
1SCIENTIFIC REPORTS |  (2018) 8:2259  | DOI:10.1038/s41598-018-20730-5

www.nature.com/scientificreports

Multiplex model of mental lexicon 
reveals explosive learning in 
humans
Massimo Stella  1,2, Nicole M. Beckage3, Markus Brede1 & Manlio De Domenico  2,4

Word similarities affect language acquisition and use in a multi-relational way barely accounted for in 
the literature. We propose a multiplex network representation of this mental lexicon of word similarities 
as a natural framework for investigating large-scale cognitive patterns. Our representation accounts 
for semantic, taxonomic, and phonological interactions and it identifies a cluster of words which are 
used with greater frequency, are identified, memorised, and learned more easily, and have more 
meanings than expected at random. This cluster emerges around age 7 through an explosive transition 
not reproduced by null models. We relate this explosive emergence to polysemy – redundancy in word 
meanings. Results indicate that the word cluster acts as a core for the lexicon, increasing both lexical 
navigability and robustness to linguistic degradation. Our findings provide quantitative confirmation of 
existing conjectures about core structure in the mental lexicon and the importance of integrating multi-
relational word-word interactions in psycholinguistic frameworks.

Investigating relationships between words offers insights into both the structure of language and the influence of 
cognition on linguistic tasks1,2. As a result, cognitive network science is rapidly emerging at the interface between 
network theory, statistical mechanics, and cognitive science1–4. The field is influenced by the seminal work of 
Collins and Quillian5, who assumed that concepts in the human mind are cognitive units, each representable as a 
node linked to associated elements. These connections represent a complex cognitive system known as the mental 
lexicon6. Extensive empirical research has shown that relationships in the lexicon can be modelled as a network 
of mental pathways influencing both how linguistic information is acquired2,7–11, stored3,6,7,12, and retrieved3,8,13,14.

The cognitive role of quantifying lexical navigability as distances in a network finds empirical support in 
several experiments related to word identification and retrieval tasks5,13,15,16. For instance, Collins and Loftus13 
showed a correlation between network topology of semantic networks and word processing times: words farther 
apart in the network require longer identification times, thus indicating higher cognitive effort. More recently, 
the structural organisation of mental pathways among words was analysed in several large-scale investigations, 
considering similarity of words in terms of their semantic meaning3,17,18, their phonology8,12,19–21, or their taxon-
omy14,22,23. Remarkably, all these networks, based on different definitions of relationships between words, were 
found to be highly navigable: words were found to be clustered with each other and separated by small network 
distances (sometimes called small-world networks24). This may suggest a universal structure of language organi-
sation related to minimising cognitive load while maximising navigability of words2,4,25,26.

The above studies, however, have not yet attempted to use multi-relational information for characterising and 
quantifying the mental lexicon, instead focusing on only one relationship at a time3,10–13,17,18,26. Some researchers 
have considered the aggregation of several of these relationships into single-layer networks17 and others have con-
sidered multi-relational models but only to capture the syntactic structure of language23. The above approaches 
offer only limited insight into the cognitive complexity that allow individuals to use language6 with diversity and 
ease.

More information about the lexical structure can indeed be obtained by accounting, simultaneously, for 
multiple types of word-word interactions. A natural and suitable framework for this purpose are multilayer 
networks27–31. Multilayer networks simultaneously encode multiple types of interaction among units of a com-
plex networked system. Therefore, they can be used to extract information about linguistic structures beyond 
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information available from single-layer network analysis32. The usefulness of multiplex representations has 
recently been shown for diverse applications including the human brain33,34, social network analysis35–37, trans-
portation38,39 and ecology40,41.

Here, on an unprecedented scale and from a multi-relational perspective, we investigate the semantics, pho-
nology, and taxonomy of the English lexicon as a model of distinct layers of a multiplex network (see Fig. 1). 
We study the evolution of multiplex connectivity over the developmental period from early childhood (2 years 
of age) to adulthood (21 years of age) also through the use of word attributes (e.g. word frequency, length, etc.) 
influencing lexical acquisition6,42,43.

The proposed multiplex representation provides a powerful framework for the analysis of the mental lexicon, 
allowing for the capture of sudden structural changes that can not be identified by traditional methods. More 
specifically, when modelling lexical growth, we observe an explosive emergence of a cluster of words in the lex-
icon around the age of 7 years, which is not observed in single-layer network analyses. We show that this cluster 
is beneficial from a cognitive perspective, as its sudden appearance facilitates word processing across connected 
network pathways across all lexicon layers. This boost to cognitive processing also enhances the resilience of the 
lexicon network when individual words become progressively inaccessible, such as what may happen in cognitive 
disorders like anomia44. These findings represent the first quantitative confirmation and interpretation of previous 
conjectures about the presence and cognitive impact of a core in the human mental lexicon6,22,45,46.

