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A robust understanding of the tumor immune environment has important implications for
cancer diagnosis, prognosis, research, and immunotherapy. Traditionally,
immunohistochemistry (IHC) has been regarded as the standard method for detecting
proteins in situ, but this technique allows for the evaluation of only one cell marker per
tissue sample at a time. However, multiplexed imaging technologies enable the
multiparametric analysis of a tissue section at the same time. Also, through the curation
of specific antibody panels, these technologies enable researchers to study the cell
subpopulations within a single immunological cell group. Thus, multiplexed imaging gives
investigators the opportunity to better understand tumor cells, immune cells, and the
interactions between them. In the multiplexed imaging technology workflow, once the
protocol for a tumor immune micro environment study has been defined, histological
slides are digitized to produce high-resolution images in which regions of interest are
selected for the interrogation of simultaneously expressed immunomarkers (including
those co-expressed by the same cell) by using an image analysis software and algorithm.
Most currently available image analysis software packages use similar machine learning
approaches in which tissue segmentation first defines the different components that make
up the regions of interest and cell segmentation, then defines the different parameters,
such as the nucleus and cytoplasm, that the software must utilize to segment single cells.
Image analysis tools have driven dramatic evolution in the field of digital pathology over the
past several decades and provided the data necessary for translational research and the
discovery of new therapeutic targets. The next step in the growth of digital pathology is
optimization and standardization of the different tasks in cancer research, including image
analysis algorithm creation, to increase the amount of data generated and their accuracy
June 2022 | Volume 12 | Article 8898861

https://www.frontiersin.org/articles/10.3389/fonc.2022.889886/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.889886/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.889886/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.889886/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.889886/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:erparra@mdanderson.org
https://doi.org/10.3389/fonc.2022.889886
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.889886
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.889886&domain=pdf&date_stamp=2022-06-27


Rojas et al. Multiplex Immunofluorescence Tumor Immunoenvironment Research

Frontiers in Oncology | www.frontiersin.org
in a short time as described herein. The aim of this review is to describe this process,
including an image analysis algorithm creation for multiplex immunofluorescence analysis,
as an essential part of the optimization and standardization of the different processes in
cancer research, to increase the amount of data generated and their accuracy in a
short time.
Keywords: immunotherapy, multiplex immunofluorescence, image analysis algorithms, tissue, machine learning
INTRODUCTION

The past several decades have seen growth in the use of cancer-
screening protocols in the general population. These advances
have increased the amount of material and work dedicated to
cancer research and diagnosis. Cancer research and diagnosis use
medical images such as mammography, magnetic resonance
imaging, ultrasound, and microscopic tissue images (1), One of
the most actively researched tasks in development is digital
image analysis using computer-assisted diagnosis (2–6). Digital
image analysis has become an essential part of cancer research,
detection, treatment decisions, and surveillance routines, and it
can be potentially used at many screening sites globally (7–10).
Indeed, this technique has the much-needed potential to relieve
pathologists’ workloads, diminish subjectivity, improvement of
performance, and accuracy, allowing increased attention toward
more challenging cases (1, 7, 10).

To this end, multiplexed imaging technologies have proven to
be valuable techniques that enable the simultaneous detection of
multiple markers in a single tissue section. Increasing demand
for clinical trials evaluating large numbers of samples despite
relatively limited amounts of tissue (especially brain tissue and
other rare tumor tissue) available for research purposes has only
increased the importance of these techniques (9). In cancer
immunotherapy specifically, these tools have proven to be
indispensable. For example, in numerous studies concerning
programmed death-ligand 1 (PD-L1), multiplexed imaging
technologies seemed to improve performance in predicting
response to anti-PD-L1/programmed cell death protein 1 (PD-
1) treatment of different solid tumors, as well as tumor
mutational burden and gene expression profiling (11–13).
Investigators have implemented and adopted multiplexed
imaging technologies in research, and they will probably do so
in clinical settings in the near future, enabling detailed cell
structure, functional state, and cell-cell interaction analysis (14).

To take full advantage of multiplexed imaging technologies
capabilities, such as telepathology, second opinions, education, and
big data generation, cancer researchers have made many advances
in histopathological whole slide image analysis (15). For example,
improved digital image analysis software has enabled the
compartmentalization of tissue into its components by selecting
representative tissue compartment examples, such as tumor and
stroma (Figure 1). In addition, lymphoid tissue and glass/
background categories can be included in the tissue
compartmentalization process; the former would be helpful for
tissue morphometric analysis. Furthermore, detecting their
expressed proteins through sophisticated algorithms generates
2

large amounts of digital information that can be integrated with
clinical information thanks to medical digitizing technologies (2,
15, 16). Histological analysis of tissue patterns by using computer-
aided image processing to perform disease classification is made
possible by significant developments in digitized histological
studies (7–9, 15, 17). Similarly, quantitative pathological image
characterization is essential for clinical applications, as it decreases
interobserver and intra-observer variations and for research
applications, particularly for understanding the development
mechanisms and biology of cancer (7). Furthermore, quantitative
analysis of immunohistochemically stained samples for immune
cells or tumor biomarkers via digital pathological approaches
increases the precision and accuracy in measurement of the
expression of surface proteins in pretreated and treated samples
to evaluate the tumor microenvironment (TME) composition and
its modifications in response to immunotherapy or targeted
therapy (18).

