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Abstract

Given the constantly improving cost and speed of genome sequencing, it is reasonable to expect that personal genomes will 

soon be known for many millions of humans. This stands in stark contrast with our limited ability to interpret the sequence 

variants which we find. Although it is, perhaps, easiest to interpret variants in coding regions, knowledge of functional impact 

is unknown for the vast majority of missense variants. While many computational approaches can predict the impact of 

coding variants, they are given a little weight in the current guidelines for interpreting clinical variants. Laboratory assays 

produce comparatively more trustworthy results, but until recently did not scale to the space of all possible mutations. The 

development of deep mutational scanning and other multiplexed assays of variant effect has now brought feasibility of this 

endeavour within view. Here, we review progress in this field over the last decade, break down the different approaches into 

their components, and compare methodological differences.
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Introduction

Linking genotype to phenotype is a very difficult problem. 

The parts of the human genome which we understand best 

are protein-coding genes, yet they only constitute a small 

fraction of the whole. Impacts of mutations in other func-

tional elements such as splice sites, promoters, or regulatory 

sequences are more difficult to assay, not to mention the 

vast stretches of intergenic space. While one might expect 

a priori that any given intergenic variant is unlikely to bear 

functional significance, a large number of loci identified as 

correlated with diseases in genome-wide association studies 

(GWAS) are found within these regions (Maurano et al. 

2012; Edwards et al. 2013). While many of these cases may 

stem from linkage disequilibrium to coding or splice-altering 

variants (Taşan et al. 2015), more functions yet unknown 

may lie hidden within this vast space. Even for protein-cod-

ing sequences, the problem is far from simple. Alleles with 

simple Mendelian behaviour are the exception rather than 

the rule. Most phenotypes are complex, i.e., they emerge 

through the interplay of many different genetic or environ-

mental factors. Conversely, many genes are also pleiotropic, 

i.e., they are involved in more than one mechanism (Ches-

more et al. 2018). As a result of this complexity, mutations 

found in different people may have different quantitative or 

qualitative effects—phenomena that are correspondingly 

termed variable expressivity and incomplete penetrance. 

Similarly, two different mutations within the same coding 

sequence will often differ by effect. Depending on how the 

translated protein is affected (e.g., catastrophic folding fail-

ure, alteration of a molecular interaction interface or active 

site, or a subtle change on an unused surface), the effects 

may differ in severity or in rare cases may even result in the 

emergence of qualitatively different behaviours.

Given the much greater difficulty of interpreting non-

coding regions, clinical applications have so far largely 

concentrated on protein-coding genes. Sequencing panels 
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for known disease-associated genes and even whole-exome 

sequencing (WES) are widely commercially available. A 

number of different standards for classifying mutations 

with respect to their potential health impacts have been pro-

posed; most prominently, the American College of Medical 

Genetics and Genomics (ACMG) standard (Richards et al. 

2015). It defines categories stretching from “pathogenic” 

to “benign”, including the ‘gray zone’ category of “variant 

of uncertain significance” (VUS). Even though the muta-

tional landscape for a handful of genes, such as BRCA1 are 

explored better than others due to their established relevance 

and potential for taking clinical action (Cheon et al. 2014), 

the majority of clinical variants across all genes are currently 

classified as VUS. In ClinVar alone, VUS make up over 

50% of entries for missense variants (Fig. 1), despite ClinVar 

guidelines that actively discourage submission of unclassi-

fied variants. In a recent study using gene panels assessing 

germline cancer risk loci (Maxwell et al. 2016), over 98% 

of missense variants were classified as VUS. Not only can 

these uncertainties burden patients with unnecessary anxi-

ety (Cheon et al. 2014), they also call into question the value 

of sequencing in the clinic if the majority of findings are 

not actionable. With increasing use of WES and WGS as 

opposed to targeted gene panels, this problem is only going 

to get worse. According to the 1000 Genomes Project data, 

every person carries 100–400 missense variants that are 

so rare that they have likely never been seen before in the 

clinic (The 1000 Genomes Project Consortium 2015). In the 

absence of the previous observations, they would automati-

cally be added to the long list of VUSs.

Like its sister standards, the ACMG guidelines also rec-

ognize different methods of gathering evidence towards a 

variant’s classification. These can be broadly summarized 

as (1) frequency of observation in affected or unaffected 

individuals; (2) laboratory assays; and (3) in silico predic-

tion. Out of these three categories, in silico prediction used 

to be the only option that easily scaled to cover all possible 

variants and could be applied proactively. However, it is 

also considered one of the weakest forms of evidence. Over 

the last decade, however, a new type of high-throughput 

laboratory assay has emerged: Multiplexed Assays of Vari-

ant Effect (MAVEs) (Starita et al. 2017), which promise to 

massively increase the scalability of those methods that the 

ACMG considers in the highest tiers of evidence. In the fol-

lowing, we will first recapitulate some of the more popular in 

silico approaches and then discuss MAVEs, breaking down 

the methodological variety in the existing studies, describ-

ing some of the newest developments and their implications 

for the future.