Results
Structure of the Multiplex Lexical Representation. Our multilayer lexical representation (MLR) of 
words in the mind is a multiplex network28,30,47,48 made of N = 8531 words and four layers. Each layer encodes a 
distinct type of word-word interaction (cf. Fig. 1(a)): (i) empirical free associations49, (ii) synonyms50, (iii) taxo-
nomic relations50, and (iv) phonological similarities12. As shown in Fig. 1(b), different relationships can connect 
words that would otherwise be disconnected in some single-layer representations. We considered these relation-
ships with the aim of building a representation accounting for different types of semantic association, either from 
dictionaries (i.e. synonyms and taxonomic relations) or from empirical experiments (i.e. free associations). We 
also include sound similarities (i.e. phonological similarities) as they are involved in lexical retrieval8,12. This set of 
relationships represents a first approximation to the multi-relational structure of the mental lexicon. Compared to 
previous work on multiplex modelling of language development32, our multiplex representation is enriched with 
node-level attributes related to cognition and language: (i) age of acquisition ratings42, (ii) concreteness ratings43, 
(iii) identification times in lexical decision tasks51, (iv) frequency of word occurrence in Open Subtitles52, (v) 
polysemy scores, i.e. the number of definitions of a word in WordNet, used to approximate polysemy in compu-
tational linguistics9,17 (cf. Methods and SI Sect. 12) and (vi) word length42. The analysis of structural reducibility 
of our multiplex model (cf. SI Sect. 2) quantifies the redundancy of the network representation53. Results suggest 

Figure 1. (a) Visual representation of a subset of the multiplex lexical representation (MLR) for adults with 
N = 8531 words and four types of word relationships forming individual layers: free associations, synonyms, 
taxonomic relations, and phonological similarities. (b) Multiplex visualisation as an edge-coloured network. (c) 
Using only purple links does not allow navigation of the whole network. Therefore the network is not a viable 
cluster. Notice, however, that the two nodes with overlapping links constitute the smallest possible viable cluster 
in a simple graph (which we refer to as “trivial” in the main text). (d,e) The appropriate addition of one node and 
three coloured links makes the resulting graph a viable cluster, with paths between all nodes using either only 
cyan or only purple colours.
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that no layers should be aggregated, as each network layer contributes uniquely to the structure of the multiplex 
representation, confirming the suitability of the multiplex framework for further investigation.

As already discussed, investigating navigation on linguistic networks has proved insightful5,13,17. Hence we 
focus on analysing the navigability of our multiplex network39, identifying word clusters that are fully navigable 
on every layer, i.e. where any word can be reached from any other word on every layer when considered in isola-
tion. An example is reported in Fig. 1 for a representative multiplex network with two layers. In network theory, 
these connected subgraphs are also called viable clusters48 (cf. Methods). Notice that the largest viable cluster of a 
single-layer network coincides with its largest connected component54, i.e. the largest set of nodes that can all be 
reached from each other within one layer. In multiplex networks the two concepts are distinct, as viable clusters 
are required to be connected on every layer when considered individually. Removing this constraint of connected-
ness on every layer leads to the more general definition of multi-layer connected components39, i.e. the largest set 
of nodes all connected to each other when jumps across layers are allowed. Figure 1(c–e) conveys the idea that the 
emergence of viable clusters can be due to the addition of particular links in the network.

Our multiplex model contains a single non-trivial (i.e. with more than two nodes) viable cluster composed of 
1173 words, about 13.8% of the network size. In the following we refer to this cluster as the largest viable cluster 
(LVC). For easier reference, we indicate words in the empirical LVC as “LVC-in words” and words outside of the 
empirical LVC as “LVC-out words”. Reshuffling network links while preserving word degrees leads to configura-
tion model-layers54 that still display non-trivial LVCs (cf. LVC Rew. in Table 1). Further, on average 98.1 ± 0.1% 
of LVC-in words persist in the viable cluster after rewiring 5% of all the intra-layer links at random. We conclude 
that the LVC does not break but rather persists also in the case of potentially missing or erroneous links in the 
network dataset (e.g. spurious free associations or mistakes in phonological transcriptions).

In order to further test correlations between network structure and word labels, we also consider a full reshuf-
fling null model (see SI Sect. 4), in which word labels are reshuffled independently on every layer and thus word 
identification across layers is not preserved. Hence, full reshuffling destroys inter-layer correlations but preserves 
network topology. Fully reshuffled multiplex networks did not display any non-trivial viable clusters, emphasizing 
the important role of inter-layer relationships for the presence of the LVC in the empirical data.

In the next section we analyse the evolution of the LVC during language learning over a time period of more 
than 15 years. We demonstrate the existence of an explosive phase transition48 in the emergence of the LVC and 
explore the significance of this transition from the perspective of cognitive development.

Emergence of the Largest Viable Cluster. To study the emergence of the LVC during cognitive develop-
ment, we simulate probabilistic normative word orderings by smearing the age of acquisition dataset42. We refer 
to these orderings as normative acquisition. Smearing allows us to account for the variance in age of acquisition 
across individuals by introducing a probabilistic interpretation of these orderings (see Methods). We compare the 
trajectories of normative acquisition against five null models: (i) random word learning (i.e. words are acquired 
at random), (ii) frequency word learning (i.e. higher frequency words are acquired earlier), (iii) polysemy-scores 
word learning (i.e. words with a higher count of context-dependent meanings are learned earlier) and (iv) multi-
degree word learning (i.e. words with more connections–across all layers–are learned earlier) and (v) word length 
learning (i.e. shorter words are learned earlier). We investigate if modelling the development of the mental lexicon 
as growth of the empirical multiplex representation according to a given learning scheme matches the explosive 
transition observed in normative learning. Results are reported in Fig. 2(a).

Normative acquisition indicates a sudden emergence of the LVC around age 7.7 ± 0.6 years, almost four years 
earlier than expected if learning words at random. Further analysis reveals two distinct patterns. Firstly, this 

Node Attributes LVC-in LVC-out Asso. LCC-in Syno. LCC-in Hyp. LCC-in Phon. LCC-in LCC Int. LVC Rew.

