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Abstract 

Intratumoral immune cells are crucial for tumor control and anti-tumor responses during 

immunotherapy. Immune cell trafficking into tumors is mediated by chemokines, which are 

expressed and secreted upon various stimuli and interact with specific receptors. To broadly 

characterize chemokine expression and function in tumors, we have used multiplex mass 

cytometry-based imaging of protein markers and RNA transcripts to analyze the chemokine 

landscape and immune infiltration in metastatic melanoma samples. Tumors that lacked 

immune infiltration were devoid of most chemokines and exhibited particularly low levels of 

antigen presentation and inflammation. Infiltrated tumors were characterized by expression of 

multiple chemokines. CXCL9 and CXCL10 were often localized in patches associated with 

dysfunctional T cells expressing CXCL13 which was strongly associated with B cell patches 

and follicles. TCF7+ naïve-like T cells, which predict response to immunotherapy, were 

enriched in the vicinity of B cell patches and follicles. Our data highlight the strength of RNA 

and protein co-detection which was critical to deconvolve specialized immune 

microenvironments in inflamed tumors based on chemokine expression. Our findings further 

suggest that the formation of tertiary lymphoid structures is accompanied by naïve and naive-

like T cell recruitment, which ultimately boosts anti-tumor activity.  

One sentence summary 

Inflammatory chemokine milieus in metastatic melanoma are hotspots of T cell dysfunction 

and CXCL13 expression, which likely guide the recruitment of B cells and the formation of B 

cell follicles responsible for anti-tumor immunity. 
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INTRODUCTION 

Immune checkpoint inhibition (ICI) has greatly improved the overall survival rates of patients 

with metastatic melanoma (1, 2); however, response rates vary, and factors that determine 

response to immunotherapy are largely unknown (3). Patients with inflamed (“immune hot”) 

tumors have better prognosis (4) and are more likely to benefit from ICI (5), whereas those 

with tumors with low levels of immune infiltration (“cold” or “deserted” tumors) are associated 

with lower ICI success (6). CD8+ T cells are critical mediators of anti-tumor immunity, and 

increased CD8+ T cell infiltration is associated with better prognosis in many tumor types (4). 

Important factors associated with CD8+ T cell infiltration are tumor antigen presentation and 

mutational burden (7–9). CD8+ T cell infiltration into tumors, followed by TCR stimulation via 

persistent antigen exposure, is often accompanied by CD8+ T cell dysfunction and exhaustion. 

This exhaustion is ideally reversed by ICI (10, 11). Currently, it is debated which CD8+ T cell 

phenotypes maintain anti-tumor immunity and which are most susceptible to reactivation via 

ICI (12). Two recently described T cell populations are the CXCL13-expressing dysfunctional 

CD8+ T cells, which are antigen-experienced and express high levels of exhaustion markers 

(13, 14), and the naive-like TCF7+ CD8+ T cells whose presence is associated with response to 

ICI in melanoma and non-small cell lung cancer (12, 15–17). Although the presence of B cells 

and tertiary lymphoid structures (TLS) has been shown to predict response to ICI in melanoma 

(8, 18), our knowledge about T cell dysfunction and the interplay with B cells in tumors remains 

incomplete.  

Chemokines are small, secreted proteins that mediate immune cell trafficking (19–21) and 

immune cell recruitment into tumors (22–24). In particular, the expression of the CXCR3 

ligands CXCL9 and CXCL10 by macrophages is required for the recruitment of CD8+ T cells 

into inflamed tumor tissues (25–27). CD8+ T cells exposed to cognate antigens may also 
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express CCL4 to recruit additional CD8+ T cells via CCR5 (28). The chemokines CCL19 and 

CXCL13 function in T cell homing to lymph nodes via CCR7 and in B cell follicle maturation 

(21). A broad characterization of chemokine expression within the context of in situ tumors on 

the protein level is technically challenging and currently lacking. 

Here, we harnessed the power of imaging mass cytometry (IMC) to study the chemokine 

landscape and additional factors that govern T cell infiltration and dysfunction in metastatic 

melanoma, with single-cell and spatial resolution. For this analysis, we extended our previously 

published RNA-protein co-staining protocol (29, 30) to enable robust detection of a dozen 

chemokines , for which antibodies are lacking or incompatible with IMC, expressed by tumor, 

immune, and stromal cells. The result is the first comprehensive chemokine map of metastatic 

melanoma. We show that chemokine-expressing cells are spatially organized in patches, that 

T cell-infiltrated tumors are characterized by strong chemokine expression and varying levels 

of T cell dysfunction, and that infiltration in melanoma is largely dependent on antigen 

presentation by tumor cells. We discovered that T cells are the sole source of CXCL13 when B 

cells, but no B cell follicles, are present, suggesting that T cells drive the recruitment of B cells 

and potentially the formation of B cell follicles. Further, there is a spatial association between 

TLS and naive-like TCF7+ T cells, a cell type predictive of response to immunotherapy. We 

propose a model in which TCF7+ T cells emerge near B cell follicles to sustain anti-tumor 

reactivity. 
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RESULTS 

Multiplexed RNA and protein detection with IMC 

To study chemokine-dependent immune infiltration into tumors and to functionally 

characterize cell phenotypes, we extended our previously published RNA and protein co-stain 

protocol for IMC (29) to detect 12 mRNAs encoding chemokines and 29 proteins (Table S1). 

We used the 12 RNA channels to study the expression of mRNAs encoding chemokines with 

diverse functions in T cell attraction (CXCL9, CXCL10, CXCL12, CXCL13, CCL2, CCL4, 

CCL18, CCL19, CCL22), B cell attraction (CXCL13), neutrophil attraction (CXCL8), and 

monocyte, macrophage, and dendritic cell attraction (CCL2, CCL4, CXCL12). Probes to these 

RNAs as well as antibodies to detect additional 28 proteins were included in the “RNA & 

protein” panel. The “protein” panel contained markers to identify and characterize tumor cells 

(Sox9, Sox10, MITF, Ki-67, S100A1, p75, β-Catenin, H3K27me3, pERK, pS6, PD-L1) and 

additional immune cell types and phenotypes (e.g., CD303, CD20, GrzB, PD-1, TCF7). 

Together, these panels enabled characterization and spatial analysis of tumor phenotypes in hot 

and cold tumors, of the tumor immune microenvironment, and of T cell phenotypes. 

In experiments to validate mRNA detection, signal intensities across all 12 channels for 

detection of chemokine-expressing mRNAs were comparable to the signal intensity for a 

control PPIB gene (Fig. S1A), and expression levels of the 12 housekeeping genes measured 

with the IMC mRNA method highly correlated to those determined by bulk RNA sequencing 

(Pearson’s r = 0.78; Fig. S1B). We found no differences in signal intensities for the RNA probes 

with and without subsequent antibody staining (Fig. S1C), and an assessment of cross-

hybridization between channels showed that there was minimal crosstalk (maximum of 2.1% 

between channels; Fig. S1D, E). Thus, we concluded that the 12-plex mRNA detection is 
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compatible with multiplex protein IMC with negligible channel crosstalk at endogenous levels 

of expression. 

Heterogeneous immune infiltration in metastatic melanoma 

We applied our multiplexed RNA and protein IMC panel to study immune infiltration in 

metastatic melanoma. The tissue microarray (TMA) we analyzed consisted of multiple cores 

from formalin-fixed paraffin-embedded (FFPE) tissue from 69 patients. The samples were 

from different metastatic sites, and cancers ranged in grade from Stage III to IV (Fig. 1A; Fig. 