This review aims to explain how multiplexed imaging
technologies are applied to translational research and tumor
A B

DC

FIGURE 1 | egion of Interest and Image Preparation for Multiplex Analysis
Using Tyramide Signal Amplification. Representative digital image of non-small
cell lung cancer for multiplex immunofluorescence phenotyping analysis (10x
– scale bar: 500 mm). (A) Hematoxylin & Eosin (H&E) (representative H&E
image view provided by the software during analysis). (B) Multiplex
immunofluorescence image view for ROI (composite image). (C) Multiplex
immunofluorescence image on intratumoral region with training regions for
tissue segmentation, red (tumor), green (stroma), blue (glass). (D) Region on
interest (intratumoral) after training algorithm for tissue segmentation, red
(tumor), green (stroma), blue (glass). Composite image from inForm ® image
analysis software, Akoya bioscience. Scanner Vectra Polaris.
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immune environment characterization. To achieve research
objectives by using digital image analysis, optimizing and
standardizing multiple immunofluorescence validation and
panel design in this way and the different steps of the image
analysis workflow, which is necessary to improve imaging
data accuracy.
TUMOR IMMUNE ENVIRONMENT

Cancer treatment has changed dramatically in the last two
decades due to an increased understanding of tumor biology
and its mechanisms of development, allowing the development
of targeted therapy (19, 20). Immunotherapy enhances the
body’s antitumor immune response by promoting tumor
immune recognition, immune activation, and immune
response persistence. As a result, it has become a valuable
cancer treatment option for those suitable cancer patients (21–
27). Since the development of immune checkpoint inhibitors
(ICIs), the incidence of postoperative recurrence of cancer has
decreased, and progression-free survival (PFS) and overall
survival (OS) have improved (28–30). As an example, Nadim
clinical trial (NCT03081689), a multicenter open-label clinical
trial in which 46 patients with resectable non-small cell
Frontiers in Oncology | www.frontiersin.org 3
lung cancer (NSCLC) treated with neoadjuvant chemo-
immunotherapy, were evaluated, it was reported a progression-
free survival (PFS) of 36 months and overall survival (OS) of 42
months (30). Furthermore, a systematic review of the literature
has also reported improvement in 12 months’ overall survival of
cancer patients treated with immunotherapy, alone or in
combination (31). However, although immune checkpoint
inhibitors have demonstrated high efficacy in the treatment of
tumors such as melanoma, non-small cell lung carcinoma, renal
cell carcinoma, and Hodgkin lymphoma (32, 33), treatment-
related adverse effects and toxicity are still an important issue in
these patients, and more studies are needed (34, 35).

Cancer Immunoediting
Tumor differentiation, epigenetics, tumor spread, and immune
evasion are all influenced by the TME. The TME is very diverse
and is constituted by several cell types and a wide variety of
chemical molecules produced and released by tumor cells,
stromal cells, and other cells (36) (Figure 2). Both innate and
adaptive immunity have roles in immune surveillance, also
known as cancer immunoediting, with three phases: activation,
equilibrium, and escape (37). During the elimination phase, the
host protective mechanisms of the immune system detect and
attack the tumor cells that express stress-related molecules. Some
FIGURE 2 | Tumor Microenvironment (TME). PD-L1 tumoral cell expression and PD-1 immune cell axis plays a key role in physiological immune homeostasis and
contributes to tumor cell immune evasion. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) ligation to CD28 quantitatively augments TCR-mediated signals, as well as
activating independent pathways to upregulate CD28-mediated cytokine production and proliferation, raising the threshold needed for T-cell activation and arresting
T-cell-cycle progression. Simultaneous recognition of a specific major histocompatibility complex (MHC)–peptide complex by the T-cell receptor (TCR) and of B7-1
(CD80) or B7-2 (CD86) also results in T-cell activation, cytokine production, proliferation and differentiation. Natural killer (NK) cells are effector lymphocytes that play
protective roles against both infectious pathogens and cancer. Dendritic cells (DC) are professional antigen presenting cells, able to induce naïve T cell activation and
effector differentiation, involved in the induction and maintenance of immune tolerance in homeostasis. Tumor associated macrophages (TAMs) are constituted by:
M1 macrophages that play critical roles in innate host defense by producing reactive oxygen/nitrogen species (ROS/RNS) and pro-inflammatory cytokines such as
IL-1b, IL-6, tumor necrosis factor a (TNF-a), and M2 macrophages that produce anti-inflammatory cytokines such as IL-10, IL-13 and TGF-b to promote tumor
development. Image created with BioRender.com.
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of these molecules include lymphocytes’ host effector molecules
such as interferon-gamma and perforin, targeting tumor cells
and enhancing the cross-presentation between dendritic cells
(DCs) CD103+ and CD8+ T cells, among other immune
phenomena (37–40). Tumor cells arise when altered cells
escape immune control during this phase; despite the immune
system’s ability to recognize and kill tumor cells, a tumor can
continue to grow (equilibrium phase) and eventually escape
surveillance (escape phase) (37, 41).

Antitumor and Pro-Tumor
Immune Subsets
Antitumor immune responses are mediated by lymphocytes such
as natural killer (NK) cells, CD8+ T cells, and CD4+ helper T
(Th) cells, as well as proinflammatory (M1) macrophages and
DCs. In contrast, pro-tumor immunity is mediated by a
heterogeneous population of myeloid-derived suppressor cells
(MDSCs) and Foxp3+ regulatory T cells (Tregs) (36). Tumor
cells evade immune cells through various mechanisms, including
inhibition or loss of tumor antigens, the release of
immunosuppressive extracellular vesicles such as exosomes, the
release of immunosuppressive molecules such as interleukin-10,
and transforming growth factor (TGF). Other described
mechanisms are shedding of soluble major histocompatibility
complex I (MHC-I), loss of adhesion molecules such as
intercellular adhesion molecule-1 (ICAM-1), development of
apoptosis through tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL), resistance to apoptosis via
upregulation of BCL-2, and induction of immune tolerance by
the extensively used therapeutic target PD-L1 (36).