Age of Acquisition [ys] 6.43(2) 9.4(1) 8.5(1) 8.8(1) 9.0(1) 7.8(1) 7.4(1) 7.3(1)

Concreteness [rating] 3.93(3) 2.83(4) 3.63(4) 3.35(5) 3.45(5) 3.87(2) 3.72(2) 3.71(3)

Reaction Times [ms] 552(1) 600(3) 579(1) 581(2) 588(2) 581(2) 576(1) 569(1)

Log Frequency [Counts] 3.40(1) 2.57(1) 2.86(1) 2.85(1) 2.79(1) 2.95(1) 3.20(1) 3.30(1)

Polysemy [Meanings] 9.7(2) 3.6(2) 4.9(1) 5.6(1) 4.6(2) 5.8(1) 7.6(1) 8.2(1)

Word Length [Letters] 4.43(3) 6.95(3) 6.35(3) 6.29(3) 6.58(3) 4.89(2) 4.76(2) 4.85(1)

Degree Corrections LVC-in LVC-out Asso. LCC-in Syno. LCC-in Hyp. LCC-in Phon. LCC-in LCC Int. LVC Rew.

Age of Acquisition [ys] 6.43(2) 7.62(1) 7.2(1) 8.1(1) 8.1(1) 7.5(1) 6.62(2) 6.61(2)

Concreteness [rating] 3.93(2) 3.67(3) 3.79(2) 3.42(4) 3.40(4) 3.89(2) 3.89(2) 3.90(2)

Reaction Times [ms] 552(1) 565(1) 559(1) 570(2) 566(2) 575(3) 556(1) 555(1)

Log Frequency [Counts] 3.40(2) 2.86(2) 3.26(1) 3.21(1) 3.21(1) 3.30(2) 3.32(1) 3.36(1)

Polysemy [Meanings] 9.7(2) 5.48(2) 6.8(1) 8.0(1) 7.7(1) 6.4(2) 8.5(1) 8.7(1)

Word Length [Letters] 4.43(3) 6.15(3) 5.88(2) 5.84(5) 6.16(5) 4.54(2) 4.49(2) 4.52(2)

Table 1. Average node attributes for words within the LVC and within the largest connected component (LCC) 
for each individual layer. All the values are medians, except for heavy-tail distributions such as the frequency 
and polysemy ones, where the arithmetic mean was used instead. All the values are sample-size corrected via 
Monte Carlo sampling. The last five rows refer to degree-corrected samplings, where the sampled LVC-out 
words have the same degree of the sampled LVC-in words. Error bars are reported in parentheses for brevity: 
3.93(3) means 3.93 ± 0.03.
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sudden appearance is robust to fluctuations in word rankings in the age of acquisition ratings (AoA): in all simu-
lations based on AoA reports, after roughly 2500 words have been acquired, an LVC with at least 260 words sud-
denly appears with the addition of just a single word to the lexicon. Secondly, the average magnitude of this 
explosive change is ∆ = ±L (420 50)AoA  words. These patterns suggest an explosive phase transition48,55,56 in the 
structural development of the mental lexicon. To the best of our knowledge, this work is the first detection of an 
explosive change in lexicon structure in cognitive network science during vocabulary growth.

Explosive behaviour in the emergence of the LVC is not observed in the random acquisition null model (see 
Methods and SI Sect. 7–11), with only a few cases (χRan = 32%) displaying a discontinuity of more than ten words. 
Further, the average magnitude of the LVC size change is only ∆LRan = (30 ± 10) words, a full order of magnitude 
smaller than in the normative cases. Therefore explosiveness characterises normative acquisition as a genuine 
pattern of language learning.

Is the explosive appearance of the LVC due to the acquisition of specific links or rather to specific words? In 
order to test this, we focus on the set of “critical” words, i.e. the single words whose addition allows for the sudden 
emergence of the LVC. We then compare features of these critical words with features of words already within the 
LVC at the time of its emergence. We test features like node-attributes (e.g. frequency, polysemy scores, etc.) and 
node degree. At a 95% confidence level, no difference was found for any feature (sign test, p-value = 0.007). This 
lack of difference suggests that the emergence of the LVC is indeed due to higher-order link correlations rather 
than local topological features (such as degree) or psycholinguistic attributes. Hence, it is the global layout of links 
that ultimately drive the explosive appearance of the LVC. As shown also in Fig. 1(c–e), links crucial to the forma-
tion of the viable cluster might be acquired earlier (Fig. 1(c)) but the LVC might appear only later (Fig. 1(e)), after 
some key pathways completing the viable cluster are added to the network (Fig. 1(d)).

The explosive emergence of the LVC has an interesting cognitive interpretation. Work in psycholinguistics 
suggests that frequency is the single most influential word feature affecting age of acquisition42 (mean Kendall 
τ ≈ − 0.47 between frequency and AoA). We thus test whether the LVC growth can be reproduced through early 
acquisition of highly frequent words, with frequency counts gathered from Open Subtitles52. All simulations on 
the frequency-based ordering display an explosive emergence of an LVC (χfre = 100%), however, the magnitude 
of the explosive transition is ∆Lfre = 280 ± 30 words, which is only 2/3 of the normative one. At a confidence 
level of 95%, the distribution of frequency-based LVC magnitude changes differs from the normative one (sign 
test, p-value = 0.01). The distribution of ages at which the LVC emerges in the frequency null model overlaps 
in 21% of cases with the analogous normative one. However, we observe that the frequency null model differs 
from the normative one not only quantitatively (i.e. magnitude and appearance of explosiveness) but also quali-
tatively: the frequency null model displays a second explosive phase transition in LVC-size later in development, 
at around 10 ± 0.2 years of age. This second transition might be due to the merging of different viable clusters, 
since we focused only on the largest viable cluster, rather than on viable clusters of non-trivial size. Further anal-
ysis reveals that the multiplex network has only one viable cluster, which suddenly expands through a second 

