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Abstract

Background: Clinicopathological studies suggest that Alzheimer’s disease (AD) pathology begins ,10–15 years before the
resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and
predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a
targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and
prognostic accuracy of current leading CSF biomarkers (Ab42, tau, p-tau181).

Methods and Findings: Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from
cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1)
individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR.0
groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers
(cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-a, fibrinogen, FAS, eotaxin-3) enhanced the ability of
the best-performing established CSF biomarker, the tau/Ab42 ratio, to discriminate CDR.0 from CDR 0 individuals. Multiple
machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the
current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR.0 individuals in the
more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their
potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of
markers for predicting risk of developing cognitive impairment (CDR 0 to CDR.0 conversion) consisted of calbindin, Ab42,
and age.

Conclusions/Significance: Using a targeted proteomic screen, we identified novel candidate biomarkers that complement
the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals.
Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential.
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Introduction

With the growing prevalence of Alzheimer’s disease (AD), the

ability to accurately and reliably diagnose AD in its earliest stages

has become a public health priority. The concept of ‘earliest

stages,’ however, warrants revision as it is increasingly clear there

exists a ‘preclinical’ or ‘presymptomatic’ stage during which the

pathological changes associated with AD, amyloid plaques,

neurofibrillary tangles, and neuroinflammation, begin to appear

without concomitant clinical features. This period has been

estimated to be ,10–15 years in duration. Means to identify this

preclinical phase of AD may facilitate medical intervention to

prevent or slow neurodegeneration and the resulting cognitive

impairment. Because clinical examination cannot detect preclin-

ical disease and is less accurate with very mild stages of AD, there

is a pressing need for biomarkers for AD. Furthermore,

biomarkers may have significant utility in clinical trial design,

providing greater diagnostic certainty for enrollment than is

possible by clinical diagnosis alone, and allowing for the selective

enrollment of individuals at greater risk of developing future

cognitive impairment, ultimately resulting in trials of shorter

duration, smaller size, and reduced cost.

The cerebrospinal fluid (CSF) is a logical source of potential AD

biomarkers, as it reflects biochemical changes in the brain. Indeed,

the fluid biomarkers thus far showing the greatest promise for use

in AD diagnosis and prognosis are CSF amyloid-b42 (Ab42), tau,

and phosphorylated forms of tau (p-tau) [1]–[5]. Concentrations of

CSF Ab42 decrease in association with the deposition of Ab42 into

plaques within the brain [6]–[9]. This process occurs years prior to

the clinical onset of AD and may mark the earliest phase of AD

pathology. CSF Ab42 levels remain low throughout the disease

course [6], [10], [11]. In contrast, CSF tau and p-tau levels

progressively increase with the advancing stages of AD, and in

some individuals, begin to rise several years prior to diagnosis [7],

[12], [13]. The ratios of tau or p-tau to Ab42 have also proven

useful for predicting clinical progression in individuals who have

very mild dementia or mild cognitive impairment (MCI), and,

importantly, for predicting future MCI and AD dementia among

those who are cognitively normal [7], [14], [15]. Nevertheless,

even for these analytes, there is substantial overlap between

control and AD groups and a need for better prognostic ability

[16]. Consequently, there remains a need for supplemental

biomarkers to improve diagnosis and prognosis at different disease

stages. Given the multifactorial nature of AD pathophysiology, it is

likely that there will be other CSF biomarkers that will be useful in

this regard. While proteomic screens have identified a number of

other candidate AD biomarkers [17]–[26], few studies have

utilized large, well-characterized cohorts or have looked for

biomarkers in preclinical or very early stage disease.

In this study, a large number of CSF samples (N = 333) selected

from well-characterized MCI/very early stage-AD and cognitively

normal control cohorts were chosen for protein profiling using a

commercially available panel that measures a variety of cytokines,

chemokines, metabolic markers, growth factors, and other

markers. Multiplex immunoassay platforms such as the one used

here, Rules Based Medicine Discovery MAP 1.0 panel, allow for

the simultaneous quantitation of many analytes, and by adhering

to clinical laboratory improvement amendments (CLIA) standards,

are amenable for clinical trial work. Using multiple statistical

approaches, we have identified a set of novel biomarkers that may

improve the ability of traditional AD biomarkers, Ab42 and tau, to

distinguish MCI/early-stage AD from cognitive normalcy and to

predict the development of future cognitive impairment (i.e.

detection of preclinical AD at increased risk of progression).

Methods

Ethics Statement
The study protocols were approved by the Human Studies

Committees at all participating institutions, and written and verbal

informed consent was obtained from participants at enrollment.

All aspects of this study were conducted according to the principles

expressed in the Declaration of Helsinki.

Participant Selection
Participants (N = 333) were community-dwelling volunteers

enrolled in longitudinal studies of healthy aging and dementia at

the Knight Alzheimer’s Disease Research Center at Washington

University (WU-ADRC). The study protocol was approved by the

Human Studies Committee at Washington University, and written

and verbal informed consent was obtained from participants at

enrollment. At sample collection, participants were $60 years of

age and in good general health, having no other neurological,

psychiatric, or major medical diagnoses that could contribute

importantly to dementia. Clinical diagnosis was evaluated based

on criteria from the National Institute of Neurological and

Communicative Diseases and Stroke-Alzheimer’s Disease and

Related Disorders Association (NINCDS-ADRDA) [27]. Cogni-

tive status was rated with the clinical dementia rating scale (CDR);

a CDR of 0 (N = 242) indicated no dementia, CDR 0.5 (N = 63)

indicated very mild dementia, and CDR 1 (N = 28) indicated mild

dementia [28]. Some of the CDR 0.5 study participants met the

criteria for mild cognitive impairment (MCI) and some were more

mildly impaired and were considered ‘‘pre-MCI’’ [29], [30]. A

subset of participants (N = 179) in this cohort had also undergone

positron emission tomography (PET) imaging with Pittsburgh

Compound-B (PIB) for assessment of in vivo amyloid burden [32].

A mean cortical PIB binding potential value was obtained by

averaging prefrontal cortex, precuneus, lateral temporal cortex,

and gyrus rectus regions, as described previously [6], [31].

Apolipoprotein E (APOE) genotype was determined by the WU-

ADRC Genetics Core. Twenty-five to 30 mL of CSF was

collected by lumbar puncture (LP) at 8 AM following overnight

fasting. Samples were inverted to avoid gradient effects, centri-

fuged briefly (2,000g, 5 minutes, 4uC) to remove any cellular

elements, and aliquoted into polypropylene tubes for freezing and

storage at 280uC [7].

Analyte Measurements
CSF Ab42, total tau, and phospho-tau181 levels (henceforth

referred to as ‘traditional’ biomarkers) were analyzed in duplicate

by the WU-ADRC Biomarker Core by quantitative ELISA after a

single freeze-thaw cycle according to the manufacturer’s specifi-

cations (Innotest, Innogenetics, Ghent, Belgium).

CSF samples were also evaluated by Rules Based Medicine, Inc.

(RBM) (Austin, TX) for levels of 190 analytes using the Human

Discovery Multi-Analyte Profile (MAP) 1.0 panel and a Luminex

100 platform. This 190 analyte panel (from here on referred to as

‘RBM analytes’) was assembled by RBM to measure a range of

cytokines, chemokines, growth factors, hormones, metabolic

markers, and other proteins thought to be important in disease;

a complete list of analytes is available at www.rulesbasedmedicine.

com.

At RBM, the samples were thawed at room temperature (RT),

vortexed, spun at 13,000g for 5 minutes for clarification, and 1.0

mL was removed into a master microtiter plate for MAP analysis.

