
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-1-2000

Multiplex: Unifying Conventional and Speculative
Thread-Level Parallelism on a Chip Multiprocessor
Seon Wook Kim
Purdue University School of Electrical and Computer Engineering

Chong-Liang Ooi
Purdue University School of Electrical and Computer Engineering

IL Park
Purdue University School of Electrical and Computer Engineering

Rudolf Eigenmann
Purdue University School of Electrical and Computer Engineering

Babak Falsafi
Purdue University School of Electrical and Computer Engineering

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kim, Seon Wook; Ooi, Chong-Liang; Park, IL; Eigenmann, Rudolf; Falsafi, Babak; and Vijaykumar, T. N., "Multiplex: Unifying
Conventional and Speculative Thread-Level Parallelism on a Chip Multiprocessor" (2000). ECE Technical Reports. Paper 29.
http://docs.lib.purdue.edu/ecetr/29

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Seon Wook Kim, Chong-Liang Ooi, IL Park, Rudolf Eigenmann, Babak Falsafi, and T. N. Vijaykumar

This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/ecetr/29

http://docs.lib.purdue.edu/ecetr/29?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages

MULTIPLEX: UNIFYING

CONVENTIONAL AND SPECULATIVE

THREAD-LEVEL PARALLELISM ON A

CHIP MULTIPROCESSOR

TR-ECE 00-13
OCTOBER 2000

Multiplex: Unifying Conventional and Speculative
Thread-Level Parallelism on a Chip Multiprocessor

Seon Wook Kim, Chong-Liang Ooi, II Park, Rudolf Eigenmann, Babak Falsafi, and T. N. Vijaykumar

School of Electrical and Computer Eqgineering
1285 Electrical Engineering Building

Purdue University
West Lafayette, IN 47907-1 285

muxQecn.purdue.edu, http://www.ece.purdue.edu/-mux

This work was supported in part by NSF Grant #9974976-EIA. This work is not necessarily representative of the
positions or policies of the U-S. Government.

. .
11

Table of Contents

Introduction ... 1

Background: Execution Models for Explicit & Implicit Threading 2
2.1 Example Execution in an Explicitly-Threaded CMF .. 3
2.2 Example Execution in an Implicitly-Threaded CMF .. 3

Multiplex: Unifying Explicit/Implicit TLP on a CMP .. 5
3.1 Thread Selection .. 6
3.2 'Thread Dispatch ... 8

... 3.3 Data Communication 9

Key Factors Affecting Performance .. 13

Quantitative Performance Evaluation ... 14
5.1 Methodology and Infrastructure .. 15
5.2 Base Case Results .. 16

... 5.3 Impact of Thread Size 18
5.4 Reducing Dispatch Overhead in Explicit Threads .. 18

Related Work .. 20

Conclusions .. 20

List of Tables

Table 1: MUCS protocol state and actions. ... 11
Table 2: Factors affecting performance in Explicit-Only, Implicit-Only, and

Multiplex architectures. .. 13
Table 3: System configuration parameters. ... 15
Table 4: Applications and input sets. S indicates scaled down number of loop

iterations in the interest of reduced simulation time. 15
Table 5: Fraction of the threaded execution time of each application that is

recognized as parallel by the compiler and converted to explicit threads. 17

List of Figures

FIGURE 1:
FIGURE 2:
FIGURE 3:

FIGURE 4:
FIGURE 5:

FIGURE 6:
FIGURE 7:

FIGURE 8:

An example of explicit threading execution. .. 3
An example of implicit threading execution. .. 4
A Multiplex chip multiprocessor. The figure depicts the anatomy of a
Multiplex chip multiprocessor. The blocks appearing in a light shade
of gray are components used in a conventional (explicitly-threaded)
multiprocessor architecture including the processing units, the L1
instruction caches, the system interconnect, and the L2 cache. The
blocks appearing in a dark shade of gray are components enabling
implicit and hybrid implicit/explicit threading in Multiplex including the
thread dispatch unit, the thread descriptor cache (TD$), the level-one
data caches, and the register communication mechanism 6
A high-level state transition diagram for MUCS. 12
Overall Performance of Multiplex CMP compared to an implicit-only
and an explicit-only CMPs. In class 1 applications, implicit-only
outperforms explicit-only and vice versa in class 2 applications. In
all applications, Multiplex matches or exceeds the performance of
the better alteramative. ... 16
Overheads of the Implicit-only and the Multiplex architecture. 17
Effect of increasing the thread size in the Implicit-only CMP. The left
bars show the same performance as in Figure 5. The right bars show
the performance when selecting threads froni outer parallel loops, as
done for explicit threads in Multiplex. Note, that the presence of such
outer loops depends on the compilers ability to identify them. For

....................... example, in fpppp "inner" and "outer" loops are the same 19
Reducing explicit thread dispatch overhead in class 1 applications.
The figure illustrates the effect of the heuristic-based thread
selection algorithm in eliminating high-overhead explicit threads in
class 1 applications. Profiling shows optimal thread selection. Explicit
thread dispatch overhead is minimal in class 2 applications, which
benefit from coarse-grain threads. Numbers above the bars show the
percentage of the execution time spent in explicit threads before and
after applying the heuristic. ... 19

Abstract

Traditional monolithic superscalar architectures, which extract instruction-level parallelism (ILP) to
achieve high performance, are not only becoming less effective in improving the clock speed and ILP but
also worsening in design complexity and reliability across generations. Chip multiprocessors (CMPs),
which exploit thread-level parallelism (TLP), are emerging as an alternative. In one form of TLP, the com-
pilerlprogramrner extracts truly independent explicit threads from the program, and in another, the com-
piledhardware partitions the program into speculatively independent implicit threads. However, explicit
threading is hard to program manually and, if automated, is limited in performance due to serialization of
unanalyzable program segments. Implicit threading, on the other hand, requires buffering of program state
to handle misspeculations, and is limited in performance due to buffer overflow in large threads and depen-
dences in small threads.

We propose the Multiplex architecture to unify implicit and explicit threading by exploiting the similarities
between the two schemes. Multiplex employs implicit threading to alleviate serialization in unanalyzable
program segments, and explicit threading to remove buffering requirements and eliminate small threads in
analyzable segments. We present hardware and compiler mechanisms for selection, dispatch, and data
communication to unify explicit and implicit threads within a single application. We describe the Multiplex
Unified Coherence and Speculative versioning (MUCS) protocol which provides unified support for coher-
ence in explicit threads and speculative versioning in implicit threads of an application executing on multi-
ple cores with private caches. On the ten SPECfp95 and three Perfect benchmarks, neither an implicitly-
threaded nor explicitly-threaded architecture performs consistently better across the benchmarks, and for
several benchmarks there is a large performance gap between the two architectures. Multiplex matches or
outperforms the better of the two architectures for every benchmark and, on average, outperforms the better
architecture by 16%.

1 Introduction

Improvements in CMOS fabrication processes continue to increase on-chip integration and transistor count
to phenomenal levels. Traditional monolithic superscalars use the rising transistor counts in extracting
instruction-level parallelism (ILP) to achieve high performance. Unfortunately, superscalar architectures
are not only becoming less effective in improving the clock speed [25,21,1] and ILP but also worsening in
design complexity [20] and reliability [2] across chip generations. Instead, many researchers and vendors
are exploiting the increasing number of transistors to build chip multiprocessors (CMPs) by partitioning a
chip into multiple simple ILP cores [29,18]. As in traditional multiprocessors, CMPs extract thread-level
parallelism (TLP) from programs by running multiple - independent or properly synchronized - pro-
gram segments, i.e., threads, in parallel.

The most common form of TLP is explicit threading used in conventional shared-memory multiprocessors.
In explicit threading, software explicitly specifies the partitioning of the program into threads and uses an
application programming interface to dispatch and execute threads on multiple cores in parallel. Explicit
threads either compute independently or share and communicate data through memory when necessary.
Examples of CMPs using explicit-threading are IBM Power4 [I I] and Compaq Piranha [4]. Explicit
threading's key shortcoming, however, is that it requires a programmer or parallelizing compiler either to
guarantee that threads can compute independently or to coordinate shared accesses among threads through
synchronization. Unfortunately, parallel programming is a tedious and costly task on1:y suitable for high-
end systems. Similarly, while parallelizing compilers have succeeded in threading marly large and impor-
tant applications, automatic parallelization has been limited to programs and program segments with stati-
cally analyzable dependences. When the compiler fails to prove independence, the corresponding program
segment is executed serially on a single core.

Alternatively, recent proposals for CMPs advocate speculative, or implicit, threading in which the hardware
employs prediction to peel off instruction sequences (i.e., implicit threads) from the sequential execution
stream and speculatively executes them in parallel on multiple cores. To preserve program execution cor-
rectness, implicitly-threaded hardware identifies and satisfies all dependences among implicit threads.
Examples of proposed architectures using implicit threading are Multiscalar [29] and Trace Processor [28],
Hydra [IS], Stampede [30], Superthreaded processor [33], Speculative NLMA [lo], and MAJC [32].