In silico approaches to variant function 
assessment

A number of algorithms exist that offer predictions as to 

the deleteriousness of mutations, with prominent examples 

including PolyPhen-2 (Adzhubei et al. 2013), SIFT (Ng 

and Henikoff 2001), and PROVEAN (Choi et al. 2012). 

PolyPhen-2 employs a simple (naive Bayes) machine learn-

ing method based on evolutionary conservation and pro-

tein structural features. It uses a set of previously reported 

pathogenic alleles as a positive training set and differences 

between human genes and their mammalian homologues as 

a negative training set. By contrast, SIFT (Sorting Intolerant 

From Tolerant) only uses evolutionary conservation. The 

tool uses multiple sequence alignments to calculate position-

specific score matrices for each gene which are then normal-

ized and transformed into probability values. PROVEAN 

(PROtein Variation Effect ANalyzer) similarly only takes 

into account sequence alignments. However, rather than 

just computing a position-specific score, PROVEAN calcu-

lates the difference in alignment quality between using the 

wild-type or variant sequence against clusters of homolo-

gous sequences. The average distance is then interpreted as 

indicative of the deleteriousness of the variant.

While the three tools succeed in making good predic-

tions, their reliability is unfortunately still not high enough 

to serve as a basis of clinical decision making. We and oth-

ers recently performed an independent comparison of these 

tools on a set of well-established disease-causing variants 

as well as rare polymorphisms with no known disease asso-

ciation (Sun et al. 2016). The study examined the trade-

off between precision (the fraction of pathogenic variant 
Fig. 1  Percentage of variants of uncertain significance (VUS) among 

missense allele Clinvar records over time from 1990 until 2017
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predictions that were correct) and sensitivity (the fraction 

of pathogenic variants that were predicted to be pathogenic). 

A high precision can be considered especially important 

when considering taking clinical action based on a predic-

tion. When compared at a minimum precision level of 90%, 

PolyPhen-2 and PROVEAN only reach a sensitivity of 19 

and 21%, respectively, while SIFT did not achieve 90% pre-

cision at any score threshold. Consistent with these limita-

tions, the ACMG currently considers only cases in which 

multiple methodologically orthogonal prediction algorithms 

agree as weak evidence in a supporting role for VUS re-

classification (Richards et al. 2015).

Multiplex assays of variant e�ect (MAVE)

An alternative to the in silico methods above are functional 

assays in the laboratory. Such assays are, indeed, useful 

tools for the classification of variants of uncertain signifi-

cance. Assessment of the effects of variants observed in the 

clinic has led to many high-impact discoveries such as drug 

resistance variants in cancer genes (Solit et al. 2006; Azam 

et al. 2003; Shah et al. 2002; Kohsaka et al. 2017). How-

ever, experimental assays of variant function have generally 

been ’reactive’, in the sense that measurements are carried 

out only after (often long after) the first clinical presenta-

tion of a variant, owing to the resource- and time-intensive 

nature of this testing. However, as more variants are discov-

ered, it may be more useful to take a proactive experimen-

tal approach: Building an atlas of the functional effects of 

all possible variants, including those that have never before 

been observed in a patient. One may object that it would not 

be economical to screen variants that may never actually be 

observed in a patient. However, a simple back-of-envelope 

calculation given the size of the human population and the 

frequency of de novo mutation (Acuna-Hidalgo et al. 2016) 

shows that every missense variant that can possibly exist 

(i.e., it is not fundamentally incompatible with life) can be 

expected to occur on average in

Yet, assaying all possible variants in known disease genes 

would require massive parallelization. Such efforts have 

recently gained much traction, having their foundations 

laid in the winter of 2010/11 with three papers by Fowler 

et al. (2010), Ernst et al. (2010), and Hietpas et al. (2011) 

that collectively pioneered a technology initially termed 

Deep Mutational Scanning (DMS). These seminal papers 

have since inspired a growing number of similar efforts by 

other groups. While the earliest studies of this kind focused 

on coding regions, multiple groups have since begun 

7.6 × 109humans × 0.6 de novo exome SNVs

30Mb exome × 3 possible SNVs per bp
≈ 51 humans.

interrogating the effects of non-coding variants, e.g., on 

promoter activity (Kwasnieski et al. 2012; Maricque et al. 

2017), autonomously replicating sequences (Liachko et al. 

2013; Hoggard et al. 2016), splicing (Julien et al. 2016; Ke 

et al. 2018), or the behaviour of RNAs (Li et al. 2016; Puchta 

et al. 2016). The term “Multiplex Assays of Variant Effect” 

(MAVE) was coined by Starita et al. (2017) to encompass 

these high-throughput functional assays for a wider range 

of variant types.

Table  1 lists a selection of MAVE studies and their 

respective scales, the growth of which is shown in Fig. 2. 