Using automated pipetting, an aliquot of each sample was

introduced into one of the capture microsphere multiplexes of

the Human DiscoveryMAP. The mixtures of sample and capture
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microspheres were thoroughly mixed and incubated at RT for 1

hour. Multiplexed cocktails of biotinylated reporter antibodies for

each multiplex were then added robotically, and after thorough

mixing, were incubated for an additional hour at RT. Multiplexes

were developed using an excess of streptavidin-phycoerythrin

solution which was thoroughly mixed into each multiplex and

incubated for 1 hour at RT. The volume of each multiplexed

reaction was reduced by vacuum filtration and then increased by

dilution into matrix buffer for analysis. Analysis was performed in

a Luminex 100 instrument and the resulting data stream was

interpreted using proprietary data analysis software developed at

RBM. For each multiplex, both calibrators and controls were

included on each microtiter plate. Eight-point calibrators were run

in the first and last column of each plate and 3-level quality

controls were included in duplicate. Testing results were

determined first for the high, medium and low controls for each

multiplex to ensure proper assay performance. Unknown values

for each of the analytes localized in a specific multiplex were

determined using 4 and 5 parameter, weighted and non-weighted

curve fitting algorithms included in the data analysis package.

Statistical Analysis
Statistical analyses were performed in SAS 9.2 (SAS Institute

Inc, Cary, NC) for univariate analyses, ROC/AUC calculations,

and Cox proportional hazards models, and in R version 2.10.1 for

predictive modeling [packages/versions: caret (4.65), earth (2.4-0),

kernlab (0.9–9), klaR (0.6–3), MASS (7.3–7), mda (0.4–1), nnet

(7.3–1), pamr (1.44.0), pls (2.1–0), randomForest (4.5–34), spls

(2.1–0)] [33]. Of the 190 RBM analytes, 65 had .10% of data

missing or below the lower detection limit (LDL), and were

therefore excluded from analysis, yielding 125 ‘measurable’

analytes. Data below the LDL were imputed to LDL/2, and data

more than five standard deviations beyond the mean were

imputed using a nearest neighbor algorithm. Of the 125

measurable analytes, 24 analytes had at least one value below

the LDL, imputed to LDL/2. For those 24 analytes, the

percentage of data imputed ranged from , 1% (3 or fewer

values) to 9.5% (33 values). There were a total of 82 outliers from

48 participants, with outliers in a maximum of 10 analytes for one

participant, and in 2 – 9 analytes for the remaining participants.

The distributions of analytes were tested for normality by Box-Cox

analysis and, when appropriate, log10 transformed to approximate

a normal distribution. Correlations between RBM analytes,

traditional AD biomarkers, and demographic variables were

evaluated using the Spearman rho correlation coefficient

(a= 0.05). Analysis of covariance (ANCOVA) using the General

Linear Model (GLM) procedure in SAS was used to determine

analytes that differed in concentration between AD and control

groups while adjusting for the effects of age and gender.

Bonferroni correction was used to adjust for multiple testing

(128 RBM plus traditional analytes). For each analyte showing

promise by univariate analysis, the area under the Receiver

Operating Characteristic (ROC) curve (AUC) was calculated for

discriminating CDR 0 versus CDR.0. The method of Xiong et

al. [34] was implemented to determine the optimum linear

combination of analytes and to calculate the confidence interval

(CI) on the AUC and the sensitivity. A bootstrapping resampling

technique was used to obtain robust estimates of expected future

performance of the three marker panels in predicting CDR 0

versus CDR.0. Averages of performance measures (the 95% CI

of the AUC, sensitivity at 80% specificity, and p-value) were taken

over 100 iterations of the bootstrap.

Cox proportional hazard models assessed the ability of baseline

biomarkers to predict conversion from cognitive normalcy (CDR

0) to very mild or mild dementia (CDR 0.5 and 1). Data from

participants who did not convert during the follow-up were

statistically censored at the date of last assessment. Biomarker

measurements were treated as continuous variables and were

converted to standard Z-scores. Baseline variables were considered

for inclusion in multivariate models if they were associated with

time to conversion in a univariate analysis (p,0.15). Variables

were retained in multivariate proportional hazard models if

p,0.05. AIC (Akaike Information Criterion), a measure of

goodness of fit of an estimated statistical model, was used to

compare different models, with a lower AIC indicating better

model fit.

Several statistical machine learning techniques were utilized to

predict CDR status as a function of baseline characteristics (e.g.

age) and the candidate biomarkers. Rather than focusing on a

specific model, a panel of predictive modeling techniques was

applied to the data. Most of these models contain ‘‘tuning

parameters’’ that cannot be directly estimated from the data; these

values were chosen using resampling techniques. The models used

were:

N Partial Least Squares (PLS) is a latent variable model that

produces linear class boundaries and works well with

correlated predictors [35]. Candidate values of the tuning

parameter, the number of PLS components, ranged from 1 to

20.

N Sparse Partial Least Squares (SPLS) is a variant of PLS that

incorporates feature selection in the model fitting [36]. The

number of PLS components was varied in the same manner as

the basic PLS model and the additional tuning parameter for

regularization was varied from 0.1 to 0.9.

N Random Forests (RF) is a tree-based ensemble method [37].

The number of randomly selected variables at each split was

varied over five values (generally 2 to the number of predictors

in the model).

N Boosted Trees are another tree-based ensemble model [38].

The three tuning parameters are the depth of the tree (even

values from 2 to 10 were evaluated), the number of boosting

iterations (20 iterations to 2000 in 100 iteration increments)

and the learning rate (fixed at 0.1).

N Support Vector Machine (SVM) are a kernel based method

[39]. The radial basis function kernel was used. The kernel

parameter was estimated analytically [40] and the five

candidate values of the cost parameter ranged from 0.1 to

1,000 on the log10 scale.

N Nearest Shrunken Centroids (NCS) is a prototype model that

incorporates feature selection [41]. The tuning parameter, the

shrinkage threshold, was varied over 30 values (between 0.325

and 9.097 for the model using traditional biomarkers, and

between 0.325 and 9.11 for the model using traditional and

RBM markers.)

N Naı̈ve Bayes (NB) is a simple classifier where each predictor

variable contributes to the final class prediction independently

[42]. The conditional distributions were computed using a

simple Gaussian distribution or using a nonparametric density

estimator.

N K-Nearest Neighbors (KNN) is a simple prototype based

model [42]. Candidate values for the number of neighbors

ranged from 5 to 15.

N Flexible Discriminant Analysis (FDA) is a partitioning based

model that also incorporates feature selection [43]. The

multivariate adaptive spline basis function was used. Ten
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candidate values for the number of retained terms were

evaluated.

To determine the values for the tuning parameters and to estimate

performance, resampling methods were used. The entire data set

was repeatedly split into training (80%) and test sets (20%). This

process was repeated 200 times. Models were fit on the training

sets and the associated held-out values were used to estimate

performance (sensitivity, specificity, and the area under the ROC

curve). The final estimates of performance were calculated by

averaging the 200 sets of performance values from the resampling

procedure.

Results

Levels of 37 markers are altered in MCI/very mild and
mild AD CSF

To identify new candidate biomarkers for AD, multiplexed

Luminex-based immunoassays were used to evaluate the levels of

190 analytes in the CSF of 242 cognitively normal participants

(CDR 0), 63 participants with very mild dementia (CDR 0.5), and

28 participants with mild dementia (CDR 1) (participant

characteristics at baseline assessment in Table 1). Since the

number of CDR 1 participants was relatively smaller, and all CDR

0.5 and CDR 1 participants were clinically diagnosed as having

AD, the CDR 0.5 and CDR 1 groups were combined in the

statistical analyses. There were no statistically significant differ-

ences in age, gender, MCBP for PIB-PET, or APOE genotype

between the CDR 0.5 and CDR 1 groups. Of the 125 RBM

analytes that were statistically assessed (Table S1), the mean

concentrations of 37 CSF analytes were found to differ between

cognitively normal (CDR 0) and very mildly/mildly demented

(CDR 0.5 and 1) participants by analysis of covariance

(ANCOVA) adjusting for age and gender (p,0.05) (Table 2 and

Table S2). Twelve of these 37 analytes remained significant after

Bonferroni correction for multiple testing (n = 128, adjusted alpha

= 0.0004). Additionally, participants with very mild/mild demen-

tia exhibited the typical AD CSF biomarker profile characterized

by significantly lower mean levels of CSF Ab42 and higher mean

levels of CSF tau and CSF p-tau181, as well as displaying higher

mean cortical amyloid burden (MCBP assessed by PIB-PET

imaging) as has been seen previously (Tables 1 and 2) [6], [31],

[32].