To maintain program correctness, implicitly-threaded architectures rely on the hardware to track depen-
dence among threads and verify correct speculation. Upon a misspeculation, the hardware rolls back the
system to a state conforming to sequential semantics. To allow proper rollback, implicit threading requires
buffering all speculative threads' program state [29]. While speculative buffer overflow results in complete
stalling or rollback of speculative threads and essentially serialization of execution, buflering is only neces-
sary if there are true dependences among threads that are not detectable at compile time. Implicit thread-
ing's key shortcoming is that the hardware must always buffer program state to track dependences among
threads. State-of-the-art buffering techniques (e.g., custom buffering [13] and cache-based buffering [15,
19,30, lo]), however, can only provide fast buffering large enough to accommodate short-running implicit
threads (e.g., up to a hundred instructions). Small threads limit the scope of extracted parallelism, increase
the likelihood of inter-thread dependence, and reduce performance.

We propose the Multiplex architecture for CMPs to unify implicit and explicit threading based on two key
observations: (1) Explicit threading's weakness of serializing unanalyzable program segments can be alle-
viated by implicit threading's speculative parallelization; implicit threading's performance loss due to
speculative buffer overflows in large threads and dependences in short threads can be alleviated by large
explicit threads' exemption from buffering requirements in analyzable program segments. (2) To achieve
high performance, explicit and implicit threading employ cache coherence and speculative versioning
[15,30,19,10], respectively, which are similar memory hierarchy mechanisms involving multiple private
caches for efficient sharing of data. Multiplex exploits the similarities to allow efficient implementation

without much extra hardware and combines the complementary strengths of implicit and explicit threading
to alleviate the individual weaknesses of the two schemes.

The main contributions of this paper are:

we present architectural (hardware and compiler) mechanisms for selection, dispatch, and data cornrnu-

nication to unify explicit and implicit threads from a single application;

we propose the Multiplex Unified Coherence and Speculative versioning (MUCS) protocol which pro-

vides unified support for coherence in explicit threads and speculative versioning in implicit threads of a

single application executing on multiple cores with private caches;

using simulation of the ten SPECfp95 and three Perfect benchmarks, we show that neither an implicitly-

threaded nor explicitly-threaded architecture performs consistently better across the benchmarks, and

for several benchmarks there is a large performance gap between the two architectures;

we show that Multiplex matches or outperforms the better of the two architectures for every benchmark

and, on average, outperforms the better architecture by 16%.

In the following section, we describe advantages and disadvantages of current explicit and implicit archi-
tectures, and motivated the need for a unified architecture. In Section 3, we introduce Multiplex. Section 4
characterizes the key factors impacting performance and presents a qualitative performance analysis of
TLP architectures. Section 5 presents the simulation methodology and results. Sectiori 6 presents a sum-
mary of related work. Finally, Section 7 concludes the paper.

2 Background: Execution Models for Explicit & Implicit Threading

In this section, we briefly describe, compare, and provide examples for thread execution and the required
hardware support in explicitly-threaded and implicit-threaded architectures. At the highest level, the key
similarity between these architectures is that both simultaneously execute multiple threads that communi-
cate among one another. As such, the dominant fraction of hardware resources required by either architec-
ture is common and includes execution resources (e.g., multiple CPU cores) and communication resources
(e.g., coherent shared memory through L1 caches).

The key differences are how, in each architecture, the hardware detects when communication is necessary
- i.e., inter-thread data dependences - and identifies subsequent threads to execute upon thread comple-
tion - i.e., the inter-thread control dependences. In explicitly-threaded architectures, the application soft-
ware either eliminates data dependence through advanced parallelizing compiler analysis and techniques,
or specijies every instance of data dependence using a synchronization primitive (e.g., a barrier). Moreover,
software specifies inter-thread control dependence using a thread dispatch primitive (e.g., a fork call).
Because, software obviates the need for hardware to track the dependences, hardware achieves high perfor-
mance by providing fast mechanisms for data communication, and thread dispatch and execution.

In contrast, in implicitly-threaded architectures, inter-thread data and control dependences are implicit in
the sequential program order. The hardware infers the existence of data dependence - e.g., between a
memory read instruction and a preceding program-order memory write instruction to the same location.
Similarly, the hardware resolves inter-thread control flow dependence. Because hardware receives no infor-
mation from software, it relies on dependence prediction and speculation techniques to guess the missing
information and deliver high performance. The hardware validates all control flow ar~d data dependence
speculations by verifying against the sequential program order, and triggers rollbacks upon detecting possi-
ble misspeculations which may violate sequential semantics.

9 iteration 0 iteration N iteration 2N iteration 3N

L1lL2 interconnect

FIGURE 1 : An example o explicit threading execution.

In the rest of this section, we present example executions on each of the two (threading) architectures. We
point out the key performance problems with the architectures to illustrate that combining the two can both
(1) achieve higher performance by exploiting one architecture's strengths to alleviate the other architec-
ture's weaknesses, and (2) be implemented efficiently without much hardware overhead by exploiting the
similarities between the two architectures.

2.1 Example Execution in an Explicitly-Threaded CMP

Figure 1 shows a simple example of a program running on an explicitly-threaded CMP. The figure shows
the high-level anatomy of a typical CMP with thread execution resources (i.e., four CPUs) and the data
communication hardware (i.e., coherent L1 data caches). In this example, the main thread executes sequen-
tially (not shown) on CPUO, and forks parallel explicit child threads so that each CPU executes the function
parallel-compute simultaneously. The function includes a pair of loops, where each thread executes a frac-
tion of the loop iterations. The first loop computes and writes to array A. In the second loop, every loop
iteration is dependent on the value of A[2] created by CPUO in the first loop and stored in its L1. The
CPUs' L1 cache controllers implement a snoop cache-coherence protocol which identifies A[2]'s most
recent copy to be in CPUO's L1, and copies it into other CPUs' Lls (e.g., CPUl and CPU3) on demand.

In the example shown, the compiler (or the programmer) detects that the first loop and second loop are
dependent only through array A and therefore separates them by a barrier synchronization. By identifying
the only data dependence among the threads to be through A[2], and specifying the dependence through the
bamer primitive, software guarantees that hardware can otherwise execute the threads at peak speeds.
Moreover, the "fork" primitive directs the hardware to execute exactly a single copy of parallel-compute
as a thread on each CPU, specifying the thread control flow dependence. Unfortunately, when data depen-
dences are unknown, the compiler (or the programmer) fails to generate explicit threads, and therefore exe-
cutes the entire program segment (i.e., entire pair of loops) in a single thread.

2.2 Example Execution in an Implicitly-Threaded CMP

Figure 2 shows a simple example of a program running on an implicit-threaded CMP. In this example, a
loop computes over array A with loop iterations that have unknown dependences at compile time. A com-

iteration 1 iteration 2 iteration 3 iteration 0 time

load A[2]

1 store A[2] ! from CPUl

CPU2 CPU3

miss

L1lL2 interconnect

FIGURE 2: An example of implicit threading execution.

piler for an implicitly-threaded architecture (e.g., the Multiscalar compiler [35]) partitions the loop and
assigns each implicit thread a single loop iteration. To help the hardware identify which subsequent threads
to dispatch on the CPUs, each implicit thread includes (embedded in the executable) a list of possible sub-
sequent threads, or target threads, and their starting program counters (not shown); the target threads are
the exit points of a thread in the control flow graph. In this example, the execution of a loop iteration can
either be followed by another loop iteration or the code following the loop (upon loop termination).

Unlike explicitly-threaded architectures, implicitly-threaded architectures rely on hardware prediction to
dispatch threads. For every dispatched thread, hardware predicts a and selects among the thread's list of
target threads, a subsequent thread to dispatch. As shown in the example, the predictor selects and dis-
patches subsequent loop iterations, starting from iteration 0, on the CPUs in cyclic 0rde.r. Because iteration
0 is the "oldest" thread executing in program order, it is guaranteed to complete and is said to be "non-
speculative". Dispatch prediction for a thread is only verified when all preceding threads complete, there-
fore all threads except for iteration 0 are "speculative" and may be "squashed if mispredicted. The loop
branch condition at the end of each iteration verifies prediction for the subsequent iteration.

Assume that iterations 0, 1, 2, and 3 access the same element A[2]. Upon missing on a load from A[2],
CPUO's thread obtains a copy of the corresponding cache block from L2 and marks the block as non-spec-
ulative. After a few cycles, CPUl's thread (i.e., the speculative iteration 1) misses on i i store to A[2], and
the protocol supplies a copy of the block from L2. CPUl then creates a speculatively renamed version of
the block, denoted by A[2lV1, without invalidating CPUO's copy (as would be done in explicitly-threaded
architectures), and marks the block as speculative dirty. When CPU3's thread misses on a load from A[2],
the protocol supplies CPUl's version of the block, A[2lV1, because CPUl is the closest preceding thread,
and CPU3 marks its own copy as speculatively loaded.

Next, CPU2 misses on a store to A[2], it creates yet another speculative renamed version of the block,
A[2lV2, without invalidating A[2lV1. The protocol subsequently squashes CPU3 (and any future threads)
because CPU3 prematurely loaded CPUl's version, A[2lV1, instead of the sequentially correct CPU2's ver-
sion, A[2lV2. Squashing CPU3 also invalidates the blocks speculatively accessed by C:PU3. The protocol

maintains the program order between CPU 1's and CPU2's versions, as part of the protocol state to provide
the correct version for future accesses to A[2]. CPU3 re-executes and loads ~ [2] " ~ from CPU2.