Dendritic Cells
DCs are critical immune system regulators that also coordinate
immune responses in tumors, even though other innate immune
cells also play a role in immune surveillance and immune
tolerance; for example, M1 macrophages neutralize tumors by
secreting lytic enzymes, tumor necrosis factor-alpha, and oxygen
and nitrogen reactive intermediates and by inducing antibody-
dependent cell-mediated cytotoxicity (ADCC) (42, 43).

Tumor antigens are successfully engulfed and processed by
immature DCs in the TME. However, DC maturation and
activation are elicited by damage-associated molecular patterns,
which cause DCs to lose their ability to collect antigens and gain
the ability to offer these antigens to lymphocytes. Mature DCs
move from the tumor surrounding tissue to lymph nodes, where
they offer antigens to CD4+ and CD8+ T lymphocytes via major
histocompatibility complex class II and I molecules, respectively
(36). In some cases, despite its ability to mount antitumor
immunity, the immune system is unable to limit the tumor’s
growth. This tumor immune evasion is just as challenging to
activate as immune activation. Therefore, a lack of appropriate
DC stimulation is critical in the tumor immune environment. If
the DCs in the TME are not fully matured, they will present
tumor antigens in a tolerogenic manner, resulting in anergic/
tolerant T cells. As juvenile DCs in the TME, regulatory and
tolerogenic DCs (tDCs) exhibit low expression of co-stimulatory
Frontiers in Oncology | www.frontiersin.org 4
molecules like CD80 and CD86 but high expression of inhibitory
molecules like PD-L1 and cytotoxic T-lymphocyte-associated
antigen-protein 4 (CTLA-4) (44).

Tumor Infiltrating Lymphocytes
Tumor-infiltrating lymphocytes are lymphocytes that infiltrate
the tumor site as a result of molecular signals (41). These TILs are
constituted by different T-cell subsets, such as regulatory T cells
(Tregs) and innate lymphoid cells (ILCs), such as natural killer
(NK) cells, among others. Effector T cells and natural killer cells
are commonly elicited and attracted to the TME to kill cancer
cells by recognizing tumor antigens and membrane ligands. In
addition, immune cell infiltration, tumor cell growth, and
metastasis are influenced by chemokines, selectins, and
integrins secreted by tumor cells and their stroma, which also
aid in the extravasation tumor-infiltrating lymphocytes into
tissues (45).
THE TRADITIONAL PATHOLOGICAL
TISSUE ANALYSIS

Pathologists have used hematoxylin and eosin staining to
visualize multiple tissue components in microscopic
examinations of biopsy and surgical samples for more than
100 years (7). In histopathological analysis, disease grading and
diagnosis include recognizing tissue structures such as
lymphocytes, cancer nuclei, and glands. The nature, degree,
size, shape, and other morphological features of these
structures are essential indicators of the presence and severity
of the disease (46).

In traditional pathological slide analysis, optic microscopic
assessment at different magnifications (e.g., 4x, 10x, 20x, 40x,
100x) provides different levels of information. High-power field
microscopy provides information about cell shape, whereas low-
power field microscopy provides structural understanding and
enables the identification of complex architectural features and
spatial relations (47). However, in digital image analysis, the
quality, accuracy, and amount of information depend on the
image resolution, field of view, and selected regions of interest
when performing digital image analysis. In the same way, to
identify target molecules expression with clinical utility and their
semiquantitative intensity assessment in the tissue, IHC has been
an essential auxiliary method for pathologists not only in the
diagnostic routine but also in the research field, providing a high-
performance assessment tool when compared with other
biomarkers modalities (11, 48–50),

In digital image analysis, pyramidal image and whole-slide
analysis can address the lack of architectural data when using
high-power field magnification. In addition, because cellular and
structural atypia are present in cancerous tissues, images of
tumor sections obtained at different magnifications contain
important data (47).

For example,whengradingprostate cancer, some characteristics
are associatedwith tumoraggressiveness, suchas cell features, tissue
architecture, and image complexity, which are important for
June 2022 | Volume 12 | Article 889886
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determining the Gleason patterns. However, for some challenging
cases, these histological features can be influenced by interobserver
variability, and although M2 macrophages and regulatory T cells
have been suggested as part of the immune-suppressive
mechanisms that contribute to cancer progression (51), tumor
immune environment characteristics in prostate cancer are still
under investigation (52, 53). On the other hand, in breast cancer
samples and tumor immune environment, has been described the
dual role of the immune system in tumor development/progression
and inhibition (54–56). In tumor immune environment studies of
breast cancer patients, a complex dysfunction of T helper 2 cells
associated with a low percentage of CD4+ and CD8+ cells has also
been reported (57, 58). Furthermore, researchers haveobserved that
large numbers of lymphocytes are highly predictive of a good
outcome and improved survival in histopathological assessment
(46, 54, 56).

Another assessment for breast cancer is the study of tumor
infiltrating lymphocytes (TILs) as a strong prognostic biomarker
of good outcome for early-stage triple negative breast cancer
(TNBC) and HER2+ breast cancer, which has been included in
several international guidelines such as St. Gallen consensus (59),
the European society of medical oncology (ESMO) (60), and the
World Health Organization (WHO), as a criteria for pathology
assessment and reporting (61–63).