Figure 2. (a) Evolution of the size of the LVC when words are acquired in ascending order based on: age of 
acquisition (green dots), frequency (blue diamonds), polysemy scores (purple triangles), multidegree in the 
multiplex (brown circles), word length (red upside-down triangles) and at random (orange triangles). The 
LVC emerges with an explosive transition at 7.7 ± 0.6 years in normative acquisition. Areas represent standard 
deviations considering randomisations of smeared age of acquisition or ties in the rankings. For further details 
on the concreteness model see SI Sect. 15. (b) Comparison of average linguistic features for words in the LVC 
with normative acquisition in the empirical data and for a partial reshuffling null model with reshuffled node 
attributes. The curves are rescaled from 0 to 1 by their empirical maximum value and they represent averages 
over 200 iterations. Error margins are approximately the same size as the dots. Reshuffling node attributes 
results in an LVC with both reduced concreteness and polysemy scores. We note significant gaps between 
the empirical and randomised data. The observed gap in polysemy scores is almost 5 times larger than for 
concreteness values.
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explosive transition in the frequency-based vocabulary growth model (but not in the normative AoA model). The 
above differences provide strong evidence that explosiveness in the mental lexicon is not an artefact of correlation 
of word frequency with language learning patterns.

We next test preferentially learning words with high degree in the multiplex network to see if the LVC emerges 
earlier than in normative acquisition. Learning higher degree words first makes more links available in the 
multiplex network. As we said above, it is links that drive the LVC emergence, hence we expect an earlier LVC 
appearance. The multidegree null model confirms this expectation and it displays a distribution of explosive tran-
sitions with average magnitude of 430 ± 30 but happening almost two years earlier than in normative acquisition, 
around age 5.8 ± 0.1, cf. Fig. 1. The distribution of critical ages overlaps with the normative one only for 2% of 
the time. We conclude that the degree acquisition is significantly different from the empirical case (mean Kendall 
τ ≈ − 0.31 between multidegree and AoA).

Also word length influences lexical processing6 and acquisition42. Acquiring shorter words first leads to the 
sudden emergence of the LVC around age 6.6 ± 0.6, similarly to what happens for the polysemy curve. The LVC 
appears explosively with an initial size of 330 ± 50 words, a value lower than the normative one (mean Kendall 
τ ≈ 0.24 between word length and AoA). Differently from what happens with the polysemy curve, the growth of 
the LVC for shorter words is considerably faster compared to the normative case.

Another feature that can influence language acquisition is polysemy9,17,25, i.e. how many different definitions 
a word can have. We estimate word polysemy through polysemy scores9, including homonymy and also different 
meanings: the number of word definitions listed in the Wolfram dataset WordData57, which mostly coincides 
with WordNet. For a discussion about the caveats of using polysemy scores as we have defined above for quanti-
fying polysemy we refer to SI Sect. 12. When words with higher polysemy scores are acquired earlier, we find the 
appearance of the LVC at around age 6.6 ± 0.6 years, with an average magnitude of 470 ± 60 words, close to the 
normative one. The distribution of critical ages at which the LVC emerges in the polysemy null model displays 
the highest overlap (35%) with the analogous distribution from the normative case across all the null models 
we tested. Despite polysemy scores displaying a smaller correlation with the age of acquisition (mean Kendall 
τ ≈ − 0.26) when compared to frequency or multidegree, it actually provides the highest overlap in terms of age at 
which the LVC emerges. This indicates that polysemy might play a role in driving the LVC emergence.

Another attribute that could impact language development is concreteness, i.e. how tangible a given concept 
according to human judgements43,58. Experimental research has shown that children tend to learn words earlier if 
a word is rated higher on concreteness6,42,43,59. In order to test how concreteness can influence the LVC evolution, 
we develop a partial reshuffling null model (cf. Methods) where the topology of words is fixed but node attributes 
are reshuffled at random. Partial reshuffling destroys the correlations between word features and the network 
topology, such that we can quantify the role of the relational structure in the absence of correlation with word 
features. Partial reshuffling gives rise to LVCs of the same size but containing words that are less concrete and less 
polysemous than in normative acquisition, cf. Fig. 2(b). Partial reshuffling of word frequency leads to a gap in fre-
quency of similar size as we see for concreteness (cf. SI Sect. 9). The gap in polysemy scores between the empirical 
and the reshuffled LVCs is five times larger than the analogous concreteness gap, suggesting that polysemy has a 
greater influence than concreteness over the emergence of the LVC. We also notice a peak in polysemy scores: the 
“backbone” of the LVC (i.e. the LVC emerging around 8 yr) is composed of significantly more polysemous words 
compared to the LVC at age 20 (cf. Fig. 2(b), sign test, p-value = 0.001 < 0.05). This early peak is absent in the 
partial reshuffling null model for polysemy scores. Furthermore, frequency (cf. SI Sect. 9) and concreteness do not 
display peaks early on after the LVC emergence. Such an early richness in high-polysemy words further indicates 
the idea that polysemy strongly influences the emergence of the LVC.