Upon completion, the threads "commit" in sequential order, marking the speculatively accessed blocks as
non-speculative (or committed). Because all future iterations access different elements of A, cache blocks
accessed in those iterations are first marked as speculative, and then committed without causing any
squashes. A key shortcoming of hardware data speculation is that because the L1 caches maintain the pro-
gram order among all data assesses (for both loads and stores) to track dependences and guarantee correct
execution, speculative data are not allowed to leave the caches; any capacity and conflict problems causing
a speculative block replacement stall the CPU until it becomes non-speculative, resultin,g in substantial per-
formance loss [15].

Unfortunately, implicitly-threaded architectures always predict and execute threads speculatively, and track
data dependence in hardware even if a program segment is analyzable. For instance, in the example
because there are no control flow dependences (e.g., a conditional break statement within the loop) except
for the loop branch condition between the loop iterations and the code immediately following the loop,
software can direct thread dispatch using a fork primitive, and obviate the need for hardware prediction and
eliminating any potential misprediction overhead. Similarly, there are many scenarios where an advanced
parallelizing compiler can either detect and guarantee no data dependences among threads exist [7,27,14]
or can eliminate the data dependences (e.g., through array privatization [34,16]). In such scenarios, the
hardware unnecessarily tracks data dependences, limiting the scope of parallelism to thr: buffering capacity
in the L1 caches.

3 Multiplex: Unifying Explicitnmplicit TLP on a CMP

In this paper, we propose Multiplex, an architecture that unifies explicit and implicit threading on a chip
multiprocessor. Multiplex alleviates explicit threading's weakness of serializing unanalyzable program
segments by using implicit threading's speculative parallelization. Multiplex avoids implicit threading's
performance loss due to speculative buffer overflows in large threads and dependences in short threads by
using large explicit threads which are exempt from buffering requirements in analylsable program seg-
ments. Thus, Multiplex combines the complementary strengths of implicit and explicit threading to allevi-
ate the individual weaknesses of the two schemes. Multiplex achieves efficient implementation without
much extra hardware by exploiting the similarities between explicit threading's cache coherence and
implicit threading's speculative versioning mechanisms.

The key mechanisms required for a threading model are: (1) thread selection, a mechanism to partition the
code into distinct instruction sequences, (2) thread dispatch, a mechanism to assign a thread from the pro-
gram to execute on a CPU, (3) data communication, mechanisms to propagate data (i.e., register and mem-
ory) values among independent threads, to allow implicit threads to privatize data in multiple caches under
the same memory address., and to guarantee correct program execution. In the following subsections, we
present hardware and compiler mechanisms for selection, dispatch, and data communication to unify
explicit and implicit threads within a single application.

Figure 3 illustrates a Multiplex CMP. Our Multiplex CMP is loosely derived from the Wisconsin Multisca-
lar [29,15]. As in traditional small-scale multiprocessors, Multiplex CMP includes a sntall number of con-
ventional superscalar CPU cores with first-level instruction and data caches and a shared level-two cache
[23]. To support implicit and hybrid explicit/implicit threading, Multiplex also includes support for specu-
lative thread dispatch consisting of a dispatch unit and a thread descriptor cache; register communication
queues; and memory communication, speculation, and disambiguation through level-one data caches. Mul-
tiplex unifies cache coherence with memory renaming and disambiguation in level-one caches through a
single snoopy bus protocol.

Multiplex CMP --fjg

FIGURE 3: A Multiplex chip multiprocessor. The figure depicts the anatomy of a Multiplex chip
multiprocessor. The blocks appearing in a light shade of gray are components used in a conventional
(explicitly-threaded) multiprocessor architecture including t h e processing units, the L1 instruction
caches, the system interconnect, and the L2 cache. The blocks appearing in a dark shade of gray are
components enabling implicit and hybrid implicit/explicit threading in Multiplex including the thread
dispatch unit, the thread descriptor cache (TD$), the level-one data caches, and the register
communication mechanism.

3.1 Thread Selection

Multiplex relies on a unified compiler infrastructure to generate both explicit and implicit threads. Unlike
state-of-the-art compilers which are limited to compiling for a specific threading model, in Multiplex the
compiler has the opportunity to choose between implicit and explicit threading models to maximize perfor-
mance on a per program and per program segment basis. The choice between threading models depends on
program and system characteristics.

Selecting explicit threads. Multiplex executes program segments which the compiler can partition into
independent threads or threads with known data dependences as explicit threads. The compiler coordinates
the known data dependences and sharing in such threads using explicit synchronization statements. Such
threads maximize the parallelism exploited, eliminate hardware speculation overhead, and realize the raw
hardware speeds of multiple CMP cores.

Multiplex relies on a state-of-the-art parallelizing compiler to analyze programs and generate explicit
threads. These compilers (e.g., Polaris [6], SUIF [17]) use a myriad of techniques to test [7,27,14] and
eliminate data dependence in program segments [3,34,26,16]. Moreover, these compilers increase thread
performance in analyzable program segments through code transformations to optimize for memory hierar-
chy locality and communication latency [17].

In explicit threading, thread size plays a key role in minimizing thread execution overhead. Dispatching
explicit threads (Section 3.2) requires at a minimum setting up private stacks, passing arguments through
the stacks, and synchronizing the threads upon completion. Explicit threading compilers typically partition
the work among coarse-grain threads to amortize the dispatch and completion overhead over thread execu-
tion time. For instance, in nested loops with small inner loop bodies, explicit threads often consist of outer
loop iterations [17,6]. Too coarse-grain a thread, however, increases the likelihood of load imbalance
diminishing the opportunity for parallel execution.

When selecting explicit threads, the compiler has full flexibility in choosing how to partition the work
among threads. In partitioning the code into explicit threads, the compiler can analyze and estimate the
appropriate thread size based on the dispatch overhead and load imbalance. The compiler also has the flex-
ibility of choosing the order in which explicit threads are dispatched (Section 3.2). Together, selecting
thread size and dispatch order can help minimize load imbalance and dispatch overhead.

Selecting implicit threads. Multiplex executes program segments with control flow or data dependences
that are unanalyzable at compile time as implicit threads. Multiplex extracts para1k:lism from implicit
threads at runtime with the help of hardware speculation. Unlike explicit threading where software invokes
thread dispatch using an application-programming interface, in implicit threading the software merely
specifies thread boundaries and not the control flow among them [35]. The hardware iin turn predicts and
speculatively dispatches threads at runtime to maintain instruction execution flow in accordance with the
sequential execution semantics.

Multiplex also relies on a state-of-the-art compiler (e.g., the Multiscalar compiler [35]) to generate implicit
threads. Alternatively, hardware rather than the compiler can extract and select implicit threads [28,12].
Selecting threads in hardware allows extracting TLP directly from uniprocessor application binaries at
runtime, obviating the need to recompile the program. By selecting implicit threads in the compiler, Multi-
plex benefits from many key transformation techniques available at compile time to improve implicit
thread performance [35].

There are two key criteria for implicit thread selection to minimize: (1) control-flow and data prediction
and speculation overhead, and (2) data dependences and their distance among threads. An implicit thread
typically includes one or more (statically) adjacent basic blocks. Minimizing contrlol-flow speculation
overhead simply requires that the compiler carefully selects thread boundaries so that threads end at branch
instructions with predictable outcomes (e.g., loop branches). This way, hardware prediction successfully
dispatches threads and reduces speculation overhead. The Multiplex compiler exploits a number of tech-
niques to analyze and reduce the overhead due to speculation and data dependence [35].

As in explicit threads, thread size plays a key role in implicit thread performance. Larger threads may help
amortize the thread dispatch and completion overhead, and increase the scope for parallelism by reducing
dependence among threads. However, data speculation overhead significantly limits thread size in implicit
threading. Hardware must maintain all memory modifications by a speculatively executing implicit thread
so that subsequent speculative threads can consume the results of past computation. Moreover, in case of a
misprediction, all memory must be restored to a state conforming to sequential execution semantics. There-
fore, there may be multiple versions of a data memory block present in processor caches, significantly
increasing the memory overhead and cache traffic [35]. Consequently, implicit threading typically resorts
to fine-grain (rather than coarse-grain) threads (e.g., inner loops) to exploit parallelism. Moreover, the
speculation overhead constraint on thread size also limits the compiler's flexibility in varying thread size to
reduce load imbalance.

Unifying thread selection in Multiplex. To minimize execution overhead, the Multiplex compiler always
searches first for statically parallelizable program segments and partitions them into explicit threads. The
compiler subsequently generates the rest of the program segments as implicit threads.

There are scenarios in which there is a trade-off between two threading models for stat,ically parallelizable
programs. Loops with small bodies that iterate for a small number of times are best executed as implicit
threads due to the high explicit dispatch overhead and low implicit data speculation overhead. Moreover,
program segments that are not evenly partitionable into thread numbers that are multiples of CPUs will
result in a significant load imbalance if executed entirely as explicit threads. The compiler can peel off the
tail part of such a program segment and execute it in parallel with subsequent program segments as implicit
threads to eliminate the load imbalance. The compilers flexibility in choosing the threading model helps
complement the strengths of both models, thereby improving application performance. In Section 5, we
will present simulation results indicating how simple compiler heuristics help unify thread selection in
Multiplex.