Due to the high relevance of the tumor immune environment
and the dynamic interrelations among its components for
developing novel therapeutic strategies, a high degree of inter-
Frontiers in Oncology | www.frontiersin.org 5
observer and intra-observer variability in tissue analysis is a
challenge for pathologists. So digital image analysis in
translational research for cancer immune environment
represents a good opportunity to address this issue and also
generate big data from the whole slide image analysis by using
multiplexed technologies for phenotyping (17, 56, 58, 64, 65).
TUMOR IMMUNE MICROENVIRONMENT
RESEARCH APPROACHES

In immuno-oncology research, understanding the complexity of
the tumor immune microenvironment is essential. The study of
the tumor immune environment is made possible by obtaining
immune signature data using different techniques, such as flow
cytometry, IHC, and multiplex immunofluorescence (mIF). In
translational research, the panel design process requires the
collaboration of a multidisciplinary team and is constituted by
consecutive steps pursuing to find the answer to the scientific
question (Figure 3).

Althoughflowcytometryhasbeenused for immunophenotyping,
this method requires cell disaggregation, which leads to loss of tissue
architecture and information on spatial relationships between tumor
and immune cells (66). IHC has also been used for immune cell
phenotyping, and this technique preserves tissue architecture and the
spatial relationship among cells. However, the amount of molecular
proteins that can be detected simultaneously is limited (11, 50, 67).
FIGURE 3 | Study and multiplex immunofluorescence panel design in translational research. Multiplex Immunofluorescence (mIF) panel design for translational
research starts with a scientific question and a multidisciplinary team guided by a scientific leader who addresses their skills and efforts to accomplish the research
goal. Sample collection, data review, and pathologist quality control are simultaneously applied to determine the study’s feasibility. Antibody validation is an essential
part of the process and assures that the expressed surface proteins and their intensity are correctly detected. High-resolution image scanning provides high-quality
images for analysis purposes. Finally, when the image analysis algorithm is applied, data results are exported, analyzed, and correlated. Image created with
BioRender.com.
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In the same way, the analysis of multiplexed images preserves the
tissue architecture and the spatial relationships among all of the cell
populations, whichmakes it a handy tool for characterizing the TME
in translational research and obtaining reliable information (68–70).
However, each technique offers a different perspective and data, so
flow cytometry, IHC, and mIF must be considered complementary
techniques and not excluded.

In addition, mIF can be used to evaluate protein localization in
tissue samples using an immunofluorescent labeling-based image
analysis algorithm(68).Also, given a reasonable numberofmarkers
in the same tissue section, it can facilitate the exploration of tissue
morphology, spatial distributions, subcellular features, and cell
surface proteins (71). Different technologies are capable of
capturing the immune signatures of cells; in mIF, once different
fluorochromes are attached to tissue proteins, signals can be
extracted according to wavelength band from a series of scanned
images, and the signals from various fluorophores are separated
according to the signals created by Opal dyes (72, 73). To produce
enzymatic signal amplification, tyramide molecules are conjugated
with these fluorescent dyes (74).

An essential component of computerized image analysis in
digital pathology is ascertaining prognostic markers’ function and
expression patterns topredict cancer outcomes and survival (17, 64,
65). In this sense, immunotherapies have provided an increased
understanding of patients’ TME and clinical response to treatment
with immunotherapy. In addition, they have enabled clinicians to
determine the appropriate indications for cancer treatment and
identify possible effective drug combinations. For example, despite
the efficacy of inhibitors of programmed cell death protein 1
(nivolumab and pembrolizumab) and PD-L1 (atezolizumab and
durvalumab) in the treatment ofmelanoma andother solid tumors,
physicians have observed resistance and relapse in other cancer
patients with PD-L1 expression in malignant cells (75, 76).
Similarly, investigators identified the simultaneous presence of
cytotoxic CD8+ cells and expression of PD-L1 in tumors as a
reliable prognostic marker for gastric cancer (77). From these
findings, we can infer that due to the complexity and diversity of
the tumor immune environment, more sophisticated techniques
are required to identify and study different immune cell subsets and
analyze cell-cell interactions in human tumor samples (78).
MULTIPLEX IMMUNOFLOURESCENCE
FOR IMMUNE CELL PROFILING

Several technical considerations must be addressed for
developing a consistent mIF imaging platform, such as
comprehensive tissue quality standards, a standardized
multiplex assay staining scheme, the ability to quantify several
markers in a specific region of interest, and experimental
reproducibility both within and between laboratories (79).

Antibodies for Multiplex
Immunofluorescence
Because of their superior specificity, reliability, low frequency of
staining background, and lot-to-lot variability, monoclonal
Frontiers in Oncology | www.frontiersin.org 6
antibodies are frequently used for immunohistochemical and
immunofluorescent panel validation and analysis. Also, when
compared to polyclonal antibodies, monoclonal antibodies are
specific to target antigens, whereas polyclonal antibodies bind to
various epitopes on the same protein and are acquired from
experimental animals via repeated antigen stimulation (80).

Tyramide Signal Amplification and
Target Biomarkers
mIF tyramide signal amplification (TSA) combines staining with
multispectral imaging analysis and allows for the creation of mIF
panels of up to eight biomarkers, quantifies their expression, and
characterizes their co-expression (cell phenotypes). A
combination of biomarkers and individual fluorophores creates
multispectral images that can generate several mIF panels for
studying the tissue microenvironment (14, 80) (Figures 4, 5).
Targetable biomarkers like programmed cell death protein 1 PD-
1/PD-L1 and their pathways can be analyzed to confirm the effect
of immune treatments on the TME and their therapeutic benefit.
Tumor immune environment analysis by mIF has been used to
predict prognosis for diseases other than cancer and in the early
phases of pathogenesis when signaling protein levels and
functions are disrupted. Therefore, this technology (mIF) has
played an important role in translational oncology research by
increasing the understanding of the natural progress of the
disease (81, 82).

