Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-1-2000

Multiplex: Unitying Conventional and Speculative
Thread-Level Parallelism on a Chip Multiprocessor

Seon Wook Kim
Purdue University School of Electrical and Computer Engineering

Chong-Liang Ooi
Purdue University School of Electrical and Computer Engineering

IL Park
Purdue University School of Electrical and Computer Engineering

Rudolf Eigenmann
Purdue University School of Electrical and Computer Engineering

Babak Falsaf
Purdue University School of Electrical and Computer Engineering

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Kim, Seon Wook; Ooi, Chong-Liang; Park, IL; Eigenmann, Rudolf; Falsafi, Babak; and Vijaykumar, T. N., "Multiplex: Unifying
Conventional and Speculative Thread-Level Parallelism on a Chip Multiprocessor” (2000). ECE Technical Reports. Paper 29.
http://docs.lib.purdue.edu/ecetr/29

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Seon Wook Kim, Chong-Liang Ooi, IL Park, Rudolf Eigenmann, Babak Falsafi, and T. N. Vijaykumar

This article is available at Purdue e-Pubs: http://docslib.purdue.edu/ecetr/29

http://docs.lib.purdue.edu/ecetr/29?utm_source=docs.lib.purdue.edu%2Fecetr%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages

MULTIPLEX: UNIFYING
CONVENTIONAL AND SPECULATIVE
THREAD-LEVEL PARALLELISM ON A
CHIP MULTIPROCESSOR

SEON WOOK KM
CHONG-LIANG O01
IL PARK

RUDOLF EIGENMANN
BABAK FALSAFI

T. N. VIJAYKUMAR

TR-ECE 00-13
OCTOBER 2000

V€ &, SCHOOL OF ELECTRICAL

3 ::C(‘u AND COMPUTER ENGINEERING
T4 PURDUE UNIVERSITY

0> WEST LAFAYETTE, INDIANA 47907-1285

Multiplex: Unifying Conventional and Speculative
Thread-Level Parallelism on a Chip Multiprocessor

Seon Wook Kim, Chong-Liang Ooi, Il Park, Rudolf Eigenmann, Babak Falsafi, and T. N. Vijaykumar

School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285
muxQecn.purdue.edu, http://www.ece.purdue.edu/-mux

Thiswork was supported in part by NSF Grant #3974976-EIA. Thiswork is not necessarily representativeof the
positions or policies of theU-S. Government.

i

Tableof Contents

NEFOTUCTION. ...ttt 1
Background: Execution Modelsfor Explicit & Implicit Threading..........c............ 2
21 Example Execution in an Explicitly-Threaded CMP..........c.ccccoeririveinnnninvcriie i 3
22 Example Executionin an Implicitly-ThreadedCMPcccovviieniininicnrineeiins 3
Multiplex: Unifying Explicit/Implicit TLP 0N aCMPcccooooviiiinieiiniinnne. 5
31 THrEAd SEIECHION.cooviieiice et e et ettt 6
32 IR DISPACN coooevveceeeeevceseseeevees s esesesssse s eesss e 8
3.3 Data COMIMUNICAEION....eeeueeeareesseeeeeeeeseeseeeesseeseesesessseeseesseasseesseesseesseesneesneesneesnnesneas Q..
Key Factors Affecting Performance..........cooevcoiniiiiic s, 13
QuantitativePerformanCeEValuationccooovveeioeoeieeciee e 14
51 Methodology and INFIaStIUCIUNE............coiieiriviieierce e 15
5.2 Base CaseRESUITScoiiie ettt et et 16
5.3 IMPAaCct Of TAFEAH SIZE....ccveieieeere et 18
5.4 Reducing Dispatch Overhead in Explicit Threads.............coco.ovioiiiiiriinrceinr e, 18
REGEAWOIK.....coiviiiiiiiie et e 20
CONCIUSIONS......coovinieiiteieriireteseserse st eese ettt abe e ebeeess bt sesnsneenenaensas . 20

——

Table1:
Table 2:

Table 3:
Table 4:

Tableb5:

il

List of Tables
MUCS protocol state and aCtions.ccevveriininiieieieeeeve e 11
Factors affecting performancein Explicit-Only, Implicit-Only, and
MuUltiplex @rChiteCLUIES.ccvieiiiriiiiciiiei e 13
System configuration ParameELErS...........ccooeceiiiiiienieree e 15
Applicationsand input sets. S indicates scaled down number of |oop
iterationsin the interest of reduced simulationtime............c..ccccoveveeiennee 15

Fraction of the threaded execution time of each application that is
recognized as parallel by the compiler and converted to explicit threads. 17

FIGURE 1:
FIGURE 2:
FIGURE 3:

FIGURE 4:
FIGURE 5:

FIGURE 6:
FIGURE 7:

FIGURE 8:

iv

List of Figures

An example of explicit threadingexecution.ccooceveviiieinnninenen, 3
An example of implicit threading XeCUtioN..............ccovceriicincnnnccnnn 4
A Multiplex chip multiprocessor. The figure depicts the anatomy of a
Multiplex chip multiprocessor. The blocks appearing in a light shade

of gray are components used in aconventional (explicitly-threaded)
multiprocessor architectureincluding the processing units, the L1
instruction caches, the system interconnect, and the L 2 cache. The

blocks appearing in a dark shade of gray are components enabling

implicit and hybrid implicit/explicit threadingin Multiplex including the
thread dispatch unit, the thread descriptor cache (TDS$), the level-one

data caches, and the register communication mechanism........................... 6
A high-level state transition diagramfor MUCS............cccoeeinininnnns 12
Overall Performance of Multiplex CMP compared to an implicit-only

and an explicit-only CMPs. In class 1 applications, implicit-only
outperformsexplicit-only and vice versain class 2 applications. In

all applications, Multiplex matches or exceeds the performanceof

the better alteramatiVe...........c.ooovieeiirii e 16
Overheadsof the Implicit-only and the Multiplex architecture................ 17
Effect of increasing the thread sizein the Implicit-only CMP. The left

bars show the same performanceasin Figure 5. The right bars show

the performance when selecting threads from outer parallel loops, as
donefor explicit threadsin Multiplex. Note, that the presence of such
outer loops depends on the compilersability to identify them. For
example, in fpppp ""inner'* and "'outer™ loops are the same...........ccceueeee. 19
Reducing explicit thread dispatch overhead in class 1 applications.
Thefigureillustrates the effect of the heuristic-based thread

selection algorithm in eliminating high-overhead explicit threadsin

class 1 applications. Profiling shows optimal thread selection. Explicit
thread dispatch overhead is minimal in class 2 applications, which

benefit from coarse-grain threads. Numbers above the bars show the
percentage of the execution time spent in explicit threads before and

after applying the NEUNISLIC..........oovevireciiiiiiccrrcncc e 19

-

Abstract

Traditional monolithic superscalar architectures, which extract instruction-level paralelism (ILP) to
achieve high performance, are not only becoming less effective in improving the clock speed and ILP but
also worsening in design complexity and reliability across generations. Chip multiprocessors (CMPs),
which exploit thread-level paralelism (TLP), are emerging as an alternative. In one form of TLP, the com-
piler/programmer extracts truly independent explicit threads from the program, and in another, the com-
piler/hardware partitions the program into speculatively independent implicit threads. However, explicit
threading is hard to program manually and, if automated, islimited in performance due to serialization of
unanalyzable program segments. Implicit threading, on the other hand, requires buffering of program state
to handle misspecul ations, and is limited in performance due to buffer overflow in large threads and depen-
dencesin small threads.

We propose the Multiplex architecture to unify implicit and explicit threading by exploiting the similarities
between the two schemes. Multiplex employs implicit threading to alleviate serialization in unanalyzable
program segments, and explicit threading to remove buffering requirements and eliminate small threads in
analyzable segments. We present hardware and compiler mechanisms for selection, dispatch, and data
communication to unify explicit and implicit threads within a single application. We describe the Multiplex
Unified Coherence and Speculative versioning (MUCS) protocol which provides unified support for coher-
ence in explicit threads and speculative versioning in implicit threads of an application executing on multi-
ple cores with private caches. On the ten SPECfp95 and three Perfect benchmarks, neither an implicitly-
threaded nor explicitly-threaded architecture performs consistently better across the benchmarks, and for
several benchmarks there is a large performance gap between the two architectures. Multiplex matches or
outperforms the better of the two architectures for every benchmark and, on average, outperforms the better
architecture by 16%.

1 Introduction

Improvementsin CMOS fabrication processes continue to increase on-chip integration and transistor count
to phenomenal levels. Traditional monolithic superscalars use the rising transistor counts in extracting
instruction-level paralelism (ILP) to achieve high performance. Unfortunately, superscalar architectures
are not only becoming less effective in improving the clock speed [25, 21,1] and ILP but also worsening in
design complexity [20] and reliability [2] across chip generations. Instead, many researchers and vendors
are exploiting the increasing number of transistors to build chip multiprocessors (CMPs) by partitioning a
chip into multiple smple ILP cores [29,18]. As in traditional multiprocessors, CMPs extract thread-level
parallelism (TLP) from programs by running multiple — independent or properly synchronized — pro-
gram segments, i.e., threads, in parallel.

The most common form of TLP isexplicit threading used in conventional shared-memory multiprocessors.
In explicit threading, software explicitly specifies the partitioning of the program into threads and uses an
application programming interface to dispatch and execute threads on multiple cores in parallel. Explicit
threads either compute independently or share and communicate data through memory when necessary.
Examples of CMPs using explicit-threading are IBM Power4 [11] and Compaq Piranha [4]. Explicit
threading's key shortcoming, however, is that it requires a programmer or parallelizing compiler either to
guarantee that threads can compute independently or to coordinate shared accesses among threads through
synchronization. Unfortunately, parallel programming is a tedious and costly task only suitable for high-
end systems. Similarly, while parallelizing compilers have succeeded in threading many large and impor-
tant applications, automatic parallelization has been limited to programs and program segments with stati-
cally analyzable dependences. When the compiler fails to prove independence, the corresponding program
segment is executed serially on a single core.