MAVE screens can be broken down into a number of exper-

imental and computational components: (1) mutagenesis 

and library creation; (2) selection of functional variants; (3) 

sequencing of the selected and control populations; (4) scor-

ing and computational analysis (see Fig. 3). In the following 

sections, we will review the different previous implementa-

tions of these components in detail.

Mutagenesis approaches

A variety of saturation mutagenesis methods have previously 

been applied in MAVE studies; some more technically chal-

lenging than others. The simplest method is error-prone PCR 

amplification (Cadwell and Joyce 1994; Mohan et al. 2011). 

While this has the advantage of being an inexpensive and 

facile procedure, it will almost exclusively result in the gen-

eration of point mutations and as such will not generate all 

possible amino acid replacements. One may argue that the 

evaluation of VUS does not require insight into amino acid 

substitutions that cannot be achieved by a single-nucleotide 

change, as they are unlikely to occur in the clinic. However, 

the preference for transitions over transversions in many 

error-prone PCR protocols can lead to uneven representa-

tions of variants, so that codon-level mutagenesis can lead 

to more even representation amongst those missense variants 

that are achievable by single nucleotide change. In addition, 

multiple nucleotide changes do occur within single codons, a 

non-negligible 2% of the time (Kaplanis et al. 2018). Moreo-

ver, exploring all possible amino acid changes offers the 

potential for valuable insights into what biochemical prop-

erties may be most important for each amino acid at each 

position.

Another set of methods often employed are scaled-up 

versions of site-directed mutagenesis approaches (Hutch-

ison et  al. 1978; Seyfang and Jin 2004; Firnberg and 

Ostermeier 2012), with one popular example being Kun-

kel mutagenesis  (Kunkel 1985). The Kunkel approach 

uses a strain of E. coli that has been modified to produce 

high levels of uridine and lacks the ability to excise these 

bases from DNA. A phage vector carrying the desired 

template sequence is transfected into the cells resulting in 

its replication with a high uracil incorporation rate. The 
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Table 1  List of MAVE studies, their respective target spaces, and achieved levels of coverage

Reference Target Search space Coverage (%)