Individual markers, such as those found in mIF panels, can be
expressed in several types of cells simultaneously, and the
detection threshold of the stained subcellular compartments,
such as nuclei, cytoplasm, and cell membranes, must be
addressed when creating the analysis algorithm. For example,
tumor cells, macrophages, and lymphocytes can express PD-L1,
but because lymphocytes are small cells with little cytoplasm that
cannot always be differentiated from the cell membrane, they
should be considered as positive for PD-L1 expression when
cytoplasmic or membrane expression is present (83).

Markers Co-Expression
Identifying the co-expression of several markers in specific cells
is a strategy for confirming the specific cell target protein by
including negative controls during the validation of the panel
markers. In addition, including negative controls help eliminate
autofluorescence interference during image preparation to
ensure the acquisition of a clean signal for TME and mIF
analysis (83).

For different mIF biomarker panels, including a common
marker in the panels as an internal control is critical. For
example, in immuno-oncology research, CD3 is commonly
employed to analyze lymphocytes and their different
subpopulations. In addition, although various tissue cut levels of
formalin-fixed paraffin-embedded (FFPE) biopsy samples are
utilized in the staining process, consecutive tissue cut levels
should be used to obtain similar cellularity among panels during
the staining procedure (83).

Cell phenotypes can be detected in any tissue compartment.
They are defined by the co-expression of two or more surface
June 2022 | Volume 12 | Article 889886
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markers simultaneously expressed in the known cell
compartment during image analysis (83, 84) (Table 1).

Tissue Processing and Effects on
Multiplexed Images
Tissue processing and fixation are critical steps that must be
standardized to avoid pre-analytical and analytical errors. Tissue
ischemia and inappropriate tissue fixing can cause autolysis and
degradation of proteins, RNA, DNA, and enzymes, decreasing
antigenicity and antibody-binding site. Digital image analysis
data from mIF can be negatively affected if extensive areas of
necrosis, hemorrhage, and fatty tissue are present or a previous
decalcification method was used (85). Some features must be
considered regarding the tissue area selection, such as sample
size, discordant diagnosis, amount of tumor cells, and selection
of immune hot versus immune cold areas, among others (15, 85).
IMAGE ANALYSIS
ALGORITHM CREATION

General Perspectives
Tissue analysis of oncological pathologies by optic microscopy is
made by manipulating the microscope’s magnification lens to
gather information at the architectural and cellular levels. In
Frontiers in Oncology | www.frontiersin.org 7
machine learning-based digital image analysis, different images
obtained at various magnification and quality resolution levels are
often used (47, 86). Examination of whole slide images is the best
approach to digital image analysis in histopathology because it
yields reliable andaccuratedata and comprehensive informationon
spatial relationships among the different surface proteins expressed
in the TME (87). However, since the amount of data from whole
slide image analysis can be extensive and data analysis time
consuming, if the experimental design allows, tissue microarray
(TMA) can be used as an alternative technique that allows high
throughput analysis of multiple tissue specimens at the same time,
under experimental uniformity, amplifying scarce resources and
decreasing volume assay, time and cost (88, 89).

Noteworthy, TME and tissue heterogeneity may vary
throughout the whole tissue specimen. Therefore, the selected
areas for analysis could be affected during the selection, so several
studies have tried to apply AI algorithms under pathologist
supervision to identify diagnostically important regions of
interest (ROIs). These studies used image features such as
pixels and textures, achieving tissue classification accuracy
between 46% and 75% based on the quality of the tissue,
quality of the image, and training data (90–92). These
techniques must be selected according to the study objectives,
and they should be considered complementary.

Many image analysis software packages are commercially
available (Table 2), and they can be used for the phenotyping
FIGURE 4 | Multiplex immunofluorescence activation panel. The activation panel includes a universal biomarker for nuclear detection (DAPI) and cytokeratin for the
detection of epithelial cells (malignant cells), which is also helpful for the compartmentalization of the image (tumor vs. stroma). TME and its different immune cell
populations are detected using CD3+ for all lymphocytes and co-expressed CD8+ for cytotoxic T cells. Biomarker CD68+ identify macrophage population. This
panel also includes biomarker expression for PD1+ and PDL1+ in immune cells and tumor cells to determine their activator or inhibitor status. (A) Composite image
of TME from oral squamous cell carcinoma, showing all markers of a multiplex immunofluorescence “activation panel”, activated simultaneously. (B) Composite
image showing CD68 positive expression (yellow) of immune cells in the stromal compartment. (C) Composite image showing PD1 positive expression (green) of
immune cells in the stromal compartment. (D) Composite image showing CD3 positive expression (red) of immune cells in the stromal compartment. (E) Composite
image showing CD8 positive expression (pink) of immune cells in the stromal compartment. (F) Composite image showing PD-L1 positive expression (orange) of
immune cells in the stromal compartment. inForm ® image analysis software, Akoya bioscience (scale bar: 100 mm). Scanner Vectra Polaris. DAPI (blue-DAPI),
cytokeratin (cyan-opal 620), CD3+ (red-opal 690), CD8+ (pink-opal 540), CD68+ (yellow-opal 520), PD1+ (green-opal 650), PD-L1+ (orange-opal 570).
June 2022 | Volume 12 | Article 889886
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of samples through the input of specific tissue and cell features.
In addition, open-source digital image analysis software packages
are available, such as ImageJ (National Institutes of Health)
and CellProfiler (Table 3). The analysis workflow of
histopathological digital images carried out by using the
different and currently available software packages are pretty
similar. They all use reference points to recognize different
structures that allow the software for unsupervised image
exploration, image classification, image segmentation, and
object tracking to identify surface proteins in mIF technology
expressed in various tissue compartments (93).