Alternatively, recent proposals for CM Ps advocate specul ative, or implicit, threading in which the hardware
employs prediction to peel off instruction sequences (i.e., implicit threads) from the sequential execution
stream and speculatively executes them in parallel on multiple cores. To preserve program execution cor-
rectness, implicitly-threaded hardware identifies and satisfies all dependences among implicit threads.
Examples of proposed architectures using implicit threading are Multiscalar [29] and Trace Processor [28],
Hydra [18], Stampede [30], Superthreaded processor [33], Speculative NUMA [10], and MAJC [32].

To maintain program correctness, implicitly-threaded architectures rely on the hardware to track depen-
dence among threads and verify correct speculation. Upon a misspeculation, the hardware rolls back the
system to a state conforming to sequential semantics. To alow proper rollback, implicit threading requires
buffering all speculative threads program state [29]. While speculative buffer overflow resultsin complete
stalling or rollback of speculative threads and essentially serialization of execution, buffering is only neces-
sary if there are true dependences among threads that are not detectable at compile time. Implicit thread-
ing's key shortcoming is that the hardware must always buffer program statetotrack dependences among
threads. State-of-the-art buffering techniques (e.g., custom buffering [13] and cache-based buffering [15,
19, 30, 10]), however, can only provide fast buffering large enough to accommodate short-running implicit
threads (e.g., up to a hundred instructions). Small threads limit the scope of extracted parallelism, increase
the likelihood of inter-thread dependence, and reduce performance.

We propose the Multiplex architecture for CMPs to unify implicit and explicit threading based on two key
observations. (1) Explicit threading's weakness of serializing unanalyzable program segments can be alle-
viated by implicit threading's speculative parallelization; implicit threading's performance loss due to
speculative buffer overflowsin large threads and dependences in short threads can be alleviated by large
explicit threads' exemption from buffering requirements in analyzable program segments. (2) To achieve
high performance, explicit and implicit threading employ cache coherence and speculative versioning
[15,30,19,10], respectively, which are similar memory hierarchy mechanisms involving multiple private
caches for efficient sharing of data. Multiplex exploits the similarities to alow efficient implementation

without much extra hardware and combines the complementary strengthsof implicit and explicit threading
to alleviatethe individual weaknessesaf the two schemes.

The main contributions of this paper are:

e We present architectural (hardwareand compiler) mechanismsfor selection, dispatch, and data commu-
nication to unify explicit and implicit threadsfrom asingle application;

o We propose the Multiplex Unified Coherence and Speculative versioning (MUCS) protocol which pro-
vides unified support for coherencein explicit threadsand speculative versioning in implicit threadsof a
singleapplication executing on multiple cores with privatecaches;

e using simulation of theten SPECfp95 and three Perfect benchmarks, we show that neither an implicitly-
threaded nor explicitly-threaded architecture performs consistently better across the benchmarks, and
for several benchmarksthere is alarge performance gap between the two architectures,

o weshow that Multiplex matches or outperforms the better of the two architecturesfor every benchmark
and, on average, outperformsthe better architecture by 16%.

In the following section, we describe advantages and disadvantages of current explicit and implicit archi-
tectures, and motivated the need for a unified architecture. In Section 3, we introduce M ultiplex. Section 4
characterizes the key factors impacting performance and presents a qualitative performance anaysis of
TLP architectures. Section 5 presents the smulation methodology and results. Section 6 presents a sum-
mary of related work. Finally, Section 7 concludesthe paper.

2 Background: Execution Modelsfor Explicit & Implicit Threading

In this section, we briefly describe, compare, and provide examplesfor thread execution and the required
hardware support in explicitly-threaded and implicit-threaded architectures. At the highest level, the key
similarity between these architecturesis that both simultaneously execute multiple threads that communi-
cate among one another. As such, the dominant fraction of hardware resources required by either architec-
ture is common and includesexecution resources (e.g., multiple CPU cores) and communication resources
(e.g., coherent shared memory through L1 caches).

The key differences are how, in each architecture, the hardware detects when communication is necessary
— i.e., inter-thread data dependences— and identifies subsequent threads to execute upon thread comple-
tion — i.e., the inter-thread control dependences. In explicitly-threaded architectures, the application soft-
ware either eliminates data dependence through advanced paralielizing compiler analysis and techniques,
or specifies every instance of data dependence using a synchronization primitive(e.g., abarrier). Moreover,
software specifies inter-thread control dependence using a thread dispatch primitive (e.g., a fork call).
Because, softwareobviatesthe need for hardwareto track the dependences, hardware achieves high perfor-
mance by providingfast mechanismsfor datacommunication, and thread dispatch and execution.

In contrast, in implicitly-threaded architectures, inter-thread data and control dependencesare implicit in
the sequential program order. The hardware infers the existence of data dependence — e.g., between a
memory read instruction and a preceding program-order memory write instruction to the same location.
Similarly, the hardware resol vesinter-thread control flow dependence. Because hardwarereceivesno infor-
mation from software, it relies on dependence prediction and speculation techniques to guess the missing
information and deliver high performance. The hardware validates al control flow and data dependence
speculationsby verifyingagainst the sequential program order, and triggers rollbacks upon detecting possi-
ble misspeculationswhich may violate sequential semantics.

Enaln() g. iteration 0 iteration N iteration 2N iteration 3N
o
fork(parallel_compute); E store A[2]
parallel_compute(); =
serial_compute(); time h
..... o\ _o
} - NO load A[2]
£<§
parallel_compute() § ahe load A[2]
{ 1 PU2 CPU3
for(i=id*N; i<id*(N+1); i++) cpyo CPU C
Ali] = Ali] + X; A2] = Al2] Al2] —
barrier(); L1 L1 L1 L1
for(i=id*N; i<id*(N+1); i++) -
. =A2]+Y: Al?ll read miss § |A[2] miss | TA[z]
} L1/L2 interconnect

FIGURE 1: An example of explicit threading execution.

In therest of this section, we present exampleexecutions on each of the two (threading) architectures. We
point out the key performance problemswith the architecturesto illustrate that combining the two can both
(2) achieve higher performance by exploiting one architecture's strengths to alleviate the other architec-
ture's weaknesses, and (2) be implemented efficiently without much hardware overhead by exploiting the
similarities between the two architectures.

2.1 Example Execution in an Explicitly-Threaded CM P

Figure 1 shows a simpleexample of a program running on an explicitly-threaded CMP. The figure shows
the high-level anatomy of a typical CMP with thread execution resources (i.e., four CPUs) and the data
communication hardware (i.e., coherent L1 data caches). In thisexample, the main thread executes sequen-
tially (not shown) on CPUO, and forks parallel explicit child threads so that each CPU executesthefunction
parallel -compute simultaneoudly. The function includesa pair of loops, where each thread executesafrac-
tion of the loop iterations. The first loop computes and writes to array A. In the second loop, every loop
iteration is dependent on the value of Af2] created by CPUO in the first loop and stored in its L1. The
CPUS' L1 cache controllers implement a snoop cache-coherence protocol which identifies Af2)’s most
recent copy to bein CPUO’s L1, and copiesit into other CPUS L 1s(e.g., CPU1 and CPU3) on demand.

In the example shown, the compiler (or the programmer) detects that the first loop and second loop are
dependent only through array A and therefore separates them by a barrier synchronization. By identifying
the only data dependence among the threads to be through A/2], and specifying the dependence through the
bamer primitive, software guarantees that hardware can otherwise execute the threads at pesk speeds.
Moreover, the “fork™ primitive directs the hardware to execute exactly a single copy of parallel-compute
as athread on each CPU, specifying the thread control flow dependence. Unfortunately, when data depen-
dencesare unknown, the compiler (or the programmer) failsto generate explicit threads, and therefore exe-
cutesthe entire program segment (i.e., entire pair of loops) in asinglethread.

2.2 Example Execution in an Implicitly-Threaded CM P

Figure 2 shows a simple example of a program running on an implicit-threaded CMP. In this example, a
loop computes over array A with loop iterationsthat have unknown dependencesat compiletime. A com-

for(i=0;i<N;i++)
A[BLT] = AIC[IT] + X;

iteration 0 time iteration 1 iteration 2 iteration 3
load A[2]

¢ vi
store Al2] fflrm[%Z]PUI
' loar. A[2]

store A[2] squash

re-execute
fill A[2]2
from CPU2 load A[2]
v |
CPUO CPU1 CPU2 » CPU3
] ——] —] ARl —
A[2] A[2]V1 A[2]V2 A[2]V2
read TlA[Z]‘” read T lA[Z]"z squash A[2]"2T lmiSS

L1/L2 interconnect
FIGURE 2: An example of implicit threading execution.

piler for an implicitly-threaded architecture (e.g., the Multiscalar compiler [35]) partitions the loop and
assigns each implicit thread a singleloop iteration. To hel p the hardwareidentify which subsequent threads
to dispatch on the CPUs, each implicit thread includes (embedded in the executable) a list of possible sub-
sequent threads, or target threads, and their starting program counters (not shown); the target threads are
the exit points of a thread in the control flow graph. In this example, the execution of aloop iteration can
either be followed by another loop iteration or the codefollowing theloop (upon loop termination).

Unlike explicitly-threaded architectures, implicitly-threaded architectures rely on hardware prediction to
dispatch threads. For every dispatched thread, hardware predicts a and selects among the thread's list of
target threads, a subsequent thread to dispatch. As shown in the example, the predictor selects and dis-
patches subsequent |oop iterations, starting from iteration 0, on the CPUs in cyclic order. Because iteration
0 isthe"oldest™ thread executing in program order, it is guaranteed to complete and is said to be *“non-
speculative™. Dispatch prediction for athread is only verified when all preceding threads complete, there-
fore all threads except for iteration 0 are " speculative’™ and may be ** squashed if mispredicted. The loop
branch condition at theend of each iteration verifies prediction for the subsequent iteration.