S1F). Consecutive sections of the TMA were stained with the two panels, and images were 

acquired by IMC (Fig. 1A). 

We carried out single-cell segmentation and spill-over compensation to obtain single-cell data. 

We identified major cell types by supervised cell type labeling using cytomapper (31) followed 

by random forest classification. Data on 864,263 and 989,404 cells were obtained using the 

RNA & protein and protein staining panels, respectively (Fig. 1B). The most abundant cell 

populations were tumor cells (64.7%). There were similar frequencies of macrophages (6.5%), 

CD8+ T cells (5.5%), and CD4+ T cells (5.6%). We also observed a substantial fraction of B 

cells (4.1%) as well as densely packed cells that were indistinguishable from B or T cells 

(referred to here as BnT cells; 2.7%). Neutrophils (1.1%), T regulatory cells (1%), and 

plasmacytoid dendritic cells (0.7%) were the least abundant cell types (Fig. 1C). For all cell 

types that could be identified in both the RNA & protein dataset and the protein dataset we 

obtained a very high mean correlation of the cell-type frequencies (Pearson’s r = 0.94; Fig. 

S1G).  
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Fig. 1 - Profiling metastatic melanoma with RNA and protein co-detection using IMC 
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(A) Schematic of the IMC data acquisition of two consecutive slices of a TMA containing 159 biopsy 
cores from a total of 69 metastatic melanoma patients. Samples were stained with the RNA & protein 
panel and with the protein panel. Symbols for RNA & protein and protein panels are used to indicate 
the source of the data in subsequent figures. 
 
(B) Schematic of the computational workflow applied to the single-cell data. A random forest classifier 
was used to identify major cell types. A method for robust detection of cells that express chemokine 
mRNAs was used to assign chemokine-expressing cells. Cell phenotype and spatial aspects from both 
datasets were combined and used to characterize immune infiltration and T cell dysfunction in the 
melanoma samples. 
 
(C) Heat maps depicting scaled expression of markers in defined cell types of the RNA & protein dataset 
(left) and protein dataset (right). The number total number of cells of each cell type is indicated above 
each column.  
 
(D) Cell masks colored by cell type as identified in the protein panel for three different patient samples 
demonstrating heterogeneity across samples. 
 
(E) Stacked bar plot clustered by fractions of each cell type in single images. The metastasis locations 
and biopsy punch locations are shown as annotations on top of the bar plot. Images were hierarchically 
clustered using Ward’s method on Euclidean distances. The four major branches are indicated by color: 
red, very low frequencies of immune cells; green, moderate frequencies of immune cells; blue, high 
frequencies of lymphocytes enriched in lymph node samples; gray, high frequencies of immune and 
stromal cells and low frequencies of B cells. 

 

We then investigated whether our multiplex imaging captures the diverse landscapes of hot and 

cold metastatic melanomas. There were considerable differences in tumor and immune cell 

abundances across samples in the cohort when individual images were inspected (Fig. 1D). 

Clustering of the cell type frequencies from individual images revealed four major groups that 

reflect different levels of immune cell infiltration (Fig. 1E): images with low frequencies of 

immune cells, images with moderate frequencies of immune cells, images with high numbers 

of lymphocytes enriched in lymph node metastasis samples, and images dominated by immune 

and stromal cells with low frequencies of B cells. 

Chemokine expression in metastatic melanoma 

To further investigate the basis of the observed heterogeneity of immune infiltration into 

tumors, we examined chemokine expression across the cohort. Chemokines showed distinct 
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spatial expression patterns, were expressed by various cell types, and were globally detected 

via negative control normalization (Fig. 2A, Fig. S1H). Overall, tumor cells accounted for 

22.4% of chemokine-expressing cells, followed by macrophages (21.9%), CD3+/CD8- T cells 

(21%), and CD3+/CD8+ T cells (16.3%). However, only 2.4% of all tumor cells expressed 

chemokines, and only rarely did more than 10% of the tumor cells in a given image express 

chemokines (Fig. S2A). Of all cells in the RNA & protein dataset, 6.9% were chemokine 

expressing. Some of these cells expressed two chemokines (16.3% of all chemokine-expressing 

cells) or three or more chemokines (4.8% of chemokine-expressing cells).  

The most frequently expressed chemokine in singly-expressing cells was CXCL13 and T cells 

accounted for a large fraction (71.1%) of cells that expressed CXCL13 (Fig. 2B). CXCL9 and 

CXCL10 were the most frequently expressed chemokines, when cells that also expressed more 

than one chemokine were evaluated, followed by CCL2 and CXCL13 (Fig. 2B). Macrophages 

frequently expressed CCL2, CCL18, CXCL9, and CXCL10. CXCL8 was mostly expressed by 

tumor cells and neutrophils. Stromal cells were a minority of chemokine-expressing cells 

(3.4%); stromal cells that did express a chemokine expressed CXCL12 and weakly CCL2. 

CCL8 was rarely and weakly expressed (862 cells total). 
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Fig. 2 - Chemokine expression landscape in metastatic melanoma 
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(A) Representative IMC image showing the expression of multiple chemokine mRNAs and tumor-
marker Sox10. Box regions marked 1 and 2 are magnified below. Marker expression was false colored, 
and markers are indicated above each plot. A Gaussian blur (sigma = 0.65) was applied. Scale bar, 100 
µm. 
 
(B) Upper stacked bar plot of the number of cells of indicated cell types that express the chemokine or 
chemokine combinations indicated by points below the stacked bar plot. The bar plot on the bottom left 
shows the total number of cells positive for the indicated chemokine.  
 
(C) Heat map of scaled expression of markers in chemokine-expressing cells with a minimal abundance 
of 1000 cells. Absolute cell numbers are shown on top of the heat map and with a bar plot. The colored 
boxes on top code for the chemokine which is expressed by a given cell type. 
 
(D) Pearson correlations between the frequencies of the most abundant chemokine combinations and 
frequencies of cell types from consecutive sections. 

 

Chemokines are mostly expressed as an immediate response to external stimuli, such as 

inflammatory signals, and can therefore be used to derive phenotypic states. We examined 

mean marker expression in various cell types as a function of chemokine expression (Fig. 2C). 

CD8+ T cells were the strongest expressors of CCL4, and this subset of cells also highly 

expressed the exhaustion marker Lag-3 (Fig. 2C). Thus, these cells may represent a recently 

suggested antigen experienced “recruiter” state (28). Another subset of CD8+ T cells showed 

prominent CXCL13 expression and also expressed Lag-3 (Fig. 2C). These cells are likely the 

recently reported “dysfunctional”, antigen-experienced CD8+ T cells (13, 14, 32). Of note, 

CXCL9 and CCL19 expression by T cells (CD8+ and CD8-) was most likely due to imperfect 

segmentation with either HLA-DR+ neighboring myeloid cells, which are the main cell type 

that express CXCL9, or CCL19-expressing fibroblastic reticular cells for which we do not have 

additional markers (Fig. S2B). Neutrophils were the strongest expressors of CXCL8, which has 

not been previously reported. Macrophages expressing CCL18 expressed high levels of the M2 

macrophage marker CD163. CD38 was detected at low levels on CXCL9-expressing 

macrophages, suggesting that these macrophages may have been activated by IFN-ɣ (33).  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454093
http://creativecommons.org/licenses/by-nd/4.0/


12 

Other than the lymphoid tissue-specific chemokines CXCL13 and CCL19, which were 

expressed at higher frequencies in lymph node metastasis samples than in subcutaneous skin 

metastasis samples (Fig. S2C), chemokine expression was similar in samples from 

subcutaneous skin and from lymph nodes. We also compared chemokine expression in samples 

from patients with BRAF and NRAS mutations. We observed elevated frequencies of 

chemokine-expressing cells, especially for inflammatory chemokines CXCL9, CXCL10, and 

CCL2, in samples with BRAF mutations compared to NRAS mutation and wild-type samples 

(Fig. S2D). 