Correlation of RBM analytes with demographic features
and other biomarker values

Because the CDR 0, 0.5, and 1 groups showed somewhat

different distributions with regard to age at lumbar puncture and

gender, levels of the 37 RBM analytes were evaluated for

correlation with these variables. Many analytes were significantly

associated with age or gender (Table 3). Additionally, seeking

insight into the potential roles of the analytes in AD pathology, we

evaluated their association with CSF Ab42, tau, and p-tau181, and

cortical amyloid burden measured by PIB-PET imaging. Many of

the analytes correlated with CSF tau and CSF p-tau181 (31 and 30

analytes, respectively), while fewer correlated with CSF Ab42 or

cortical amyloid burden (8 and 5 analytes, respectively) (Table 3).

Diagnostic Utility of Candidate Biomarkers
To assess the potential of the analytes for identifying very mild/

mild dementia (combined CDR 0.5 and CDR 1), ROC curves and

AUCs were calculated for each of the 37 RBM analytes and for

traditional AD biomarkers Ab42, tau, p-tau181 and the ratios tau/

Ab42 and p-tau181/Ab42 (Table 4 and Figure 1). Although none

of the RBM analytes alone out-performed the traditional

biomarkers, combining traditional biomarkers with RBM analytes

improved upon the AUC of the traditional biomarkers in many

cases; e.g., Ab42: AUC = .7552, combinations ranging from

.7553–.8201; tau/Ab42: AUC = .8443, combinations ranging

from .8444–.8819; p-tau181/Ab42: AUC = .8065, combinations

ranging from .8065–.8468 (Table 4 and Figure 1). For these ‘2-

marker panels’ of traditional biomarker plus RBM analyte,

combinations with tau/Ab42 consistently yielded the highest

AUCs. To investigate whether combinations of three markers

could yield a small panel with improved diagnostic accuracy, we

utilized a targeted approach in which the four 2-marker panels

with the highest AUCs (tau/Ab42 + cystatin C, tau/Ab42 +
VEGF, tau/Ab42 + KIM-1, tau/Ab42 + PP) were combined with

the 10 RBM analytes with the highest individual AUCs (indicated

in Table 4). Because an independent validation cohort was not

available for analysis, bootstrapping resampling with 100 iterations

was performed to obtain relatively unbiased estimates of expected

future performance of the ‘3-marker panels’ in predicting CDR 0

versus CDR.0 (Table 5). A number of the 3-marker panels

demonstrated significantly improved AUCs compared to the

corresponding 2-marker panels, with the best achieving AUCs of

,.90 and sensitivities of ,84% at 80% specificity (Table 5).

Because AD is a complex, multifactorial disease and likely

involves alterations in multiple biological pathways, it is possible

that a larger panel of biomarkers encompassing various features of

AD pathophysiology may be optimal for disease diagnosis. Thus,

we utilized statistical machine learning algorithms, which are more

amenable to potentially large numbers of analyte combinations

and can identify highly complex nonlinear relationships, to

discover whether groups of markers are capable of distinguishing

very mildly/mildly demented (CDR 0.5 and 1 combined) from

cognitively normal participants (CDR 0). A multi-pronged

analytical approach including RF, PLS, SPLS, Boosted Tree,

FDA, NB, NSC, LR, KNN, and SVM was used, as each approach

has its own strengths and weaknesses. Models were fit with two sets

of predictors: 1) traditional biomarkers, and 2) traditional

biomarkers plus RBM analytes; additionally, age, gender, and

ApoE genotype were included in all models. Model performance

measures were based on cross-validation, in which the test set

results were averaged from 200 splits of the data between training

Table 1. Demographic, clinical, and genotypic characteristics
of the 333 study participants.

Characteristic CDR 0 CDR 0.5 CDR 1

N 242 63 28

Gender (% Female) 65% 52% 50%

APOE genotype, % e4+ 32% 54% 57%

Mean MMSE score (SD) 28.9 (1.3) 26.3 (2.8) 22.5 (4.0)

Mean age at LP (SD), yrs 71.6 (7.4) 74.6 (7.3) 76.8 (6.2)

Mean CSF Ab42 (SD), pg/mL 607 (234) 436 (233) 355 (119)

Mean CSF tau (SD), pg/mL 315 (169) 547 (278) 557 (266)

Mean CSF p-tau181 (SD), pg/mL 56 (25) 85 (45) 78 (38)

Mean PIB MCBP (SD) 0.12 (0.24) 0.54 (0.34) 0.50 (0.50)

Abbreviations: CDR, Clinical Dementia Rating; APOE, apolipoprotein E; MMSE,
Mini-Mental State Examination; LP, lumbar puncture; SD, standard deviation;
CSF, cerebrospinal fluid; Ab-42, amyloid-beta peptide 1-42; p-tau181, tau
phosphorylated at threonine 181; PIB MCBP, Pittsburgh Compound B mean
cortical PIB binding potential. MCBP data available for 179 study participants.
doi:10.1371/journal.pone.0018850.t001
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(80%) and test (20%) (Table 6). Using either traditional biomarkers

or traditional biomarkers with RBM analytes, no model clearly

out-performed the others; however, the RBM analytes appeared to

contribute additional specificity to the biomarker panels (tradi-

tional: sensitivity 80.6–91.4%, specificity 42.4–56.6%; traditional+
RBM: sensitivity 79.1–93.2%, specificity 59.6–77.6%). This

Table 2. Analytes that differ in levels between cognitively normal (CDR 0) and very mildly/mildly demented (CDR 0.5 and 1)
participants.

Marker
Adjusted
mean CDR 0

Adjusted
mean CDR.0 p

Raw mean
CDR 0

Raw mean
CDR.0

Ab42 (pg/mL)* 607.45 418.85 ,0.0001 606.90 411.18

Tau (pg/mL)* 315.59 533.60 ,0.0001 314.80 549.96

p-tau181 (pg/mL)* 56.30 81.01 ,0.0001 56.32 82.98

Growth-Regulated alpha protein (GRO-a) (pg/mL)* 18.27 22.09 ,0.0001 18.30 22.44

Log Matrix Metalloproteinase-10 (MMP-10) (pg/mL)* 24.84 31.41 ,0.0001 24.11 32.61

Log N-terminal pro-brain natriuretic peptide (NT-proBNP) (pg/mL)* 87.00 107.75 ,0.0001 87.70 111.12

Log Plasminogen Activator Inhibitor 1 (PAI-1) (ng/mL)* 1.05 1.28 ,0.0001 1.01 1.34

TNF-Related Apoptosis-Inducing Ligand Receptor 3 (TRAIL-R3) (ng/mL)* 0.55 0.63 ,0.0001 0.55 0.65

Vascular Endothelial Growth Factor (VEGF) (pg/mL)* 441.57 378.30 ,0.0001 437.83 386.01

Log Pancreatic Polypeptide (PP) (pg/mL)* 0.94 1.30 0.0001 0.88 1.41

Log FAS (ng/mL)* 0.57 0.65 0.0002 0.56 0.67

Log Macrophage Migration Inhibitory Factor (MIF) (ng/mL)* 0.15 0.17 0.0004 0.15 0.18

Interleukin-7 (IL-7) (pg/mL) 12.63 9.47 0.0006 12.23 9.68

Log Cystatin C (ng/mL) 5613.84 4750.89 0.0011 5551.50 4835.30

Thrombopoietin (ng/mL) 0.43 0.37 0.0016 0.42 0.37

Sortilin (ng/mL) 6.32 6.92 0.0019 6.33 6.96

Monocyte Chemotactic Protein 2 (MCP-2) (pg/mL) 4.03 4.61 0.0020 3.97 4.67

Log Fibrinogen (ug/mL) 0.63 0.78 0.0024 0.59 0.81

Log Creatine Kinase-MB (CKMB) (pg/mL) 26.55 20.97 0.0030 26.62 20.87

Cortisol (ng/mL) 11.21 12.65 0.0034 11.17 12.89

Thymus-Expressed Chemokine (TECK) (ng/mL) 6.38 6.85 0.0039 6.30 6.96

Eotaxin-3 (pg/mL) 56.78 62.09 0.0057 55.33 63.68

Interleukin-17E (IL-17E) (pg/mL) 8.63 7.75 0.0058 8.60 7.79

Kidney Injury Molecule-1 (KIM-1) (pg/mL) 78.97 83.46 0.0074 79.05 83.08

Log Heparin-binding epidermal growth factor-like growth factor (HB-EGF) (pg/mL) 24.98 28.77 0.0077 25.05 28.70

