effects. The raw read counts were processed with the CRISPRcleanR [38] algorithm to

correct for gene-independent fitness effects and calculate fold change. After that, the

CRISPRcleanR processed fold changes of each cell line were analyzed through updated

BAGEL2 build 114 (https://github.com/hart-lab/bagel). In comparison with published
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BAGEL version v0.92 [39], the updated version employed a linear regression model to

interpolate outliers and 10-fold cross-validation for data sampling. Essentiality of genes

was measured as Bayes Factor (BF) based on gold standard reference sets of 681 core

essential genes and 927 nonessential genes [1, 40]. Positive BF indicates essential genes

and negative BF indicates nonessential genes. Lists of core essential genes and nones-

sential genes used in this study have been uploaded on the same repository with

BAGEL2 software. To correct unexpected essentiality by sgRNAs targeting non-

protein-coding regions in addition to desired target protein-coding gene, the multi-

targeting effect of sgRNAs has been corrected using BAGEL2 -m option. The screen

quality was evaluated by using “precision-recall” function in BAGEL2 software, and F-

measure, the harmonic mean of precision and recall, was calculated for each screen at

BF = 5. Finally, 581 cell lines for Broad screen and 320 cells for Sanger screen were se-

lected for further study by F-measure threshold 0.8 to prevent noise from marginal

quality of screens.

Defining constitutively expressed genes with GMM modeling

We utilized the log2 transformed RNA-seq TPM expression data from DepMap Data

Portal expression data for Avana19Q4 release for 684 cell lines [17, 18]. The standard

deviation of expression versus the mean expression values for all genes assayed in the

Avana library (N = 17,755) across all cell lines, for which the expression data was avail-

able, were plotted. Python 3.6.9 package sklearn and its GaussianMixture function was

used to classify genes by Gaussian mixture modeling based on mean and standard devi-

ation of mRNA expression. A three-component model was selected as the best fit to

the data (Additional file 1: Fig. S5) since the addition of a fourth component resulted in

two highly overlapping component distributions. The group with the least expression

and low standard deviation was labeled as never expressed, the second group with very

high standard deviation and a range of mean expression values was labeled as some-

times expressed, and the constitutively expressed group with high mean expression and

low standard deviation was classified as constitutively expressed genes. With this classi-

fication, we identified 7282 always expressed, 4544 never expressed, and 5929 some-

times expressed genes in the Avana dataset.

Paralogs

The human paralogous gene pairs for the protein-coding genes were utilized from En-

semble Release 95 Biomart with GRCh38.p12 genome assembly [20]. This release of

Ensemble estimates paralogues from gene trees that are constructed with HMM as de-

scribed in more detail at http://www.ensembl.org/info/genome/compara/homology_

method.html. Other information such as chromosome location, paralogue percent

sequence identity to human target gene, and percent sequence identity of target gene

to the paralogous gene were also downloaded. After removing duplicate gene pairs and

filtering for constitutively expressed genes, for each paralog pair (A-B pair), we ob-

tained their percent sequence identities and we plotted the sequence similarities of A

to B against those of B to A. We observed that the majority of the human paralogous

gene pairs had low percentage sequence similarity. The paralog pairs which were both

constitutively expressed gene lists were identified and were binned according to
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different thresholds for percent sequence identity from a range of 10–95%. For each

bin, the percentage of constitutively expressed never-essential genes with paralogs and

the percentage of common essential genes (defined in [41]) with paralogs were calcu-

lated and their distributions were plotted. For downstream analysis, always expressed

paralog pair lists were generated for each sequence identity threshold.

Discovering functional redundancy between paralogs in DepMap CRISPR/Cas9 screens

To investigate evidence for the functional redundancy between paralog genes in Broad

and Sanger screens, we tested whether a gene is essential when the other paralog part-

ner suffers loss of function. Firstly, we defined loss of function (LOF) call combining

damaging mutations calls (frameshift or nonsense) adopted from CCLE mutation data

[42] depletion of expression (mean log TPM < 1.0, CCLE RNA-seq) or deletion (copy

number < 0.1, CCLE Copy number data). Then, we conducted statistical test of syn-

thetic essentiality which is defined when a gene is observed as essential when its para-

log partner loses its function. One-to-one paralog pairs with at least 30% sequence

similarity were considered for this analysis to maximize the number of paralog pairs.