3.2 Thread Dispatch

In Multiplex, dispatching a thread on a CPU involves: (1) assigning a program counter to the CPU indicat-
ing the address of the first instruction belonging to the thread, (2) assigning a private stack pointer to the
CPU, and (3) implementing a dispatch "copy" semantics copying the stack and register values prior to the
dispatch to all dispatched threads; as in conventional threading models, Multiplex uses a single address
space for all the threads and only requires copy semantics for stacks and registers (and not memory) upon
dispatch.

Dispatching explicit threads. As in conventional explicitly-threaded architectures, Multiplex uses an
application programming interface to dispatch threads. To minimize dispatch overhead, Multiplex supports
the programming interface directly at the instruction set architecture level. A fork instruction takes an
argument in an architectural register, and assigns it to the program counter of all other CPUs. Once dis-
patched, threads proceed until the execution reaches a stop instruction. Upon thread completion, an appli-
cation may dispatch new threads through subsequent executions of the fork instruction.

In explicit threading, each thread uses a private stack. In Multiplex, the middleware (i.e.., the system initial-
ization library) is responsible to allocate private stacks for all CPUs. A setsp instruction assigns the pre-
allocated stacks to individual CPUs. The setsp instruction takes two arguments in arc:hitectural registers.
The first argument specifies the starting address of a private stack pointer, and the second argument speci-
fies the which CPU's stack pointer is being set. The middleware need only to allocate private stacks once
per application execution, and only re-allocate when a thread requires growing the stack.

Upon dispatch, explicit threading requires implementing a copy semantics in which the software (i.e., gen-
erated by the compiler or the programmer) passes data from the main (i.e., forking) thread's registers and
stack to the dispatched threads. Compilers/programmers often encapsulate explicit threads into procedure
bodies. As such the copy semantics for the threads is simply the incoming arguments into the procedure. In
Multiplex, the middleware copies all the procedure arguments into the private stacks in the main thread
prior to dispatch. The fork instruction dispatches a "wrapper" procedure on every CPU that reads the
arguments off the stack and passes them in the appropriate architectural registers. While copying argu-
ments can be accelerated using hardware, explicit threads are often large enough that the software copying
overhead becomes a small fraction of overall execution time.

Dispatching implicit threads. Multiplex dispatches implicit threads sequentially in program order [29]. A
thread dispatch unit (Figure 3) uses the current implicit thread to predict and dispatch a. subsequent thread.
The compilerlprogrammer generates a thread descriptor and embeds it immediately prior to the thread
code. The thread descriptor includes addresses of possible subsequent dispatch ''target" threads. The thread
dispatch unit includes a thread predictor that selects one of the target threads to dispatch. The thread
descriptor also includes the information necessary to identify register values a thread depends which must
be communicated from previously dispatched threads [29]. To accelerate thread dispatch, a thread descrip-
tor cache (Figure 3) caches recently referenced thread descriptors.

A novel aspect of implicitly-threaded architectures is on-demand data communication and renaming. In
implicitly-threaded architectures, all necessary register and memory values produced by one thread and
subsequently consumed by another are directly communicated through hardware on demand. As such,
thread dispatching does not require any "copy" semantics. Moreover, all registers and memory addresses
assigned to by one thread are renamed in hardware on demand. Therefore, stacks are automatically priva-
tized for implicit threads; i.e., assigning a value to a stack address creates a distinct version of the corre-
sponding memory location for the assigning thread. As such, implicit threads do not require private stacks.

Unifying thread dispatch in Multiplex. The ability to execute both explicit and implicit threads enables a
Multiplex CMP to exploit both types of TLP within an application. Software, however, must inform the
hardware which type of threading is used for a given program segment so that hardware can provide the

appropriate execution support. Multiplex uses the thread descriptor to specify the threading type, and the
hardware modifies the mode bit based on the specification. The mode bit is set for all the implicit threads.
The mode bit is clear for the "wrapper" procedure used to dispatch explicit threads. Upon switching to
explicit threading, the thread dispatch hardware unit stops fetching descriptors and dispatching threads.

3.3 Data Communication

Much like all modem architectures, Multiplex uses registers and memory to store program state. While
implicit threads share both register and memory state among each other, similar to the Multiscalar architec-
ture, explicit threads share only memory state and not register state, similar to conventional shared-memory
multiprocessors. Accordingly, implicit threads communicate both register and memory values among each
other and explicit threads communicate only memory values. Multiplex uses Multiscalar's register commu-
nication mechanism for register dependencies among implicit threads, and we do not discuss the details of
the register communication mechanism and refer the reader to [8,29]. In this section we focus on memory
data communication among both implicit and explicit threads.

In both explicit and implicit modes, the CPUs' private caches enable efficient data sharing by making cop-
ies of accessed data close to each CPU. The main responsibility of the memory system in both modes is to
track the copies so that the correct copy is delivered on every memory access. In explicit mode, the mem-
ory system locates the correct copy for loads either from main memory if there is no cached dirty copy or
from another cache if it has a dirty copy and for stores ensures that no stale copies exist in other caches
(e.g., via invalidates). In implicit mode, the memory system provides similar support but in the presence of
speculative loads and stores. For implicit loads, the memory system not only locates the correct version
much like explicit loads, but also enforces store-to-load program order; the memory system tracks specula-
tive loads to detect (and squash) any load that prematurely accesses a location before a previous store in
program order is complete. For implicit stores, the implicit memory system creates a ne,w (speculative) ver-
sion for every (speculative) store and tracks the program order among the multiple spec:ulative versions.

The key to maintaining correctness in both modes is the Multiplex Unified Coherence and Speculative ver-
sioning (MUCS) protocol which tracks the copies and versions of every cache block present in the system.
In explicit mode, MUCS tracks the location of copies in the system and takes appropriate action on loads
and stores. In implicit mode, MUCS tracks both the location and the program order among the versions.

From the standpoint of the memory system, the key similarity between explicit and implicit modes is that
both cases track a cache block's multiple instances (copies and versions) via the protocol state. On a load or
store access to a block, the access proceeds if the state of the block permits the access;, and otherwise the
access is deemed a miss, goes to the next level similar to a regular miss (i.e., tag mismatch), and the proto-
col locates the correct instance of the block. Both modes allow the common case of hits in the private
caches to proceed at cache hit speeds without any protocol action, and only cache misses invoke protocol
action involving some "global" protocol state checking which may be slow.

The key differences between the two modes are that (1) implicit mode requires the memory system to track
loads and stores to enforce store-to-load order by squashing any prematurely executed loads, (2) while
explicit mode allows multiple copies of only one version, implicit allows multiple versions to co-exist, and
(3) implicit mode requires the memory system to differentiate between speculatively and non-speculatively
accessed data and "commit" speculatively accessed data to non-speculative state if speculation succeeds.
These differences, however, do not imply any major incompatibilities between the two modes in the overall
handling of memory accesses, but rather that certain combinations of access types (i.e., loads or stores) and
protocol states may require different protocol action. In particular, the common case of cache hits are as
fast in implicit mode as they are in explicit mode, implying that the two threading schemes can be unified
efficiently.

In the remainder of this section, we describe the details of the MUCS protocol and explain the unification
of explicit and implicit modes in MUCS. Apart from the protocol state of the accessed block and the access
type (i.e., load or store), MUCS uses the mode bit to know if the access is from an implicit or an explicit
thread to take appropriate action.

Data Communication in explicit mode. As in conventional explicitly-threaded architectures, loads and
stores that hit (i.e., find the block in a permissible state) in the L1 caches proceed without any protocol
action. On a load miss, the bus snoops on the other caches and the cache with a dirty copy supplies the
block and also updates main memory (much like the Illinois coherence protocol). If no dirty copy is found,
the next level supplies the block. If the requesting cache is the only Ll cache holding the block, the block is
marked exclusive to optimize for future writes. On a store miss, the requesting cache obtains the block in
the same manner as a load miss, but additionally, all other cached copies are invalidated.

There is one minor difference between conventional coherence protocol actions and MUCS' actions for
explicit mode accesses. Because accesses in implicit mode need to differentiate between speculatively-
accessed and committed blocks, MUCS uses some state bits for this purpose. As such, explicit mode
accesses (loads and stores) are not speculative and do not require any enforcement of store-to-load order.
Therefore, MUCS simply marks the blocks accessed in explicit mode as committed using the same state
bits, making explicit mode accesses indistinguishable from committed implicit mode accesses, and unify-
ing accesses from both implicit and explicit modes within the same protocol.

Data Communication in implicit mode. Because implicit mode loads are speculative, MUCS sets the use
bit to record speculative loads. The key purpose of marking speculative loads is if a preceding CPU (i.e., in
cyclic thread dispatch order) performs a store to the same block after the load, the store's invalidation trig-
gers a squash of the premature load. Load misses issue a bus request and MUCS supplies a copy of the
closest preceding CPU's (dirty speculative) version to the requesting cache; if the preceding CPUs do not
have a dirty version, then the next level supplies the block. When the thread commits, all the use bits in the
entire cache are cleared altogether. Although, blocks not accessed by the thread also have their use bits
cleared redundantly, this global clearing avoids scanning the cache for the blocks touched by the commit-
ting thread.