Even though potentially causing ambiguity in communication, polysemy is a universal property of all lan-
guages6,25. Conventionally when constructing semantic networks6,17,60 word senses and meanings can be repre-
sented by links and polysemic words can have links related to different semantic areas (e.g. “character” is linked 
to “nature” in the context of complexion but also to “font” in the context of typography). Randomly Reshuffling 
word labels for all the neighbourhoods in the network evidently disrupts semantic relationships, thus destroying 
polysemy. We call this reshuffling “full” as it preserves the structure of local connections in the layers while fully 
destroying both intra-layer correlations at the endpoints of links and inter-layer correlations of words. We use 
full reshuffling as a null model (see Methods and SI) for testing how important polysemy is in determining the 
presence of the LVC. We fully reshuffle 2025 high-polysemy words (i.e. the words making up the heavy tail of the 
polysemy distribution) and compute the LVC size in the resulting reshuffled multiplex networks. Results are com-
pared against a reference case in which the same number of low-polysemy words are fully reshuffled. No viable 
cluster emerges on the multiplex networks with fully reshuffled high-polysemy words, while the LVC only shrinks 
by roughly 13% in case of fully reshuffling low-polysemy words. We conclude that correlations between network 
structure and polysemy scores are indeed necessary in determining the presence of the LVC.

The above results indicate that polysemy does increase lexicon navigability by ultimately giving rise to the 
LVC, i.e. a relatively small cluster of words that is fully navigable under both semantic, taxonomic, and phono-
logical relationships in the mental lexicon. Such view is in agreement with previous works14,17,25, which point out 
how polysemy provides long-range connections in the lexicon which can increase navigability through different 
word clusters on semantic single-layer networks17.

Psycholinguistic characterisation of the Largest Viable Cluster (LVC). Next, we explore the impact 
of the presence of the LVC on cognitive aspects of language such as word processing. Our aim is to explore 
if words belonging to the empirical LVC (LVC-in) are processed differently than those words not in the LVC 
(LVC-out), more from a language use perspective rather than a developmental one (which was analysed with the 
previous null models). Hence, we turn to large-scale datasets of node attributes (see Table 1 and Methods). We 
find (cf. Table 1) that words in the largest viable cluster (i) are more frequent in the Open Subtitles dataset52, (ii) 



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |  (2018) 8:2259  | DOI:10.1038/s41598-018-20730-5

acquired earlier according to AoA reports42, (iii) quicker to identify as words in lexical decision tasks51, (iv) rated 
as more concrete concepts43 and thus more easily memorised43,58,61 and (v) represent more meanings in different 
semantic areas9,57 when compared to LVC-out words.

In Fig. 3(a–e), we report the cumulative probabilities of finding a word with a given feature less than a certain 
value for a set of particular node-level attribute within and outside of the LVC. The difference between LVC-in 
and LVC-out further indicates how different the words in the LVC are compared to LVC-out words. For instance, 
let us consider reaction times, which indicate how quickly people classify stimuli as words or nonwords in lexical 
decision tasks51. The probability of finding at random an LVC-in word correctly identified in less than 500 ms is 
0.48 while the same probability is less than half, 0.2, for LVC-out words. Hence the LVC is rich in words identified 
more quickly. Analogous results hold for all the tested attributes.

Since LVC-in words have a higher degree compared to LVC-out words (see SI Sect. 3) and degree correlates 
with many of the psycholinguistic attributes used in our study, it is interesting to quantify to what extent the 
difference between LVC-in and LVC-out is due to correlations with degree. Results shown below the thick line, 
in the lower part of Table 1, suggest that the degree effect does not fully explain the observed psycholinguistic 
features of the LVC: a sign test indicates that all the median node-attributes of LVC-in words are higher than those 
of LVC-out words, at 95% confidence level. Notice that the comparison that does not account for degree is still 
important since one could easily argue that degree itself can be interpreted as a cognitive component that affects 
word processing8,60.

Table 1 also compares the statistics of the LVC against its single-layer counterparts, i.e. the largest connected 
components27 (LCC-In). We also consider multiplex alternatives to the LVC such as: the intersection across all 
layers of words in the LCC of each layer (LCC Int, cf. SI Sect. 8) and the LVC-in configuration models (LVC 
Rew.), which consist on average of 40% more words. The empirical LVC consists of words with the most distinct 
linguistic features compared to the other tested sets of words, in terms of all tested node attributes. Even rewiring 
all links does not completely disrupt such distinctness (cf. LVC Rew.). These differences in linguistic attributes 
suggest that the LVC is a better measure of “coreness” for words in the mental lexicon than either the LCCs or 
their intersection, an idea we test further in the next section.

Robustness of the multiplex lexicon and LVC to cognitive impairments. The LVC has been char-
acterised as a set of higher degree words that differ in psycholinguistic features when compared to words located 
outside the LVC in our multiplex. This suggests that the higher degree, and cognitive correlations, of the LVC may 
be because the LVC is acting as a core for the mental lexicon. Let us denote the total number of links on a given 
layer as L and the link density as p. As shown in Fig. 4(a), there are more links within the LVC (LpIn/In) across all 
layers than outside of it (LpOut/Out) or at the interface of the LVC (LpIn/Out). Further, across all individual layers 

Figure 3. Cumulative probabilities of finding a word with a given feature less than a threshold T for LVC-in 
(orange boxes) and LVC-out (blue boxes). Concreteness scores are renormalised between 0 and 1 for easier 
binning. As an example, the probability of finding a low frequency word (f ≤ 10) at random is 0.05 for LVC-in 
words but almost five times larger for LVC-out words.
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the inequality pIn/In > pIn/Out > pOut/Out holds, denoting the presence of a core-periphery structure for the node 
partition {In, Out}62.