We considered only pairs whose genes have at least two LOF calls and are essential in

at least two cell lines. P value was calculated by the one-sided Fisher’s exact test on the

2 × 2 contingency table of the number of cells classified by LOF and essential (BF > 10),

and false discovery rate (FDR) was calculated by the method of Benjamini and Hoch-

berg. We addressed pairs bidirectional ways, which test a significance of essentiality of

gene A upon LOF of gene B and vice versa. A total of 57 pairs among 628 tested pairs

in the Broad dataset and 40 pairs among 295 tested pairs in the Sanger dataset passed a

threshold of P value < 0.01. Thirty-two pairs were common to both datasets.

Selecting paralogs for experimental testing

To identify and predict paralog pairs which we hypothesized to be enriched in synthetic

lethal interactions, we applied multiple filters including percent sequence similarity,

mean expression, standard deviation of expression, co-expression, and gene essentiality

profiles. We built a network of paralogous gene families using Cytoscape [43] and fil-

tered them initially for protein sequence similarity greater than or equal to 45%, mean

expression (logTPM) > 1.5, standard deviation of expression < 1.25, and co-expression

Pearson correlation coefficient > 0.1. Finally, we removed genes that were essential in

more than 30 cell lines, resulting in a set of 400 pairs. In addition, we manually added

several candidate synthetic lethals from the literature, including SMARCA2/SMARCA4,

CDH1/CDH3, ME2/ME3, BCL2L1/MCL1, and BRCA1/PARP1.

Library design

We selected Cas12a CRISPR RNA sequences from a library from [28]. Guides were se-

lected from an AsCas12a library design from July 2019, representing an intermediate

phase of development of the DeWeirdt et al. work. Up to the top three guide sequences

were selected from the library for each of the 793 candidate paralog genes (405 gene

pairs), but given the restrictive TTTV PAM sequence for AsCas12a, three guides were

not available for every gene. For two genes (ABHD16B, DGCR6), no crRNA were

present in the library; pairs including these genes were removed in the downstream
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analysis. As controls, a set of 50 nonessential and 50 pan-essential genes were chosen;

genes were filtered for those with 1:1 orthologs in both rat and mouse to provide a use-

ful multi-species reference set. These control genes are listed in Additional file 5: Table

S4.

To design the library, we first pooled all crRNA targeting nonessential control genes

(141 crRNA targeting 50 genes). Then, for each paralog gene pair, we collected all

crRNA pairs in both orientations—for n = 3 crRNA per gene, there are n2 = 9 crRNA

pairs, or 18 total clones (A-B and B-A orientations for each). To generate single-

knockout controls, we then took each crRNA targeting one of the paralogs and paired

it with a crRNA randomly drawn from the nonessential pool, again designing clones in

both A-B and B-A orientations, for a total of six control constructs per experimental

gene (where n = 3 crRNA/gene). Finally, we took our set of control essential genes (n =

149 crRNA targeting 50 genes) and randomly paired each guide with a nonessential

guide, in both orientations, as described above, for a total of 298 positive control guide

constructs. The final library targets 841 genes (889 including nonessential genes) and

403 specified gene pairs with 12,328 constructs.

Vectors

The following vectors were a kind gift from John Doench:

pRDA_174 (enzyme expression): EF1a promoter drives EnCas12a enzyme expression;

lentiviral vector; confers blasticidin resistance (Addgene #136476).

pRDA_052 (guide expression): U6 promoter drives gRNA expression; vector contains

AsCas12a direct repeat upstream of dual BsmBI sites for insertion of guide arrays;

lentiviral vector; confers puromycin resistance (Addgene #136474).

pRDA_221 (positive control): confers constitutive of short half-life EGFP and

expression of two guides targeting EGFP; lentiviral vector; confers puromycin

resistance [23, 28].

pDV204 (positive control): U6 promoter drives expression of guides targeting cell-

surface markers CD47 and CD63; derived from pRDA_052 [23, 28].