MUCS uses the usual dirty bit to record stores. If a thread loads before storing to the same block, both of
the use bit and dirty bit are set. Unlike conventional invalidation-based coherence protocols, stores do not
always invalidate the other CPUs. On store misses, the bus snoops on the other caches and if there are any
succeeding CPUs with the use bit set, that CPU (and all subsequent CPUs) is squashed. If any succeeding
CPU holds the block but has not loaded or stored to it (i.e., the block exists from sonic previous implicit
thread), then the block is marked as potentially stale (and not definitely stale because the store is specula-
tive, and may be squashed later) with the stale bit, so that the current thread or any future thread executing
on the CPU is forced to miss on the block and obtain the most recent version. On the preceding CPUs, the
use bit is ignored, but the stale bit is set to force a miss for future threads that execute on the CPU. The pre-
ceding CPUs merely set the stale bit without invalidating the block and continue to use the block because
the block contains valid data for the current thread, and the data is stale only for threads future to the stor-
ing thread.

Accesses (loads and stores) from speculative threads cannot be replaced because eviction of a speculative
block would cause MUCS to lose track of possible violations of program order. Speculatively loaded
blocks may be distinguished through the use bit, but speculatively stored blocks are inseparable from non-
speculatively stored blocks because both have the dirty bit set. MUCS sets the commit bit on thread com-
mits and clears the bit (i.e., commit bit cleared indicates speculative) on accesses (loads and stores) from
speculative threads (i.e., all implicit threads except for the earliest thread which is non-speculative). When
the thread commits, all the commit bits in the entire cache are set altogether. Much like the redundant clear-

1 State bit 1 1 Action I

I I set per access by implicit speculative loads executed before a store;
used only in implicit mode to flag premature loads violating store-to-load order;
cleared for the entire cache altogether at implicit thread commit and squash

dirty

commit

set by all stores in both modes;
used to writeback a version on invalidation in explicit mode and version consolidation in both modes;
cleared on writeback to next level in both modes

set for the entire cache altogether at implicit thread commit and set per access in explicit thread;
used in both modes to allow replacements of committed dirty versions;
cleared on every implicit speculative access

stale

squash

set only in implicit on store miss from a succeeding CPU with a potentially more recent version, and by
cache fills if a succeeding CPU has an uncommitted/unsquashed dirty versions;
used in both modes to force misses (if commit bit set), and to consolidate the most rec:ent committed ver-
sion among multiple committed/squashed versions of a previous cyclic order;
cleared in both modes for the consolidated version

set for the entire cache altogether at implicit thread squash;
used in both modes to force misses (if commit bit clear and squash bit set) on the next access to the block
(commit and squash never both set);
cleared on every implicit access, and in both modes for the consolidated version

Table 1 : MUCS protocol state and actions.

valid

ing of use bits, this global setting avoids scanning the cache for the blocks touched by the committing
thread.

set per cache fill on cache misses in both modes;
used in both modes to determine validity of tag (not data), and allow replacements;
cleared on explicit invalidation, and in both modes for all cornmitted/squashed versions other than the con-
solidated version

The storing CPU creates a dirty, speculative version after obtaining a copy of the closest preceding CPU's
version. Thus, multiple speculative versions of the same block co-exist in the system. Because the stale bit
on a block indicates the potential existence of versions that are future to the block, any cache fill on a load
or store miss sets the stale bit if the corresponding bus snoop detects uncommitted dirty versions in suc-
ceeding CPUs.

If a thread is squashed then the commit bits are not set. But commit bits alone cannot distinguish between
blocks accessed in the squashed thread and blocks accessed in the middle of a yet uncommitted thread. To
avoid scanning the cache for invalidating the blocks touched by a squashed thread, MUCS uses the squash
bit, and sets all the squash bits in the entire cache altogether irrespective of whether the thread accessed a
certain block or not. MUCS also clears all use bits in the entire cache altogether on a thread squash. Access
to a block with the squash bit set and commit bit clear forces a miss and the squash bit is cleared when the
miss is serviced. The squash bit is ignored if the commit bit is set because the squash bit is set globally
even for the blocks not accessed by the squashed thread. Much like every (speculative) access clears the
commit bit, every access clears the squash bit.

Although a block accessed by a squashed thread contains invalid data, the block's stale bit holds valuable
information. Every store from a speculative thread marks all other versions as (potentially) stale, and even
if the thread is squashed later the stale bits are not corrected immediately to avoid scanning the cache on
squashes. Instead, the incorrectly marked stale bit on the most recent non-squashed version is corrected on
the next access to the block. On the next access to the squashed block, the CPU misses and MUCS identi-
fies the closest preceding committed version (which is incorrectly marked as stale) to the squashed version
by following the reverse of the cyclic thread dispatch order, and clears the closest preceding version's stale
bit.

- - version consolidation,
/

/ explicit invalidation
/

_ - - - - - -
/ explicit

access, \ explicit access,
implicit implicit non-
non-speculative . speculative access , - - - - - -
access stales in both modes

stales in implicit mode

transitions in both modes

transitions in implicit mode

FIGURE 4: A high-level state transition diagram for MUCS.

On a miss, establishing the program order among multiple (committed and squashed) versions is central to
maintaining correctness. MUCS uses the cyclic thread dispatch order among the CPUs 1.0 infer the program
order among multiple versions. The currently speculative (i.e., not committed and not squashed) versions
can be ordered using the current cyclic order among the CPUs, but ordering committed or squashed ver-
sions using the cyclic order fails because the position of the oldest thread in the system cyclically rotates
from one CPU to the next (as threads commit). While a CPU may be older than another CPU at a certain
point in execution, the cyclic rotation may result in the second CPU being older than the first in another
point in execution. For example, the cyclic order at one point may be CPU3, CPUO, CPUI, and CPU2, and
at that point CPU3 is older than CPU2, and then the order becomes CPUO, CPUI, CP'U2, and CPU3, and
now CPU2 is older than CPU3.

This phenomenon is a problem only if versions from different cyclic orders are allowed to co-exist. To
avoid this problem, MUCS consolidates the versions from a previous cyclic order at the next access. Ver-
sions from a previous cycle order are guaranteed to be committed or squashed and MUCS locates and
writes back the most recent committed dirty version (i.e., the committed, non-stale, dirty version or the
closest committed dirty version preceding the squashed, non-stale version) and invalidating all the other
committed/squashed versions. Version consolidation needs to done only for the previous cyclic order's ver-
sions all of which are either committed or squashed, and does not change any of the speculative versions
from the current cyclic order. Note that the write back at consolidation is no different than the writeback of
a dirty block in conventional coherence protocols when either the block is invalidated due to another CPU's
write request or a copy is made to satisfy another CPU's read request. Table 1 sumiarizes the protocol
state bits.

Speculatively accessed (i.e., not committed and not squashed) block cannot be replaced. If a committed or
squashed block needs to be replaced, then MUCS writes back the most recent committed version among
the existing versions and all other committed/squashed versions are invalidated.

Switching between implicit and explicit modes. Because explicit threads may access data which was last
accessed by an implicit thread, explicit threads may access blocks with squash or stale bit set. MUCS treats
these explicit mode accesses as misses, much like these were implicit mode accesses, consolidates the most
recent committed version via a bus snoop, and supplies the consolidated version to the requesting CPU.
Because explicit mode accesses are indistinguishable from committed implicit mode accesses, there is no
overhead for switching from implicit to explicit mode, or vice versa. Figure 4 shows a high-level state tran-
sition diagram of MUCS, illustrating the states and transitions shared by both modes and the states and

Data
Machine

Explicit-Only

Implicit-Only

Thread
Dispatch/
Completion
Overhead Thread Size

Mostly coarse-grain
threads; serial for
unanalyzable segments

Multiplex

Low for
coarse-grin
threads

Fine-grain threads High

Load Imbalance

Huge for serial segments;
high when threads are not
multiples of CPUs

Table 2: Factors affecting performance in Explicit-Only, Implicit-Only, a1

Coarse-grain explicit
threads + fine-grain
implicit threads

High only for
implicit
threads

d ~ u l t i ~ E

Dependence

Low to none
except for
serial segments

High when irregular
control flow within thread

Data
Speculation
Overhead

High

High only for implicit
threads with high load
imbalance

None

High for
large threads

High only fdr
implicit
threads

High only for
large implicit

chitectures.

transitions relevant to only implicit mode. There is no overhead for switching from one explicit thread to
another explicit thread or from one implicit thread to another implicit thread, much likt: conventional mul-
tiprocessors and Multiscalar SVC. Except for the restrictions on replacement mentioned above, there is no
scanning the cache, or no extra expensive cleanup at the beginning or end of implicit or explicit threads.
MUCS performs all actions on demand, on a per access basis without maintaining any list of accessed
blocks and triggering bus snoops on the blocks in the list.

Conventional coherence protocols employ optimizations such as using exclusive state and snarfing of data
off the bus during a bus transaction by CPUs other than the sending and the receiving CPU involved in the
transaction. These optimizations have been employed by Multiscalar SVC and are applicable to MUCS as
well. Much like other speculative protocols [15,3 1,19,10], MUCS also can optimize away false squashes
by maintaining protocol state at word or smaller granularity instead of cache block granularity. In this
paper, we take the first step towards unifying implicit and explicit threading and do not. explore the granu-
larity issue.