In developing an image analysis algorithm, machine learning
and deep learning methods for hierarchal data clustering can be
obtained by using the k-means method, which is a popular deep
learning method, and density-based spatial clustering of
application with noise (DBSCAN), another deep learning
method that differs from the K-means on its less susceptibility
for extremes median values (93–96).

The intensity of marker expression and morphology is
essential for tissue classification, cell classification, and
identification and measurement of protein expression. Then,
the tumor sample images are analyzed using the principle of
mutual identification and exclusion once the tissue
characteristics are determined based on the immunological
background regarding the tumor’s behavior reported by
scientific literature and its relationship with the immune
Frontiers in Oncology | www.frontiersin.org 8
system according to the study’s objectives (97). Finally, a
binary classification scheme is used to classify cells as positive
or negative for a single marker. In this classification, the
assessment of the surface markers is based on a cell attribute
that is not shared by the rest of the cell population (78, 98).

When evaluating a large number of digital images, a
combination of deep learning algorithms and machine learning
is helpful in the analysis of mIF data and quantification of image
features (97). For these algorithms to work effectively, they must
recognize, learn from, and dynamically adjust to tissue
heterogeneity. However, an algorithm may perform well for
one image but poorly for another using fixed input parameters
(99), making extracting information from digital slide images
and analyzing it challenging. Once the images have been
prepared by activating the fluorochrome detection for
multiplexed digital image analysis, the following steps consist
of tissue segmentation, cell segmentation, phenotyping, and data
exportation (Figure 6).

Tissue Segmentation
Image compartmentalization is one of the first steps in digital
image analysis and algorithm creation. It demarcates a tissue
sample’s compartments, such as the tumor, stroma, blood
vessels, and other histomorphology areas. During this step, the
software user must create and name the different tissue categories
of interest and provide representative examples of them to achieve
FIGURE 5 | Multiplex immunofluorescence T lymphocytes panel. As on the activation panel, the T lymphocytes panel includes a universal biomarker for nuclear
detection (DAPI) and cytokeratin for detection of epithelial cells (malignant cells), which is also helpful for compartmentalization of the image (tumor vs. stroma). T
lymphocyte populations are detected using CD3+ for all lymphocytes, co-expressed CD8+ for cytotoxic T cells, and co-expressed FOXP3+ for regulatory T-cells.
This panel includes granzyme B+ (GB) and CD45RO+ to identify activated T-cells and memory T-cells, respectively. (A) Composite image of TME from oral
squamous cell carcinoma, showing all markers of a multiplex immunofluorescence “T lymphocytes phenotypes”, activated simultaneously. (B) Composite image
showing CD45RO positive expression (yellow) of immune cells in the stromal compartment. (C) Composite image showing FOXP3 positive expression (green) of
immune cells in the stromal compartment. (D) Composite image showing CD3 positive expression (red) of immune cells in the stromal compartment. (E) Composite
image showing CD8 positive expression (pink) of immune cells in the stromal compartment. (F) Composite image showing GB positive expression (magenta) of
immune cells in the stromal compartment. inForm ® image analysis software, Akoya bioscience (scale bar: 100 mm). Scanner Vectra Polaris. DAPI (blue-DAPI),
cytokeratin (cyan-opal 620), CD3+ (red-opal 690), CD8+ (pink-opal 540), CD45RO+ (yellow-opal 520), FOXP3+ (green-opal 650), Granzyme B+ (magenta-opal 570).
June 2022 | Volume 12 | Article 889886

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Rojas et al. Multiplex Immunofluorescence Tumor Immunoenvironment Research
an accurate detection of the different tissue categories provided by
the expert (Figure 1). The number of examples needed for each
category may vary depending on the tissue heterogeneity and
tissue preparation quality, staining quality, and image resolution.
Usually, providing some of the best representative examples from
the training areas is considered good practice, but the overall
accuracy of tissue classification always depends on the quality of
the training areas selected by the user and the software’s
capabilities in interpreting those areas.

The user can also separate specific areas of disinterest, such as
necrosis, tissue-processing artifacts, and staining artifacts. These
Frontiers in Oncology | www.frontiersin.org
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areas can then be eliminated using the various methods
embedded within a digital image analysis software program,
such as manually drawing a perimeter around the object of
disinterest or altering thresholds for lower or higher marker
values. After doing so, the algorithm will disregard potentially
confusing elements during its training process that may later put
the algorithm’s accuracy at risk.

To quantify the total area of tissue to be analyzed, the user can
create a new category representing the image areas that do not
contain tissue. Some suggested names for this category are
“glass” and “background” (94, 100). This helps the software
save time when performing image analysis, as it can be
configured during training to not apply the final image analysis
algorithm to the areas without tissue.

Cell Segmentation
Cell segmentation begins with nuclear detection. The digital image
analysis algorithm combines different nuclear characteristics, the
most important of which include size, roundness, edges, and
texture, to identify the individual nuclei in a sample. Some tumor
cells with high nuclear density may exhibit nuclear overlap, which
may also be seen in neoplastic samples with high-density immune
cell populations. However, this characteristic may be erroneously
overlooked as a tissue artifact in either case. To address this nuclear
overlapping issue, most digital image analysis software packages
permit the regulation of nuclear segmentation aggressiveness. This
function enables the splitting of anuclear signal into the areaswhere
the software user can identify more than one nucleus and thus
prevents underestimation or overestimation of the cell population.

The cytoplasm and membrane are also considered critical
features in each cell during cell segmentation, depending on the
digital image analysis software program and its proper use.