In summary, the detection of chemokine expression in tissues coupled with cell-type 

identification allowed us to quantify the chemokine expression landscape in metastatic 

melanoma. At the RNA level, chemokine expression was predominantly observed in immune 

cells. Furthermore, it was rare that cells expressed more than one chemokine. 

Chemokine expression-associated immune infiltration landscape 

To identify potential chemokine-driven immune cell type recruitment we investigated the co-

occurrence of cell types and chemokine-expressing cells, evaluating immune cell type 

frequencies from the protein dataset and the frequencies of chemokine-expressing cells in 

consecutive sections from the RNA & protein dataset (Fig. 2D). We observed moderate 

correlations between CXCL13 and B cells and BnT cells (Pearson’s r = 0.65 and 0.61, 

respectively) in agreement with the importance of CXCL13 for B cell recruitment. The 

frequencies of CXCL9- and CCL4-expressing cells correlated moderately with CD8+ T cells 

(Pearson’s r = 0.61 and 0.63, respectively). CXCL9 was more highly correlated with the 

presence of CD8+ T cells than was CXCL10 (Pearson’s r = 0.61 and 0.42, respectively), 

suggesting a dominant role for CXCL9 in CD8+ T cell recruitment via CXCR3. The frequency 

of CD4+ T cells was not correlated with CXCL9 or CXCL10 but was moderately to highly 
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correlated with CCL22 and CCL19 (Pearson’s r = 0.67 and 0.72, respectively), suggesting 

recruitment via CCR4 and CCR7, respectively. The frequency of regulatory T cells correlated 

most strongly with CCL22 and moderately with CCL19 (Pearson’s r = 0.66 and 0.54, 

respectively) in line with recruitment via CCR4 and CCR7. There was a low correlation 

between plasmacytoid dendritic cell frequencies and the presence of CXCL12-expressing cells 

(Pearson’s r = 0.42) and a moderate correlation with the presence of CCL19-expressing cells 

(Pearson’s r = 0.59), in agreement with plasmacytoid dendritic cell chemotaxis through 

CXCR4 and CCR7, respectively (34, 35). Although the CXCL8-CXCR1 axis is important for 

recruitment of neutrophils (36), the frequency of CXCL8-expressing cells was poorly correlated 

with the frequency of neutrophils in our dataset (Pearson’s r = 0.39). The chemotactic function 

of CCL2 toward multiple immune cell types has been reported (37); however, the frequency of 

CCL2-expressing cells in our dataset was not correlated with any other cell type frequency. 

The chemokine encoding mRNA that showed strongest correlation with the frequency of 

macrophages was CCL4, and this correlation was low (Pearson’s r = 0.37). 

Only a subset of the chemokines showed co-expression in images, and these were mostly the 

inflammatory response chemokines CXCL9, CXCL10, CCL4, and CXCL13 (Fig. S2E). The 

presence of CCL19-expressing cells was moderately correlated with the presence of CCL22-

expressing cells (Pearson’s r = 0.68) in line with functions for T cell homing to B cell follicles 

(38). Finally, we did not find a negative correlation amongst any chemokine-expressing cells, 

indicating an overall positive role in attraction and co-regulation. 

Samples from our cohort showed considerable heterogeneity with respect to overall immune 

cell infiltration (Fig. 1F). Since the abundance of CD8+ T cells is prognostic for long-term 

patient survival (4), we focused more deeply on the association of chemokine-expressing cells 

with CD8+ T cell infiltration. To reflect hot and cold properties of tumors we grouped images 
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based on their T cell densities, resulting in four groups, and compared the fractions of all 

chemokine-expressing cells. The fractions of all chemokine-expressing cells, except for those 

that expressed CXCL8, increased with T cell density (Fig. S3A). The strongest increases were 

observed for cells expressing CCL4, CXCL9, CXCL10, CXCL12, and CXCL13, similar to what 

has been previously shown (22, 23). Notably, CXCL9 was virtually absent from regions lacking 

CD8+ T cells underlining the importance of CXCL9 in CD8+ T cell recruitment. 

Chemokine-expressing cells form specialized milieus 

We next asked whether chemokines are expressed in a spatially coordinated manner and thus 

show patterns of local enrichment. We performed a local enrichment analysis for all 

chemokines and observed that CXCL10 was prominently expressed in clusters of neighboring 

cells compared to a random cell localization (Fig. 3A, S3B), similar to our previous 

observations in breast cancer (29). Over a third (36%) of all images were locally enrichment 

for four CXCL10-expressing neighboring cells. CXCL9- and CXCL13-expressing cells also 

showed frequent local enrichment of varying numbers of cells. Conversely, cells expressing 

chemokines CCL4 and CXCL8 were rarely locally enriched (3% and 7.2% of images for local 

enrichment of four cells, respectively). These findings suggest that some chemokines are 

subject to a coordinated expression program. 
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Fig. 3 – Chemokine-expressing cells form specialized milieus 
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(A) Representative image from a tissue core illustrating that CXCL10 (green) is often expressed in 
patches (nuclei are shown in blue). Scale bar, 100 µm. 
 
(B) Results from the patch and milieu detection algorithm run on the image shown in panel A with one 
milieu magnified on the right side. CXCL10-expressing cells are colored in red. A patch includes only 
cells that express the marker of interest. Patch borders are highlighted in light blue. A milieu contains 
all cells of a patch and additionally the surrounding cells. Milieu borders are highlighted in dark blue. 
 
(C) Sunburst plots summarizing all detected chemokine milieus. The inner circle shows proportions of 
cell types. The outer circle displays chemokines expressed by the cell types indicated on the inner circle. 
White space in the outer circle indicates cells that are within a milieu but do not express any chemokine. 
A numerical summary for each milieu type is given in the circle center.  
 
(D) Box plots of mean expression of Lag-3, CXCL13, and CCL4 in CD8+ T cells for the most abundant 
milieus. Significance of a statistical test (Wilcoxon, group-comparison against base-median, adjusted 
using the Benjamini-Hochberg method) for each milieu type is indicated with asterisks.  

 

Local, co-ordinated chemokine expression would be expected to be associated with 

microenvironments within the tumor that could affect immune cell infiltration and/or function. 

To further investigate such effects, we went on to characterize the phenotypes and frequencies 

of cells present within the vicinity of chemokine-expressing cells. We developed an algorithm 

to detect local accumulations of chemokine-expressing cells (patches) and additionally all the 

cells within patches and surrounding the patches up to 30 µm away (referred to as milieus) 

(Fig. 3B). The composition of chemokine milieus are likely to reflect functional consequences 

of local chemokine secretion.  