Log Osteopontin (ng/mL) 173.23 197.68 0.0078 174.15 202.31

Log a-1-Antitrypsin (ug/mL) 4.87 5.37 0.0102 4.73 5.49

Fatty Acid Synthase Ligand (FASL) (pg/mL) 4.85 5.40 0.0109 4.78 5.49

Log Insulin-like Growth Factor-Binding Protein 2 (IGFBP-2) (ng/mL) 199.58 212.16 0.0111 195.93 217.47

Log Interleukin-10 (IL-10) (pg/mL) 1.14 1.29 0.0131 1.12 1.29

Log Tumor necrosis factor-a receptor 2 (TNF RII) (ng/mL) 0.53 0.59 0.0141 0.52 0.62

Log Resistin (pg/mL) 26.28 30.76 0.0146 25.20 32.14

Log Fatty Acid Binding Protein (FABP) (ng/mL) 3.03 3.62 0.0209 2.93 3.81

Log Apolipoprotein D (ApoD) (ug/mL) 4.18 4.57 0.0318 4.02 4.65

Log Hepatocyte Growth Factor (HGF) (ng/mL) 1.18 1.28 0.0349 1.18 1.30

Log Insulin (uIU/mL) 0.22 0.19 0.0359 0.21 0.19

Log Hemofiltrate cysteine-cysteine chemokine (HCC-4) (pg/mL) 30.25 33.13 0.0418 28.98 33.87

Log Interferon gamma Induced Protein 10 (IP-10) (pg/mL) 299.63 341.86 0.0432 295.14 354.74

Log Gamma-Interferon-Induced Monokine (MIG) (pg/mL) 423.80 493.91 0.0452 400.16 572.75

Thrombomodulin (ng/mL) 0.17 0.18 0.0475 0.17 0.19

Analysis of covariance (ANCOVA) using the General Linear Model (GLM) procedure in SAS was used to determine analytes that differed in concentration (p,0.05)
between CDR 0 and CDR.0 groups while adjusting for the effects of age and gender ("adjusted means").
*indicates analytes that were significant after Bonferroni correction based on the number of markers analyzed (128 markers, cutoff of 0.0004 for familywise p,0.05). For
markers that were log transformed to approximate a normal distribution, the resulting Least Squares mean (or estimated marginal mean) was back-transformed to
obtain the adjusted mean shown. Also provided are the raw mean concentrations for the CDR 0 and CDR.0 groups.
doi:10.1371/journal.pone.0018850.t002
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improvement is further reflected in the Youden Index, a single

statistic that captures the performance of a diagnostic test and is a

function of sensitivity and specificity, which was higher on average

for the models fitted with traditional plus RBM analytes

(traditional: 0.230–0.438; traditional+RBM: 0.401–0.621). Addi-

tionally, models fitted with traditional plus RBM analytes yielded

mostly higher AUCs (traditional: 0.680–0.827; traditional+RBM:

0.754–0.868). For the four models with a built-in importance

statistic (i.e., Boosted Tree, NSC, RF, and PLS) there was

considerable overlap in the top 15 predictors for each model

(Figure 2, Table 7). Importantly, nearly all of the markers found to

best discriminate CDR 0 from CDR.0 participants in the more

targeted ROC analyses (Table 5) were also identified as the top

predictors in the machine learning models (Figure 2, Table 7),

reconfirming the potential of these analytes as biomarkers for AD.

Prognostic Utility of Candidate Biomarkers
Identifying individuals with AD neuropathology while they are

still in the preclinical phase will be critically important, as disease-

modifying therapies currently in development are likely to be most

Table 3. Correlations of RBM analytes with age, gender, and other biomarker values.

Analyte Gender Age Ab42 Tau p-tau181 tau/Ab42 Cortical PIB

a1A ,0.001 0.255 (,0.0001) 0.031 (0.574) 0.117 (0.033) 0.105 (0.055) 0.048 (0.386) -0.048 (0.525)

ApoD ,0.001 0.218 (,0.0001) 0.059 (0.280) 0.222 (,0.0001) 0.216 (,0.0001) 0.113 (0.039) -0.103 (0.169)

Calbindin 0.001 0.196 (,0.001) 0.094 (0.088) 0.476 (,0.0001) 0.500 (,0.0001) 0.294 (,0.0001) 0.122 (0.104)

CKMB 0.524 -0.069 (0.211) 0.008 (0.877) -0.200 (,0.001) -0.186 (0.001) -0.148 (0.007) 0.032 (0.673)

Cortisol 0.282 0.252 (,0.0001) -0.051 (0.357) 0.187 (0.001) 0.189 (0.001) 0.159 (0.004) 0.012 (0.875)

Cystatin C 0.461 0.093 (0.089) 0.281 (,0.0001) 0.536 (,0.0001) 0.597 (,0.0001) 0.236 (,0.0001) -0.041 (0.587)

Eotaxin-3 ,0.001 0.317 (,0.0001) 0.058 (0.289) 0.367 (,0.0001) 0.342 (,0.0001) 0.217 (,0.0001) 0.003 (0.971)

FABP 0.031 0.296 (,0.0001) 0.012 (0.833) 0.727 (,0.0001) 0.725 (,0.0001) 0.505 (,0.0001) 0.159 (0.034)

FAS ,0.001 0.297 (,0.0001) 0.083 (0.132) 0.491 (,0.0001) 0.470 (,0.0001) 0.288 (,0.0001) -0.074 (0.326)

FASL 0.165 0.192 (,0.001) -0.060 (0.274) 0.189 (0.001) 0.200 (,0.001) 0.129 (0.018) -0.020 (0.795)

Fibrinogen ,0.001 0.284 (,0.0001) -0.044 (0.422) 0.192 (,0.001) 0.178 (0.001) 0.145 (0.008) 0.034 (0.652)

GRO-a 0.178 0.279 (,0.0001) -0.105 (0.056) 0.317 (,0.0001) 0.329 (,0.0001) 0.259 (,0.0001) 0.144 (0.054)

HB-EGF 0.975 0.017 (0.751) 0.079 (0.151) 0.348 (,0.0001) 0.359 (,0.0001) 0.202 (,0.001) -0.024 (0.751)

HCC-4 ,0.001 0.240 (,0.0001) 0.007 (0.895) 0.094 (0.088) 0.037 (0.504) 0.047 (0.388) -0.095 (0.204)

HGF 0.918 0.222 (,0.0001) 0.088 (0.110) 0.619 (,0.0001) 0.639 (,0.0001) 0.386 (,0.0001) 0.004 (0.957)

IGFBP-2 ,0.001 0.394 (,0.0001) 0.062 (0.262) 0.462 (,0.0001) 0.441 (,0.0001) 0.278 (,0.0001) 0.031 (0.685)

IL-17E 0.386 0.032 (0.563) 0.017 (0.760) 0.007 (0.899) 0.049 (0.371) 0.019 (0.725) -0.101 (0.180)

IL-7 0.007 0-.002 (0.976) 0.147 (0.007) -0.003 (0.961) 0.032 (0.557) -0.091 (0.096) -0.227 (0.002)

IL-10 ,0.001 0.055 (0.313) -0.026 (0.637) 0.070 (0.205) 0.075 (0.170) 0.053 (0.337) -0.071 (0.342)

IP-10 0.327 0.236 (,0.0001) 0.023 (0.682) 0.249 (,0.0001) 0.282 (,0.0001) 0.147 (0.007) -0.071 (0.344)

Insulin ,0.001 0.094 (0.088) 0.245 (,0.0001) 0.213 (,0.0001) 0.214 (,0.0001) 0.005 (0.921) -0.190 (0.011)

KIM-1 0.636 0-.032 (0.561) -0.057 (0.301) -0.239 (,0.0001) -0.331 (,0.0001) -0.154 (0.005) -0.060 (0.427)

MCP-2 0.013 0.146 (0.007) -0.106 (0.053) 0.045 (0.408) 0.059 (0.282) 0.071 (0.199) -0.011 (0.880)