Library production

An oligonucleotide pool comprising 12 k dual guide arrays was synthesized by Custo-

mArray based on the following template:

5’TATCTTGTGGAAAGGACGAAACACCGGTAATTTCTACTCTTGTAGATNNN

NNNNNNNNNNNNNNNNNNNNTAATTTCTACTGTCGTAGATnnnnnnnnnnnnn

nnnnnnnnnnTTTTTTGAATTCGCTAGCAAGCTTGGCGTAAC-3′. The 145 nt frag-

ment included the wildtype direct repeat for AsCas12a (bold) and an engineered variant

direct repeat (bold underlined) [23, 28] for 23 nt guide sequences in the first (uppercase

N) and second (lowercase n) positions, respectively. Flanking sequences (italic) enabled

PCR amplification of the pool and cloning into BsmBI-linearized pRDA_052 by Gibson

assembly.

The pool of guide arrays was amplified using Kapa HiFi 2X HotStart ReadyMix

(Roche) using 10 ng of starting template per 50 μL reaction using primers DV202 (5′-

TATCTTGTGGAAAGGACGAAAC) and DV203 (5′ GTTACGCCAAGCTTGCTAGC
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G) at 0.3 μM final concentration and the following conditions: initial denaturation at

95 °C for 3 min, followed by twelve cycles of 20 s at 98 °C, 20 s 60 °C, 20 s at 72 °C using

a ramp rate of 2.0 °C/s, and final extension at 72 °C for 5 min.

Full-length amplicon (145 bp) was purified by non-denaturing polyacrylamide gel

electrophoresis using precast 10% acrylamide TBE gels (Bio-Rad). The guide expression

vector pRDA_052 was digested with BsmBI (New England Biolabs), de-phosphorylated

with Antarctic phosphatase (New England Biolabs), and concentrated using PCR

cleanup columns (Life Technologies). Vector and insert were quantified using fluorime-

try (Qubit dsDNA High Sensitivity kit, ThermoFisher). DNA assembly reactions using

0.4 pmol insert and 0.1 pmol vector per 20 μL HiFi Master Mix (New England Biolabs)

were incubated at 50 °C for 1 h, re-digested with BsmBI, and desalted (Monarch low

volume elution columns, New England Biolabs) for electroporation into Endura electro-

competent cells (Lucigen). After 1 h recovery at 37 °C, the bacteria were diluted 1:100

in 2xYT containing 200 μg mL-1 carbenicillin (AMS Bio) and grown at 30 °C for 16 h.

Transfection grade plasmid was purified (PureLink HiPure Maxiprep, Invitrogen) and

its guide arrays were sequenced to confirm complete and uniform library

representation.

Cell culture

A549 and HT29 cells were a kind gift from Tim Heffernan. OVCAR8 cells were a kind

gift from Phil Lorenzi. Cell line identities were confirmed by STR fingerprinting by MD

Anderson’s Cytogenetics and Cell Authentication Core (Powerplex 16 Locus High Sen-

sitivity Assay, Promega).

Cells were grown at 37 °C in humidified 5.0% CO2 atmosphere and passaged 2–3

times per week to maintain exponential growth. A549 and HT29 were grown in HEPE

S-modified DMEM (Sigma D7161); OVCAR8 was grown in HEPES-modified RPMI

(Sigma R5886). Base media were supplemented with 10% FBS (Sigma), 1 mM sodium

pyruvate (Gibco), 2 mM L-alanine-L-glutamine (Gibco), 1X penicillin-streptomycin

(Gibco), and 100 μg mL−1 Normocin (Invivogen). Antibiotic-free cultures were routinely

tested for mycoplasma contamination (PlasmoTest, Invivogen).

enCas12a screens

Lentivirus was produced by the University of Michigan Vector Core. Virus stocks were

not titered in advance: all transductions were performed in multiple plates with a range

of virus volumes and 8 μg mL−1 polybrene (EMD Millipore), but only the pool with the

most optimal transduction efficiency was expanded and screened.

First, stable enCas12a expression was engineered by transduction with pRDA_174 at

low MOI (10–20% transduction efficiency). Non-transduced cells were eliminated by

selection with 10 μg mL−1 blasticidin (Invivogen). Selection was maintained until non-

transduced controls reached 0% viability twice in succession (~ ten doublings). Editing

efficiency was confirmed by transduction with control vectors targeting EGFP (pRDA_

221) or cell surface markers CD47 and CD63 (pDV204) and flow cytometry. Cell lines

lacking EnCas12a expression served as controls. Conjugated fluorescent antibodies and

isotype controls were from BioLegend.
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Second, enzyme-expressing pools were transduced with guide array virus. Multiple

sub-confluent 15 cm plates were transduced to achieve a minimum of 12M unique

transductants without exceeding 50% transduction efficiency. Non-transduced cells

were eliminated by 72 h treatment with 2 μg mL−1 puromycin (Gibco).