Fowler et al. (2010) YAP65 WW domain ∼ 100

Ernst et al. (2010) Synthetic PDZ domain 10 AAs ∼ 100

Hietpas et al. (2011) Hsp90 9 AAs ∼ 100

Fujino et al. (2012) Fab antibody fragment Fragment 79

Adkar et al. (2012) Ccdb whole protein < 74

McLaughlin et al. (2012) PSD95 PDZ domain ∼ 100

Schlinkmann et al. (2012) GPCR Whole protein ∼ 90

Whitehead et al. (2012) Synthetic protein 51AA (whole protein) 99

Traxlmayr et al. (2012) IgG1 CH2/CH3 domains < 50

Araya et al. (2012) YAP65 WW domain ∼ 100

Deng et al. (2012) TEM1 Whole protein ∼ 80

Kwasnieski et al. (2012) Rhodopsin promoter 52 bp cis-regulatory element ∼ 100

Wu et al. (2013) Neuraminidase SNP accessible < 50

Roscoe et al. (2013) Ubiquitin Whole protein ∼ 95

Starita et al. (2013) Ub.E3 E4B Whole protein ∼ 50

Procko et al. (2013) Synthetic protein 60 AA ∼ 100

Tinberg et al. (2013) Synthetic protein 40AA 90

Jiang et al. (2013) Hsp90 Substrate binding loop ∼ 100

Kim et al. (2013) Mat alpha Degron region < 50

Melamed et al. (2013) Pab1 RRM domain ∼ 90

Forsyth et al. (2013) Antibody for EGFR Whole protein ∼ 99

Jacquier et al. (2013) TEM1 whole protein 64

Hietpas et al. (2013) Hsp90 pos. 528–590 ∼ 100

Liachko et al. (2013) ARS1 100 bp ∼ 100

Wagenaar et al. (2014) BRAF 77 AAs 99.65

Firnberg et al. (2014) TEM1 �-lactamase Whole protein ∼ 95

Olson et al. (2014) G-protein (GB1) IgG-binding domain ∼ 95

Melnikov et al. (2014) APH(3’)II (kinase) Whole protein ∼ 100

Bloom (2014) Influenza nucleoprotein Whole protein > 75

Thyagarajan and Bloom (2014) Influenza hemagglutinin Whole protein ∼ 85

Qi et al. (2014) NS5A IA domain ∼ 100

Roscoe and Bolon (2014) Ubiquitin Whole protein ∼ 95

Reich et al. (2015) Bcl-x
L
 ligands Peptide library N/A

Stiffler et al. (2015) TEM1 �-Lactamase Whole protein ∼ 100

Doud et al. (2015) Influenza nucleoprotein Whole protein ∼ 100

Kitzman et al. (2015) Gal4 DB domain ∼ 99

Starita et al. (2015) BRCA1 RING domain ∼ 80

Rockah-Shmuel et al. (2015) M.HaeIII Whole protein 38

Wu et al. (2015) PA Whole protein 94

Mishra et al. (2016) Hsp90 ATPase domain ∼ 99

Doud and Bloom (2016) Hemagglutinin Whole protein < 97

Mavor et al. (2016) Ubiquitin Whole protein ∼ 99

Majithia et al. (2016) PPAR� Whole protein ∼ 99

Julien et al. (2016) FAS/CD95 Exon 6 95

Li et al. (2016) tRNA Arg-CCU whole gene ∼ 100

Sarkisyan et al. (2016) GFP whole protein ∼ 100

Tripathi et al. (2016) CcdB whole protein 87

Puchta et al. (2016) snoRNA U3 pos. 7-333 ∼ 100

Brenan et al. (2016) Mapk1/Erk2 Whole protein 99

Steinberg and Ostermeier (2016) TEM1 Whole protein 39–50
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thus-uracilated plasmid can then be used as a template for 

primer extension, with primers containing the mutations 

of interest, and subsequently introduced into wild-type 

E. coli which will degrade the uracilated template, thus 

enriching the mutant copies. A number of derivatives of 

Kunkel mutagenesis have since been developed to bring its 

output to scale supporting saturated libraries, most notably 

Pfunkel (Firnberg and Ostermeier 2012). To address the 

full spectrum of amino acids at a given position, oligonu-

cleotides carrying degeneracy codons (Pal and Fellouse 

2005) are often used. Particularly popular is the use of 

NNK and NNS degeneracies, which have long been used in 

biochemistry (Scott and Smith 1990; Barbas et al. 1992). 

Here, S denotes either Guanine or Cytosine, and K denotes 

either Guanine or Thymine in the third position of the 

degenerate codon. Either of these options only enables 

32 out of all 64 possible codons, covering all 20 possi-

ble amino acids while avoiding two of the three possible 

stop codons (TGA  and TAA ). An alternative to degeneracy 

codes is the use of custom oligonucleotide arrays covering 

all possible (or desired) options of codon changes explic-

itly (Kitzman et al. 2015). While this option allows for 

the precise control of desired mutations, it is currently 

too expensive to be applicable for more than a handful of 

genes at a time.

Another saturation mutagenesis method often applied 

in Deep Mutational Scanning is EMPIRIC (“Extremely 

Methodical and Parallel Investigation of Randomized 

Individual Codons”) (Hietpas et al. 2011). In this method, 

rather than using PCR amplification, oligonucleotide cas-

settes carrying the variants of interest are directly ligated at 

the appropriate positions. This is achieved by designing the 

underlying vector, such that it omits the cassette sequence. 

Instead, it carries a restriction site at the equivalent posi-

tion, which can be cut to create sticky ends. Pairs of oligos 

carrying the variants of interest can be synthesized, such 

that they can assemble into a fitting cassette that integrates 

with the vector. EMPIRIC is one example of a mutagenesis 

method that was explicitly developed to be used in Deep 

Mutational Scanning. Another example is PALS (“Pro-

grammed ALlelic Series”) (Kitzman et al. 2015), which 

aims to limit the number of amino acid changes per library 

clone to only one. Oligos carrying the variants of interest are 

annealed to uracilated templates and linearly amplified with 

strand-displacing polymerase. In a second step, the template 

Table 1  (continued)

Reference Target Search space Coverage (%)

Hoggard et al. (2016) miniARS317/301 153 + 135 bp ∼ 100

Ma et al. (2017) BCR-ABL 8AAs ∼ 100

Matreyek et al. (2017) GFP whole protein ∼ 60

Klesmith et al. (2017) TEM1,LGK whole proteins ∼ 70

Chan et al. (2017) IGPS 8 �-strands ∼ 95

Bandaru et al. (2017) H-Ras pos. 2–166 ∼ 100

Weile et al. (2017) UBE2I,SUMO1,TPK1,CALM1/2/3 whole proteins 100

Mighell et al. (2018) PTEN Whole protein ∼ 95

Plesa et al. (2018) PPAT Whole protein ∼ 95

Matreyek et al. (2018) PTEN,TPMT Whole protein ∼ 60

Ke et al. (2018) DHFR exon 5 ∼ 100

Starita et al. (2018) BRCA1 302 AAs < 50

Kotler et al. (2018) TP53 DNA-binding domain ∼ 85

Fig. 2  Variant effects covered in MAVE studies. Top: the total num-

ber of variant effects covered in MAVE studies up to a given year. For 

2018, the solid bar indicates the current state, while the dashed out-

line represents an extrapolation for the rest of the year. Bottom: the 

number of variant effects reported in individual studies, where colour 

indicates the study’s saturation of its respective target space
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is degraded using uracil-DNA glycosylase and an antisense 

strand is generated in a second linear amplification step. 