MIF 0.239 0.330 (,0.0001) -0.007 (0.901) 0.579 (,0.0001) 0.597 (,0.0001) 0.412 (,0.0001) 0.084 (0.264)

MIG 0.528 0.603 (,0.0001) -0.017 (0.762) 0.282 (,0.0001) 0.289 (,0.0001) 0.207 (,0.001) -0.053 (0.484)

MMP-10 0.002 0.325 (,0.0001) -0.116 (0.034) 0.458 (,0.0001) 0.415 (,0.0001) 0.390 (,0.0001) 0.086 (0.252)

NT-proBNP 0.030 0.273 (,0.0001) 0.053 (0.338) 0.331 (,0.0001) 0.323 (,0.0001) 0.188 (0.001) -0.007 (0.923)

Osteopontin 0.137 0.192 (,0.001) 0.030 (0.590) 0.680 (,0.0001) 0.701 (,0.0001) 0.466 (,0.0001) 0.162 (0.030)

PP ,.001 0.374 (,0.0001) -0.072 (0.189) 0.226 (,0.0001) 0.179 (0.001) 0.192 (,0.001) 0.041 (0.586)

PAI-1 ,.001 0.429 (,0.0001) -0.064 (0.244) 0.334 (,0.0001) 0.327 (,0.0001) 0.266 (,0.0001) -0.003 (0.973)

Resistin ,.001 0.355 (,0.0001) 0.072 (0.189) 0.255 (,0.0001) 0.198 (,0.0001) 0.120 (0.029) -0.075 (0.320)

Sortilin 0.881 0.135 (0.014) 0.139 (0.011) 0.515 (,0.0001) 0.527 (,0.0001) 0.273 (,0.0001) -0.003 (0.972)

TNF RII 0.205 0.426 (,0.0001) 0.059 (0.282) 0.678 (,0.0001) 0.702 (,0.0001) 0.442 (,0.0001) 0.002 (0.975)

TRAIL-R3 0.112 0.413 (,0.0001) -0.011 (0.837) 0.509 (,0.0001) 0.476 (,0.0001) 0.356 (,0.0001) 0.008 (0.914)

Thrombomodulin ,.001 0.193 (,0.001) 0.109 (0.048) 0.215 (,0.0001) 0.205 (,0.001) 0.076 (0.168) -0.063 (0.406)

Thrombopoietin 0.015 0.034 (0.531) 0.194 (,0.001) -0.016 (0.768) 0.017 (0.758) -0.130 (0.017) -0.237 (0.001)

TECK 0.015 0.270 (,0.0001) 0.047 (0.389) 0.322 (,0.0001) 0.312 (,0.0001) 0.193 (,0.001) 0.001 (0.992)

VEGF 0.651 0.101 (0.065) 0.357 (,0.0001) 0.470 (,0.0001) 0.543 (,0.0001) 0.154 (0.005) -0.059 (0.429)

Correlations were evaluated using the Spearman rho correlation coefficient (a= 0.05); shown are the r and (p value). Gender differences were evaluated by Mann-
Whitney test.
doi:10.1371/journal.pone.0018850.t003
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Table 4. ROC analyses.

AUC of Traditional Biomarkers

log Ab42 0.7552

log tau 0.7830

log p-tau181 0.7149

log tau/Ab42 0.8443

log p-tau181/Ab42 0.8065

AUC of RBM Biomarkers: alone and in combination with traditional biomarkers

Marker Marker+log tau/Ab42 Marker+log p-tau181/Ab42

log a1A 0.6296 0.8578 0.8234

log ApoD 0.6136 0.8489 0.8138

log CKMB 0.6106 0.8475 0.8118

Cortisol 0.6183 0.8510 0.8155

log Cystatin C 0.5965 0.8819 1 0.8468

Eotaxin-3 0.6448 1 0.8516 0.8202

log FABP 0.6163 0.8499 0.8080

log FAS 0.6689 1 0.8518 0.8209

FASL 0.6134 0.8479 0.8116

log Fibrinogen 0.6503 1 0.8564 0.8232

GRO-a 0.7024 1 0.8609 0.8305

log HB-EGF 0.5929 0.8445 0.8081

log HCC-4 0.6172 0.8596 0.8281

log HGF 0.5972 0.8458 0.8069

log IGF-BP2 0.6378 0.8462 0.8116

IL-7 0.6029 0.8508 0.8162

log IL-10 0.6075 0.8575 0.8215

IL-17E 0.5969 0.8487 0.8145

log Insulin 0.5406 0.8453 0.8077

log IP-10 0.5970 0.8460 0.8093

KIM-1 0.5894 0.8668 1 0.8343

MCP-2 0.6264 0.8554 0.8200

log MIF 0.6651 1 0.8455 0.8117

log MIG 0.6376 0.8544 0.8207

log MMP-10 0.6929 1 0.8518 0.8232

log NT-proBNP 0.6753 1 0.8562 0.8248

log Osteopontin 0.6050 0.8508 0.8100

log PP 0.6789 1 0.8644 1 0.8356

log PAI-1 0.6814 1 0.8587 0.8273

log Resistin 0.6218 0.8522 0.8211

Sortilin 0.6177 0.8444 0.8076

log TNF RII 0.6319 0.8447 0.8065

TRAIL-R3 0.6851 1 0.8523 0.8212

Thrombomodulin 0.6004 0.8503 0.8150

Thrombopoietin 0.5898 0.8465 0.8111

TECK 0.6371 0.8525 0.8190

VEGF 0.6146 0.8766 1 0.8441

To assess the ability of the markers to distinguish CDR.0 from CDR 0, ROC analyses were performed for each of the traditional biomarkers (Ab42, tau, p-tau181 and the
ratios tau/Ab42 and p-tau181/Ab42) and for the 37 RBM analytes with p,0.05 in the univariate analyses. Each traditional biomarker was then combined with each RBM
analyte to identify ‘2-marker panels’ with improved AUCs. Among the traditional biomarkers, the ratios tau/Ab42 and p-tau181/Ab42 demonstrated the highest AUCs;
additionally, combining these ratios with the RBM analytes consistently yielded 2-marker panels with AUCs higher than combinations of the individual traditional
biomarkers (Ab42, tau, p-tau181) with the RBM analytes. Thus, only the most promising 2-marker panels (those with tau/Ab42 and p-tau181/Ab42) are shown here. To
determine whether combinations of three markers could yield a small panel with improved diagnostic accuracy, the four 2-marker panels with the highest AUCs were
combined with the 10 RBM analytes with the highest individual AUCs (indicated by 1, results in Table 5).
doi:10.1371/journal.pone.0018850.t004
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effective early in the disease process before significant synaptic and

neuronal loss has occurred. Thus, we used univariate and

multivariate Cox proportional hazards models to evaluate the

ability of the analytes to predict risk of developing cognitive

impairment (conversion from CDR 0 to CDR.0). Of the 215

CDR 0 subjects with at least one follow-up annual clinical

assessment, 29 received a CDR.0 at follow-up, and thus were

classified as ‘‘converters.’’ Analyte measurements were converted

to standard Z-scores to allow for comparison of hazard ratios

between the different analytes. Variables with p,0.15 in the

univariate Cox analyses were considered for inclusion in the

multivariate model; variables were retained in the final model if

p,0.05. By univariate Cox analysis, calbindin (p = 0.0163),

cortisol (p = 0.0688), HGF (p = 0.1364), MCP-2 (p = 0.0412),

MIG (p = 0.0208), MIF (p = 0.0950), S100B (p = 0.1275), TNF

RII (p = 0.0645), TRAIL-R3 (p = 0.0833), Ab42 (p = ,0.0001),

tau (p = 0.0071), and p-tau181 (p = 0.0087) were selected for

further investigation by multivariate analysis. The final multivar-

iate model consisted of calbindin (HR = 1.750, p = 0.0063), 1/

Ab42 (HR = 2.454, p,0.0001), and age at LP (HR = 1.096,

p = 0.0002), with an overall HR of 4.704 (Table 8). Although

calbindin and tau both had p,0.05 in the univariate analysis, the

significant correlation between the two (r = 0.476, p,0.0001)

prohibited inclusion of both variables in the multivariate model.