After puromycin selection was complete, three replicates were seeded, using 12M vi-

able cells per replicate, i.e., ~ 1000 cells per guide array. Screens were fed fresh medium

every 2–3 days and passaged before reaching 80% confluency. Each replicate was re-

seeded with 12M viable cells to maintain coverage. Remaining cells were stored in 30

M aliquots at − 80 °C in cryopreservation medium (CellBanker 2, ZenoAq). Screens

were terminated when replicates reached ten doublings.

Sequencing

Genomic DNA (gDNA) purification was automated in 24-well plates using a Kingfisher

Flex instrument (ThermoFisher) and magnetic bead-compatible reagents (Mag-Bind

Blood and Tissue DNA HDQ, Omega Biotek). Purified gDNA was eluted in 10mM

Tris-HCl pH 8.0, 1 mM EDTA and quantified by fluorimetry (Qubit dsDNA Broad

Range kit, ThermoFisher).

Illumina-compatible guide array amplicons were amplified from gDNA in one step,

as described [23, 28]. Indexed PCR primers were synthesized by Integrated DNA Tech-

nologies using Illumina’s standard 8 nt indexes (D501-D508 and D701-D712). The for-

ward primer design was 5’AATGATACGGCGACCACCGAGATCTACACNNNNNN

NNACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTGTGGAAAGGACGA

AACACCG (5′- i5 flow cell adapter – i5 index – i5 read1 primer binding site – U6

annealing sequence). The reverse primer design was 5’CAAGCAGAAGACGGCATA

CGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGAT

CTGTTACGCCAAGCTTGCTAGCGAATTC (5′- i7 flow cell adapter – i7 index – i7

read2 primer binding site – pRDA_052 annealing sequence.) Guide arrays were ampli-

fied from 80 μg of gDNA per replicate in multiple reactions, not exceeding 10 μg per

100 μl PCR volume. Eighty micrograms represents at least 500 cells per guide array for

these hypotriploid cell lines (www.ATCC.org).

Each 100 μL reaction contained 0.5 μM of each primer, 200 μM dNTPs, and 1.25 μL of

ExTaq polymerase (Takara). Guides were amplified using a slow ramp rate (2.0 °C/s) and

minimum cycle number to limit bias, as follows: initial denaturation at 95 °C for 60 s,

followed by 28 cycles of 30 s at 94 °C, 30 s at 52.5 °C, 30 s at 72 °C, and final extension at

72 °C for 10m. Please note that Sanson et al. [23] now recommend using Titanium Taq

plus DMSO (Takara), and we have observed slightly better mapping rates for Titanium

Taq amplicons. The ~ 200 bp indexed amplicons were purified by size selection (2% agar-

ose, E-Gel SureSelect II, ThermoFisher), quantified (QuBit, ThermoFisher), and pooled.

Sequencing was performed using custom read primer oligo1210 (5′-CTTGTGGAAA

GGACGAAACACCGGTAATTTCTACTCTTGTAGAT) (HPLC purified, Integrated

DNA Technologies) using NextSeq 1 × 75 nt High Output reagents (Illumina).

Screen analysis

Construct sequences were combined into FASTA format (“paralog_2mer.fa”) and

indexed with bowtie-build, and sequencing reads were mapped to this database
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with bowtie [44] with the following command line parameters (trim ten 3′ bases,

allow 3 mismatches, discard sequences which map to more than one reference se-

quence): bowtie --trim3 10 -v 3 -m 1 -S --sam-nohead paralog_2mer

[fastq_files] > [output.sam]

Sequence mapping rates ranged from 37 to 58%, averaging ~ 47%. Using this strict

single-read mapping approach guarantees that only high-quality guide constructs were

evaluated. Read counts were combined into a single matrix for further analysis (Add-

itional file 4:Table S3).