The product is denatured and yet again hybridized with ura-

cilated template allowing it to be extended towards the other 

end of the template. Finally, the template is degraded again 

and the now full-length mutagenized strands are amplified.

Yet another approach, which recently gained popularity, 

is dubbed “inverse PCR” (Jain and Varadarajan 2014). This 

method uses circular templates and pairs of oligos, one of 

which carries the mutagenic degenerate sequence, while the 

other points directly away from it. This primer setup appears 

like a directional inversion of that used in a regular PCR, 

thus lending the method its name. A first amplification step 

produces a set of linear products which serve as templates 

for the second, exponential amplification step, after which 

the final product is circularized. The authors compared the 

method to similar approaches using overlapping primers and 

found the inverse PCR method to display superior efficiency. 

This approach has become popular recently, and multiple 

MAVE maps have relied on it (Puchta et al. 2016; Matreyek 

et al. 2018).

A more recent development is “POPCode” (Weile et al. 

2017), which expands upon the site-directed approach 

described by Seyfang and Jin (2004). Here, a set of oligos 

carrying all possible codon replacements are designed, such 

that their melting temperatures are uniform. They are hybrid-

ized to a uracilated template, in similar fashion to the PALS 

approach; however, they are allowed to directly compete 

with each other, enabling either single or multiple variants 

per molecule, depending on oligonucleotide concentrations. 

Non-strand-displacing polymerase is used to fill the gaps and 

seal the remaining nicks, followed by the degradation of the 

template using uracil-DNA glycosylase. A useful feature of 

this approach is the availability of a webtool that automates 

POPCode oligo design, such that each oligo arm surround-

ing the degeneracy has a similar melting temperature (Weile 

et al. 2017).

In addition to the various mutagenesis methods discussed 

here, it may be noted that complete variant libraries are also 

recently becoming commercially available via gene synthe-

sis (Kosuri et al. 2010). A current limitation is the rate of 

point mutations and indels (Plesa et al. 2018), which makes 

it inappropriate for achieving frameshift-free coding regions 

with  1 aa change per clone for longer proteins. However, 

it is possible that, with increased interest in gene synthesis 

applications, these options may become more accurate and 

economical in the future.

Finally, with the rise of CRISPR/Cas9 and other gene 

editing tools, new methods are emerging that are able to 

introduce variants directly into endogenous gene loci, 

at efficiencies which are beginning to allow saturation 

mutagenesis. Findlay et al. (2014) first demonstrated this 

idea on a small scale, mutagenizing a small range of codons 

in BRCA1. A large-scale implementation of this idea is 

soon to be published (Findlay et al. 2018). Although this is 

currently more resource-intensive than introduction of an 

Fig. 3  Generalized workflow of a typical MAVE experiment. Steps 

marked in gray are downstream computational procedures not found 

in every study, but contribute to the quality of the data. The propor-

tions of studies using different mutagenesis, selection, and sequenc-

ing methods are broken down in pie charts. Colors serve to visually 

differentiate different categories but do not bear meaning
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mutagenized library generated ex vivo, the advantages of 

studying variation in the context of the native gene locus are 

potentially great. For example, the function of variants that 

depend on the action of distal enhancers would be missed 

using mutagenized constructs introduced at a safe harbor site 

that is far from the endogenous locus.

Selection approaches

The most central component of a MAVE study is the selec-

tion process. The selection schemes used in previous studies 

can be sorted into four broad categories: (1) in vitro dis-

play methods (such as phage display or ribodisplay); (2) 

competition-based methods that couple a protein property 

under investigation (such as molecular interactions, toxicity, 

or overall functionality) to host cell fitness; (3) cell sort-

ing based on fluorescence-labeled reporters; (4) transcript-

abundance-based methods.

Phage display (Smith 1985) and ribodisplay (Mattheakis 

et al. 1994) couple the genetic information of each given 

variant to the physical protein itself and select according to 

the protein’s ability to bind to a fixed interactor. In phage 

display, this is achieved by the protein being displayed on 

the surface of a phage that contains the corresponding gene, 

while ribodisplay stalls a cluster of ribosomes on the variant 

mRNA with the corresponding protein still attached. Vari-

ants that are unable to bind to the interactor-coated surface 

are washed away and thus depleted. This can be done in 

multiple rounds, as the associated genetic information can 

be replicated again after selection (via viral propagation in 

bacteria for phage display or via PCR in ribodisplay). Fowler 

et al. (2010) employed phage display in their seminal Deep 

Mutational Scanning study of the binding of the YAP65-

WW domain to its cognate peptide target. However, since 

display methods are only feasible for small proteins or frag-

ments thereof, more recent studies have instead employed 

more scalable methods.