Therefore, a second multivariate model consisted of tau

(HR = 1.467, p = 0.0262), 1/Ab42 (HR = 2.247, p,0.0001), and

age at LP (HR = 1.098, p = 0.0003), with an overall HR of 3.619

(Table 8). However, the higher HR of calbindin than of tau, and

the higher overall HR and lower AIC of the first model support it

as the better model.

Figure 1. ROC analyses, graphical representation. ROC analyses assessed the ability of the traditional biomarkers (blue) and of the 37 RBM
analytes with p,0.05 in the univariate analyses (red) to discriminate CDR.0 from CDR 0 individuals. Combining the best-performing of the
traditional biomarkers, the tau/Ab42 ratio, with RBM analytes improved upon the AUC of tau/Ab42 in many cases (green).
doi:10.1371/journal.pone.0018850.g001
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Discussion

Biomarkers that can detect AD in its early stages and,

importantly, predict future dementia will be invaluable for efficient

clinical trial design and eventually patient care. This study

identifies novel biomarkers that improve upon the ability of the

best identified biomarkers to date to discriminate very mildly

demented from cognitively normal participants, and identifies a

novel biomarker with significant prognostic potential.

Using Luminex technology and a targeted multiplex panel, we

identified 37 analytes (12 with Bonferroni correction) that are

increased or decreased in the CSF of participants with early AD

Table 5. ROC analyses of 3-marker panels.

Marker Panels AUC Stdev 95% CI

Sensitivity
(at 80%
specificity) Stdev 95% CI p-value Stdev 95% CI

log tau/Ab42 + log Cystatin C + TRAIL-R3 0.9014 0.0232 0.8969–0.9060 0.8367 0.0445 0.8280–0.8455 0.0299 0.0222 0.0255–0.0342

log tau/Ab42 + log Cystatin C + log PAI-1 0.9063 0.0221 0.9020–0.9106 0.8470 0.0438 0.8384–0.8556 0.0283 0.0344 0.0215–0.0351

log tau/Ab42 + log Cystatin C + log PP 0.9066 0.0203 0.9026–0.9106 0.8471 0.0400 0.8393–0.8550 0.0245 0.0319 0.0183–0.0307

log tau/Ab42 + log Cystatin C + NT-proBNP 0.9041 0.0228 0.8996–0.9086 0.8422 0.0445 0.8335–0.8509 0.0287 0.0330 0.0223–0.0352

log tau/Ab42 + log Cystatin C + log MMP-10 0.8987 0.0230 0.8942–0.9032 0.8317 0.0447 0.8230-0.8405 0.0647 0.0582 0.0533–0.0761

log tau/Ab42 + log Cystatin C + log MIF 0.8964 0.0249 0.8915-0.9013 0.8272 0.0487 0.8177–0.8368 0.0699 0.0569 0.0588–0.0811

log tau/Ab42 + log Cystatin C + GRO-a 0.9071 0.0218 0.9028–0.9113 0.8475 0.0412 0.8395–0.8556 0.0347 0.0410 0.0266–0.0427

log tau/Ab42 + log Cystatin C + log Fibrinogen 0.9033 0.0219 0.8990–0.9075 0.8403 0.0429 0.8319–0.8487 0.0357 0.0502 0.0259–0.0455

log tau/Ab42 + log Cystatin C + log FAS 0.9052 0.0220 0.9009–0.9095 0.8440 0.0425 0.8356–0.8523 0.0248 0.0248 0.0200–0.0297

log tau/Ab42 + log Cystatin C + Eotaxin-3 0.9051 0.0219 0.9008–0.9094 0.8441 0.0427 0.8357–0.8524 0.0273 0.0350 0.0205–0.0342

log tau/Ab42 + VEGF + TRAIL-R3 0.9004 0.0226 0.8960–0.9049 0.8347 0.0437 0.8262–0.8433 0.0208 0.0158 0.0177–0.0239

log tau/Ab42 + VEGF + log PAI-1 0.9005 0.0225 0.8961–0.9049 0.8355 0.0445 0.8267–0.8442 0.0272 0.0320 0.0210–0.0335

log tau/Ab42 + VEGF + log PP 0.9039 0.0215 0.8997–0.9081 0.8423 0.0422 0.8340–0.8506 0.0167 0.0250 0.0118–0.0216

log tau/Ab42 + VEGF + NT-proBNP 0.9028 0.0224 0.8984–0.9072 0.8396 0.0439 0.8310–0.8482 0.0165 0.0207 0.0124–0.0205

log tau/Ab42 + VEGF + log MMP-10 0.8947 0.0242 0.8900–0.8995 0.8241 0.0471 0.8149–0.8333 0.0534 0.0519 0.0432–0.0636

log tau/Ab42 + VEGF + log MIF 0.8908 0.0261 0.8857–0.8959 0.8164 0.0506 0.8065–0.8264 0.0703 0.0570 0.0591–0.0815

log tau/Ab42 + VEGF + GRO-a 0.9003 0.0238 0.8956–0.9049 0.8348 0.0452 0.8259–0.8436 0.0365 0.0371 0.0292–0.0437

log tau/Ab42 + VEGF + log Fibrinogen 0.8988 0.0231 0.8943–0.9033 0.8317 0.0449 0.8229–0.8405 0.0327 0.0457 0.0237–0.0416

log tau/Ab42 + VEGF + log FAS 0.9012 0.0232 0.8967–0.9058 0.8363 0.0445 0.8276–0.8451 0.0232 0.0248 0.0183–0.0281

log tau/Ab42 + VEGF + Eotaxin-3 0.8991 0.0227 0.8947–0.9036 0.8325 0.0441 0.8239–0.8411 0.0293 0.0354 0.0224–0.0363

log tau/Ab42 + KIM-1 + TRAIL-R3 0.8810 0.0256 0.8760–0.8860 0.7979 0.0486 0.7884–0.8075 0.1082 0.0747 0.0936–0.1229

log tau/Ab42 + KIM-1 + log PAI-1 0.8866 0.0246 0.8818–0.8915 0.8087 0.0476 0.7993–0.8180 0.0614 0.0607 0.0495-0.0733

log tau/Ab42 + KIM-1 + log PP 0.8905 0.0239 0.8858–0.8952 0.8162 0.0467 0.8070–0.8253 0.0357 0.0452 0.0269–0.0445

log tau/Ab42 + KIM-1 + NT-proBNP 0.8821 0.0260 0.8770–0.8872 0.8001 0.0500 0.7903–0.8099 0.0926 0.0788 0.0772–0.1081

log tau/Ab42 + KIM-1 + log MMP-10 0.8787 0.0270 0.8734–0.8840 0.7940 0.0511 0.7840–0.8040 0.1497 0.1015 0.1298–0.1696

log tau/Ab42 + KIM-1 + log MIF 0.8775 0.0276 0.8721–0.8829 0.7918 0.0518 0.7816–0.8019 0.1478 0.0941 0.1294–0.1663

log tau/Ab42 + KIM-1 + GRO-a 0.8897 0.0242 0.8850–0.8945 0.8153 0.0448 0.8065–0.8241 0.0513 0.0498 0.0416–0.0611

log tau/Ab42 + KIM-1 + log Fibrinogen 0.8821 0.0267 0.8769–0.8874 0.8003 0.0507 0.7903–0.8102 0.0927 0.0809 0.0768–0.1085

log tau/Ab42 + KIM-1 + log FAS 0.8806 0.0248 0.8757–0.8855 0.7973 0.0472 0.7881–0.8066 0.1157 0.0852 0.0990–0.1324

log tau/Ab42 + KIM-1 + Eotaxin-3 0.8805 0.0264 0.8753–0.8857 0.7973 0.0498 0.7875-0.8071 0.1152 0.0943 0.0967–0.1337

log tau/Ab42 + log PP + TRAIL-R3 0.8717 0.0249 0.8668–0.8766 0.7790 0.0488 0.7695–0.7886 0.2225 0.1023 0.2024–0.2425

log tau/Ab42 + log PP + log PAI-1 0.8715 0.0250 0.8666–0.8764 0.7782 0.0498 0.7685–0.7880 0.2034 0.1052 0.1828–0.2240