4 Key Factors Affecting Performance

Multiplex combines the performance advantages of explicit and implicit threading models. There are key
factors affecting the performance of either model. Therefore, to gain insight on Multiplex's performance,
we qualitatively evaluate these factors. Table 2 depicts the factors affecting performance and summarizes
their impact on explicit-only, implicit-only, and Multiplex CMPs. In the rest of this section, we briefly and
qualitatively evaluate the impact of each factor on performance. In Section 5, we present simulation results
that corroborate our intuition from this discussion.

Thread size. Thread size is a key factor affecting performance in both explicit-only and implicit-only
CMPs (as discussed in Section 3.1). Larger threads help (1) increase the scope of parallelism, and reduce
the likelihood of data dependence across threads, and (2) reduce the impact of thread dispatch/completion
overhead. Larger threads, however, increase speculation overhead in implicit-only CMPs, by increasing the
required storage to maintain speculatively produced data.

Load imbalance. A key shortcoming of explicit-only CMPs is their inability to exploit parallelism in pro-
gram segments that are not analyzable at compile time. Unfortunately, even a small degree of unknown
dependences prevent a parallelizing compiler from generating explicit threads, resulting in a serial program
segment. Explicit-only CMPs' performance depends on the fraction of overall execution time taken by the
serial program segments. Multiplex can execute the serial program segments as implicit threads, signifi-
cantly improving performance over explicit-only CMPs in programs with large serial segments.

Besides serial program segments, another factor contributing to load imbalance in explicit-only CMPs is
the number of explicit threads when it is not evenly divisible by the number of CPUs; as a result, one or
more CPUs idle until the completion of the program segment. Multiplex can partition the work so that the
fraction resulting in a load imbalance in explicit-only CMPs executes as implicit threatls, exploiting paral-
lelism across program segments and eliminating the load imbalance.

In implicit-only CMPs, load imbalance is highly dependent on control flow regularity across threads. For
instance, inner loops with many input-dependent conditional statements may result in a significant load
imbalance across the CPUs. Explicit-only CMPs use coarse-grain threads in which control flow irregulari-
ties across basic blocks within a thread often have a cancelling effect, reducing the overall load imbalance
across threads. Control flow irregularities only impact performance in Multiplex for program segments that
execute as implicit threads.

Data dependence. Parallelizing compilers can often eliminate known data dependences (e.g., through
privatization or reduction optimization). Unknown data dependences, however, result in serial program
segments in explicit-only CMPs, reducing performance. Using fine-grain threads in implicit-only CMPs
often causes high data dependence and communication across adjacent threads. Data dependence contrib-
utes to threading overhead because a dependent thread must at a minimum wait for data to be produced.
While dependences through registers are synchronized (because the compiler knows exactly which threads
produces and consume register values), memory dependences may incur additional speculation overhead
when memory synchronization hardware is unable to prevent unwanted speculation [22]. Multiplex
increases opportunity for eliminating thread dependence by executing compile time imalyzable program
segments as explicit threads.

Thread dispatch/completion overhead. Thread dispatch/completion overhead only plays a major role for
fine-grain threads, where the overhead accounts for a large fraction of thread execution time. In explicit-
only CMPs, thread dispatch incurs the overhead of copying of stack parameters and register values. Thread
completion incurs the overhead of flushing the CPU load/store queues to make memory modifications visi-
ble to the system. Explicit-only CMPs, however, use fine-grain threads only when the compiler can not
analyze dependences among larger thread bodies, e.g., when the compiler selects inner loops as threads
because the outer loops are not analyzable. Multiplex can execute such fine-grain threads as implicit
threads, thereby reducing the thread dispatch/completion overhead.

While thread dispatch incurs minimal overhead in implicit-only CMPs, thread completion incurs the over-
head of flushing the load/store queue as in explicit-only CMPs, and may incur a high overhead. Thread
completion overhead in implicit-only CMPs may be significant because these CMPs often use fine-grain
threads. Multiplex reduces much of the thread completion overhead as compared in implicit-only CMPs by
executing analyzable program segments in coarse-grain explicit threads.

Data speculation overhead. Data speculation in implicit-only CMPs is limited by the amount of buffering
data caches can provide (Section 3.3). Speculation requires buffering all created versions, causing data
caches to fill up quickly and overflow for memory-intensive threads and/or long-running threads. Because,
speculative data are not allowed to leave the caches, execution for a speculative thread. overflowing in the
cache stops until all prior threads commit and the thread becomes non-speculative. While data speculation
is always performed in implicit-only threads, threads are not always data-dependent. Multiplex signifi-
cantly reduces the data speculation overhead by execution independent threads as explicit threads, obviat-
ing the need for speculation.

5 Quantitative Performance Evaluation

In this section, we quantitatively evaluate a Multiplex CMP's performance using simulation. We first
describe our compiler infrastructure, the experimental methodology, and the application and input parame-

L1 i-cache

Processing Units

I I 8K, 2-way
1 cycle h t

CPUs

16K, 4-way, 16-byte block
1-cycle hit,
by te-level disambiguation

4 dual-issue, out-of-order

I Squash buffer size 1 1 64 entries

Reorder buffer size 32 entries

LSQ size 32 entries

Functional units II 3 integer, 1 floating-point,
1 memory

I Branch predictor 11 path-based, 4 targets

Descriptor Cache 11 16K, 2-way, 1-cycle hit I

System

I I 9-cycle hit and transfer,
perfect hit rate

Thread Predictor

L l L 2 interconnect I I snoopy split-transaction bus,
32-bit wide

path-based, 2 targets

Table 3: System configuration parameters.

SPECfp95 Benchmarks

apsi

aPP1u

~ P P P P

hydro2d

mgrid

su2cor

swim

tomcatv

turb3d

wave5

train

train

train

test

train*

test

test

test

train*

train*

Perfect Benchmarks 1 : " 1
3.405

Table 4: Applications and input sets.
*indicates scaled down number of loop iterations
in the interest of reduced simulation time.

ters we use. In the base case performance results, we compare a Multiplex CMP with conventional explicit-
only and implicit-only CMF's. Next, we present the results from two experiments providing evidence that
(I) implicit-only CMF's are limited to using fine-grain threads and increasing thread size reduces perfor-
mance in these machines, and (2) our heuristics-based compiler optimizations make a near-optimal deci-
sion in choosing between explicit and implicit threads.

5.1 Methodology and Infrastructure

We have developed a cycle-accurate simulator for a Multiplex CMP. Our simulator niodels multiple ILP
CPU cores and pipelines, the memory hierarchy, and an implementation of the Multiplex threading mecha-
nisms in detail. Table 3 summarizes the processor and system configuration parameters we use in this
study. The CMP include four dual-issue out-of-order cores, each with Ll instruction and data caches. We
assume perfect L2 hit rates, but model the cache fill latency between Ll and L2 and contention at the inter-
connect accurately.' The simulator models the thread dispatch unit, descriptor cache, and the register com-
munication queues for the implicit mode, the dispatch and synchronization instructions for the explicit
modes, and the MUCS bus protocol.

Our compiler infrastructure integrates Polaris [6], a state-of-the-art parallelizing preprocessor generating
explicit threads, with the Multiscalar compiler [35], a GCC-based compiler for generating implicit threads.
Our compiler infrastructure is f i l l y automated, obviating the need for hand tuning. Moreover, we compile
the benchmarks as is without modifying the distributed source code. To evaluate and compare Multiplex
against explicit-only and implicit-only architectures, the compiler allows for generating implicit-only and
explicit-only threads when compiling applications.

1. Our application data sets have small L2 footprints, and therefore our L2 assumption will have minimal impact on our perfor-
mance results.

I4 Class 1 bl. 14 Class 2 __+I

FIGURE 5: Overall Performance of Multiplex CMP compared to an implicit-only and an explicit-
only CMPs. In class 1 applications, implicit-only outperforms explicit-only and vice versa in class 2
applications. In all applications, Multiplex matches or exceeds the performance of the better
alterarnative.

We use a combination of benchmarks from the SPECfp95 [9] and the Perfect [5] suites. Table 4 shows the
benchmarks, the used input data sets and the number of instructions executed for each benchmark. In the
interest of simulation turnaround time, we scale down the number of outer loop iterations for some of the
applications. The change in input set, however, has a minimal impact on our performance results since the
inherent cornmunication/computation characteristics of the applications remain the sanie.

5.2 Base Case Results

Figure 5 compares speedups for the Multiplex CMP against the explicit-only and the implicit-only CMPs.
We measure speedup relative to a superscalar processor configured identically as one of Multiplex CPUs.
The figure divides the applications into two classes: Class 1 applications favor the implicit-only CMP and
class 2 applications favor the explicit-only CMP. The results indicate that there is a significant performance
disparity between the explicit-only and the implicit-only CMPs across the applications. In class 1 applica-
tions, the implicit-only CMP achieves on average 35% higher speedups and at best 85% higher speedups
than the explicit-only CMP. In contrast, in class 2 applications the explicit-only CMP achieves on average
32% higher speedups and at best 74% higher speedups than the implicit-only CMP.

Multiplex always performs best. In all applications, Multiplex makes the correct choice between the
explicit and implicit threading models, always selecting the better of the two. M~iltiplex on average
achieves a speedup of 2.69, improving speedups by 16% over explicit-only and 22% over implicit-only
CMPs. In seven applications, Multiplex improves speedups over the better of the two cm average by 10%.
To better understand application performance on each architecture, we evaluate the key factors affecting
performance in the rest of this section.