Assume that iterations 0, 1, 2, and 3 access the same element A/2]. Upon missing on a load from A[2],
CPUQO's thread obtainsa copy of the corresponding cache block from L2 and marks the block as non-spec-
ulative. After afew cycles, CPUI's thread (i.e., the speculative iteration 1) misseson a storeto A/2], and
the protocol suppliesa copy of the block from L2. CPUI then creates a speculatively renamed version of
the block, denoted by A72J*/, without invalidating CPUO’s copy (as would be done in explicitly-threaded
architectures),and marks the block as speculative dirty. When CPU3’s thread misseson a load from A/2],
the protocol supplies CPUI's version of the block, Af2]*!, because CPUI is the closest preceding thread,
and CPU3 marksits own copy as speculatively loaded.

Next, CPU2 misses on a store to A/2], it creates yet another speculative renamed version of the block,
A[2]"%, without invalidating A[2]"!. The protocol subsequently squashes CPU3 (and any future threads)
becauise CPU3 prematurely loaded CPUI's version, A[2]", instead of the sequentially correct CPU2’s ver-
sion, A[2J"2. Squashing CPU3 also invalidates the blocks speculatively accessed by CPU3. The protocol

maintainsthe program order between CPU 1’s and CPU2’s versions, as part of the protocol state to provide
the correct version for future accessesto Af2]. CPU3 re-executesand loadsA[2 7"2 from CPU?2.

Upon completion, the threads " commit™ in sequential order, marking the speculatively accessed blocksas
non-speculative(or committed). Because dl future iterations access different elementsof A, cache blocks
accessed in those iterations are first marked as speculative, and then committed without causing any
sguashes. A key shortcomingof hardware data speculation isthat becausethe L1 caches maintain the pro-
gram order among all data assesses (for both loads and stores) to track dependencesand guarantee correct
execution, specul ativedata are not allowed to leave the caches; any capacity and conflict problems causing
a specul ativeblock replacement stall the CPU until it becomes non-specul ative,resulting in substantial per-
formanceloss[15].

Unfortunately,implicitly-threadedarchitecturesalways predict and execute threads specul atively, and track
data dependence in hardware even if a program segment is analyzable. For instance, in the example
because there are no control flow dependences (e.g., a conditional break statement within the loop) except
for the loop branch condition between the loop iterations and the code immediately following the loop,
software can direct thread dispatch using afork primitive, and obviatethe need for hardware prediction and
eliminating any potential misprediction overhead. Similarly, there are many scenarioswhere an advanced
parallelizing compiler can either detect and guarantee no data dependences among threads exist [7,27,14}
or can eliminate the data dependences (e.g., through array privatization [34,16]). In such scenarios, the
hardwareunnecessarily tracksdata dependences, limiting the scope of parallelismto the bufferingcapacity
intheL1 caches.

3 Multiplex: Unifying Explicit/Implicit TLPona CMP

In this paper, we propose Multiplex, an architecture that unifies explicit and implicit threading on a chip
multiprocessor. Multiplex alleviates explicit threading's weakness of serializing unanalyzable program
segments by using implicit threading's speculative parallelization. Multiplex avoids implicit threading's
performance |oss due to speculativebuffer overflowsin large threads and dependencesin short threads by
using large explicit threads which are exempt from buffering requirements in analyzable program seg-
ments. Thus, Multiplex combinesthe complementary strengthsof implicit and explicit threading to allevi-
ate the individual weaknesses of the two schemes. Multiplex achieves efficient implementation without
much extra hardware by exploiting the similarities between explicit threading's cache coherence and
implicit threading's specul ative versioning mechanisms.

The key mechanismsrequired for athreading model are: (1) thread selection, a mechanism to partition the
code into distinct instruction sequences, (2) thread dispatch, a mechanismto assign a thread from the pro-
gram to executeon a CPU, (3) data communication, mechanisms to propagatedata(i.e., register and mem-
ory) values among independent threads, to alow implicit threadsto privatize datain multiplecaches under
the same memory address., and to guarantee correct program execution. In the following subsections, we
present hardware and compiler mechanisms for selection, dispatch, and data communication to unify
explicit and implicit threadswithin a single application.

Figure 3illustratesa Multiplex CMP. Our Multiplex CMPisloosely derived from the Wisconsin Multisca-
lar [29,15]. Asin traditional small-scale multiprocessors, Multiplex CM P includesa small number of con-
ventional superscalar CPU cores with first-level instruction and data caches and a shared level-two cache
[23]. To support implicit and hybrid explicit/implicit threading, Multiplex a so includes support for specu-
lative thread dispatch consisting of a dispatch unit and a thread descriptor cache; register communication
gueues; and memory communication, specul ation, and di sambiguationthrough level-onedata caches. Mul-
tiplex unifies cache coherence with memory renaming and disambiguation in level-one caches through a
single snoopy bus protocol.

Multiplex CMP Thread Dispatch 4-—@

FIGURE 3: A Multiplex chip multiprocessor. The figure depicts the anatomy d a Multiplex chip
multiprocessor. The blocks appearing in a light shade d gray are components used in a conventional
(explicitly-threaded) multiprocessor architecture including the processing units, the L1 instruction
caches, the system interconnect, and the L2 cache. The blocks appearing in a dark shaded gray are
components enabling implicit and hybrid implicit/explicit threading in Multiplex including the thread
dispatch unit, the thread descriptor cache (TD$), the level-onedata caches, and the register
communication mechanism.

3.1 Thread Selection

Multiplex relies on a unified compiler infrastructure to generate both explicit and implicit threads. Unlike
state-of -the-art compilers which are limited to compiling for a specific threading model, in Multiplex the
compiler has the opportunity to choose betweenimplicit and explicit threading modelsto maximize perfor-
manceon a per program and per program segment basis. The choice between threading models dependson
programand system characteristics.

Selecting explicit threads. Multiplex executes program segments which the compiler can partition into
independent threads or threads with known data dependences as explicit threads. The compiler coordinates
the known data dependences and sharing in such threads using explicit synchronization statements. Such
threads maximize the parallelism exploited, eliminate hardware specul ation overhead, and realize the raw
hardware speeds of multiple CMP cores.

Multiplex relies on a state-of-the-art parallelizing compiler to analyze programs and generate explicit
threads. These compilers (e.g., Polaris [6], SUIF [17]) use a myriad of techniques to test [7,27,14] and
eliminate data dependence in program segments [3,34,26,16]. Moreover, these compilers increase thread
performancein analyzable program segments through code transformationsto optimizefor memory hierar-
chy locality and communication latency [17].

In explicit threading, thread size plays a key role in minimizing thread execution overhead. Dispatching
explicit threads (Section 3.2) requires at a minimum setting up private stacks, passing arguments through
the stacks, and synchronizing the threads upon completion. Explicit threading compilerstypically partition
the work among coarse-grain threads to amortize the dispatch and completion overhead over thread execu-
tion time. For instance, in nested loops with small inner loop bodies, explicit threads often consist of outer
loop iterations [17,6]. Too coarse-grain a thread, however, increases the likelihood of load imbalance
diminishing the opportunity for parallel execution.

When selecting explicit threads, the compiler has full flexibility in choosing how to partition the work
among threads. In partitioning the code into explicit threads, the compiler can analyze and estimate the
appropriate thread size based on the dispatch overhead and load imbalance. The compiler also hasthe flex-
ibility of choosing the order in which explicit threads are dispatched (Section 3.2). Together, selecting
thread size and dispatch order can help minimize |oad imbalance and dispatch overhead.

Selecting implicit threads. Multiplex executes program segments with control flow or data dependences
that are unanalyzable at compile time as implicit threads. Multiplex extracts parallelism from implicit
threads at runtime with the help of hardware speculation. Unlike explicit threading where software invokes
thread dispatch using an application-programming interface, in implicit threading the software merely
specifies thread boundaries and not the control flow among them [35]. The hardwarein turn predicts and
speculatively dispatchesthreads at runtime to maintain instruction execution flow in accordance with the
sequential execution semantics.

Multiplex also relieson a state-of-the-artcompiler (e.g., the Multiscalar compiler [35]) to generateimplicit
threads. Alternatively, hardware rather than the compiler can extract and select implicit threads [28,12].
Selecting threads in hardware allows extracting TLP directly from uniprocessor application binaries at
runtime, obviating the need to recompile the program. By selecting implicit threads in the compiler, Multi-
plex benefits from many key transformation techniques available a compile time to improve implicit
thread performance [35].

There are two key criteriafor implicit thread selection to minimize: (1) control-flow and data prediction
and speculation overhead, and (2) data dependencesand their distance among threads. An implicit thread
typically includes one or more (statically) adjacent basic blocks. Minimizing control-flow speculation
overhead smply requiresthat the compiler carefully selects thread boundaries so that threadsend at branch
instructions with predictable outcomes (e.g., loop branches). This way, hardware prediction successfully
dispatches threads and reduces speculation overhead. The Multiplex compiler exploits a number of tech-
niquesto analyze and reduce the overhead due to speculation and data dependence [35].

Asin explicit threads, thread size playsa key role in implicit thread performance. Larger threads may help
amortize the thread dispatch and completion overhead, and increase the scope for parallelism by reducing
dependenceamong threads. However, data specul ation overhead significantly limitsthread size in implicit
threading. Hardware must maintain all memory modificationsby a speculatively executing implicit thread
so that subsequent speculative threads can consumethe resultsof past computation. Moreover, in caseof a
misprediction, all memory must be restored to a state conforming to sequential execution semantics. There-
fore, there may be multiple versions of a data memory block present in processor caches, significantly
increasing the memory overhead and cache traffic [35]. Consequently, implicit threading typically resorts
to fine-grain (rather than coarse-grain) threads (e.g., inner loops) to exploit paralelism. Moreover, the
speculation overhead constraint on thread size also limits thecompiler's flexibility in varying thread sizeto
reduceload imbalance.