The most frequently applied selection mechanisms are 

fitness-based. In these cases, a particular property of the 

variant protein is coupled to its host cell’s ability to thrive in 

competitive growth. Of these methods, functional comple-

mentation (Lee and Nurse 1987; Osborn and Miller 2007) 

and Yeast-2-Hybrid (Y2H)  (Fields and Song 1989) are 

among the most frequently applied. While complementation 

couples fitness to a protein’s overall ability to perform its 

biological role in a model organism, Y2H couples fitness to 

the ability of the protein to maintain a specific protein–pro-

tein interaction.

The largest share of growth-based selection methods in 

MAVE studies employs functional complementation, and 

most use the yeast Saccharomyces cerevisiae as their model 

system (see Fig. 3). The assay is based on the premise that 

some human genes can be used to rescue the deletion of 

their orthologues in yeast. That is, a fitness defect result-

ing from the inactivation of the yeast gene is alleviated by 

the artificial expression of the human gene. Therefore, any 

relative changes in fitness upon expressing a variant of the 

human gene can be interpreted as the variant’s effect on the 

protein’s overall ability to function. We and others recently 

examined the applicability of functional complementation in 

yeast to the assessment of disease variants (Sun et al. 2016). 

This study found that functional complementation assays in 

yeast offered sensitive and accurate predictions despite yeast 

and humans being diverged by ∼ 1 billion years. Indeed, 

yeast complementation outperformed in silico methods like 

PolyPhen-2 and PROVEAN in terms of disease variant pre-

diction by a wide margin. At a threshold of 90% precision 

(as discussed in “In silico approaches to variant function 

assessment”), the complementation assay achieved a sensi-

tivity of over 60%, as compared to 19 and 21% for the two in 

silico methods, respectively. It is consistent with these find-

ings that the ACMG considers functional assays among the 

strongest sources of evidence for variant classification (Rich-

ards et al. 2015).

A limitation of functional complementation in yeast is 

that currently only ∼ 200 human disease-implicated genes 

have been found to be amenable to the assay (Sun et al. 

2016). However, the existence of synthetic lethal genetic 

interactions for many yeast genes may allow for the design 

of strains with sensitized backgrounds providing new com-

plementation assays. In addition, CRISPR screens have in 

recent years revealed many genes for which growth pheno-

types exist directly in human cell lines (Hart et al. 2015; 

Blomen et al. 2015; Wang et al. 2014); opening the pos-

sibility of performing functional complementation directly 

in these cell lines. A number of studies have since exploited 

the possibility of complemention assays directly in human 

cells (e.g., Wagenaar et al. 2014; Qi et al. 2014; Brenan 

et al. 2016). However, while future variant analysis is likely 

to trend towards complementation in mammalian cell mod-

els as opposed to yeast, the latter assays are not obsolete. 

Sun et al. (2016) found that a selectable phenotype that is 

potentially compatible with MAVE using human cell-based 

complementation has been identified for less than half of all 

human disease genes. Thus, for many disease genes, yeast-

based complementation or Y2H may be the only viable 

option for a MAVE.

A popular condition-dependent extension to comple-

mentation is selection for drug resistance (Wu et al. 2013; 

Wagenaar et al. 2014), but other fitness-based selection 

methods have been used in MAVEs as well. For example, 

Adkar et al. (2012) used the toxicity of CCDB in E. coli, 

while Kim et al. (2013) select according to degron activ-

ity by fusing the degron to an auxotrophic marker. Finally, 

a number of MAVE studies have been performed on viral 
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genes, by selecting for virus propagation efficiency (Bloom 

2014; Thyagarajan and Bloom 2014).

Another popular growth-based assay is Yeast-2-Hybrid 

(Y2H). It is a binary protein interaction assay also per-

formed within the yeast S. cerevisiae. Y2H is based on 

the reconstitution of two fragments of the transcription 

factor Gal4 fused to two proteins of interest. A successful 

interaction of the two proteins allows Gal4 to induce the 

expression of a reporter; usually, an auxotrophy marker. 

When comparing different variants of the same protein 

interacting with the same partner, reporter expression 

has even been shown to be proportional to binding affin-

ity  (Yang et  al. 1995). This proportional relationship 

allows for quantitative interpretation of Y2H results under 

these specific circumstances.

One objection to the use of Y2H as an assay for vari-

ant function assessment is that it does not measure all 

aspects of a protein’s functionality, but rather only its 

ability to physically associate with a given interaction 

partner. However, in addition to detecting variants that 

specifically affect binding, e.g., via changes to the bind-

ing interface, this approach should also detect many other 

variants that broadly impact protein function, e.g., those 

that cause protein mis-folding or instability. Indeed, in a 

recent examination of the Y2H performance of common 

disease-associated variants, we found that approximately 

two out of three disease variants in proteins with multiple 

interaction partners lose some or all of their protein inter-

actions (Sahni et al. 2015).

Another selection mechanism is the use of fluorescence-

activated cell sorting (FACS) (Julius et al. 1972). Here, 

surface markers for which abundance is proportional to 

the activity of the studied protein are targeted with fluo-

rescently labeled antibodies, such that cells can be sorted 

accordingly, as has been performed by Schlinkmann et al. 