Threading opportunity in the explicit-only CMP. Table 5 shows the percentage of the original (serial)
execution of each application that can be recognized as parallel by the compiler. The opportunity for
explicit-only architectures is to execute this fraction of the application in parallel. Anldahl's law dictates
that a substantial fraction of serial execution can offset the gains from parallelism and severely limit overall
performance. For example, in su2cor, parallelizing 81% of the application limits speedups to at most 2.5
(i.e., 1/(0.8/4+0.2)=2.5). This is a key source of performance degradation in explicit-only architectures,
which can be overcome by Multiplex through executing the serial sections as implicit threads.

In addition, two of the class 1 applications, apsi and applu suffer from a small thread size. The outermost
loops that the compiler can select as explicit threads in these applications consist of loops with small bod-

Benchmark

100%
90% Load Imbalance

$ 80% DispatchIComplete
5 70% Overflow
> 60% DependenceISquash
0, 50%
.C 40% u g 30% i Implicit-Only
& 20% m Multiplex
I- 10%

0%

3 L Z Z x % e E e g R 2 - C U e s g i $ % z O
\r -r

Fraction
Threaded (%)

I t Class 1 bl I t Class 2 ,I

0 72 34 97 70 81 82 77 99 93

FIGURE 6: Overheads of the Implicit-only and the Multiplex architecture.

the compiler and converted to explicit threads.
Table 5: Fraction of the threaded execution time of each application that is recognized as parallel by

ies and iteration counts. Therefore, the thread dispatch overhead in these applications significantly impacts
overall thread execution time. Multiplex can select these loops as implicit threads, significantly improving
performance over the explicit-only CMP.

Threading overhead in the implicit-only CMP. Figure 6 shows the overheads that have a first order
impact on implicit-only and the Multiplex CMPs' performance. The figure plots overhead (i.e., the number
of processor cycles not contributing to computation) as a fraction of overall execution time in the implicit-
only CMP. The figure only includes overheads due to the threading mechanisms (discussed in Section 4);
overheads intrinsic to the base superscalar CPU cores (e.g., pipeline hazards) are the same in all the CMPs
and are not shown. For all applications, other system characteristics remain the same across systems, with
the exception of memory latency in mgrid; using explicit threads to parallelize outemlost loops in Multi-
plex changes mgrid's data layout in the caches, significantly increasing data locality as compared to the
implicit-only CMP.

We will first consider overheads in the implicit-only CMP and then discuss the changes when going to
Multiplex. The figure shows that the largest source of overhead is data dependences and squashes. Our
measurements indicate that squash overhead is small in all cases, except in fpppp. The thread predictor
exhibits high prediction accuracies for all the applications because loop branches (at the: thread boundaries)
are typically predictable. The memory dependence hardware (i.e., the squash buffer [22]) can also synchro-
nize most dependences because most implicit threads are fine grain with small instruc'tion footprints. The
squashes infpppp are due to low hit rates in the squash buffer because offpppp's large threads [22].

Load imbalance is another significant factor especially in class 1 applications. Fpppp, czpsi, turb3d, applu,
and wave5 have control flow irregularities in the inner loops (i.e., loop iterations including input-dependent
conditionals [35]). Because the implicit-only CMP is limited to using fine-grain threads., it primarily targets
inner loops and therefore suffers from load imbalance in these applications. Similarly., thread completion

overhead of flushing the load/store queues is non-negligible in many of the applications due to the small
thread size.

Finally, data speculation overhead due to speculative state overflow is only a significant overhead in
turbjd, wave5, and tomcatv. For the implicit-only CMP, the compiler carefully selects thread size to mini-
mize the state overflow [35]. In Section 5.3, however, we show that using larger threads to increase paral-
lelism and eliminate dependences would prohibitively increase the speculation overhead. This overhead is
one of the key limitations of implicit-only architectures and a motivation for Multiplex.

Threading overhead in Multiplex. The figure indicates that Multiplex reduces much of the overhead in
the implicit-only CMP especially in class 2 applications. In these applications, Multiplex exploits advanced
parallelization techniques to eliminate data dependences and generate coarse-grain explicit threads (con-
sisting of outer loop nests), reducing all sources of overhead, and significantly improving performance over
the implicit-only CMP.

In class 1 applications, there are a few program segments that Mutiplex converts to explicit threads. These
explicit threads reduce the data dependence overhead in apsi and su2cor. Moreover, the explicit threads vir-
tually eliminate the data speculation overhead in tomcatv and turbjd, and diminish1 it substantially in
wave5. As such, tomcatv and su2cor exhibit a high performance boost from Multiplex. Unfortunately, the
parallelization techniques the compiler uses slightly increase the instruction count, the overall impact on
performance in apsi, turbjd, applu, and wave5 is modest.

5.3 Impact of Thread Size

A significant source of inefficiency of the implicit-only CMPs are synchronized serial regions. We have
argued that Multiplex can reduce this inefficiency because it exploits explicit parallelism in outer loops,
which encompass the inner serial program sections. Figure 7 demonstrates that it woilld not be a simple
solution for the implicit-only CMP to exploit outer parallelism. In this experiment, we force the compiler to
generate implicit threads (for the implicit-only CMP) consisting of the iterations of outer, parallel loops -
the same loops selected as explicit threads in the explicit-only CMP (and Multiplex). Because these loops
are dependence-free, the only source of overhead in the implicit-only CMP is due to data speculation and
speculative state overflow.

The figure shows that this change would lead to a drastic performance degradation in, most applications.
The reason is that the threads become so large that speculative state overllow becomes dominant. For
example, in applu, the overflow increases from 0 to 30% of the total number of cycles in the original,
implicit-only execution. In swim, this overhead increases to 160%.

5.4 Reducing Dispatch Overhead in Explicit Threads

Small explicit threads can incur significant dispatch overheads for setting up and initializing private stacks.
Because of this reason, small parallel loops run more efficiently using implicit threads. The compiler
applies a simple heuristic to decide when it is better to run a compiler-recognized parallel loop with
implicit rather than explicit threads. The heuristic "predicts" that all innermost loops run more efficiently
with implicit threads. Inner loops are usually small and do not cause speculative state overflow in implicit
threads. Hence there is usually no benefit from running such loop iterations as explicit threads.

Figure 8 shows the performance impact of this compiler optimization. It shows Multiplex's performance
without and with applying the heuristic. In two applications, apsi and applu, there is a significant perfor-
mance improvement. The numbers above the bars show the percentage of the execution time that is spent in
explicit threads before and after applying the heuristic. In two applications (f p p p and su2cor) there is no
significant change. Infpppp, there was no significant, compiler-recognized parallelism. In su2cor, the heu-

I4 Class 1 blS I4 Class 2 -I

FIGURE 7: Effect of increasing the thread size in the Implicit-only CMP. The left bars show the
same performance as in Figure 5. The right bars show the performance when selecting threads frorr
outer parallel loops, as done for explicit threads in Multiplex. Note, that the presence of such outer
loops depends on the compilers'ability to identify them. For example, in fpppp "inner" and "outer" loop
are the same.

FIGURE 8: Reducing explicit thread dispatch overhead in class 1 applications. The figure
illustrates the effect of the heuristic-based thread selection algorithm in eliminating high-overhead
explicit threads in class 1 applications. Profiling shows optimal thread selection. Explicit thread
dispatch overhead is minimal in class 2 applications, which benefit from coarse-grain threads.
Numbers above the bars show the percentage of the execution time spent in explicit threads before
and after applying the heuristic.

ristic does not detect unprofitable explicit threads. In tomcatv, the heuristic does not improve performance
because one of the threads incurs speculative state overflow after convertion to implicit. In wave5 and
turb3d, all affected threads perform identically before and after the optimization.

The figure also shows an upper performance bound that can be achieved by always correctly choosing the
better of explicit and implicit threads. We obtained this bound by profiling the implicit-only and explicit-
only executions and then manually combining the best cases loop by loop. The figure shows that the heu-
ristic is already close to the optimum. Note that increasing the input data size, however, may lead to more
speculative state overflow in inner loops and thus change the trade-off between implicit and explicit
threads.

6 Related Work

There are many projects exploring architectural proposals for implicit threading such as Wisconsin Multi-
scalar [29,15] and Trace Processor [28], Stanford Hydra [18], CMU Stampede [30], Minnesota Super-
threaded processor [33], Illinois Speculative NUMA [lo], and SUN Microsystems MAJC [32]. While
Multiplex proposes techniques to unify implicit and explicit threading within a single application, these
projects have focused on employing implicit and explicit threading separately on a per application basis but
not combined within one application.

Many of the projects have a compiler component to develop compiler techniques for implicit threading.
Some of the projects use the advanced SUIF compiler [17] for program analysis but rely on manual identi-
fication of program sections for speculative parallelization by the compiler [3 1,191. Because misspecula-
tion recovery is in software, the compiler also generates recovery code. While many of the projects
evaluate performance on parts of applications selected for implicit threading [18,30,10], Multiplex evalu-
ates entire applications by using a fully automated compiler infrastructure consisting of the Polaris com-
piler [6] integrated with the Multiscalar compiler [35]. Because speculative state buildup and
misspeculation recovery is fully implemented in hardware, the Multiplex compiler does not generate any
misspeculation recovery code.