Unifying thread selectionin Multiplex. To minimize execution overhead, the Multiplex compiler dways
searchesfirgt for statically paralelizable program segments and partitions them into explicit threads. The
compiler subsequently generatesthe rest of the program segmentsas implicit threads.

There are scenariosin which there is a trade-off between two threading modelsfor statically parallelizable
programs. Loops with small bodiesthat iterate for a small number of times are best executed as implicit
threads due to the high explicit dispatch overhead and low implicit data speculation overhead. Moreover,
program segments that are not evenly partitionable into thread numbers that are multiples of CPUs will
result in asignificant load imbalanceif executed entirely as explicit threads. The compiler can peel off the
tail part of such a program segment and execute it in parallel with subsequent program segmentsas implicit
threads to eliminate the load imbalance. The compilers flexibility in choosing the threading model helps
complement the strengths of both models, thereby improving application performance. In Section 5, we
will present smulation results indicating how simple compiler heuristics help unify thread selection in
Multiplex.

3.2 Thread Dispatch

In Multiplex, dispatching athread on a CPU involves: (1) assigning a program counter to the CPU indicat-
ing the address of the first instruction belonging to the thread, (2) assigning a private stack pointer to the
CPU, and (3) implementing a dispatch " copy" semantics copying the stack and register values prior to the
dispatch to al dispatched threads; as in conventional threading models, Multiplex uses a single address
spacefor dl the threads and only requires copy semanticsfor stacks and registers (and not memory) upon
dispatch.

Dispatching explicit threads. As in conventiona explicitly-threaded architectures, Multiplex uses an
application programming interface to dispatch threads. To minimizedispatch overhead, Multiplex supports
the programming interface directly at the instruction set architecture level. A f or k instruction takes an
argument in an architectural register, and assigns it to the program counter of all other CPUs. Once dis-
patched, threads proceed until the execution reachesast op instruction. Upon thread completion, an appli-
cation may dispatch new threads through subsequent executionsof the f or k instruction.

In explicit threading, each thread usesa private stack. In Multiplex, the middleware(i.e., the systeminitial-
ization library) is responsible to allocate private stacksfor all CPUs. A set sp instruction assignsthe pre-
alocated stacks to individual CPUs. The set sp instruction takes two argumentsin architectural registers.
Thefirst argument specifiesthe starting address of a private stack pointer, and the second argument speci-
fies the which CPU’s stack pointer is being set. The middleware need only to allocate private stacks once
per application execution, and only re-allocatewhen athread requires growing the stack.

Upon dispatch, explicit threading requires implementing acopy semantics in which the software(i.e., gen-
erated by the compiler or the programmer) passes data from the main (i.e., forking) thread's registersand
stack to the dispatched threads. Compilers/programmers often encapsulate explicit threads into procedure
bodies. As such thecopy semanticsfor thethreadsis smply the incoming argumentsinto the procedure. In
Multiplex, the middleware copies all the procedure arguments into the private stacks in the main thread
prior to dispatch. The f or k instruction dispatches a *'wrapper" procedure on every CPU that reads the
arguments off the stack and passes them in the appropriate architectural registers. While copying argu-
ments can be accelerated using hardware, explicit threads are often large enough that the software copying
overhead becomesasmall fraction of overall executiontime.

Digpatching implicit threads. Multiplex dispatchesimplicit threads sequentially in programorder [29]. A
thread dispatch unit (Figure3) uses the current implicit thread to predict and dispatch a subsequent thread.
The compiler/programmer generates a thread descriptor and embeds it immediately prior to the thread
code. Thethread descriptor includes addressesof possible subsequent dispatch "target™ threads. The thread
dispatch unit includes a thread predictor that selects one of the target threads to dispatch. The thread
descriptor also includes the information necessary to identify register values a thread depends which must
be communicated from previoudy dispatched threads [29]. To accel erate thread dispatch, a thread descrip-
tor cache (Figure3) caches recently referenced thread descriptors.

A nove aspect of implicitly-threaded architecturesis on-demand data communication and renaming. In
implicitly-threaded architectures, all necessary register and memory vaues produced by one thread and
subsequently consumed by another are directly communicated through hardware on demand. As such,
thread dispatching does not require any " copy™ semantics. Moreover, al registers and memory addresses
assigned to by one thread are renamed in hardware on demand. Therefore, stacks are automatically priva
tized for implicit threads; i.e., assigning a value to a stack address creates a distinct verson of the corre-
sponding memory location for theassigningthread. As such, implicit threadsdo not require private stacks.

Unifying thread dispatch in Multiplex. The ability to execute both explicit and implicit threads enablesa
Multiplex CMP to exploit both types of TLP within an application. Software, however, must inform the
hardware which type of threading is used for a given program segment so that hardware can provide the

appropriate execution support. Multiplex uses the thread descriptor to specify the threading type, and the
hardware modifies the mode bit based on the specification. The mode bit is set for all the implicit threads.
The mode bit is clear for the "wrapper" procedure used to dispatch explicit threads. Upon switching to
explicit threading, the thread dispatch hardware unit stopsfetching descriptors and dispatching threads.

3.3 Data Communication

Much like all modem architectures, Multiplex uses registers and memory to store program state. While
implicit threads share both register and memory state among each other, similar to the Multiscalar architec-
ture, explicit threads share only memory state and not register state, similar to conventional shared-memory
multiprocessors. Accordingly,implicit threads communicate both register and memory values among each
other and explicit threadscommunicate only memory values. Multiplex uses Multiscalar's regi ster commu-
nication mechanismfor register dependencies among implicit threads, and we do not discuss the details of
the register communication mechanism and refer the reader to [8,29]. In this section we focus on memory
data communication among both implicit and explicit threads.

In both explicit and implicit modes, the CPUs’ private caches enable efficient data sharing by making cop-
ies of accessed data close to each CPU. The main responsibility of the memory systemin both modesis to
track the copies so that the correct copy is delivered on every memory access. In explicit mode, the mem-
ory system locates the correct copy for loads either from main memory if thereis no cached dirty copy or
from another cache if it has a dirty copy and for stores ensures that no stale copies exist in other caches
(e.g., viainvalidates). In implicit mode, the memory system provides similar support but in the presence of
speculative loads and stores. For implicit loads, the memory system not only locates the correct version
much likeexplicit loads, but a so enforces store-to-load program order; the memory system tracks specula-
tive loads to detect (and squash) any load that prematurely accesses a location before a previous store in
program order iscomplete. For implicit stores, theimplicit memory system creates anew (speculative) ver-
sion for every (speculative) store and tracks the programorder among the multiple speculative versions.

The key to maintaining correctness in both modesis the Multiplex Unified Coherence and Speculativever-
sioning (MUCS) protocol which tracks the copies and versionsof every cache block present in the system.
In explicit mode, MUCS tracks the location of copiesin the system and takes appropriate action on loads
and stores. In implicit mode, MUCS tracks both the location and the program order among the versions.

From the standpoint of the memory system, the key smilarity between explicit and implicit modesis that
both casestrack a cache block's multiple instances (copiesand versions) viathe protocol state. On aload or
store access to a block, the access proceeds if the state of the block permits the access;,and otherwise the
access is deemed a miss, goes to the next level similar to aregular miss(i.e., tag mismatch), and the proto-
col locates the correct instance of the block. Both modes alow the common case of hits in the private
caches to proceed at cache hit speeds without any protocol action, and only cache misses invoke protocol
action involving some "' globa’ protocol state checking which may be dow.

The key differences between the two modesare that (1) implicit mode requires the memory system to track
loads and stores to enforce store-to-load order by squashing any prematurely executed loads, (2) while
explicit mode allows multiple copies of only one version, implicit allows multiple versions to co-exist, and
(3) implicit mode requires the memory system to differentiate between speculatively and non-speculatively
accessed data and "commit™ speculatively accessed data to non-speculative state if speculation succeeds.
These differences, however,do not imply any major incompatibilitiesbetween the two modes in theoverall
handling of memory accesses, but rather that certain combinationsof accesstypes(i.e., loadsor stores) and
protocol states may require different protocol action. In particular, the common case of cache hits are as
fast in implicit mode as they are in explicit mode, implying that the two threading schemescan be unified
efficiently.

]

10

In the remainder of this section, we describe the details of the MUCS protocol and explain the unification
of explicit and implicit modesin MUCS. Apart from the protocol state of the accessed block and the access
type (i.e., load or store), MUCS uses the mode bit to know if the access is from an implicit or an explicit
thread to take appropriate action.

Data Communication in explicit mode. As in conventional explicitly-threaded architectures, loads and
stores that hit (i.e., find the block in a permissible state) in the L1 caches proceed without any protocol
action. On a load miss, the bus snoops on the other caches and the cache with a dirty copy supplies the
block and also updates main memory (much like the I1linois coherence protocal). If no dirty copy isfound,
the next level suppliesthe block. If the requesting cacheistheonly L | cache holding the block, the block is
marked exclusive to optimize for future writes. On a store miss, the requesting cache obtains the block in
the same manner as aload miss, but additionally, al other cached copies are invalidated.

There is one minor difference between conventional coherence protocol actions and MUCS' actions for
explicit mode accesses. Because accesses in implicit mode need to differentiate between speculatively-
accessed and committed blocks, MUCS uses some state bits for this purpose. As such, explicit mode
accesses (loads and stores) are not speculative and do not require any enforcement of store-to-load order.
Therefore, MUCS simply marks the blocks accessed in explicit mode as committed using the same state
bits, making explicit mode accesses indistinguishable from committed implicit mode accesses, and unify-
ing accesses from both implicit and explicit modes within the same protocol.