We compared the overall fractions of cell types and chemokine-expressing cells across all 

eleven chemokine milieus (Fig. 3C). CXCL9 and CXCL10 milieus were the most abundant, 

with close to half of all CXCL9-producing cells and more than a third of all CXCL10-producing 

cells present in milieus. The CXCL9 and CXCL10 milieus included cells expressing other 

inflammatory chemokines at high frequencies and showed the highest frequencies of 

dysfunctional (CXCL13+) and recruiter (CCL4+) CD8+ T cells among all milieus, indicating 

that they represent hotspots of ongoing inflammation. CXCL10 milieus contained close to 50% 

of tumor cells indicating that these milieus are at the interface of tumor-immune interactions. 
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Markers for T cell dysfunction (e.g., Lag-3, CXCL13, CCL4) were particularly highly 

expressed in CXCL10 and CXCL9 milieus in comparison to other milieus (Fig. 3D). Less than 

10% of cells that expressed CCL4, CCL22, and CXCL8 were observed in milieus, supporting 

the results found with the local enrichment analysis (Fig. S3B). CXCL8 and CXCL12 milieus 

were most strongly dominated by the expression of the chemokine that defined the milieu. 

The CXCL13 milieus had the highest fractions of HLA-DR+/CD163-/CD68- cells, which are 

likely B cells (Fig. 3C). Further, as CXCL13 milieus also contain CD8- T cells that express 

CXCL13, which may be T follicular helper cells, CXCL13 milieus are likely enriched in B cell 

follicles. Of note, since many of our samples were from lymph node metastases, we refer to 

structures that resemble B cell follicles or TLS within tumors as B cell follicles. Chemokine 

milieus also differed in their broader cell type compositions. For instance, CXCL8 milieus 

consisted mostly of tumor cells, whereas CXCL12 and CCL19 milieus showed the highest 

fractions of CD8- T cells. CCL18, CCL19, CXCL12, and CXCL13 milieus included at least 

75% immune cells indicating that they reside mostly in the stroma. In summary, these analyses 

allowed us to characterize spatial patterns of chemokine expression and to identify functional 

chemokine milieus in metastatic melanoma samples.  

Tumor antigen presentation is required for CD8+ T cell infiltration 

To investigate the differences between tumor phenotypes from hot and cold tumors, we 

compared the expression of all tumor markers on tumor cells across samples with different 

levels of T cell infiltration (Fig. 4A, Fig. S3C). Images that contained no CD8+ T cells were 

characterized by a strong reduction in markers associated with antigen presentation (B2M, 

HLA-DR) and mTOR pathway activity (pS6) and of markers which have been found to be up-

regulated upon inflammation in melanoma (PD-L1, Ido1, and H3K27me3) (39, 40). 

Interestingly, we found no difference in β-Catenin, which has previously been associated with 
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T cell exclusion (41). The strongest effects were observed for B2M (Fig. 4B), which was 

confirmed by moderate correlations between the mean expression of B2M in tumor cells with 

the frequency of CD8+ T cells (Pearson's r = 0.63) and with the fraction of all chemokine-

expressing cells (Pearson's r = 0.57) (Fig. 4C). Thus, in this cohort, antigen presentation by 

tumor cells and mTOR pathway activity are associated with CD8+ T cell infiltration. In tumors 

without CD8+ T cell infiltration, the lack of markers typically up-regulated upon inflammation 

suggests that these tumors go unrecognized by the immune system. 

Specific tumor cell phenotypes foster T cell dysfunction 

Patients with substantial CD8+ T cell infiltration in tumors have better prognosis, but anti-

tumor reactivity can lead to T cell dysfunction and exhaustion (12, 13, 15, 32). To investigate 

potential drivers of T cell dysfunction in more detail, we grouped all images with a high CD8+ 

T cell density as either high-dysfunctional or low-dysfunctional based on the fraction of 

CXCL13-expressing CD8+ T cells. To avoid inference from adjacent normal lymphoid tissue, 

images from the tumor margin of samples of lymph node metastases were excluded from these 

analyses. Images from the high-dysfunctional class were dominated by the presence of CXCL9- 

and CXCL10-expressing cells and milieus, whereas images from the low-dysfunctional class 

showed homogeneous expression of many chemokines (Fig. S4A), further supporting the 

hypothesis that in tumors with low-dysfunctional CD8+ T cells there is ongoing inflammation 

and anti-tumor responses are active.  
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Fig. 4 - Distinct tumor phenotypes are associated with strong T cell infiltration and T cell 
dysfunction 
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(A) Box plots comparing the mean marker expression (asinh) in tumor cells of a subset of tumor markers 
between images grouped by T cell density score. Asterisks indicate significance of statistical 
comparisons (Wilcoxon, adjusted using the Benjamini-Hochberg method) between images from the 
“high” density group with the “median” and “absent” groups. One data point indicates one image. 
  
(B) Cell masks colored by the combined mean expression of CD8 and CD3 (T cells), B2M, and 
combined Mart1 and Sox10 (Tumor) for two representative images. Color codes are given above the 
image. Scale bars, 220 µm.. 
 
(C) Left: Scatter plot of the fraction (log10) of CD8+ T cells on the x-axis versus mean B2M expression 
(asinh) on tumor cells on the y-axis. Right: Scatter plot of the fraction (log10) of chemokine-expressing 
cells on the x-axis versus mean B2M expression (asinh) on tumor cells on the y-axis. One data point 
indicates one image. 
 
(D) Box plots comparing the fractions of all interactions of CD8+ T cells with different tumor subtypes 
as defined by clustering between images classified as low- or high-dysfunctional. Significance of 
statistical comparisons (Wilcoxon, adjusted using the Benjamini-Hochberg method) are indicated with 
asterisks. One data point indicates one image.  
 
(E) Box plots comparing the mean expression (asinh) in tumor cells of a subset of tumor markers 
between images classified as low- or high-dysfunctional. Significance of statistical comparisons 
(Wilcoxon, adjusted using the Benjamini-Hochberg method) are indicated with asterisks. One data point 
indicates one image. 
 
(F) Scatter plot showing the mean S100A1 expression (asinh) on tumor cells per image on the x-axis 
versus the fraction (log10) of dysfunctional CD8+ T cells per image on the y-axis. Linear regression 
model is shown by blue line; 95% confidence interval is indicated by grey area.  
 
(G) Box plots comparing the cell density (cells per mm2, log10) for tumor subclusters of non-
responders vs. responders to ICI (response at 3 months). One data point indicates one image. The p-
values were inferred by a statistical comparison (Wilcoxon, adjusted using the Benjamini-Hochberg 
method) between groups. The responder group included eight images from four patients and the non-
responder group included 19 images from seven patients.   

 

We then investigated whether images of the high-dysfunctional class were enriched for 

interactions between CD8+ T cells and specific tumor cell phenotypes. We clustered the protein 

dataset to obtain fine-grained tumor phenotypes (Fig. S4B): Clusters 4, 5, and 7 were 

characterized by varying expression levels of Sox10, MITF, and Sox9 and the absence of 

S100A1. Tumor clusters 3, 6, and 8 were positive for S100A1 and had varying levels of Sox10 

and MITF. Tumor cluster 1 was characterized by the sole, strong expression of Sox9, and 

cluster 2 by the additional expression of MITF and Sox10. Cluster 9 was characterized by 

strong expression of S100A1 and MITF as well as Sox10 and pS6. We then compared the 
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interaction frequencies of CD8+ T cells with cells of each of these tumor clusters between the 

images of the low- and high-dysfunctional classes. We observed an enrichment of S100A1-

expressing clusters 6 and 9 and a depletion of S100A1-negative clusters 1 and 5 in images 

classified as high-dysfunctional (Fig. 4D). The mean levels of tumor markers S100A1, MITF, 

Mart1, and pRB were also higher on tumor cells in images classified as high-dysfunctional as 

compared to those classified as low-dysfunctional (Fig. 4E), although levels of many other 

tumor markers were similar (Fig. S4C). The strongest difference was observed for S100A1; 

this was caused by higher frequencies of S100A1-expressing tumor cells in the images 

classified as high-dysfunctional (Fig. S4D). In agreement with these results, the mean 

expression of S100A1 on tumor cells per image was moderately correlated (Pearson's r = 0.57) 

with the frequency of dysfunctional (CXCL13+) CD8+ T cells per image (Fig. 4F).  