log tau/Ab42 + log PP + NT-proBNP 0.8723 0.0254 0.8674–0.8773 0.7806 0.0491 0.7710–0.7902 0.1705 0.1051 0.1499–0.1912

log tau/Ab42 + log PP + log MMP-10 0.8702 0.0256 0.8652–0.8753 0.7761 0.0507 0.7662–0.7860 0.2394 0.1204 0.2158–0.2630

log tau/Ab42 + log PP + log MIF 0.8685 0.0251 0.8635–0.8734 0.7723 0.0496 0.7625–0.7820 0.2909 0.1014 0.2711–0.3108

log tau/Ab42 + log PP + GRO-a 0.8755 0.0250 0.8706–0.8804 0.7875 0.0472 0.7783–0.7968 0.1329 0.0908 0.1151–0.1507

log tau/Ab42 + log PP + log Fibrinogen 0.8720 0.0255 0.8670–0.8769 0.7795 0.0498 0.7698–0.7893 0.1878 0.1160 0.1651–0.2106

log tau/Ab42 + log PP + log FAS 0.8701 0.0244 0.8653–0.8749 0.7752 0.0487 0.7657–0.7847 0.2335 0.1091 0.2121–0.2548

log tau/Ab42 + log PP + Eotaxin-3 0.8722 0.0245 0.8674–0.8770 0.7795 0.0487 0.7699–0.7890 0.1813 0.1087 0.1599–0.2026

AUC = area under the curve; Stdev = standard deviation; CI = confidence interval.
Receiver operating characteristic (ROC) analyses assessed the ability of three marker panels to discriminate CDR 0 from CDR.0 participants. Averages of performance
measures were taken over 100 iterations of the bootstrap. ‘‘p-value’’ assesses the difference between the three marker panel and the corresponding two marker panel
(e.g. log tau/Ab42 + log Cystatin C + TRAIL-R3 vs. log tau/Ab42 + log Cystatin C).
doi:10.1371/journal.pone.0018850.t005
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relative to cognitively normal controls. ROC analysis revealed that

small combinations of a subset of these markers (cystatin C,

VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF,

GRO-a, fibrinogen, FAS, and eotaxin-3) can enhance the ability

of the best-performing of the traditional biomarkers, the tau/Ab42

ratio, to discriminate CDR 0.5 and 1 from CDR 0 participants.

Figure 2. Venn diagram of the top 15 predictors for machine learning algorithms with a built-in importance measure. For the four
models with a built-in importance statistic (i.e., Boosted Tree, Nearest Shrunken Centroids, Random Forests, and Partial Least Squares), there is
considerable overlap in the top 15 predictors for each model. Additionally, nearly all of the markers found to best discriminate CDR 0 from CDR.0
participants in the more targeted ROC analyses (Table 5), as shown here (‘Targeted’), were also identified as the top predictors in the machine
learning models.
doi:10.1371/journal.pone.0018850.g002

Table 6. Performance measures of machine learning algorithms in discriminating cognitively normal (CDR 0) from very mildly/
mildly demented (CDR 0.5 and 1) participants.

Traditional Biomarkers Traditional + RBM Biomarkers

Model Sensitivity Specificity Youden Index AUC Sensitivity Specificity Youden Index AUC

Boosted Tree 0.843 0.525 0.368 0.782 0.845 0.776 0.621 0.868

Flexible Discriminant Analysis 0.882 0.546 0.428 0.827 0.827 0.672 0.499 0.808

K-Nearest Neighbors 0.866 0.552 0.418 0.813 0.886 0.627 0.513 0.814

Logistic Regression 0.902 0.490 0.392 0.819 0.791 0.667 0.458 0.757

Naı̈ve Bayes 0.898 0.492 0.390 0.799 0.802 0.599 0.401 0.754

Partial Least Squares 0.914 0.457 0.371 0.822 0.858 0.693 0.551 0.851

Sparse Partial Least Squares 0.914 0.457 0.371 0.822 0.858 0.694 0.552 0.851

Random Forests 0.872 0.566 0.438 0.810 0.932 0.596 0.528 0.866

Nearest Shrunken Centroids 0.882 0.527 0.409 0.805 0.833 0.643 0.476 0.802

Support Vector Machine 0.806 0.424 0.230 0.680 0.929 0.645 0.574 0.868

Ten statistical machine learning algorithms were used to determine groups of markers capable of distinguishing very mildly/mildly demented (CDR 0.5 and 1 combined)
from cognitively normal participants (CDR 0). Models were fit with two sets of predictors: 1) traditional biomarkers, or 2) traditional biomarkers plus RBM analytes;
additionally, age, gender, and ApoE4 allele status were included in all models. Model performance measures shown are based on cross-validation, in which the test set
results were averaged from 200 splits of the data between training (80%) and test (20%).
doi:10.1371/journal.pone.0018850.t006
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Using alternative statistical strategies that are more amenable to

the analysis of larger combinations of markers, multiple machine

learning algorithms likewise showed that the novel biomarkers

improved upon the diagnostic performance of the traditional

biomarkers (Ab42, tau, p-tau181). Importantly, nearly all of the

markers found to best discriminate CDR 0 from CDR 0.5 and 1

participants in the more targeted ROC analyses were also

identified as the top predictors in the machine learning models

that contain a built-in importance statistic (10 of 12 markers).

Thus, the potential of these analytes as biomarkers for AD is

supported by alternative statistical approaches that yielded similar

results. Further supporting these results is a recent report of the

application of a smaller RBM Discovery MAP panel to a smaller

cohort of AD, MCI, and control subjects [18]; this study identified

a number of the same analytes as being differentially expressed in

AD CSF as compared to control CSF and, although using

different analytical approaches, included VEGF, TRAIL-R3, and

eotaxin-3, in ‘combined’ models of novel and traditional

biomarkers.

It is important to note that while the models used in our study

suggest diagnostic value of the novel biomarkers, other combina-

tions of these markers may be optimal; it will be of interest in future

studies to validate the results of this discovery study in additional

cohorts and to determine whether alternative combinations of these

markers may demonstrate improved performance. The levels of at

least 7 of the novel biomarkers have been evaluated in AD subjects

in other studies: no change was observed in plasma PAI-1 levels

[44]; in agreement with our findings, two studies have reported

increased CSF MIF in AD and MCI subjects [45], [46]; also

consistent with our findings, increased fibrinogen levels have been

observed in AD and MCI CSF [47] and in AD plasma [48], and

increased plasma levels have been associated with an increased risk

of future dementia [49]; results have been mixed regarding CSF

FAS levels in AD [50], [51]; AD plasma/serum VEGF levels have

been reported to be unchanged [52], [53], decreased [54], and

increased [55], while CSF levels have been reported to be

unchanged [56] or increased [57]; no change in CSF or serum

levels of TNF RII in AD has been reported [58]; cystatin C findings

have been inconsistent, with reports of serum/plasma levels

unchanged [59], increased in AD [60] or in those who later

develop AD [61], and decreased [62] or decreased levels associated

with increased risk of future AD [63], while CSF levels have been

reported to be unchanged [59], [64], decreased [65], or increased

[21]. These inconsistent results may be due in part to the existence

of a truncated form of cystatin C, which was found to be increased

in AD CSF, while the full length protein was decreased [20], [21].

Furthermore, the potential involvement of each marker in

AD pathophysiology necessitates investigation. The candidate

biomarkers identified in the ROC and machine learning portions

of this study belong to a wide variety of functional classes and

pathways, including tissue remodeling and angiogenesis (MMP-10,

VEGF), regulation of apoptosis (TRAIL-R3, FAS), neutrophil,

eosinophil, and/or basophil chemotaxis (GRO-a, eotaxin-3),

blood coagulation (Fibrinogen, PAI-1), intravascular volume

homeostasis (NT-proBNP), and gastrointestinal and pancreatic

secretions (PP). In addition, a number of molecules involved in

inflammatory pathways were identified in the machine learning

models (IL-7, IL-17E, TNF RII, MCP-2, FASL, MIF). The

association of several of the candidate biomarkers with AD

pathophysiology has already been probed, most notably for

cystatin C, which appears to play a role in preventing Ab
oligomerization and amyloidogenesis [66–70], and to a lesser

extent for PAI-1 [71–73], MIF [45], [74], fibrinogen [75], [76],

FAS and FASL [77–80], VEGF [81–83], and TNF RII [84–86].