Data Communication in implicit mode. Becauseimplicit mode loads are speculative, MUCS setsthe use
bit to record speculative loads. The key purpose of marking speculativeloadsisif a preceding CPU (i.e., in
cyclic thread dispatch order) performsastore to the same block after the load, the store's invalidation trig-
gers a squash of the premature load. Load misses issue a bus request and MUCS supplies a copy of the
closest preceding CPU’s (dirty speculative) version to the requesting cache; if the preceding CPUs do not
have adirty version, then the next level suppliesthe block. When the thread commits, all the use bitsin the
entire cache are cleared altogether. Although, blocks not accessed by the thread also have their use bits
cleared redundantly, this global clearing avoids scanning the cache for the blocks touched by the commit-
ting thread.

MUCS uses the usua dirty bit to record stores. If athread loads before storing to the same block, both of
the use bit and dirty bit are set. Unlike conventional invalidation-based coherence protocols, stores do not
alwaysinvalidate the other CPUs. On store misses, the bus snoops on the other caches and if there are any
succeeding CPUs with the use bit set, that CPU (and al subsequent CPUSs) is squashed. If any succeeding
CPU holds the block but has not loaded or stored to it (i.e., the block exists from some previous implicit
thread), then the block is marked as potentially stale (and not definitely stale because the storeis specula
tive, and may be squashed later) with the stale bit, so that the current thread or any future thread executing
on the CPU isforced to miss on the block and obtain the most recent version. On the preceding CPUs, the
use bit isignored, but the stale bit isset to force a missfor future threads that execute on the CPU. The pre-
ceding CPUs merely set the stale bit without invalidating the block and continue to use the block because
the block contains vaid data for the current thread, and the data is stale only for threads future to the stor-
ing thread.

Accesses (loads and stores) from speculative threads cannot be replaced because eviction of a speculative
block would cause MUCS to lose track of possible violations of program order. Speculatively loaded
blocks may be distinguished through the use bit, but speculatively stored blocks are inseparable from non-
speculatively stored blocks because both have the dirty bit set. MUCS sets the commit bit on thread com-
mits and clears the bit (i.e., commit bit cleared indicates speculative) on accesses (loads and stores) from
speculativethreads (i.e., al implicit threads except for the earliest thread which is non-speculative). When
the thread commits, all thecommit bitsin the entire cache are set atogether. Much like the redundant clear-

—

State bit Action

use set per access by implicit speculative loads executed before astore;
used only in implicit mode to flag premature loads violating store-to-load order;
cleared for the entire cache altogether at implicit thread commit and squash

dirty set by al storesin both modes;
used to writeback aversion oninvalidation in explicit mode and version consolidation in both modes;
cleared on writeback to next level in both modes

commit set for the entire cache altogether at implicit thread commit and set per access in explicit thread;
used in both modes to allow replacements of committed dirty versions;
cleared on every implicit speculative access

stale set only inimplicit on store miss from a succeeding CPU with a potentially more recent version, and by
cachefillsif a succeeding CPU has an uncommitted/unsquashed dirty versions;

used in both modes to force misses (if commit bit set), and to consolidate the most recent committed ver-
sion among multiple committed/squashed versions of aprevious cyclic order;

cleared in both modes for the consolidated version

squash set for the entire cache altogether at implicit thread squash;

used in both modes to force misses (if commit bit clear and squash bit set) on the next access to the block
(commit and squash never both set);

cleared on every implicit access, and in both modesfor the consolidated version

valid set per cache fill on cache missesin both modes;

used in both modes to determine validity of tag (not data), and allow replacements;

cleared on explicit invaidation, and in both modesfor al committed/squashed versions other than the con-
solidated version

Table 1: MUCS protocol state and actions.

ing of use bits, this global setting avoids scanning the cache for the blocks touched by the committing
thread.

The storing CPU creates a dirty, specul ative version after obtaining acopy of the closest preceding CPU’s
version. Thus, multiple speculative versions of the same block co-exist in the system. Becausethe stale bit
on a block indicatesthe potential existenceof versionsthat arefutureto the block, any cachefill on aload
or store miss sets the stale bit if the corresponding bus snoop detects uncommitted dirty versions in suc-
ceeding CPUs.

If athread is squashed then the commit bits are not set. But commit bits aone cannot distinguish between
blocks accessed in the squashed thread and blocks accessed in the middleof a yet uncommitted thread. To
avoid scanning the cachefor invalidating the blocks touched by a squashed thread, MUCS uses the squash
hit, and setsall the squash bits in the entire cache altogether irrespective of whether the thread accessed a
certain block or not. MUCS also clearsall use bitsin theentire cache altogether on a thread squash. Access
to ablock with the squash bit set and commit bit clear forces a miss and the squash bit is cleared when the
miss is serviced. The sguash bit is ignored if the commit bit is set because the squash bit is set globally
even for the blocks not accessed by the squashed thread. Much like every (speculative) access clears the
commit bit, every access clears the squash bit.

Although a block accessed by a squashed thread contains invaid data, the block's stale bit holds valuable
information. Every store from a speculative thread marks al other versionsas (potentially) stale, and even
if the thread is squashed later the stale bits are not corrected immediately to avoid scanning the cache on
squashes. Instead, theincorrectly marked stale bit on the most recent non-squashed version is corrected on
the next accessto the block. On the next access to the squashed block, the CPU missesand MUCS identi-
fies the closest preceding committed version (which isincorrectly marked as stale) to the squashed version
by following the reverse of thecyclic thread dispatch order, and clearsthe closest preceding verson's stale
bit.

version consolidation,

/ - explicit invalidation
explicit - N -
access, '\ explicit access,
implicit > implicit non- b

non-speculative - ™ =SpetulatveTcess . .

access

\ stales in both modes
[[] stalesinimplicitmode
|

implicit
speculative access

thread

implicit commit
speculative
access

version

consolidation —)» transitions in both modes

— transitions in implicit mode

speculative
states
commit =0

squash=0

impligit thread squash
speculative
access

implicit access

FIGURE 4: A high-level state transition diagram for MUCS.

On a miss, establishing the program order among multiple (committed and squashed) versionsis central to
maintaining correctness. MUCS usesthe cyclic thread dispatch order among the CPUsto infer the program
order among multiple versions. The currently speculative(i.e., not committed and not squashed) versions
can be ordered using the current cyclic order among the CPUs, but ordering committed or squashed ver-
sions using the cyclic order fails because the position of the oldest thread in the system cyclicaly rotates
from one CPU to the next (as threads commit). While a CPU may be older than another CPU at a certain
point in execution, the cyclic rotation may result in the second CPU being older than the first in another
point in execution. For example, the cyclic order at one point may be CPU3, CPUO, CPU1, and CPU2, and
a that point CPU3 is older than CPU2, and then the order becomes CPUO, CPU1, CPU2, and CPU3, and
now CPU2 isolder than CPU3.

This phenomenon is a problem only if versions from different cyclic orders are allowed to co-exist. To
avoid this problem, MUCS consolidates the versions from a previouscyclic order at the next access. Ver-
sions from a previous cycle order are guaranteed to be committed or sguashed and MUCS locates and
writes back the most recent committed dirty version (i.e., the committed, non-stale, dirty version or the
closest committed dirty version preceding the squashed, non-stale version) and invaidatingall the other
committed/squashed versions. VVerson consolidation needs to done only for the previous cyclic order's ver-
sions al of which are either committed or squashed, and does not change any of the speculative versons
from the current cyclic order. Note that the write back at consolidation is no different than the writeback of
adirty block in conventional coherence protocols when either the block is invalidated due to another CPU's
write request or a copy is made to satisfy another CPU's read request. Table 1 summarizes the protocol
state bits.

Speculatively accessed (i.e., not committed and not squashed) block cannot be replaced. If acommitted or
squashed block needs to be replaced, then MUCS writes back the most recent committed version among
theexisting versonsand al other committed/squashed versions areinvalidated.

Switching between implicit and explicit modes. Becauseexplicit threads may access data which was last
accessed by an implicit thread, explicit threads may accessblocks with squash or stale bit set. MUCS treats
these explicit mode accesses as misses, much like these wereimplicit mode accesses, consolidatesthe most
recent committed version via a bus snoop, and supplies the consolidated version to the requesting CPU.
Because explicit mode accesses are indistinguishable from committed implicit mode accesses, there is no
overhead for switching fromimplicit to explicit mode, or vice versa. Figure 4 shows a high-level statetran-
sition diagram of MUCS, illustrating the states and transitions shared by both modes and the states and

]

13

Thread
Digpatch/ Data
Data Completion Speculation
Machine Thread Size Load Imbalance Dependence Overhead Overhead
Mostly coarse-grain | Huge for serial segments; | Low to none | Low for None
Explicit-Only || threads, serial for | high when threads are not | except for coarse-grain
unanalyzable segments | multiples of CPUs seriad segments | threads
Implicit-Only || Fine-grain threads High whenirregular High High High for
control flow within thread large threads
Coarse-grain explicit | High only for implicit | High only for | Highonly for | Highonly for
Multiplex threads + fine-grain | threads with high load | implicit implicit largeimplicit
implicit threads imbalance threads threads threads
Table 2: Factors affecting performancein Explicit-Only, Implicit-Only, and Multiplex architectures.

transitions relevant to only implicit mode. There is no overhead for switching from one explicit threed to
another explicit thread or from one implicit thread to another implicit thread, much like conventional mul-
tiprocessors and Multiscalar SV C. Except for the restrictions on replacement mentioned above, thereisno
scanning the cache, or no extra expensive cleanup at the beginning or end of implicit or explicit threads.
MUCS performs all actions on demand, on a per access basis without maintaining any list of accessed
blocksand triggering bus snoopson the blocksin thelist.

Conventiona coherence protocolsemploy optimizationssuch as using exclusive state and snarfing of data
off the bus during a bus transaction by CPUs other than the sending and the receiving CPU involvedin the
transaction. These optimizationshave been employed by Multiscalar SVC and are applicableto MUCS as
well. Much like other speculative protocols [15,31,19,10], MUCS aso can optimize away false squashes
by maintaining protocol state a word or smaller granularity instead of cache block granularity. In this
paper, we take the first step towards unifying implicit and explicit threading and do not. explore the granu-
larity issue.