The association between dysfunction and S100A1-expressing cell types suggested that these 

tumor cells might be susceptible to T cell recognition, and that tumors with these cell types are 

likely to respond to immunotherapy. In support of this, a comparison showed higher 

proportions of tumor cluster 9 (S100A1+) in samples from patients who responded to ICI than 

in patients who did not respond to therapy (Fig. 4G). In summary, S100A1 expression is 

increased in tumors with relatively high frequencies of dysfunctional CXCL13+/CD8+ T cells 

and could potentially serve as a biomarker for response to ICI. 

T cells are required for B cell recruitment  

We also carried out a global analysis of cell-cell interactions in images classified as low- or 

high-dysfunctional. In images classified as low-dysfunctional, almost half of all cell-cell 

interactions were amongst B cells or BnT cells (Fig. 5A), although B cell frequencies were 

similar between the two groups of images, and the frequency of regulatory T cells was only 

slightly (but significantly) higher in images classified as high-dysfunctional (Fig. 5B). The high 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454093
http://creativecommons.org/licenses/by-nd/4.0/


22 

number of B cell interactions in images classified as low-dysfunctional suggested the presence 

of B cell accumulations or follicles. Indeed, when we ran the patch detection algorithm on B 

and BnT cells and then grouped images into four classes (i.e., no B cells, no B cell patches, 

small B cell patches, B cell follicles), we observed more B cell follicles in images classified as 

low-dysfunctional (Fig. 5C; p = 0.0498, Fisher-exact test). This shows that the increased 

number of proximal B cells in images that contained fewer dysfunctional CD8+ T cells reflects 

the presence of B cell follicles rather than more scattered interactions.  
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Fig. 5 – TLS are associated with lower levels of dysfunction and naïve, stem-like T cells  
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(A) Chord diagram summarizing cell-cell interactions for all images classified as low- or high-
dysfunctional. Interactions are only shown if they made up at least 5% of all interactions and tumor 
cell interactions were excluded. 
 
(B) Box plot comparing cell type fractions for major cell types, excluding tumor cells, between 
images classified as low- or high-dysfunctional. Significance of statistical comparisons (Wilcoxon, 
adjusted using the Benjamini-Hochberg method) between groups are indicated with asterisks. One 
data point indicates one image.  
 
(C) Stacked bar plots of fractions of samples classified as low- or high-dysfunctional belonging to 
indicated B cell groups.  
 
(D) Box plot comparing the fractions of CXCL13-expressing CD8+ T cells, CD8- T cells, and HLA-
DR+ cells of all CXCL13-expressing cells across the four B cell groups for cells. One data point 
indicates one image. 
 
(E) Representative IMC images from staining of one sample with the protein panel colored by 
different markers. A magnification of the indicated region (white box) from the left and middle 
images is shown on the right. Marker expression was false colored, and the markers shown are 
indicated above each plot. A Gaussian blur (sigma = 0.65) was applied. Scale bars, 100 µm. The 
sketch on the far right shows the results from our B cell patch detection of this image with B cell 
patches and milieus. B cells and BnT cells are colored in red. Patch boundaries are displayed in light 
blue and the milieu border is highlighted in dark blue.   
 
(F) Box plots comparing the fraction of CD8+ T cell subtypes (left plot) and the fraction of CD4+ T cell 
subsets (right plot) between the B cell groups. Significance of a statistical comparisons (Kruskal-Wallis, 
adjusted using the Benjamini-Hochberg method) between B cell groups are indicated with asterisks in 
every subpopulation. One data point indicates one image.  
 
(G) Box plots showing the fraction of cell-subtypes inside B cell milieus compared to the rest of the 
image (log10 scale). This measure was normalized by the relative area of B cell milieus compared to 
the area of the whole image.  Asterisks indicate significance of statistical tests (one sample t-test, µ = 
0, adjusted using Holm’s method). One data point indicates one image.  

 

It has been proposed that dysfunctional CXCL13+/CD8+ T cells are amongst the drivers of B 

cell follicle formation in lung cancer (12, 32) and by CXCL13+/CD8- T cells in breast cancer 

(42), potentially through recruitment of B cells. Our dysfunction score is based on CXCL13 

expression in CD8+ T cells but does not take into account other CXCL13-expressing cell types. 

We therefore investigated the source of CXCL13 within tumors corresponding to our four B 

cell groups in more detail. Our analysis revealed that in images with B cells, but no B cell 

follicles, the sole sources of CXCL13 were T cells (Fig. 5D). However, the highest fractions of 

CXCL13+/CD8- T cells and CXCL13+/HLA-DR+/CD68-/CD163- cells (likely follicular 
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dendritic cells between densely packed HLA-DR+ B cells, thus appearing as HLA-DR+) were 

observed in images with B cell follicles (Fig. 5D). We made similar observations for CXCL13 

patches defined in the RNA & protein dataset (Fig. S5A). In images with small CXCL13 

patches, the predominant CXCL13-expressing cells are CD8+ T cells. With increasing CXCL13 

patch sizes (Fig. S5A, along the DC1 axis) the predominant cells expressing CXCL13 are CD8- 

T cells and HLA-DR+ cells, confirming our protein-level results. Moderate correlations 

between CXCL13 patch size and B cell frequency (Pearson’s r = 0.69) and B cell patch size 

(Pearson’s r = 0.66) further indicated that large CXCL13 patches observed in the RNA & 

protein dataset are likely B cell follicles (Fig. S5B). These data show an association between 

dysfunctional CD8+ T cells and CXCL13-expressing CD8- T cells with the presence of B cells 

and small B cell patches. However, within B cell follicles, CXCL13 is additionally expressed 

by what are most likely follicular dendritic cells. 

TLS are enriched in cells with anti-tumor capacity  

Naïve-like T cells, defined as TCF7+/CD8+ cells with or without expression of PD1, have stem-

like potential, and their presence is predictive of response to immunotherapy (12, 15, 16, 32). 

TCF7+ T cells that did or did not express CD8 often occurred in images with B cell patches or 

B cell follicles. In particular, PD1+/TCF7+/CD8+ T cells were observed around B cell 

accumulations (Fig. 5E). We therefore investigated the frequencies of TCF7+/PD1- and 

TCF7+/PD1+ T cell populations within our four B cell image classes. TCF7+ T cell frequencies 

steadily increased in images ordered from those with no B cells to those with B cell follicles 

for both CD8+ T cells and CD4+ T cells with or without PD1 expression (Fig. 5F). The spatial 

enrichment of TCF7+/PD1+/-/CD8+ over TCF7-/PD1+/-/CD8+ T cells within B cell milieus (Fig. 