In order to better interpret both the coreness and cognitive impact of the LVC, we perform a resilience analysis 
of the MLR by means of numerical experiments. Random word failure provides a plausible toy model for progres-
sive anomia44 driven by cognitive decline, where words become progressively non-accessible on all the lexicon 
levels without a clear trend44.

To simulate progressive anomia, we randomly remove LVC-in and LVC-out words in separate experiments. 
The maximum number of removed words is 1173, corresponding to the size of the LVC. As a proxy for robustness, 
we consider the average multiplex closeness centrality, which correlates with the average cognitive effort for iden-
tifying and retrieving words within the lexicon5,17 and plays a prominent role in early word acquisition as well32. 
The results of this analysis are shown in Fig. 4(b).

We find that the multiplex representation is robust to random LVC-out word removal: removing almost 1170 
LVC-out words only reduces average closeness, a measure previously linked to cognitive navigation8,13,17,32, to a 
level that is still within a 95% confidence level of the original multiplex. Therefore failure of LVC-out words does 
not impact the cognitive effort in identifying and retrieving words within the lexicon. Instead, the multiplex 
lexicon is fragile to random LVC-in word removal: removing 50% of words from the LVC leads to a decrease in 
closeness 20 times larger than the drop observed for LVC-out words. While considering random removal in both 
cases, it is true that in general LVC-in words have higher degree than LVC-out words, which might influence the 
robustness results from a technical perspective. The discrepancy in closeness degradation is only partly due to 
the higher degree of LVC-in words. Performing degree-corrected LVC-out word deletions still leads to less of a 
decrease in navigability as compared to LVC-in word deletion, as evident from Fig. 4(b).

In summary, the multiplex lexicon is fragile to word failures of LVC-in words and robust to random failures of 
LVC-out words. This difference is a strong indicator that the LVC provides the necessary short-cuts for efficient 
navigation–with high closeness and thus low cognitive effort–of the mental lexical representation. It is worth 
remarking that the network’s navigability is expected to increase in the presence of cores62,63, further supporting 
the interpretation that the LVC acts as a core of the multiplex structure. It has been conjectured that the mental 
lexicon has a core set of concepts6,22,45,46; we show here how various cognitive metrics can be correlated with 
the LVC, suggesting that future work may benefit from considering the LVC as a quantification of lexical core 
structure.

Discussion
Previous literature from psycholinguistics has conjectured the existence of a core set of words in the lexi-
con6,22,45,46. Here, for the first time, we give large-scale quantitative evidence to support these conjectures. In fact, 
we identify the largest viable cluster (LVC) of words which: (i) favours the emergence of connectivity allowing for 
navigation across all layers at once and (ii) acts as a core for the multiplex lexical representation. Words within the 
LVC display distinct cognitive features, being (i) more frequent in usage52, (ii) learned earlier42, (iii) more con-
crete43 and thus easily memorised6,43 and activating perceptual regions of the brain61, (iv) more context-dependent 

Figure 4. (a) Normalised link densities across layers for couples of nodes either in the LVC (In), out of the LVC 
or on the boundary (one node in, one node out). Densities are normalised by the maximum value (LpIn/In for 
taxonomic relations) and colour coded (the higher the value, the more red the cell). (b) Resilience analysis with 
respect to random word failure, mimicking progressive aphasia in the mental lexicon. Words are targeted at 
random and then removed from the whole multiplex. In LVC-Out (Deg. Corr.) we remove words from outside 
the LVC but with the same degree as the words removed inside the LVC, thus correcting for a degree effect seen 
in the LVC which will also effect efficiency. As a measure of efficiency we use the median closeness of words 
in the network, providing the inverse of the average number of network hops necessary for reaching any word 
from any other one through the multiplex topology. Error margins represent standard deviations and they are 
about the size of the dots.
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meanings9,57 and (iv) more easily identified in lexical decision tasks51 and (v) of shorter length42 than words out-
side the LVC. Remarkably, the explosive emergence of the LVC happens around 7 years of age, which is also a 
crucial stage for cognitive development in children. According to Piaget’s theory of cognitive development59, age 
7 is the onset of the concrete operational stage, in which children develop more semantic and taxonomic relation-
ships among concepts (e.g. recognising that their cat is a Siamese, that a Siamese is a type of cat and that a cat is 
an animal, thus drawing the conclusion that their cat is an animal among several). Experimental evidence64 has 
also shown that, in this developmental stage, children display an increased ability of mental planning and usage of 
context-dependent words in a connected discourse such as narratives64. Interestingly, age 7–8 is also the onset of 
the so-called orthographic stage for the cognitive model of reading acquisition by Frith65. Around age 7–8 years, 
children start recognising a large number of words automatically and instantly access their meaning, matching 
words to an internal lexicon that they have built up in the previous years. As a result, reading becomes much 
faster, as documented in experimental setups6. Age 7–8 is found to be crucial for cognitive development also by 
the empirical work of Gentner and Toupin66, who showed how at that age the analogical reasoning improved dra-
matically in children. The emergence of the lexical core represented by the LVC around age 7 might support ana-
logical reasoning through the acquisition of more metaphorical relationships. Once in place, the lexical core may 
improve the ability to acquire and connect new abstract words based on analogy at later stages. All these findings 
can be interpreted in terms of an increased ability to navigate context-dependent meanings in the mental lexicon, 
which we quantitatively link to the explosive emergence of LVC core structure above. This indicates that the mul-
tiplex lexical network is a powerful representation of the mental lexicon: the network structure can indeed capture 
and translate well-documented mental processes driving cognitive development into quantifiable information. 
Notice that the current study does not test whether the LVC causes such changes but quantifies for the first time 
a change in the multiplex network structure that agrees with well documented developmental shifts in language 
learning and processing. Ad hoc longitudinal studies in children around age 7 are needed in order to better relate 
the LVC emergence with specific psycholinguistic tasks related to proficiency in memory and language use.