4 Key Factors Affecting Performance

Multiplex combines the performance advantages of explicit and implicit threading models. There are key
factors affecting the performance of either model. Therefore, to gain insight on Multiplex's performance,
we qualitatively evaluate these factors. Table 2 depicts the factors affecting performance and summarizes
their impact on explicit-only, implicit-only, and Multiplex CMPs. In the rest of this section, we briefly and
qualitatively evaluate the impact of each factor on performance. In Section 5, we present simulation results
that corroborateour intuition from this discussion.

Thread size. Thread size is a key factor affecting performance in both explicit-only and implicit-only
CMPs (as discussed in Section 3.1). Larger threads help (1) increase the scope of parallelism, and reduce
the likelihood of data dependenceacrossthreads, and (2) reduce the impact of thread dispatch/completion
overhead. Larger threads, however, increase specul ation overhead in implicit-only CMPs, by increasingthe
required storage to maintain specul atively produced data.

Load imbalance. A key shortcoming of explicit-only CMPsistheir inability to exploit parallelismin pro-
gram segments that are not analyzable at compile time. Unfortunately, even a small degree of unknown
dependences prevent a parallelizing compiler from generating explicit threads, resultingin aserial program
segment. Explicit-only CMPs' performance depends on the fraction of overall execution time taken by the
serial program segments. Multiplex can execute the serial program segments as implicit threads, signifi-
cantly improving performance over explicit-only CMPsin programswith large serial segments.

Besides seria program segments, another factor contributing to load imbalance in explicit-only CMPs is
the number of explicit threads when it is not evenly divisible by the number of CPUs; as a result, one or
more CPUs idle until the completion of the program segment. Multiplex can partition the work so that the
fraction resulting in aload imbalancein explicit-only CMPs executes as implicit threads, exploiting paral-
lelism across program segments and eliminating the load imbalance.

In implicit-only CMPs, load imbalanceis highly dependent on control flow regularity across threads. For
instance, inner loops with many input-dependent conditional statements may result in a significant load
imbalance across the CPUs. Explicit-only CMPs use coarse-grain threads in which control flow irregulari-
tiesacross basic blocksw thi n a thread often have a cancelling effect, reducing the overall load imbalance
across threads. Control flow irregularities only impact performancein Multiplex for program segments that
execute as implicit threads.

Data dependence. Parallelizing compilers can often eliminate known data dependences (e.g., through
privatization or reduction optimization). Unknown data dependences, however, result in serial program
segments in explicit-only CMPs, reducing performance. Using fine-grain threads in implicit-only CMPs
often causes high data dependence and communication across adjacent threads. Data dependence contrib-
utes to threading overhead because a dependent thread must a a minimum wait for data to be produced.
While dependences through registers are synchronized (becausethe compiler knows exactly which threads
produces and consume register values), memory dependences may incur additional speculation overhead
when memory synchronization hardware is unable to prevent unwanted speculation [22]. Multiplex
increases opportunity for eliminating thread dependence by executing compile time analyzable program
segments as explicit threads.

Thread dispatch/completion over head. Thread dispatch/completion overhead only playsamajor rolefor
fine-grain threads, where the overhead accounts for a large fraction of thread execution time. In explicit-
only CMPs, thread dispatch incursthe overhead of copying of stack parametersand register vaues. Thread
completion incurs the overhead of flushing the CPU load/store queues to make memory modificationsvisi-
ble to the system. Explicit-only CMPs, however, use fine-grain threads only when the compiler can not
analyze dependences among larger thread bodies, e.g., when the compiler selects inner loops as threads
because the outer loops are not analyzable. Multiplex can execute such fine-grain threads as implicit
threads, thereby reducing the thread dispatch/completion overhead.

While thread dispatch incurs minimal overhead in implicit-only CMPs, thread completion incursthe over-
head of flushing the load/store queue as in explicit-only CMPs, and may incur a high overhead. Thread
completion overhead in implicit-only CMPs may be significant because these CMPs often use fine-grain
threads. Multiplex reduces much of the thread completion overhead as compared in implicit-only CMPs by
executing anal yzabl e program segments in coarse-grain explicit threads.

Data speculation over head. Data speculation in implicit-only CMPsis limited by theamount of buffering
data caches can provide (Section 3.3). Speculation requires buffering al created versions, causing data
cachesto fill up quickly and overflow for memory-intensivethreads and/or long-running threads. Because,
speculative data are not allowed to leave the caches, execution for a speculative thread. overflowing in the
cache stops until all prior threads commit and the thread becomes non-specul ative. While data speculation
is always performed in implicit-only threads, threads are not always data-dependent. Multiplex signifi-
cantly reduces the data speculation overhead by execution independent threads as explicit threads, obviat-
ing the need for speculation.

5 Quantitative Perfor mance Evaluation

In this section, we quantitatively evaluate a Multiplex CMP’s performance using smulation. We first
describe our compiler infrastructure, the experimental methodol ogy, and the application and input parame-

Processing Units name ” input #of inst(billions)
CPUs 4 dual-issue, out-of-order SPECfp95 Benchmarks
L1 i-cache 8K, 2-way apsi train 2.847
1 cycle hit applu train 0.649
L1 d-cache 16K, 4-way, 16-byte block .
7 trai 0.47
1-cycle hit, Jopep ran 0
byte-level disambiguation hydro2d test 1.141
Squash buffer size 64 entries mgrid train* 2.810
Reorder buffer size 32 entries su2cor test 1.114
LSQ size 32 entries swim test 0.753
Functional units 3 integer, 1 floating-point, tomcaty test 0.440
1 memory turb3d train® 0332
Branch predictor path-based, 4 targets waves train® 0.114
System Perfect Benchmarks
Thread Predictor path-based, 2 targets arc2d std® 1.530
Descriptor Cache 16K, 2-way, 1-cycle hit flo52 std 3.466
L2 9-cycle hlt and transfer, 1rfd std 3.405
perfect hit rate — :
L2])) Table 4: Applicationsand input sets.
L1/L2 inter connect g;og,rt’y s%llt-transactlon bus, *indicates scaled down number of loop iterations
L -oit wide , in the interest of reduced simulation time.

Table 3: System configuration parameters.

terswe use. In the base case performanceresults, we compare a Multiplex CM P with conventional explicit-
only and implicit-only CMPs. Next, we present the results from two experiments providing evidence that
(1) implicit-only CMPs are limited to using fine-grain threads and increasing thread size reduces perfor-
mance in these machines, and (2) our heuristics-based compiler optimizations make a near-optimal deci-
sion in choosing between explicit and implicit threads.

5.1 Methodology and Infrastructure

We have developed a cycle-accurate simulator for a Multiplex CMP. Our simulator models multiple ILP
CPU cores and pipelines, the memory hierarchy, and an implementation of the Multiplex threading mecha-
nisms in detail. Table 3 summarizes the processor and system configuration parameters we use in this
study. The CMP include four dual-issue out-of-order cores, each with L | instruction and data caches. We
assume perfect L2 hit rates, but model the cachefill latency between L1 and L2 and contention at theinter-
connect accurately.! The simulator modelsthe thread dispatch unit, descriptor cache, and the register com-
munication queues for the implicit mode, the dispatch and synchronization instructions for the explicit
modes, and the MUCS bus protocol.

Our compiler infrastructureintegrates Polaris [6], a state-of-the-art parallelizing preprocessor generating
explicit threads, with the Multiscalar compiler [35], a GCC-based compiler for generating implicit threads.
Our compiler infrastructureis fully automated, obviating the need for hand tuning. Moreover, we compile
the benchmarks as is without modifying the distributed source code. To evaluate and compare Multiplex
against explicit-only and implicit-only architectures, the compiler allows for generating implicit-only and
explicit-only threads when compiling applications.

1. Our application data sets have small L2 footprints, and therefore our L2 assumption will have minimal impact on our perfor-
mance results.

4.5
4.0 3 Implicit-Only Explicit-Only m Multiplex
3.5 i
3.0
2.5
2.0
1.5
1.04---
0.5
0.0

Speedup

» Ao}
@.QQ \ﬂ’&)@

N [9 S &
\QQQQ F \\)@’5 N ’b‘& &

d
w

Class 1 Class 2 4

FIGURE 5: Overall Performance of Multiplex CMP compared to an implicit-only and an explicit-
only CMPs. In class 1 applications, implicit-only outperforms explicit-only and vice versain class 2
applications. In all applications, Multiplex matches or exceeds the performance of the better
alterarnative.

We use acombination of benchmarksfrom the SPECfp95 [9] and the Perfect [5] suites. Table 4 shows the
benchmarks, the used input data sets and the number of instructions executed for each benchmark. In the
interest of smulation turnaround time, we scale down the number of outer loop iterationsfor some of the
applications. The changein input set, however, has a minimal impact on our performanceresults since the
inherent communication/computation characteristicsof the applications remain the same.

5.2 Base Cae Reaults

Figure5 compares speedupsfor the Multiplex CM P against the explicit-only and the implicit-only CMPs.
We measure speedup relative to a superscalar processor configured identically as one of Multiplex CPUs.
The figure divides the applicationsinto two classes: Class 1 applicationsfavor the implicit-only CMP and
class 2 applicationsfavor the explicit-only CMP. The resultsindicate that there is asignificant performance
disparity between the explicit-only and the implicit-only CMPs across the applications. In class 1 applica-
tions, the implicit-only CMP achieves on average 35% higher speedupsand at best 85% higher speedups
than the explicit-only CMP. In contrast, in class 2 applications the explicit-only CMP achieveson average
32% higher speedups and at best 74% higher speedupsthan the implicit-only CMP.