5G) further supports the importance of TLS with respect to anti-tumor immunity and suggests 

that these naive-like cells may arise or be primed at TLS sites. In contrast to CD8+ T cells, 
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CD4+ T cells were generally enriched in B cell milieus (Fig. 5G). We also tested whether the 

presence of naïve, stem-like T cells was associated with response to immunotherapy in our 

cohort. Whereas TCF7+ T cells appeared to be present at higher levels in responders than non-

responders at 3 months, statistical comparisons were not significant (Fig. S5C). 

Finally, we performed a correlation analysis between the per-image frequencies of TCF7+ T 

cells and all chemokine-expressing cells to examine potential mechanisms of recruitment of 

these cells to the tumors. The frequency of CCL19-expressing cells was moderately correlated 

with frequencies of CD4+ T cells and TCF7+/CD8+ T cells but not with TCF7-/CD8+ T cells 

(Fig. S5D), suggesting that TCF7+ T cells are recruited through CCR7, the CCL19 receptor. 

TCF7-/PD1+/CD8+ T cell frequencies were highly correlated with frequencies of CXCL9-

expressing cells (Fig. S5D), suggesting that these cells express CXCR3. A similar picture, 

albeit with weaker correlations, was observed for CCL22 and CXCL12, suggesting that 

recruitment of TCF7+ T cells may also occur via CCR4 and CXCR4 (Fig. S5D). In summary, 

we observed naive-like T cells at sites of B cell enrichment within the tumor microenvironment 

that may arise or be primed at these sites and then induce anti-tumor immune activity. 
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DISCUSSION  

We have investigated the landscape of chemokine expression in metastatic melanoma using 

our RNA and protein co-staining approach for multiplex IMC (Schulz et al., 2018). By analysis 

of the IMC images of samples from 69 patients with tumors from different metastatic sites that 

ranged in grade from Stage III to IV, we characterized the drivers of immune infiltration and 

dysfunction in this disease. Why some tumors are immune deserted and others inflamed is a 

topic of debate, especially since tumors infiltrated by immune cells show higher response rates 

to immunotherapy (43). There was substantial heterogeneity with respect to immune 

infiltration in the samples from our cohort. We observed that cold tumors are practically devoid 

of chemokines and showed strongly reduced B2M expression compared to immune hot tumors 

indicating down-regulated MHC-I presentation, as has been previously reported (8, 44). In 

addition, cold tumors showed lower levels of tumor cell HLA-class-II antigen presentation, of 

mTOR pathway activity, and of the inflammatory response markers PD-L1 and Ido1, again in 

agreement with previous reports (40). Cold tumors also showed lower levels of the 

transcription repression mark H3K27me3, which has been shown to be placed by the histone 

methyltransferase EZH2 to down-regulate antigen presentation upon inflammation (39). These 

data suggest that cold melanoma tumors are dominated by tumor cells that are in “stealth” 

mode, unrecognizable by the immune system. 

Our chemokine expression profiles confirmed known attractive functions of CCL19, CCL22, 

CXCL9, CXCL10, and CXCL13, which were all analyzed at the mRNA level, toward T cells 

and B cells (8, 22–24, 45). Chemokine expression profiles revealed functional properties of 

cell types within inflamed tumors, such as CCL18 expression by macrophages and CXCL13 

and CCL4 expression by CD8+ T cells. We confirmed that CXCL13- and CCL4-expressing 

CD8+ T cells are strong expressors of Lag-3, suggesting that they have been activated for a 
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sustained period of time and reflect previously described dysfunctional and recruiter cell types 

(13, 28, 32). We also harnessed the imaging capabilities of IMC to study the spatial distribution 

of chemokines and the cell phenotypes found in chemokine milieus. Similar to findings of a 

recent study (26), CXCL9 was mostly expressed by myeloid cells, and we often observed CD8+ 

T cells near these CXCL9-expressing myeloid cells. Using a novel algorithm to detect 

accumulations of cells within images, we found that CXCL9 and CXCL10 milieus exhibited 

high expression of markers of T cell dysfunction and exhaustion. In T cell-rich samples, the 

occurrence of such CXCL10- and CXCL9-rich milieus with dysfunctional T cells suggests that 

these are hotspots of inflammation and anti-tumor reactivity. 

Multiple states of CD8+ T cells exist, from naive-like to cytotoxic to dysfunctional and 

exhausted, and conversions between these cell states may be possible (12). The presence of 

naïve-like TCF7+/CD8+ T cell phenotypes is predictive of response to immunotherapy in 

melanoma and lung cancer (15–17, 32). The presence of TLS and B cells are reportedly 

correlated with response to immunotherapy in melanoma (8, 18, 46). Here we discovered that 

naïve-like, TCF7+ T cells are correlated with the presence of TLS in metastatic melanoma. In 

addition, our IMC analysis revealed that these TCF7+ T cells co-occur with accumulations of 

B cells and show the highest densities around B cell patches and follicles, consistent with recent 

findings from single-cell analyses (8), murine models (47), and lung cancer specimens (32). 

Our data thus suggest that the correlations of TLS and TCF7+ T cells with ICI response 

potentially reflect the same underlying events in multiple tumor types. 

Our data favor a model in which tumor-reactive, dysfunctional CD8+ T cells produce CXCL13 

to recruit additional cells of the adaptive immune system to induce a systemic anti-tumor 

response. We speculate that once a critical mass of B cells is present, the formation of B cell 

follicles may be initiated, which is further supported and/or sustained by CXCL13-expressing 
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follicular dendritic cells. B cell recruitment and follicle formation are likely accompanied by 

CCL19- and CCL22-dependent recruitment of naïve and naïve-like T cells that expand upon 

priming. Furthermore, the fact that we observe these cell types around B cell follicles and 

associated with CCL19 and CCL22 expression suggest that novel clones that have anti-tumor 

activity may be recruited to the tumor as previously hypothesized (48). 

Given such a model, it is unclear why certain tumors can, and others cannot, despite the 

presence of CXCL13-expressing T cells, efficiently recruit cells of the adaptive immune system 

to enter a favorable state for anti-tumor responses. Certainly, tumor phenotypes matter. 

Interestingly, we found that S100A1 expression is associated with T cell dysfunction and that 

the presence of specific tumor cells that express S100A1 is predictive of response to 

immunotherapy, even in our small cohort. Thus, these responsive tumors contained 

dysfunctional cells, naive-like T cells, and a tumor subtype that may be involved in the response 

to immunotherapy. Future studies will be necessary to determine whether S100A1, which has 

so far not been linked to antigen presentation or immunotherapy response, could be used as a 

biomarker to select patients likely to benefit from ICI. 
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MATERIALS AND METHODS 

Experimental model and subject details 

Biological material 

A TMA was prepared from FFPE samples from 69 patients with Stage III and IV metastatic 

melanoma who were treated at the University Hospital of Zurich under ethics approval KEK-

ZH-Nr 2014-0425. For this study, two consecutive (4 μm apart) cuts were processed, stained, 

and analyzed. The TMA was composed of samples from 14 patients with one biopsy core, 39 

patients with two cores, seven patients with three cores, four patients with four cores, and five 

patients with more than four cores. For those tumors for which we had multiple cores, cores 

were taken from the tumor border and tumor center.  