From a psycholinguistic perspective, in our robustness experiments one could point out that removal of 
LVC-in words might increase the overall degree similarity of the remaining words, thus impairing retrieval of 
similar forms due to retrieval and recall issues, such as lemma selection6. While this effect agrees with the impair-
ment expressed by the decrease in closeness, this drop cannot be attributed exclusively to increases in the simi-
larity of degrees among words, due to removal of high degree LVC-in words. In fact, when we remove words with 
the same degrees both in the LVC and outside of it, closeness drops significantly more when removing LVC-in 
words. This strongly suggests that lemma selection issues due to degree similarities alone cannot explain the drop 
in closeness and the related “coreness” of concepts in the LVC.

One limitation of our current approach is that we do not consider lexical restructuring over time, i.e. the adults’ 
representation of word relationships could be different compared to children’s or adolescents’. Previous work on 
the phonological level7 showed partial differences in phonological neighbourhoods between pre-schoolers and 
pre-adolescents. However, we show that the LVC persists even when all connections are randomly rewired and 
the LVC still identifies relevant words, e.g. more frequent, more concrete, etc. suggesting that the role of the LVC 
may still hold even with restructuring. Link rewiring also allows consideration of the variance in word learning 
due to individual differences. Individual difference modelling may be especially important for quantification, 
diagnosing, explaining, and correcting various language learning and usage issues26.

Another limitation is that the network representation might not be exact, e.g. there might be spurious links 
in the empirical free association layer or mistaken phonetic transcriptions in the phonological layer. In order to 
address this issue, we randomly reshuffle 10% of word labels, 2.5% on each layer separately, and find that the larg-
est viable clusters are 10% smaller than the empirical LVC (t-test, p-value = 0.009). However, the LVC after reshuf-
fling exhibits analogous performance in the features discussed in Table 1 (sign test, p-value = 0.96). Together with 
the random rewiring experiments, this is an indication that the LVC structure is robust to small perturbations due 
to errors in the annotation of links or word labels.

Core/periphery network organisation is commonly found in many real-world systems63,67, even though the 
definition of cores in multiplex networks remains an open challenge. We interpret the robustness experiments as 
quantitative indication that the LVC is acting as a core for the whole multiplex lexical network, increasing navi-
gability in two ways. Within the LVC, words must be connected to each other, implying navigability from every 
word within the LVC across all individual layers. Outside of the LVC, connections to the viable cluster facilitate 
network navigation by making words closer to each other. Since closeness correlates with the cognitive effort in 
word processing5,8,13,17, the LVC can be considered as facilitating mental navigation through pathways of the men-
tal lexicon. This quantitative result is in agreement with previous conjectures about multiple meanings facilitating 
mental navigation of words14,17,25. Additionally, our results also indicate that the LVC acts as a multiplex core. The 
core is robust to node failure due to densely entwined links and connections which allow for navigation even in 
cases where words become inaccessible, as in cognitive disorders like progressive anomia44. It is worth remarking 
that we identify such a core with the largest LVC as no other non-trivial viable cluster exists in the multilayer 
lexical representation.

Indeed, identifying a core in the mental lexicon provides quantitative evidence supporting previous claims45,46 
about the existence of a core of highly frequent and concrete words in the lexicon that facilitates mental navigation 
and thus word retrieval in speech production experiments45,46,58. Alongside the cognitive perspective, interpreting 
the LVC as a lexicon core provides support for further previous findings about the presence of a “kernel lexicon” 
in language14,18,22, a set of a few thousand words which constitute almost 80% of all written text6 and can define 
every other word in language22. Previous works on semantic14,18, taxonomic22 and phonological8,19 single-layer 
networks identified a kernel lexicon for the English language with roughly 5000 words which has not changed in 
size during the evolution of languages. This kernel lexicon was identified with the largest connected component of 
the English phonological network19. The LVC we present here is: (i) a subset of the phonological largest connected 
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component and (ii) it also persists across semantic and taxonomic aspects of language. Hence, the LVC represents 
a further refinement of the kernel lexicon that (i) is rich in polysemous words, (ii) facilitates mental navigation 
and (iii) is robust to rewiring or cognitive degradation. These three features suggest an interpretation of the LVC 
as a linguistic core of tightly interconnected concepts facilitating mental navigation through key words.

While the framework presented here has been applied only for the English language, comparison with other 
languages and linguistic representations to assess how universal the LVC core is remains an exciting challenge for 
future experimental and theoretical work.

Methods
Dataset and cognitive interpretation. The datasets used in this work come from different sources and 
thus the resulting multiplex network representation is based on independent studies. For the MLR we construct 
four layers that model semantic, taxonomic, and phonological relationships. We further distinguish semantic 
relationships in free associations and synonyms. For free associations, e.g. “A reminds one of B”, we used the 
Edinburgh Associative Thesaurus49. For both, taxonomic relations (e.g. “A is a type of B”) and synonyms (e.g. “A 
also means B”) we used WordData57 from Wolfram Research, which mostly coincides with WordNet 3.050. For 
phonological similarities we used the same dataset analysed in20 based on WordNet 3.050. We treat every layer as 
undirected and unweighted. Words in the multiplex representation are required to be connected on at least one 
layer.