Subsequent analysis was executed in Python notebooks, all of which are available

at https://figshare.com/articles/software/enCas12a_screen_analysis_pipeline/12275642

[45]. Mean read depth for all samples exceeded 500 reads/guide, and all samples

showed read distributions with minimal skew (Additional file 1: Fig. S2). A pseudo-

count of 5 reads was added to each construct in each sample, then read counts

per sample were normalized to an average of 500 reads/guide (6.2 M reads/sample),

and log fold change for each guide was calculated relative to the plasmid sequence

counts (notebook cas12a-step01-screen_QC). Screen replicate quality was verified

by plotting the kernel density estimate of the fold changes of all control essential

constructs vs. all other constructs (see notebook cas12a-step04_calc_SMF; summa-

rized in Fig. 3c). Screen-level fold change for each construct was then calculated as

the mean of replicate fold changes.

Single mutant/knockout fitness, SMF, for each gene was calculated as the mean

construct fold change of gene-control constructs, for both A and B position.

Construct-level consistency is shown in Fig. 3d but gene-level SMF is even more

consistent (see notebook cas12a-step04_calc_SMF), with Pearson correlation coeffi-

cients ranging from 0.87 to 0.94. A-B and B-A constructs were subsequently aver-

aged to calculate sample-level SMF for each gene. The distribution of each shows

a left skew consistent with the dropout (negative SMF) of a proportion of the

genes in the sample (Table 1).

Difference in log fold change for a gene pair (dLFC) was calculated as observa-

tion, the mean LFC of all constructs targeting the gene pair, minus expectation,

the sum of the SMF for the two genes. Given the skew of the SMF distributions,

gene pairs with small positive SMF values sum yield an expectation of a positive

LFC and, therefore, negative dLFC scores when the observed LFC is near zero.

This explains the slight negative offset of dLFC distributions in Fig. 3f and necessi-

tates normalization before calling hits. We normalized by Z-transformation after

removing the top and bottom 2.5% of scores (see notebook cas12a-step07_robustZ_

of_dLFC). The resulting zdLFC table was used for all subsequent analysis of syn-

thetic lethality.

Table 1 Mean and median SMF

Cell line Mean SMF Median SMF

A549 − 0.10 0.014

HT29 − 0.10 0.053

OVCAR8 − 0.10 0.082
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Additional file 1: Fig. S1. Comparison of computationally derived hits from our analysis with hits in De Kegel

and Ryan et al. [15]. Fig. S2. (A) Knockout of GPF with a crRNA targeting GFP in enCas12a knock-in cells. (B) Target-

ing two cell surface markers with a dual-guide crRNA in enCas12a-expressing OVCAR8 cells. (C) Total amplicon

reads for the paralog screen. Dashed line indicates 500x sequencing depth (6 m reads for 12 k library). (D) Distribu-

tion of reads (boxplot) indicates good library representation in each sample. Dashed line = 30 reads/construct. (E)

Clustering of normalized read counts. Clustering of replicates is consistent with high-quality screen data. (F, G) Lack

of positional bias in mirror constructs containing the same two crRNA in A-B and B-A orientations. (H, I) SMF in this

screen vs. BF from Avana data.(J) Z-transformation of distribution of dLFC (zdLFC) after truncating top/bottom 2.5%

of values approximates a normal distribution. Fig. S3. Comparison of zdLFC scores to scores generated by GEMINI.

(A) zdLFC vs GEMINI scores for 24 synthetic lethal pairs with their respective correlation coefficients. (B) zdLFC vs

GEMINI scores for all tested paralog pairs with their respective correlation coefficients. Fig. S4. Comparison of com-

mon paralog pairs tested in our enCas12a screen with the CHyMErA screens. (A) Comparison of the 12 enCas12a

hits in this study that were screened in HAP1 in the CHymErA study. (B) Comparison of all 110 paralog pairs tested

in both enCas12a screen and the HAP1 CHymErA screen. Fig. S5. Gaussian mixture modeling (GMM) of gene ex-

pression of Avana 19Q4 cell lines. (A) Scatter plot of standard deviation of expression versus mean expression of

gene assayed in Avana library in Avana19Q4 cell lines. (B) Contour plots of the two Gaussians from a two-

component mixture model of data shown in A. (C) Contour plots of three-component GMM. (D) Contour plots of

fourcomponent GMM.
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