HeLa cell pellets for the 12-plex validation were obtained from ACD. Overexpression 

experiments were performed in A431 breast cancer cell lines. Cells were cultured in DMEM 

(D5671, Sigma-Aldrich), supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 

U/ml penicillin, and 100 μg/ml streptomycin. A431 cells were only used for overexpression of 

PPIB, and no authentication of the cell line was performed in this study. 

Method details 

Validation of IMC based RNA detectionfor cytokine evaluation by IMC 

To determine the signal intensity range across the twelve channels, channel-specific PPIB 

expression levels were quantified in HeLa cell pellets. To determine the quantitative ability of 

RNAscope, we compared the median expression level (over three replicates) of 12 

housekeeping genes to bulk RNA-seq data from the Human Protein Atlas (49). We used 

normalized expression levels (TMM-normalized, scaled, batch-corrected TPM values) 
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measured in HeLa cells (Expasy Accession CVCL_0030), the cell line evaluated in our 

experiment.   

The influence of subsequent antibody incubation upon the RNAscope protocol was assessed 

using two replicates of HeLa cell pellets. We quantified the mean expression of 12 

housekeeping genes with and without subsequent antibody incubation. 

To evaluate crosstalk, a PPIB entry vector from the human ORFeome 8.1 collection (NEXUS 

Personalized Health Technologies, ETH Zurich) was cloned into a pDEST pcDNA5 FRT TO-

eGFP vector (50) via Gateway Cloning. A431 cells (ECACC 85090402) were seeded at the 

density of 50,000 cells per well in a 12-well chambered slide (Ibidi) 24 h before transfection. 

The cells were transfected with the PPIB expression vector according to the manufacturer’s 

protocol (Polyplus, jetPRIME® versatile DNA transfection kit). One day after transfection cells 

were fixed with 10% neutral buffered formalin for 10 min, washed with PBS, and then 

permeabilized with 0.1% Triton in PBS for 5 min. Following permeabilization, samples were 

treated with RNAscope Protease III (Advanced Cell Diagnostics) for 10 min at room 

temperature (1:15 dilution in PBS). Subsequently, cells were washed once in PBS and twice in 

doubly distilled H2O for 2 min each wash. A standard RNAscope protocol (Advanced Cell 

Diagnostics, RNAscope Fluorescent Multiplex Reagent Kit) was applied starting with single 

target probe incubation (12 wells = 12 target probes) for 2 h at 40 °C. 

The over-expression of PPIB was first visually confirmed using a wide-field microscope 

(Zeiss, Cell Observer) with GFP expression as transfection reporter. Regions with a high 

density of transfected cells were selected and subsequently ablated using IMC. Although 

channel spillover effects in IMC are usually minimal, the over-expression of genes enhances 

the effect to a non-negligible level. Therefore, pixel intensities were spillover corrected using 
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the compensation method described previously (51). The degree of nonspecific binding was 

quantified on the spill-over corrected measurement. 

Antibody conjugation 

The antibodies used in this study are listed in the key resource table. Antibodies (carrier-free) 

were conjugated to pure isotopes using the MaxPar® labeling kit (Fluidigm) following the 

manufacturer’s protocol. The antibodies were stored at concentrations up to 500 μg/mL in 

TRIS-based stabilizing solution (Candor Biosciences) at 4 °C. 

Staining with RNA & protein panel 

Prior to RNA staining, pre-treatment of the FFPE RNA TMA was performed according to the 

manufacturer protocol (Advanced Cell Diagnostics) for FFPE samples. RNA staining was 

performed according to the manufacturer protocol (Advanced Cell Diagnostics, RNAscope 

Fluorescent Multiplex Reagent Kit). Oligonucleotides were conjugated to pure isotopes as 

described (29). Metal-labeled oligonucleotides were then used at a final concentration of 20 

nM, diluted from a 10 μM stock with RNAscope HiPlex Probe Diluent (Advanced Cell 

Diagnostics). After completion of the RNA staining protocol, the sample was briefly washed 

in TBS. Subsequently, an antibody cocktail was applied and incubated overnight in a 

humidified chamber at 4 °C. After the overnight incubation, the slide was washed in TBS for 

5 min and then stained for 5 min in a 1:100 dilution of 500 μM MaxPar Intercalator-Ir 

(Fluidigm) in TBS. The slide was then washed for 5 min in TBS, dipped into doubly distilled 

H2O, and subsequently dried using pressurized air flow. The samples were stored until 

acquisition under dry conditions at room temperature. 
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Staining with protein panel 

Slides were first deparaffinized in UltraClear® (3x10 min). After a 10-min wash in 

UltraClear®/100% ethanol (1:1), sections were rehydrated in a graded alcohol series (100%, 

90%, 80%, 70%, 50%) for 10 min each, followed by a wash in TBS for 10 min. Antigen 

retrieval was performed using Tris-EDTA buffer (pH 9.2) for 30 min at 95 °C. After 20 min at 

room temperature, a blocking buffer (3% bovine serum albumin (Sigma Aldrich), 0.1% Tween-

20 (Sigma Aldrich) in TBS) was applied for 1 h at room temperature. The slide was then 

incubated with antibodies overnight at 4 °C in a humidified chamber. After the overnight 

incubation, the same steps were applied as described in the RNAscope Staining section. 

Image acquisition 

Images were acquired using a Hyperion Imaging System (Fluidigm). Each TMA core was 

laser-ablated with a laser frequency of 400 Hz. Cores were randomly selected for acquisition. 

Five cores could not be acquired as tissue was not visible and most likely lost during sample 

preparation. A total of 159 images were acquired from each consecutive TMA. 

Quantification and statistical analysis 

Image processing 

Raw data were converted to ome-tiff format and segmented into single cells using the 

ImcSegmentationPipeline (52). TMAs stained with the RNA & protein panel and the protein 

panel were processed separately as different channels were used to train the pixel classifier 

described below.  
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Pixel classification 

We used Ilastik (version 1.3.2post1) to create pixel probability maps for three classes (nuclei, 

cytoplasm, background). The class-uncertainty of single cores was extracted to detect cores for 

which re-training was required. Three cores (H1, I1, I8) were left out in both datasets due to 

poor image quality. For a subset of cores, pixel classification retraining was performed to 

reduce uncertainty and to increase the quality of pixel classification.  

Single-cell segmentation 

The generated probability maps were processed to create single-cell masks using the cell image 

analysis software CellProfiler (version 3.1.9). First, probabilities were histogram equalized 

(256 bins, kernel size 17), and then a Gaussian filter was applied to enhance contrast and 

smooth the probabilities. Subsequently, an Otsu two-class thresholding approach was used to 

segment nuclear masks. Cell masks were derived from an expansion of nuclear masks using a 

maximum expansion of 3 pixels. Ultimately, CellProfiler was used to overlay single-cell 

segmentation masks and single-channel tiff images of all measured channels to extract single-

cell marker expression means. The mean expression was corrected for channel spill-over using 

a non-negative least squares method (51). Spatial features such as the number of neighboring 

cells and cell-center coordinates were retrieved. All CellProfiler scripts to recreate the single-

cell masks are available at URL (will be released upon publication or request). The output data 

were then imported into R (version 4.0.3) using the RStudio interface (version 1.3.1093) for 

further analyses. 