Although a counterstaining nuclear marker (e.g., DAPI) should
always be included in an mIF staining panel, a marker like
cytokeratin, which is used for the identification of epithelial
tumors, also can be employed as a cytoplasmic/membrane marker
to improve segmentation of cells (85). In addition, the segmentation
of immune cells also can be achieved by using membrane markers
such as CD68 for macrophages and CD3 for T cells.

Phenotyping, Single-Cell Marker
Expression, and Cell Marker
Co-Expression
An mIF marker panel can be analyzed using single-cell marker
identification or according to the co-expression of two or more
markers. The choice between these two approaches depends on
TABLE 3 | Representative open source digital image analysis software packages.

Package Website

Fiji (ImageJ) https://imagej.net/Fiji
QuPath https://qupath.readthedocs.io/en/latest/
CellProfiler https://cellprofiler.org/
ilastik https://www.ilastik.org/
Orbit http://www.orbit.bio/
Icy http://icy.bioimageanalysis.org/
Cytomine https://cytomine.com/
J

TABLE 1 | Examples of immune cells phenotypes according to their positive
surface marker expression used in translational research.

Phenotypes Surface markers (positive expression)

NK Cells CD3/CD94/CD8
Cytotoxic Cells CD3/CD8
T-Helper Cells CD3/CD4
Memory Cells CD3/CD45RO
Regulatory T Cells CD3/CD4/FOXP3
Cytotoxic Memory Cells CD3/CD8/CD45RO
T-Helper Memory Cells CD3/CD4/CD45RO
Myeloid Cells CD68/CD11c/CD11b/CD136/CD14/CD33
Lymphocyte LAG3 CD3/LAG3
Lymphocyte TIM3 CD3/TIM3
Lymphocyte OX40 CD3/OX40
Lymphocyte VISTA CD3/VISTA
Macrophage M1 CD68/CD14
Macrophage M1 PDL1 CD68/CD14/PD-L1
Macrophage M2 CD68/CD163
Macrophage M2 PDL1 CD68/CD163/PD-L1
Macrophage M2 HLA-DR CD68/CD163/HLA-DR
Cytotoxic Cell CD137 CD3/CD8/CD137
T-Helper activated ICOS CD3/CD4/ICOS
Tumor Cells PD-L1 CK/PD-L1
Lymphocyte CD4+ PD-L1 CD3/CD4/PD-L1
Lymphocyte CD8+ PD-L1 CD3/CD8/PD-L1
Macrophage PD-L1 CD68/PD-L1
Cytotxic T cells PD-1 CD3/CD8/PD1
T-Helper Cells PD-1 CD3/CD4/PD-1
Cytotxic T cells CD137 CD3/CD8/CD137
T-Helper Cells CD137 CD3/CD4/CD137
Cytotxic T cells LAG3 CD3/CD8/LAG3
T-Helper Cells LAG3 CD3/CD4/LAG3
Cytotxic T cells TIM3 CD3/CD8/TIM3
T-Helper Cells TIM3 CD3/CD4/TIM3
NK Cells activated CD94/GB/CD8
Cytotxic T cells GB CD3/CD8/GB
TABLE 2 | Representative and commercially available digital image analysis
software packages.

Package Manufacturer

inForm Akoya Biosciences
HALO Indica Labs
Visiopharm Visiopharm
Aperio eSlide Manager Leica Biosystems
CaseViewer 3DHISTECH
Augmentiqs Augmentiqs
Image-Pro
aiforia

Media Cybernetics
Aiforia Technologies
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the complexity of the markers in the panel, and the markers can
be used as comprehensive or restrictive cell phenotype
identifiers. In the single-cell marker approach, individual cell
marker identification begins with creating an algorithm that
identifies mutually exclusive markers in mIF panels, such as
cytokeratin, CD3, and CD68. Then, the other markers are
identified in consecutive steps in different phenotyping
sessions. In the co-expression approach, co-expressed markers
are identified by activating at least two different phenotypes
simultaneously (Figure 7).

Using a visual approach, a pathologist or analyst familiar with
the specific marker’s expression and location in the cells must
correctly identify the marker or cell phenotype using the algorithm
and avoid staining of the background and false positivity (85, 101).
The co-expression of markers is accomplished by activating two or
three markers simultaneously and verifying that they overlap in
the correct pattern in the expected cells. However, using a control
marker’s intensity when possible and adequate for the
performance and training of the algorithm is recommended.

Digital image analysis for multiplex immunofluorescence can
be performed in single or batch mode, both of which have
advantages and disadvantages. Batch mode is faster and enables
the analysis of a large group of samples in a shorter time than
single-mode. However, due to the heterogeneity of the intrinsic
tumor tissue and technical differences due to tissue processing,
Frontiers in Oncology | www.frontiersin.org 10
such as fixation and staining, applying a single algorithm in batch
mode may be challenging, sometimes misreading tissue
compartments and under/over detecting single nuclei. In
addition, the application of a single digital image analysis
algorithm requires selecting a training set group of images,
which should be constituted by some of the most representative
samples included in the study and show special characteristics that
might present, such as mucin, cartilage, hemosiderin-laden
macrophages, and others. Finally, to address the lack of accuracy
during tissue and cell classification, the ideal software should allow
real-time quality control supervised by a pathologist; whereas
single-mode analysis can be more accurate than batch mode
analysis, the former takes more time.