It will be important in future studies to assess each candidate

biomarker’s value in diagnosis in independent sample sets when

combined with other existing biomarkers or imaging tools. The

existing gold standard validated biomarkers include CSF tau, p-

tau181, and amyloid imaging, which differ between control and

AD populations and mark underlying AD pathology [4], [6], [31],

[32]. Additionally, to follow up on these biomarker candidates,

their ability to discriminate AD from other causes of dementia

Table 7. Top 15 predictors for machine learning algorithms with a built-in importance measure.

Predictor Boosted Tree Nearest Shrunken Centroids Random Forests Partial Least Squares

1 tau Tau Ab42 Tau

2 Ab42 Ab42 tau Ab42

3 VEGF p-tau181 MMP-10 VEGF

4 MMP-10 GRO-a KIM-1 p-tau181

5 PP VEGF VEGF GRO-a

6 KIM-1 Eotaxin-3 IL-7 PP

7 Cystatin C Age IL-17E Cystatin C

8 Calbindin PP PP NT-proBNP

9 NT-proBNP Cortisol NT-proBNP MMP-10

10 MIF MCP-2 TRAIL-R3 KIM-1

11 IGFBP-2 TECK p-tau181 Apo A1

12 TRAIL-R3 MMP-10 Cystatin C e3e4

13 FSH IL-17E MIF IL-7

14 FAS IL-7 GRO-a Insulin

15 TNF RII FASL CKMB Age

Ranking of the top 15 predictors for the four models with a built-in importance statistic demonstrates considerable overlap in the top predictors for each model.
Furthermore, nearly all of the markers found to best discriminate CDR 0 from CDR.0 participants in the more targeted ROC analyses (Table 5) were also identified as the
top predictors in the machine learning models, reconfirming their biomarker potential.
doi:10.1371/journal.pone.0018850.t007
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needs to be examined; indeed, several of these markers have

already shown promise for distinguishing AD from frontotemporal

lobar degeneration (cystatin C [20], eotaxin-3 [18], and HGF

[18]). Incorporation of such markers into a biomarker panel may

improve diagnostic specificity. Beyond their clinical use, these

markers may have great value in the design of and enrollment in

trials of disease-modifying therapies. By enrolling only subjects

with lower or higher values of a particular marker (or panels of

markers) indicative of AD, and excluding potential subjects with

intermediate or ‘overlap’ values, one might provide greater

diagnostic certainty than is possible through clinical evaluation

alone. This is especially relevant for the design and evaluation of

primary prevention trials in cognitively normal cohorts. Enriching

study populations for subjects displaying certain biomarker levels

may result in studies of greater efficacy, translating to reduced cost

and duration.

This study also suggests a novel biomarker, CSF calbindin, that

can predict risk of future dementia in individuals who are still

cognitively normal. Previous studies have shown that Ab42, tau,

YKL-40 (an astrocyte marker), and the ratios tau/Ab42 and YKL-

40/Ab42 can predict subsequent cognitive decline in non-

demented cohorts [7], [15], [87]. Using multivariate Cox

proportional hazards models to determine the best combination

of biomarkers for prognosis, we show here that a panel of markers

consisting of calbindin, Ab42, and age has predictive value

comparable to, if not better than, a second panel consisting of tau,

Ab42, and age. Tissue culture studies have shown that increased

expression of calbindin, a calcium binding protein present in

central and peripheral nervous system neurons, correlates with

increased resistance to cell death triggered by a variety of causes,

including exposure to excitatory amino acids, ischemic injury, and

Ab [88–91]. Decreases in calbindin protein and mRNA levels [92]

and number of calbindin-immunopositive neurons [93–95] have

been observed in AD brains compared to controls. Further

suggesting there may be a role for calbindin in AD pathophys-

iology is the large body of literature demonstrating that increased

oxidative stress and altered calcium homeostasis appear to be

interrelated mechanisms in AD pathogenesis. Interestingly,

although not quite reaching statistical significance, we found that

CSF calbindin levels trended higher in the very mildly/mildly

demented group (p = .0660; CDR 0 = 145.9 ng/mL, CDR.0 =

157.4 ng/mL), suggesting that perhaps degenerating neurons

Table 8. Cox proportional hazards models for predicting risk of developing cognitive impairment (conversion from CDR 0 to
CDR.0).

A. Marker HR 95% CI P

Log Calbindin 1.736 1.161–2.596 0.0072

Log 1/Ab42 2.361 1.564–3.564 ,0.0001

Age 1.094 1.043–1.147 0.0002

Gender 0.722 0.326–1.599 0.4216

B. Marker HR 95% CI P

Log Calbindin 1.752 1.176–2.609 0.0058

Log 1/Ab42 2.485 1.655–3.731 ,0.0001

Age 1.092 1.037–1.149 0.0008

ApoE4 0.847 0.355–2.025 0.7094

C. Marker HR 95% CI P Overall HR 4.704

Log Calbindin 1.750 1.172–2.613 0.0063

Log 1/Ab42 2.454 1.637–3.679 ,0.0001

Age 1.096 1.045–1.149 0.0002

D. Marker HR 95% CI P

Log Tau 1.462 1.039–2.057 0.0294

Log 1/Ab42 2.221 1.477–3.339 0.0001

Age 1.096 1.041–1.154 0.0005

Gender 0.724 0.334–1.566 0.4113

E. Marker HR 95% CI P Overall HR 3.610

Log Tau 1.467 1.046–2.056 0.0262

Log 1/Ab42 2.247 1.496–3.375 ,0.0001

Age 1.098 1.043–1.156 0.0003

Cox proportional hazards models were used to identify panels of biomarkers predictive of the risk of developing cognitive impairment (conversion from CDR 0 to
CDR.0). Analyte measurements were converted to standard Z-scores to allow for comparison of hazard ratios between the different analytes. Variables with p,0.15 in
the univariate Cox analyses were considered for inclusion in multivariate models; variables were retained in the final model if p,0.05. Because many of the analytes,
including calbindin, demonstrated age and gender affects, both variables were entered into the multivariate models. However, as gender did not appear to contribute
to the models (A, D), it was not included in the final panels (C, E). Similarly, apoE allelic status (E4+ vs. E42) did not contribute to the models (B), and was not included in
the final model (C). Although calbindin and tau both demonstrated p,0.05 in the univariate analyses, the significant correlation between the two (r = 0.476, p,0.0001)
prohibited inclusion of both variables in the multivariate model. Therefore, a separate multivariate model that included tau was evaluated (D, E). The higher HR of
calbindin than of tau, and the higher overall HR (4.704.3.610) and lower AIC (227.6,230.8) of the first model support it as the better model.
doi:10.1371/journal.pone.0018850.t008
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release calbindin into the CSF. The immunohistochemical

findings of a small study of 6 AD brains suggesting that

calbindin-immunopositive neurons are relatively preserved in

cases with moderate amyloid plaque and neurofibrillary content

but are lost in more severe cases [94] prompts the question of

whether CSF calbindin levels would be more significantly elevated

in more severely demented individuals. Further studies are needed

to confirm the prognostic potential of CSF calbindin, to determine

if other complementary fluid or imaging biomarkers may improve

upon its performance, and to more definitively elucidate its role in

AD pathophysiology. As with the candidate diagnostic biomarkers,

CSF calbindin may have value for clinical trial design by allowing

for the selective enrollment of individuals who are at greater risk of

developing cognitive impairment, resulting in clinical trials of

shorter duration and reduced cost.

Supporting Information

Table S1 Means and standard deviations of the 125
RBM analytes and traditional biomarkers. The means and

standard deviations of the 125 measurable RBM analytes and the

traditional biomarkers are provided.

(DOC)

Table S2 ANCOVA: Age and gender interactions. As shown

in Table 2, the mean concentrations of 37 CSF RBM analytes were

found to differ between cognitively normal (CDR 0) and very mildly/

mildly demented (CDR 0.5 and 1) participants by analysis of

covariance (ANCOVA) adjusting for age and gender (p,0.05).

ANCOVA showed that a number of these analytes demonstrated

significant interactions with age or gender, as shown here.

(DOC)
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