(2012) and Majithia et al. (2016). FACS-based selection 

has also been used to gain read-outs of protein stability 

and abundance (Matreyek et al. 2018).

In addition to assays that measure general properties 

of proteins, more specialized methods also exist, which 

assess specific molecular functions. For example, Starita 

et al. (2015) developed an assay that quantifies the ubiquit-

ination activity of BRCA1’s RING domain. Most recently, 

they also developed an assay to test the same protein’s 

DNA-repair activity (Starita et al. 2018).

In terms of selection for the properties of non-coding 

regions, a number of technologies have been developed. 

Massively Parallel Reporter Assays (MPRAs) (Kwasnieski 

et al. 2012; Maricque et al. 2017) for example place librar-

ies of mutagenized promoter sequences upstream of bar-

coded regions, the expression of which is measured using 

RNA-Seq, while the initial abundance of corresponding 

cells is measured by DNA sequencing of the same loci. 

The ratio of RNA-Seq to DNA-Seq reads can then be used 

to calculate the effect of promoter variant on expression. 

Similarly, splicing assays such as employed by Julien et al. 

(2016) or Ke et al. (2018) also use RNA-Seq to measure 

the fraction of transcripts in which the exon of interest is 

spliced in.

Sequencing strategies

The experimental step immediately following selection in a 

MAVE experiment is sequencing. Next-generation sequenc-

ing technology can be considered the key technological 

advance that made Deep Mutational Scanning possible. 

Many studies use a fairly simple approach by performing 

deep shotgun sequencing of the library (Ernst et al. 2010; 

Hietpas et al. 2011; Fujino et al. 2012). However, a major 

problem with this approach is that, without knowing which 

reads originate from which DNA molecule, each read can 

only be considered by itself, making it difficult to distin-

guish real mutations from sequencing error. To address this 

problem, different solutions have emerged. In cases where 

the amplicon is short enough, paired-end ‘duplex’ sequenc-

ing can be exploited to use information from both strands 

for variant calling. In the simplest case, this is achieved by 

requiring both reads to agree on the base call in question, 

as in the case of Whitehead et al. (2012) and Weile et al. 

(2017). A less stringent, but potentially more sensitive alter-

native as used by Fowler et al. (2010) is to perform Bayesian 

inference on the quality scores associated with the base calls 

in each read pair. This way, a variant may still be identified 

if one of the two reads reported a wild-type base call with 

low confidence.

Where the length of the nucleotide sequence in question 

exceeds the read-length capabilities of short-read sequencing 

technologies, other strategies are required. A notable border-

line case can be found in Olson et al. (2014) where only a 

partial overlap between read pairs was achieved and variant 

calls outside of the overlap region were of lower quality. 

Other studies have used more involved approaches. A popu-

lar paradigm is the association of molecular barcodes with 

each clone within the MAVE library. While this simplifies 

the readout of the experiment (as only the barcodes need to 

be sequenced and counted), it adds the requirement of iden-

tifying which barcode belongs to which genotype. In most 

cases, this is addressed using “subassembly” (Hiatt et al. 

2010), a high-throughput amplicon sequencing approach 

based on attaching random tags to amplicons. The DNA 

is then amplified, sheared, and ligated to adapters, so that 

paired-end sequencing can be used to identify the random 

tag together with each read. This allows reads to be sorted 

according to which original tagged molecule they belong, 

which, in turn, enables separate assemblies for each input 

molecule to be computed. The resulting high-quality virtual 
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reads are long enough to cover both ORF and barcode locus. 

Another subassembly approach is “KiloSeq” (Weile et al. 

2017) which works using an array-based format where well-

specific tags are attached to the amplicons, followed by Tn5 

tagmentation and re-amplification of tag-bearing fragments. 

Another barcode-based method, called EMPIRIC-BC was 

described by Mavor et al. (2016), where the amplicon in 

question was short enough not to require subassembly. Here, 

a long read can cover the entire ORF, while a second, short 

read can identify the barcode.

An alternative approach to covering longer stretches of 

DNA is to subdivide them into smaller regions that can be 

sequenced separately from each other. For example, Doud 

and Bloom (2016) amplify each region with primers car-

rying random tags. This way, if multiple reads contain the 

same tag, they are highly likely to originate from PCR copies 

of the same original molecule and can be used to make more 

accurate variant calls. This approach is often dubbed “tag-

clustering”. While this approach has the advantage of being 

less labour-intensive than barcoding each individual clone in 

the MAVE library, it can only detect variants co-occurring 

within the same region of the sequence. Thus the library 

must be designed in such a way that either only a single 

mutation occurs within each clone or that it is large enough 

that effects of many background variants are averaged out. 

This approach can also be used in combination with duplex 

sequencing, as performed in Weile et al. (2017), where it is 

called “DMS-TileSeq”.