Multiplex always performs best. In all applications, Multiplex makes the correct choice between the
explicit and implicit threading models, aways selecting the better of the two. Multiplex on average
achieves a speedup of 2.69, improving speedups by 16% over explicit-only and 22% over implicit-only
CMPs. In seven applications, Multiplex improves speedups over the better of the two on average by 10%.
To better understand application performance on each architecture, we evauate the key factors affecting
performancein therest of thissection.

Threading opportunity in the explicit-only CMP. Table5 shows the percentage of the origina (serial)
execution of each application that can be recognized as parallel by the compiler. The opportunity for
explicit-only architecturesis to execute this fraction of the application in parallel. Amdahl’s law dictates
that a substantial fraction of serial execution can offset the gainsfrom parallelism and severely limit overall
performance. For example, in su2cor, paralelizing 81% of the application limits speedups to at most 2.5
(i.e., 1/(0.8/4+0.2)=2.5). Thisis a key source of performance degradation in explicit-only architectures,
which can be overcome by Multiplex through executing the serial sectionsas implicit threads.

In addition, two of the class 1 applications, apsi and applu suffer from a small thread size. The outermost
loops that the compiler can select as explicit threadsin these applicationsconsist of loops with small bod-

I~ ;‘3, X 2) % § g

Q0 — - ~ Y < % = E o~
Benchmark & § ¥ § § § § B % S N
Fraction 0 72 34 97 70 81 82 77 99 93 95 100 95
Threaded (%)

Table 5: Fraction of the threaded execution time d each application that is recognized as parald by
the compiler and converted to explicit threads.

100%

< 90% A _ Lf)aj Imbalance
® 80% - £i] Dispatch/Complete
{qEJ 70% 4 Overflow
3 60% - Dependence/Squash
o 90% -
5 40% - .
@ 30% - i Implicat-Only
£ 20% m Multiplex
= 10% _
0% |

FIGURE 6: Overheads of the Implicit-only and the Multiplex architecture.

ies and iteration counts. Therefore, the thread dispatch overhead in these applications significantly impacts
overal thread execution time. Multiplex can select these loops as implicit threads, significantly improving
performance over the explicit-only CMP.

Threading overhead in the implicit-only CMP. Figure6 shows the overheads that have a first order
impact on implicit-only and the Multiplex CMPs' performance. The figure plots overhead (i.e., the number
of processor cycles not contributing to computation) as afraction of overall execution time in the implicit-
only CMP. The figure only includes overheads due to the threading mechanisms (discussed in Section 4);
overheadsintrinsic to the base superscalar CPU cores (e.g., pipeline hazards) are the samein al the CMPs
and are not shown. For al applications, other system characteristicsremain the same across systems, with
the exception of memory latency in mgrid; using explicit threads to parallelize outermost loops in Multi-
plex changes mgrid’s data layout in the caches, significantly increasing data locality as compared to the
implicit-only CMP.

We will first consider overheads in the implicit-only CMP and then discuss the changes when going to
Multiplex. The figure shows that the largest source of overhead is data dependences and sguashes. Our
measurements indicate that squash overhead is small in all cases, except infpppp. The thread predictor
exhibits high prediction accuraciesfor al the applications because |oop branches (at the: thread boundaries)
aretypically predictable. The memory dependence hardware(i.e., the squash buffer [22]) can a so synchro-
nize most dependences because most implicit threads are fine grain with small instruction footprints. The
squashesinfpppp are due to low hit ratesin the squash buffer because offpppp's large threads [22].

Load imbalance is another significant factor especialy in class 1 applications. Fpppp, apsi, turb3d, applu,
andwave5 havecontrol flow irregularitiesin theinner loops (i.e., loop iterationsincluding input-dependent
conditionals[35]). Because theimplicit-only CMPislimited to using fine-grain threads. it primarily targets
inner loops and therefore suffers from load imbalance in these applications. Similarly.,thread completion

overhead of flushing the load/store queues is non-negligiblein many of the applications due to the small
thread size.

Finally, data speculation overhead due to speculative state overflow is only a significant overhead in
turb3d, wave5, and tomcatv. For the implicit-only CMP, the compiler carefully selects thread size to mini-
mize the state overflow [35]. In Section 5.3, however, we show that using larger threads to increase paral-
lelism and eliminate dependences would prohibitively increase the speculation overhead. This overhead is
one of the key limitations of implicit-only architecturesand a motivation for Multiplex.

Threading overhead in Multiplex. The figure indicates that Multiplex reduces much of the overhead in
theimplicit-only CMP especialy in class 2 applications. In these applications, M ultiplex exploits advanced
parallelization techniques to eliminate data dependences and generate coarse-grain explicit threads (con-
sisting of outer loop nests), reducing all sourcesof overhead, and significantly improving performanceover
the implicit-only CMP.

In class 1 applications, there are afew program segments that Mutiplex converts to explicit threads. These
explicit threads reduce the data dependence overheadin apsi and su2cor. Moreover, theexplicit threadsvir-
tualy eliminate the data speculation overhead in tomcatv and turb3d, and diminish it substantialy in
wave5. As such, tomcatv and su2cor exhibit a high performance boost from Multiplex. Unfortunately, the
parallelization techniques the compiler uses slightly increase the instruction count, the overall impact on
performancein apsi, turb3d, applu, and wave5 is modest.

5.3 Impact of Thread Size

A significant source of inefficiency of the implicit-only CMPs are synchronized seria regions. We have
argued that Multiplex can reduce this inefficiency because it exploits explicit paralelism in outer loops,
which encompass the inner serial program sections. Figure 7 demonstrates that it would not be a simple
solutionfor theimplicit-only CM P to exploit outer parallelism. In thisexperiment, weforce the compiler to
generate implicit threads (for the implicit-only CMP) consisting of theiterationsof outer, parallel 10ops —
the same loops selected as explicit threads in the explicit-only CMP (and Multiplex). Because these |oops
are dependence-free, the only source of overhead in the implicit-only CMP is due to data specul ation and
speculativestate overflow.

The figure shows that this change would lead to a drastic performance degradation in, most applications.
The reason is that the threads become so large that speculative state overflow becomes dominant. For
example, in applu, the overflow increases from 0 to 30% of the total number of cycles in the original,
implicit-only execution. In swim, this overhead increases to 160%.

5.4 ReducingDispatch Overhead in Explicit Threads

Small explicit threads can incur significant dispatch overheadsfor setting up and initializing private stacks.
Because of this reason, small parallel loops run more efficiently using implicit threads. The compiler
applies a smple heuristic to decide when it is better to run a compiler-recognized parallel loop with
implicit rather than explicit threads. The heuristic " predicts” that all innermost loops run more efficiently
with implicit threads. Inner loops are usualy small and do not cause speculative state overflow in implicit
threads. Hence there is usually no benefit from running such loop iterationsas explicit threads.

Figure 8 shows the performance impact of this compiler optimization. It shows Multiplex's performance
without and with applying the heuristic. In two applications, apsi and applu, there is a significant perfor-
mance improvement. The numbers above the bars show the percentageof the execution timethat is spent in
explicit threads before and after applying the heuristic. In two applications (fpppp and su2cor) there is no
significant change. | nfpppp, there was no significant, compiler-recognized parallelism. In su2cor, the heu-

45
4.0 1 1 InnerLoop @ Outer Loop
3.5 4
3.0
2.5 4
2.0 S

1.5 4

1.04- - R k- - - k- -
0.5 4 [I

0.0

N S O \s) AR o s O
QQQQ o 0{0‘5 & ¢ 6&00 g P \X&O‘L &€ \\ob(L &F & &
A N

Speedup

[[
» Lgd

|« Class 1 < Class 2

FIGURE 7: Effect of increasing the thread size in the Implicit-only CMP. The left bars show the
same performance as in Figure 5. The right bars show the performance when selecting threads frorr
outer parallelloops, as done for explicit threads in Multiplex. Note, that the presence of such outer
Ioop_';,]depends on the compilers ‘ability to identify them. For example, in fpppp "inner" and "outer" loop
are the same.

4.5
40]] Unoptimized M Heuristic B Profiling
3.5 81/37

3.0 4 82/82
25

2.0 57/18
15_
1.0
0.5
0.0

10/5 76/35 74/36

Speedup

Q S 66 N 36 &
W& R &K @ \oé‘db

FIGURE 8: Reducing explicit thread dispatch overhead in class 1 applications. The figure
illustratesthe effect of the heuristic-basedthread selection algorithm in eliminating high-overhead
explicit threads in class 1 applications. Profiling shows optimal thread selection. Explicit thread
dispatch overhead is minimalin class 2 applications, which benefit from coarse-grain threads.
Numbers above the bars show the percentage of the execution time spent in explicit threads before
and after applying the heuristic.

ristic does not detect unprofitableexplicit threads. In tomcatv, the heuristic does not improve performance
because one of the threads incurs speculative state overflow after convertion to implicit. In waveb and
turb3d, al affected threads performidentically before and after the optimization.

The figure also shows an upper performance bound that can be achieved by always correctly choosing the
better of explicit and implicit threads. We obtained this bound by profiling the implicit-only and explicit-
only executions and then manually combining the best cases loop by loop. The figure shows that the heu-
ristic is already close to the optimum. Note that increasing the input data size, however, may lead to more
speculative state overflow in inner loops and thus change the trade-off between implicit and explicit

threads.

20

6 Rdated Work

There are many projectsexploring architectural proposals for implicit threading such as Wisconsin Multi-
scalar [29,15] and Trace Processor [28], Stanford Hydra [18], CMU Stampede [30], Minnesota Super-
threaded processor [33], Illinois Speculative NUMA [10], and SUN Microsystems MAJC [32]. While
Multiplex proposes techniques to unify implicit and explicit threading within a single application, these
projects havefocused on employing implicit and explicit threading separately on a per application basis but
not combined within one application.