In [24], the authors describe several compiler techniques to help thread-level speculation and argue that
exploiting loop-level parallelism is insufficient. In [33], the authors describe compiler techniques for super-
threaded architectures. No implementation of these techniques exist yet.

There are proposals to provide hardware support to make dependence tracking efficient in DSM systems.
Extensions to compiler techniques for runtime data dependence testing and software misspeculation recov-
ery are proposed in [37,36]. While these extensions focus on the specific compiler technique of runtime
data-dependence testing, the Multiplex compiler performs general unification of implicit and explicit
threads.

7 Conclusions

Chip multiprocessors (CMPs), which exploit thread-level parallelism (TLP), are emerging as an alternative
to traditional superscalar architectures. In one form of TLP, the compilerlprogrammer extracts truly inde-
pendent explicit threads from the program, and in another, the compilerlhardware partitions the program
into speculatively independent implicit threads. However, explicit threading is hard to1 program manually
and, if automated, is limited in performance due to serialization of unanalyzable program segments.
Implicit threading, on the other hand, requires buffering of program state to handle misspeculations, and is
limited in performance due to buffer overflow in large threads and dependences in small threads.

We proposed the Multiplex architecture for CMPs to unify implicit and explicit threading based on two key
observations: (I) Explicit threading's weakness of serializing unanalyzable program segments can be alle-
viated by implicit threading's speculative parallelization; implicit threading's perfo~mance loss due to
speculative buffer overflows in large threads and dependences in short threads can be alleviated by large
explicit threads' exemption from buffering requirements in analyzable program segments. (2) To achieve
high performance, explicit and implicit threading employ cache coherence and speculative versioning,
respectively, which are similar memory hierarchy mechanisms involving multiple private caches for effi-
cient sharing of data. Multiplex exploits the similarities to allow efficient implementation without much
extra hardware and combines the complementary strengths of implicit and explicit threading to alleviate
the individual weaknesses of the two schemes.

We presented architectural (hardware and compiler) mechanisms for selection, dispatch, and data commu-
nication to unify explicit and implicit threads from a single application. We proposed the Multiplex Unified

Coherence and Speculative versioning (MUCS) protocol which provides unified support for coherence in
explicit threads and speculative versioning in implicit threads of a single application executing on multiple
cores with private caches. Using simulation of the ten SPECfp95 and three Perfect benchmarks, we showed
that neither an implicitly-threaded nor explicitly-threaded architecture performs consistently better than the
other across the benchmarks, and for several benchmarks there is a large performance gap between the two
architectures. We showed that Multiplex matches or outperforms the better of the two architectures for
every benchmark and, on average, outperforms the better architecture by 16%.

References
V. Aganval, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus IPC: The end of the road for conventional

microarchitectures. In Proceedings of the 27th Annual International Symposium on Computer Archrtecture, pages 248-259,

June 2000.

T. M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of the 32nd Annual

IEEEIACM International Symposium on Microarchitecture (MICRO 32), Nov. 1999.

U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program paralIelization. Proceedings of the IEEE,

81(2):211-243, Feb. 1993.

L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pi-

ranha: A scalable architecture based on single-chip multiprocessing. In Proceedings of the 27th Annual International Sym-

posium on Computer Architecture, pages 282-293, June 2000.

M. Beny, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo, Y. Pang, R. Roloff, A. Sameh, E. Clementi, S. Chin, D. Schneider,

G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, 0 . Johnson, G. Swanson,

R. Goodrum, and J. Martin. The Perfect Club Benchmarks: Effective performance evaluation of supercomputers. Interna-

tional Journal of Supercomputer Applications, 3(3):5-40, 1989.

W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger,

L. Rauchwerger, and P. Tu. Parallel programming with Polaris. IEEE Computer, pages 78-82, Dec. 1996.

W. Blume and R. Eigenmann. Non-linear and symbolic data dependence testing. IEEE Transactions on Parallel and Dis-

tributed Systems, 9(12): 1180-1 194, Dec. 1998.

S. Breach, T. Vijaykumar, and G. Sohi. The anatomy of the register file in a multiscalar processor. In Proceedings of the

27th Annual IEEELACM International Symposium on Microarchitecture (MICRO 27), pages 181- 190, Nov. 1994.

B. Case. Spec95 retires spec92. Microprocessor Report, August 21 1995.

M. Cintra, J. F. Martinez, and J. Torrellas. Architectural support for scalable speculative paralleIization in shared-memory

multiprocessors. In Proceedings of the 27th Annual International Symposium on Computer Architecture, pages 13-24, June

2000.

K. Diefendorff. Power4 focuses on memory bandwidth. Microprocessor Report, 13(13), 1999.

M. Franklin and G. S. Sohi. The expandable split window paradigm for exploiting fine-grain parallelism. In Proceedings of

the 19th Annual International Symposium on Computer Architecture, pages 58-67, May 1992.

M. Franklin and G. S. Sohi. ARB: A hardware mechnism for dynamic reordering of memory references. IEEE Transactions

on Computers, 45(5):552-571, May 1996.

G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence testing. In Proceedings of the ACM SlGPLAN '91 Conference

on Programming Language Design and Implementation, pages 15-29, June 1991.

S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. Sohi. Speculative versioning cache. In Proceedings of the Fourth IEEE

Symposium on High-Performance Computer Architecture, pages 195-205, Febmary 1998.

J. Gu, Z. Li, and G. Lee. Experience with efficient array data flow analysis for array privatization. In Sixth ACM SIGPLAN

Symposium on Principles & Practice of Parallel Programming (PPOPP), pages 157 - 167, June 1997.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing mul-
tiprocessor performance with the SUIF compiler. IEEE Computer, 29(12):84-89, Dec. 1996.

L. Hammond, M. Willey, and K. Olukotun. A single-chip multiprocessor. IEEE Computer, 30(9), September 1997.

L. Hammond, M. WiIley, and K. Olukotun. Data specuIation support for a chip multiprocessor. In Proceedings of the Eighth

International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS VIII),

October 1998.

J. Hennessy. The future of systems research. IEEE Computer, 32(8):27-33, Aug. 1999.

M. Horowitz, R. Ho, and K. Mai. The future of wires. In Proceedings of the Semiconductor Research Corporation Work-

shop on Interconnects for Systems on a Chip, May 1999.

A. Moshovos, S. E. Breach, and T. N. Vijaykumar. Dynamic speculation and synchronization of data dependences. In Pro-

ceedings of the 24th Annual International Symposium on Computer Architecture, June 1997.

B. A. Nayfeh and K. Olukotun. Exploring the design space for a shared-cache multiprocessor. In Proceedings of the 21st

Annual International Symposium on Computer Architecture, pages 166-175, April 1994.

J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative thread-level parallelism. In Proceedings of the Seventh

International Conference on Parallel Architectures and Compilation Techniques, Oct. 1999.

S . Palacharla, N. P. Jouppi. and J. E. Smith. Complexity-effective superscalar processors. In Proceedings of the 24thAnnual

International Symposium on Computer Architecture, pages 206-218, June 1997.

B. Pottenger and R. Eigenmann. ldiom recognition in the Polaris parallelizing compiler. In Proceedings of the 1995 Inter-

national Conference on Supercomputing, pages -8, July 1995.

W. Pugh. Going beyond integer programming with the omega test. IEEE Transactions on Parallel crnd Distributed Systems,

6(2):204-211, Feb. 1995.

J. E. Smith and S. Vajapeyam. Trace processors: Moving to fourth-generation microarchitectures. IEEE Con~puter,

30(9):68-74, Sept. 1997.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 4 14-425, June 1995.

J. G. Steffan, C. B. Colohan, A. Zhaia, and T. C. Mowry. A scalable approach to thread-level speculation. In Proceedings

of the 27th Annual International Symposium on Computer Architecture, pages 1-12, June 2000.

J. G. Steffan and T. C. Mowry. The potential for using thread-level data speculation to facilitate automatic parallelization.
In Proceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture, pages 2-13, February 1998.

M. Tremblay. An architecture for the new millennium. In Proceedings of the 1999 Hot Chips Symposium, August 1999.

J.-Y. Tsai, J. Huang. C. Arnlo, D. Lilja, and P.-C. Yew. The superthreaded processor architecture. IEEE Transactions on

Computers, 98(9). Sept. 1999.

P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sixth Languages and Com,pilers for Parallel Com-

puting, pages 5 W 5 2 1. Springer-Verlag, 1994.

T. N. Vijaykumar and G. S. Sohi. Task selection for a multiscalar processor. In Proceedings of the 3IstAnnual IEEELACM

International Syn~posiun~ on Microarchitecture (MICRO 31), December 1998.

Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative run-time parallelization in tlistributed shared-mem-

ory multiprocessors. In Proceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture, Jan.

1998.

Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative parallelization of partially-parallel loops in dsm mul-

tiprocessors. In Proceedings of the Fifrh IEEE Symposium on High-Performance Computer Architecture, Jan. 1999.

	Purdue University
	Purdue e-Pubs
	10-1-2000

	Multiplex: Unifying Conventional and Speculative Thread-Level Parallelism on a Chip Multiprocessor
	Seon Wook Kim
	Chong-Liang Ooi
	IL Park
	Rudolf Eigenmann
	Babak Falsafi
	See next page for additional authors
	Authors