In a benchmark study, Zhang et al. (2016) evaluated some 

of these approaches. They found that duplex sequencing 

decreases the rate of transition and transversion base-call-

ing errors tenfold while decreasing indel errors by 100-fold. 

By contrast, tag clustering lowered transition and transver-

sion errors 20 fold, but had a little impact on indel errors. A 

combination of both approaches in which tagged reads are 

first compared against their paired partners and then clus-

tered is found to perform best. The authors also examined 

the effect of quality score filtering. While this method had 

moderate impact when applied to raw reads, read pairing and 

tag clustering benefited little from it.

Computational analysis

Most MAVE studies use custom scripts to process the 

sequencing readout and calculate the selection advantage 

for each variant. Nonetheless, a few published software 

packages exist. The EMPIRIC mutagenesis and screening 

method provides its own software package for data process-

ing (Hietpas et al. 2011), though it is not generally appli-

cable to other MAVE methods. The dms_tools pack-

age (Bloom 2015) offers the same services, but is tailored 

more towards methods using regionally focused sequencing. 

Finally, Enrich (Fowler et al. 2011) offers a generalized 

solution applicable to most DMS frameworks. A second 

version that adds a more sophisticated statistical analysis 

including the assessment of measurement confidence lev-

els  (Rubin et al. 2016).

The DMS-BarSeq and DMS-TileSeq methods used in 

Weile et al. (2017) also come with publicly available anal-

ysis pipelines. Most importantly, they offer imputation of 

missing values using machine learning. A Random Forest 

model (Breiman 2001) was created using physicochemical 

and structural features of the affected amino acids as well 

as position-specific biases of the existing map, yielding sur-

prisingly accurate predictions that surpassed those of Poly-

phen-2 (Adzhubei et al. 2013) and PROVEAN (Choi et al. 

2012). This most recent innovation has since been adapted 

for use with different predictive features by Mighell et al. 

(2018).

Going beyond the scope of predicting the effects of 

variants omitted within a mapped gene, Gray et al. (2018) 

applied machine learning to extrapolating maps for new 

genes. Using a gradient-boost model  (Friedman 2001) 

trained on similar features as the imputation method from 

Weile et al. (2017), they implemented a new cross-validation 

scheme that swaps out whole proteins to be more sensitive 

towards the detection of overfitting. While predictions were 

generally more reliable than established computational pre-

dictors, accuracy was highly variable across proteins, with 

some performing better than others. This behaviour may 

be alleviated as more DMS data sets become available for 

training.

Beyond the potential utility of the variant effect maps in 

the clinic, they also lend themselves to extract new insights 

from computational biology. Bloom (2017) recently devel-

oped a method to detect signatures of evolutionary selection 

within these maps far exceeding the sensitivity of comparing 

orthologous sequences alone. Meanwhile, Wu et al. (2016) 

developed a method to calculate direct estimates for the fold-

ing energy effects of variants by examining their intragenic 

genetic interactions within variant effect maps.

Conclusion

Since their inception in 2010, MAVEs have produced a 

steadily increasing wealth of variant effect maps. Recent 

years have seen an increasing trend of targeting clinically 

relevant genes. The utility of these maps towards the even-

tual goal of clinical variant assessment has been demon-

strated in multiple studies (Starita et al. 2015; Majithia et al. 

2016; Weile et al. 2017). Since then, an arsenal of differ-

ent methodologies have been developed to capture a wider 

spectrum of sequence types and functions. In addition, new 

computational methods continue to improve the quality and 

reliability of the data produced.
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However, a number of issues are still apparent. Many of 

the studies listed in Table 1 do not make their data easily 

available. While some provide full access to final results, 

some only provide raw data in the NCBI short-read archive 

(SRA), the majority require interested parties to contact the 

authors personally. There is a clear need for an open data 

repository that makes MAVE data available to the public and 

allows for downstream probabilistic integration and analysis. 

Similarly, the issue of reagent availability remains as a chal-

lenge. In most cases, the saturation mutagenesis libraries 

generated are not made available via common repositories. 

Furthermore, due to the large diversity of methodologies 

employed, libraries cannot generally be expected to be com-

patible across platforms.

Another complicating factor is the fact that the assays 

underlying different MAVE studies are quite diverse and 

measure different aspects of a protein’s behaviour. As a con-

sequence, they cannot be easily compared with each other. 

In addition, the achieved coverage of possible amino acid 

changes varies from map to map. Finally, many maps do 

not control the quality of measurements. Therefore, the con-

fidence levels underlying different parts of these maps are 

often unknown. While generalized frameworks have been 

proposed that would increase the potential comparability and 

interpretability across maps (Rubin et al. 2016; Weile et al. 

2017), they are not implemented by most studies. Here, a 

centralized repository could also be of help, as it could serve 

as a basis for re-analysis of data with the latest tools.
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