Free associations indicate similarities within semantic memory, i.e. when given a cue word “house”, human 
participants respond with words that remind them of “house”, for example “bed” or “home”. Networks of free 
associations play a prominent role in capturing word acquisition in toddlers11,32 and also word identification3,13. 
Networks of synonyms are also found to play a role in lexical processing4,6,17,60. The hierarchy provided by taxo-
nomic relationships deeply affects both word learning and word processing4–6,17. Phonological networks provide 
insights about the competition of similar sounding words for confusability in word identification tasks8,12,20.

For the linguistic attributes we combine several different sources. We source word frequency from 
OpenSubtitles52, a dataset of movie subtitles whose word frequencies were found to be superior to frequen-
cies from classical sources in explaining variance in the analysis of reaction times from lexical decision experi-
ments51,52. Concretess scores43 and age of acquisitions ratings42 were gathered from Amazon Turk experiments, 
allowing for large-scale data collection and confirmation of previous findings based on small-scale experi-
ments42,43. Concreteness ratings indicate how individual concepts are rated as abstract (on a scale of 1 - “abstract” 
to 5 - “concrete”)43. Polysemy scores were quantified as the number of different definitions for a given word in 
WordData from Wolfram Research which coincides with WordNet57. Reaction times were obtained from the 
British Lexicon Project51 and indicate the response time in milliseconds for the identification of individual words 
were compared against non-words.

Smearing normative acquisition. Smearing is a technique used in statistics for generalisation of data 
samples68. We smear the age of acquisition data from Kuperman et al.42, where the average age of acquisition ai 
and standard deviation σa(i) around each word are provided, e.g. σ= . = .a yrs aim yrs6 72 , ( ) 2 11aim a . In our case, 
smearing consists of sampling possible age of acquisitions for word i from a Gaussian distribution N σa i[ , ( )]i a  
rather than considering only the average value. Sampling independently an age of acquisition for each word in the 
dataset, we can build multiple artificial acquisition rankings from empirical data. Hence, smearing enables our 
analysis to account for not only the average ages of acquisition of words but also for their variability across indi-
viduals, thus adding robustness against individual variability to our results.

Lexicon growth experiments. We simulate lexicon growth over time t(n) by considering subgraphs of the 
multiplex lexicon where the first n ≤ 8531 words in a given ranking r are considered. 8531 is the total number of 
words in our network. Rankings indicate the way words are acquired in the lexicon over time and can be based on 
word features or age of acquisition reports. The rankings we use are based on: (i) smeared age of acquisition42, (ii) 
frequency42,52 (higher frequency words are learned earlier), (iii) multidegree27 (words with more links across all 
layers are learned earlier), and (iv) polysemy (words with more definitions are learned earlier). As a randomised 
null model, we consider random word rankings. When the first n words in a ranking are considered, a subgraph 
of the multiplex lexicon with these words is built and its LVC is detected. By using the non-smeared age of acqui-
sitions, we relate the number of learned words to the developmental stage in years t(n), e.g. n = 1000 corresponds 
to t = 5.5 years.

The size of the LVC L(t) is then obtained as a function of developmental stage t(n) for every specific type of 
ranking. Results for the smeared age of acquisitions and the random null model are averaged over an ensemble of 
200 iterations. Results for the frequency, degree, and polysemy orderings are averaged over 200 iterations where 
words appearing in ties are reshuffled. Results are reported in Fig. 2.

Each iteration represents the evolution of the LVC size through the acquisition of an individual word. This 
acquisition trajectory may be related to different developmental stages. For every iteration, we detect the magni-
tude of the transition on the LVC size due to its appearance when adding words one by one to the network. We 
then compute the fraction χ of iterations presenting a discontinuity of more than 10 words entering into the LVC. 
We also compute the average magnitude of the explosive transition ∆L.

Comparisons of the empirical distributions of ages at which the LVC emerges considers the overlapping coef-
ficient68, i.e. the overlap of two distributions normalised by the maximum overlap obtained when shifting the 
central moment of one of the distributions. An overlap of 100% means that one distribution is fully contained in 
the other one. An overlap of 0% means that the distributions have no overlap.
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Robustness experiments. We carried out robustness testing via word/node removal: individual words 
are removed at random across all layers. Closeness centrality is then measured by considering shortest paths 
across the whole multiplex network structure, i.e. also including jumps between layers. We consider closeness 
centrality as a measure for the spreading of information and the mental navigability of the lexicon13,14,19. In our 
case closeness is well defined, since even the deletion of the whole LVC leaves the multiplex network connected39. 
We consider a multiplex network as connected if it is possible to reach any pair of nodes by allowing for traversal 
along links on any layers.

With reference to Fig. 3, we perform random attacks of words within the LVC (LVC-in) and outside of it 
(LVC-out). Since LVC-in words are more connected compared to words outside, we also perform degree cor-
rected attacks: random words within the LVC and words of equivalent degree outside the LVC are removed. This 
degree correction (LVC-out - Deg. Corr.) allows for the attack of LVC-out words but reduces the number of links 
by the same amount as LVC-in attacks.

Data availability and Additional Information. No new datasets were generated during the current 
study. The list of LVC-in and LVC-out words is available online at https://goo.gl/Dd9eC6. Material requests 
should be addressed to the corresponding author.
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