Many of the projects have a compiler component to develop compiler techniques for implicit threading.
Some of the projects use the advanced SUIF compiler [17] for program analysisbut rely on manual identi-
fication of program sectionsfor speculative parallelization by the compiler [31,191. Because misspecula-
tion recovery is in software, the compiler also generates recovery code. While many of the projects
evaluate performance on parts of applications selected for implicit threading [18,30,10], Multiplex evalu-
ates entire applicationsby using a fully automated compiler infrastructure consisting of the Polaris com-
piler [6] integrated with the Multiscalar compiler [35]. Because speculative state buildup and
misspecul ation recovery is fully implemented in hardware, the Multiplex compiler does not generate any
mi sspecul ation recovery code.

In [24], the authors describe several compiler techniquesto help thread-level speculation and argue that
exploiting loop-level parallelismisinsufficient. In [33], the authorsdescribe compiler techniquesfor super-
threaded architectures. No implementation of these techniquesexist yet.

There are proposalsto provide hardware support to make dependence tracking efficient in DSM systems.
Extensionsto compiler techniquesfor runtimedata dependencetesting and software misspecul ation recov-
ery are proposed in [37,36]. While these extensions focus on the specific compiler technique of runtime
data-dependence testing, the Multiplex compiler performs general unification of irplicit and explicit
threads.

7 Conclusons

Chip multiprocessors(CMPs), which exploit thread-level parallelism (TLP), areemerging as an dternative
to traditional superscalar architectures. In one form of TLP, the compilerlprogrammer extractstruly inde-
pendent explicit threads from the program, and in another, the compilerlhardware partitions the program
into speculatively independent implicit threads. However, explicit threading is hard to program manually
and, if automated, is limited in performance due to seriaization of unanalyzable program segments.
Implicit threading, on the other hand, requires buffering of program state to handle misspeculations,and is
limited in performancedue to buffer overflow in large threadsand dependencesin small threads.

We proposed the Multiplex architecturefor CMPs to unify implicit and explicit threading based on two key
observations: (1) Explicit threading's weaknessof serializing unanalyzable program segments can be alle-
viated by implicit threading's speculative parallelization; implicit threading's performance loss due to
speculative buffer overflows in large threads and dependences in short threads can be alleviated by large
explicit threads' exemption from buffering requirementsin analyzable program segments. (2) To achieve
high performance, explicit and implicit threading employ cache coherence and speculative versioning,
respectively, which are similar memory hierarchy mechanisms involving multiple private cachesfor effi-
cient sharing of data. Multiplex exploits the similarities to allow efficient implementation without much
extra hardware and combines the complementary strengths of implicit and explicit threading to alleviate
the individual weaknesses of the two schemes.

We presented architectural (hardware and compiler) mechanismsfor selection, dispatch, and datacommu-
nication to unify explicit and implicit threadsfrom a singleapplication. We proposed the Multiplex Unified

21

Coherence and Speculative versioning (MUCS) protocol which provides unified support for coherence in
explicit threads and speculative versioning in implicit threads of a single application executing on multiple
cores with private caches. Using simulation of the ten SPEC{p95 and three Perfect benchmarks, we showed
that neither an implicitly-threaded nor explicitly-threaded architecture performsconsistently better than the
other across the benchmarks, and for several benchmarks there is alarge performance gap between the two
architectures. We showed that Multiplex matches or outperforms the better of the two architectures for
every benchmark and, on average, outperforms the better architecture by 16%.

References

(1

(2]

(3]

(4]

[5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus IPC: The end of the road for conventional
microarchitectures. In Proceedingsof the 27th Annual International Symposiumon Computer Archrtecture, pages 248—259,
June 2000.

T.M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of the 32nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 32), Nov. 1999.

U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program parallelization. Proceedings of the IEEE,
81(2):211-243, Feb. 1993.

L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pi-
ranha: A scalable architecture based on single-chip multiprocessing. In Proceedingsof the 27th Annual Inter national Sym:
posiumon Computer Architecture, pages 282—293, June 2000.

M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo, Y. Pang, R. Roloff, A. Sameh, E. Clementi, S. Chin, D. Schneider,
G. Fox, P.Messina, D. Walker, C.Hsiung, J. Schwarzmeier, K. Lue, S.Orszag, F. Seidl, O. Johnson, G.Swanson,
R. Goodrum, and J. Martin. The Perfect Club Benchmarks: Effective performance evaluation of supercomputers. Interna-
tional Journal of Supercomputer Applications, 3(3):5-40, 1989.

W. Blume, R.Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T.Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger,
L. Rauchwerger, and P. Tu. Parallel programming with Polaris. |[EEE Computer, pages 78—82, Dec. 1996.

W. Blume and R. Eigenmann. Non-linear and symbolic data dependence testing. |EEE Transactions on Parallel and Dis-
tributed Systems, 9(12):1180-1194, Dec. 1998.

S. Breach, T. Vijaykumar, and G. Sohi. The anatomy of the register file in a multiscalar processor. In Proceedingsof the
27th Annual IEEE/ACM International Symposiumon Microarchitecture (MICRO 27), pages 181-190, Nov. 1994.

B. Case. Spec95 retires spec92. Microprocessor Report, August 21 1995.

M. Cintra, J. F. Martinez, and J. Torrellas. Architectural support for scalable speculative parallelization in shared-memory
multiprocessors. In Proceedingsof the 27th Annual International Symposiumon Computer Architecture, pages 13-24, June
2000.

K. Diefendorff. Power4 focuses on memory bandwidth. Microprocessor Report, 13(13), 1999.

M. Franklinand G. S. Sohi. The expandable split window paradigm for exploiting fine-grain parallelism. In Proceedingsof
the 19th Annual International Symposiumon Computer Architecture, pages58-67, May 1992.

M. Franklin and G. S. Sohi. ARB: A hardware mechnism for dynamic reordering of memory references. |EEE Transactions
on Computers, 45(5):552-571, May 1996.

G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependencetesting. In Proceedingsof the ACM SIGPLAN '91 Conference
on Programming Language Design and Implementation, pages 15-29, June 1991.

S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. Sohi. Speculative versioning cache. In Proceedings of the Fourth IEEE
Symposium on High-Performance Computer Architecture, pages 195-205, February 1998.

J Gu, Z. Li, and G. Lee. Experience with efficient array dataflow analysis for array privatization. In Sixth ACM SIGPLAN
Symposium on Principles & Practiceof Parallel Programming (PPOPP), pages 157 - 167, June 1997.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing mul-
tiprocessor performance with the SUIF compiler. IEEE Computer,29(12):84—89, Dec. 1996.

L. Hammond, M. Willey, and K. Olukotun. A single-chip multiprocessor. |EEE Computer, 30(9), September 1997.

L. Hammond, M. Willey, and K. Olukotun. Dataspeculation support for achip multiprocessor. In Proceedingsof the Eighth
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS VIii),
October 1998.

J. Hennessy. The future of systems research. |EEE Computer, 32(8):27-33, Aug. 1999.

M. Horowitz, R. Ho, and K. Mai. The future of wires. In Proceedings of the Semiconductor Research Cor poration Work-
shop on Interconnects for Systems on a Chip, May 1999.

A. Moshovos, S. E. Breach, and T. N. Vijaykumar. Dynamic speculation and synchronization of datadependences. In Pro-
ceedings of the 24th Annual Inter national Symposium on Computer Architecture, June 1997.

B. A. Nayfeh and K. Olukotun. Exploring the design space for a shared-cache multiprocessor. In Proceedingsof the 21st

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

{36]

[37]

23

Annual International Symposium on Computer Architecture, pages 166-175, April 1994.

J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculétive thread-level parallelism. In Proceedings of the Seventh
International Conference on Parallel Architectures and Compilation Techniques, Oct. 1999.

S. Palacharla, N. P. Jouppi. and J. E. Smith. Complexity-effective superscalar processors. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 206-218, June 1997.

B. Pottenger and R. Eigenmann. Idiom recognition in the Polaris parallelizing compiler. In Proceedings of the 1995 Inter-
national Conference on Supercomputing, pages 444-448, July 1995.

W. Pugh. Going beyond integer programming with theomegatest. |EEE Transactions on Parallel and Distributed Systems,
6(2):204-211, Feb. 1995.

J.E. Smith and S. Vaapeyam. Trace processors: Moving to fourth-generation microarchitectures. |[EEE Computer,
30(9):68-74, Sept. 1997.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the 222d Annual International
Symposium on Computer Architecture, pages 4144235, June 1995.

J. G. Steffan, C. B. Colohan, A. Zhaia, and T. C. Mowry. A scalable approach to thread-level speculation. In Proceedings
of the 27th Annual International Symposiumon Computer Architecture, pages 1-12, June 2000.

J. G. Steffan and T. C. Mowry. The potential for using thread-level data speculation to facilitate automatic parallelization.
In Proceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture, pages 2-13, February 1998.
M. Tremblay. An architecture for the new millennium. In Proceedings of the 1999 Hot Chips Symposium, August 1999.
J-Y. Tsai, J. Huang. C. Amlo, D. Lilja, and P.-C. Yew. The superthreaded processor architecture. |EEE Transactions on
Computers, 98(9), Sept. 1999.

P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sixth Languagesand Compilers for Parallel Com-
puting, pages 500-521. Springer-Verlag, 1994.

T. N. Vijaykumar and G. S. Sohi. Task selection for amultiscalar processor. In Proceedings of the 315t Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 31), December 1998.

Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative run-time parall€elization in tlistributed shared-mem-
ory multiprocessors. In Proceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture, Jan.
1998.

Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative parallelization of partially-parallel loopsin dsm mul-
tiprocessors. In Proceedings of the Fifth IEEE Symposium on High-Performance Computer Architecture, Jan. 1999.

	Purdue University
	Purdue e-Pubs
	10-1-2000

	Multiplex: Unifying Conventional and Speculative Thread-Level Parallelism on a Chip Multiprocessor
	Seon Wook Kim
	Chong-Liang Ooi
	IL Park
	Rudolf Eigenmann
	Babak Falsafi
	See next page for additional authors
	Authors