Cell type identification and definitions 

A labeled dataset was generated using the Shiny Application of the R package cytomapper 

(31). This application allows labeling of cell populations using multiple gates and inspection 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454093
http://creativecommons.org/licenses/by-nd/4.0/


35 

of the result on the IMC image to verify the quality of the gating. Gated cells were then 

downloaded as a SingleCellExperiment objects with gating information (min/max information 

on used markers) stored in the metadata. We defined our cell-type superclasses using the 

markers available. The markers used for gating and the applied gates for each image and cell 

type superclass are available at URL (will be released upon publication or request). A random 

forest classifier was trained on 75% of the labeled data. The model was verified on 25% of the 

data and subsequently applied to the full dataset. Results from quality control of the random 

forest classifier are not shown in this publication but are available at URL (will be released 

upon publication or request). 

Since our RNA & protein panel did not contain a probe for CD4, we identified CD4+ T cells in 

the RNA dataset as CD3+/CD8- cells. CD3+/CD8- T cell frequencies in the RNA dataset 

correlated very highly with CD4+ T cells from the protein dataset supporting that CD3+/CD8- 

T cells in the RNA dataset consist of mostly T-helper cells and regulatory T cells (Fig. 1D, 

dashed box). Similarly, our RNA & protein panel did not directly detect markers of B cells, but 

HLA-DR+/CD68-/CD163- cells (referred to here as HLA-DR+ cells) correlated very highly with 

B cell frequencies from the protein dataset suggesting that HLA-DR+ cells are highly enriched 

in B cells (Fig. 1D, dashed box). 

Detection of chemokine-expressing cells 

To reliably identify chemokine-expressing cells, we devised a robust approach that accounts 

for non-specific probe binding, in which we used the signal obtained with a probe to DapB, a 

bacterial gene not expressed mammalian cells, to infer true positive expression of each 

chemokine per cell (Fig. S1F). Subtraction of the DapB mRNA signal from each chemokine 

channel for every cell resulted in values that followed a general normal distribution. After 

scaling these values around a mean of 0 with a standard deviation of 1, p-values for each 
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channel and cell were calculated and adjusted for multiple comparisons using the Benjamini-

Hochberg method. A p-value cutoff of 0.01 was applied to all chemokine channels to define 

cells with significant expression of any chemokine. A binary label was then assigned to each 

chemokine channel to group the cells into chemokine-producing and non-producing cells. 

Thus, the expression status of each chemokine in each cell was defined and used as the basis 

for further analysis. 

Sub-clustering of cell type superclasses 

The classes assigned from the random forest were further sub-clustered into either four or six 

clusters using only cell-type relevant markers with FlowSOM (53) as implemented in the 

CATALYST R package (54). 

Definition of cell types using manual gating 

To manually define cell types, we used a gating approach for the following markers: 

● TCF on T cells (CD4+ or CD8+): mean expression (asinh) > 1.5 

● PD1 on T cells (CD4+ or CD8+): mean expression (asinh) > 1.5 

● CXCL13+ on CD8+ T cells: as defined by our chemokine detection method 

● S100 on tumor cells: mean expression (asinh) > 3 

Local enrichment analysis 

To identify local enrichments of chemokine expressing cells we used our previously published 

motif detection version of histocat (29, 55). Briefly, motifs were defined by a varying number 

of cells of the same type (e.g. 4 CXCL10 expressing) with a maximum distance of 8 µm 

between cells. P-values were calculated from the comparison of the frequency of motifs per 

image to the empirical distribution of the number of motifs in the same image after shuffling 

the cell type labels 1000 times. 
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Patch and milieu detection 

In order to detect a local accumulation of a certain type of cell (patch) and their neighbors 

(milieus), we developed an algorithm in R. The user inputs a SingleCellExperiment data 

container with the IDs for the cells of interest. Additionally required are a maximum distance 

between cells to be considered as part of a patch and the minimal number of cells by which a 

patch is defined. The algorithm assigns an ID to cells which fulfill the requirements. The patch 

border is defined by a concave hull algorithm. To identify the surrounding milieu, a second 

algorithm expands the patch hull by a user-defined distance value. All cells located within this 

expanded hull obtain a milieu ID that is identical to the patch ID. For the patch analysis of this 

dataset, a maximum distance of 25 µm was applied and patch had to consist of minimally 10 

chemokine expressing cells. Patches were then further expanded by 30 µm to form milieus. 

With a median cell diameter of 9.5 µm in our dataset, these expansions corresponded to 2-3 

cell diameters. 

Interaction quantifications 

The CellProfiler output from the “measure neighbors” module was used to quantify cellular 

interactions. For tumor and CD8+ T cells, a distance of 8 µm was used to count interactions. 

Image grouping by T cell score 

Images were grouped based on the density (cells per mm2 ablated area) of CD8+ T cells in the 

protein dataset. The groups were defined using the following characteristics:  

● absent: up to 40 CD8+ T cells/mm2 

● low: 40-100 CD8+ T cells/mm2 

● medium: 100-400 CD8+ T cells/mm2 

● high: >400 CD8+ T cells/mm2 
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The scores were derived from the protein dataset and were assigned to the RNA & protein 

dataset.  

Image grouping by dysfunction score 

Images with high T cell scores were further grouped based on the degree of measured T cell 

function. Two groups were defined using the following characteristics:  

● functional: up to 5% of all CD8+ T cells are CXCL13+ 

● dysfunctional: more than 5% of all CD8+ T cells are CXCL13+ 

The scores were derived from the RNA & protein dataset and were assigned to the protein 

dataset.  

Image grouping by B cell score 

B cell patches and milieus were defined using our patch detection algorithm. We considered B 

cells and BnT cells for the detection of patches. The minimal distance between neighboring 

cells was set to 15 µm. Only patches with at least 20 cells were considered. To define the 

milieu, the patch border was expanded by 50 µm. Based on the results, we grouped images 

from the protein data set into four groups: 

● no B cells: B cell density of up to 10 B cells/mm2 and no patches 

● no B cell patches: B cell density > 10 B cells/mm2 and no patches 

● small patches: at least one patch with up to 250 B cells 

● B cell follicles: at least one patch with more than 250 B cells 

The scores were derived from the protein dataset were assigned to the RNA & protein dataset.  

Sample exclusion 

To avoid potential biases due to adjacent normal lymphoid tissues, we excluded all images 

from lymph node margin samples for the calculation of the dysfunction score. Furthermore, 
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lymph node margin samples were excluded for the analysis from Fig. 5D and the B cell follicle 

analysis shown in Fig. 5F and G. For analyses considering responses to ICI, we only took 

images from patients with treatment-naive tumors into account. 

Diffusion maps 

Diffusion maps (two diffusion components) were generated on a subset of cells (CXCL13+) for 

all markers (asinh transformed) using the scater package (56).  

Statistical testing 

Statistical significance was calculated using the pipe-friendly R package rstatix. The statistical 

test used in each case is given in the figure legend. All p-values were corrected for multiple 

testing, and the method used is indicated in the figure legend. We used the following 

convention to indicate significance with asterisks: ns (p>0.1), * (0.1>p>0.01), ** 

(0.01>p>0.001), *** (0.001>p>0.0001), **** (p<=0.001).  

Supplementary Materials  

Fig. S1. Validation of novel 12-plex RNAscope system. 

Fig. S2. Chemokine expression and clinical features. 

Fig. S3. Chemokine expression across T cell groups and tumor-T cell interactions. 

Fig. S4. Protein cell clustering and marker expression comparisons between images grouped 

by T cell function. 

Fig. S5. Chemokine expression and naïve, stem-like T cell associations with B cell milieus. 

Table S1. List of reagents. 

Table S2. List of software and packages. 
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