In addition, a training algorithm is applied to different
images, and a pathologist must verify the accuracy of that
application. Quality control in machine learning-based
examination of biopsy samples, determination of the sample
dimensions, and verification of accurate cell populations by a
well-trained pathologist help ensure high-quality data from
multiplex image analysis (85). Deep learning methods generate
a significant amount of relational and non-relational data. This
big-scale information requires automated or semi-automated
storage, processing, and analysis, offering adequate and
complete information that can be filtered and improved by
automation and supervised under medical expert knowledge
FIGURE 6 | Algorithm Workflow of Multiplex immunofluorescence Digital Image Analysis. After image scanning, raw images (A) are prepared by activating the
fluorochromes attached to the different cell surface proteins (B). Then, for tissue compartmentalization, the software user can select the most representative
examples of each compartment used during the training algorithm and exclude areas of disinterest (C). Once the tissue compartment algorithm is applied and the
areas are defined (D), the next step is to define the cells limits (E) as individual objects to count for the analysis. The final part of the image analysis algorithm is the
classification of the cells based on their phenotypes according to their surface protein expression (F). Images examples from inForm ® image analysis software.
Akoya Biosciences.
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and allowing for finding data trends on a large scale to provide
decision-making support (102, 103). However, handling all the
generated data can be highly costly due to the different
knowledge filed involved in the process, such as medical
experts , technicians, data analysts , and technology
development engineers, so much improvement must be done
to expand the number of images and shorten their analysis
results in a costless and timely manner.
TRANSLATIONAL RESEARCH, DIGITAL
PATHOLOGY CHALLENGES, AND
FUTURE STEPS

Counting cells, blood vessels, and nuclei is a standard and
necessary task in translational cancer research that can also be
challenging due to interobserver variability. Thus, a primary
objective of artificial intelligence-based tissue analysis is the
promotion of reliability of the data obtained. For example, in
comparing automated and manual object counts, authors have
reported interobserver variations, finding an error range of 1.1-
4.7% in the automated number of cell counts compared with
manual counts (104). Similarly, in comparing manual and
automated cell counts of immunohistochemically stained bone
marrow biopsy samples, researchers observed a 2.8% to 10.0%
discrepancy in these cell counts (105). Furthermore, the authors
reported an error range of 19-42% between manual and
automated mitosis counts in breast tissue samples visualized
Frontiers in Oncology | www.frontiersin.org 11
with Feulgen stain (106). These findings demonstrate that tissue
analysis by pathologists can be subjective and prone to inter-
observer and intra-observer variations (107). Therefore,
improving the performance of object counts by using artificial
intelligence is important to obtain more accurate and
reproducible data on tissue samples.

Another challenge in mIF and digital image analysis is using
different analytical approaches that are subject to potential errors
that may affect the data output. For example, the selection of
regions of interest in platforms such as mIF may be subjective,
affecting the quality of the image analysis results. Therefore,
whole slide images should be analyzed when possible to reduce
variability in data results. Standardization of the different steps
involved in any mIF project design, from panel antibody
validation to the image analysis workflow, is necessary to
overcome mIF and digital image analysis variations among
researchers (15, 85).

The pathology community has been debating different assays
to validate digital pathology in translational research, with little
agreement on the parameters that should be used or how they
could be used. We consider tissue quality, antibody validation,
panel design, image resolution, and algorithm creation among
the essential parameters for immuno-oncology and digital
image analysis validation and the standardization of the
analysis workflow to obtain reliable and reproducible results
data (Figure 8).

Many new platforms, such as multiplexed ion beam imaging
(MIBI), cytometry by time-of-flight, and CO-Detection by
indEXing, are currently being used to perform high-plex
immunoprofiling and cell phenotyping. However, all these
platforms have in common the use of image analysis
algorithms to manage large quantities of data. Thus, in the
very near future, more studies will be needed for digital
pathology validation and the establishment of a consensus
regarding the assessment of results from all these platforms
and the ones to come.
CONCLUSIONS

Understanding the tumor immune microenvironment is
important for cancer diagnosis and treatment. Thanks to the
latest technologies in histopathology and digital image analysis,
the development of tools such as mIF that allow for the focused
study of proteins and cell surface markers that may be considered
therapeutic targets is possible. In addition, significant advances
in the acquisition, storage, and processing of digital images
have enabled detailed studies of large quantities of material in a
small amount of time, thus guaranteeing the reproducibility of
results and their application to the development of new cancer
treatments. Therefore, the design, validation, and standardization
of an mIF marker panel offer an answer about the TME in the
translational immuno-oncology field, and the creation of
algorithms for the digital analysis of histological images with the
help of available software packages are fundamental parts
of understanding the tumor biology and immunology.
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FIGURE 7 | Multiplex immunofluorescence and colocalization examples. (A)
CD3+ expression (red) on a lymphocyte T. (B) CD8+ expression (pink) of the
same lymphocyte T in example (A). (C) CD3+ and CD8+ expression and
colocalization (red and pink) for a cytotoxic T lymphocyte. (D) CD3+
expression (red) on a lymphocyte T. (E) PD1+ expression (green) of the same
lymphocyte T in example (D). (F) CD3+ and PD1+ expression and
colocalization (red and green) for a T lymphocyte PD1+. (G) Cytokeratin+
expression (cyan) of an epithelial tumor cell. (H) PDL1+ expression (orange) of
the same epithelial tumor cell on example (G). (I) Cytokeratin+ and PDL1+
expression and colocalization (cyan and orange) on an epithelial tumor cell
expressing PDL1 on its surface for immune evasion. Composite image from
inform ® image analysis software, Akoya bioscience. Scanner Vectra Polaris.
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Furthermore, applying these technologies logically and
systematically facilitates the processing of large samples and
images that can generate valuable and helpful information for
developing new immunotherapies for cancer.
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