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Introduction
Next-generation DNA sequencing has begun to uncover substantial heterogeneity within a single tumor 

biopsy, between different disease sites from a single cancer patient, and between tumors from different 

patients (1–8). A deeper understanding of  tumor heterogeneity and its relationship to the phenotypic diversity 

of  human cancer will likely require a broader investigation of  cancer cell “states” and the interplay of  the 

genome, transcriptome, and proteome (9, 10).

The most widely used method to evaluate in situ protein expression in clinical tumor samples is chro-

mogenic IHC, which detects the presence of  an antigen through the use of  primary monoclonal antibodies, 

enzyme-linked secondary antibodies, and precipitation reactions resulting in chromogen deposition. Quan-

tification of  multiple antigens in the same tissue section is challenging with this technique due to its nonlin-

ear dynamic range and inability to generate multiple individually identifiable signals. Several recent mod-

ifications to conventional IHC have improved the quantification of  antigen-antibody interactions in tissue 

sections. In mass spectrometry IHC (MS-IHC), the primary antibody is conjugated to a lanthanide metal, 

which is subsequently detected by ion mass spectrometry (11, 12). Quantitative immunofluorescence (QIF) 

uses fluorescent reporters and can be linked with automated quantitative analysis (13–15).

While MS-IHC and QIF both broaden the dynamic range of  chromogenic IHC, their ability to simul-

taneously assess multiple proteins in a single cell remains limited by the number of  rare earth metals for 

antibody tagging and the overlapping photon emission spectra of  fluorophores. One potential solution to 

achieve higher-level multiplexing of  antibodies is the use of  sequential rounds of  fluorescent detection in 

The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies 

of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic 

measurements in clinical specimen are currently less advanced. Here, we used a multiplexed 

immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell 

level in formalin-fixed and para�n-embedded samples from treatment-naive stage II/III human 

breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 

breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, 

over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining 

tumors harbored tumor cells representing multiple protein coexpression clusters, either in a 

regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 

18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone 

receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach 

to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and 

integrate them with in vivo cancer phenotypes.
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situ (16). We recently described a method that allowed for the quantification of  61 protein antigens at sin-

gle-cell resolution in a single unstained slide of  routinely collected formalin-fixed and paraffin-embedded 

(FFPE) tumor tissue (17). In the current study, we used this platform to measure the expression of  27 pro-

teins at the single-cell level in treatment-naive invasive ductal human breast cancer, derive spatial maps of  

protein colocalization, and determine protein expression patterns associated with in vivo tumor uptake of  

the PET radiotracer 18F-fluorodeoxyglucose (18F-FDG).

Results
Selection of  antibodies and validation of  staining. Our image-based method to quantify protein expression in 

situ is based on sequential cycles of  fluorescent staining, image acquisition, and chemical dye inactivation. 

It uses fluorescent dye-conjugated antibodies and a dye-cycling procedure that chemically inactivates the 

dyes and allows them to be reused on a new set of  probes (17). This enables sequential staining of  FFPE 

tissue sections (typically 3–5 μm) with many antibodies (Figure 1).

Figure 1. Experimental design. Immunofluorescence approach. A single 3- to 5-μm unstained section from a routinely collected formalin-fixed and 

para�n-embedded (FFPE) tumor tissue block was used from each tumor for the multiplex iterative imaging cycles (n = 20). Background autofluorescence 

(AF) tissue images were acquired before subsequent application of fluorescent dye-conjugated primary antibodies. Stained images were then acquired, 

followed by dye inactivation and restaining with new directly conjugated antibodies. New images were acquired, and the cycle was repeated until all target 

antigens were exhausted. Stained images were registered. Background AF was removed from each stained image. Images were segmented into epithelial 

and stromal regions using boundaries of cytokeratin staining, followed by identification of individual cells and corresponding plasma membrane (as deter-

mined by Na+K+ATPase staining), cytoplasm (S6 staining), and nuclear regions (DAPI). Biomarker pixel-level intensity data, which were subsequently que-

ried in data analysis, were quantified at cell level. Three di�erent metrics per marker (mean, standard deviation, and 90% hot spot) were used, amounting 

to about 155 million measurements. Data analysis included K-median clustering to groups of cells based on similar biomarker intensity levels. Each field of 

view (FOV) was manually reviewed. Only FOVs with >90% IDC cells on histopathological review were included in the analysis.

http://dx.doi.org/10.1172/jci.insight.87030
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The selection of  protein antigens and antibodies (Supplemental Table 1; supplemental material avail-

able online with this article; doi:10.1172/jci.insight.87030DS1) for our current study was based on both 

biologic and technical considerations. We included (a) proteins with a documented role in human breast 

cancer and tumor metabolism, such as the estrogen receptor (ER), progesterone receptor (PR), the HER2 

receptor tyrosine kinase; (b) members of  the glycolysis and hypoxia pathways; (c) members of  the phospho-

inositide 3-kinase (PI3K)/mTOR signaling axis; and (d) proteins that could distinguish cellular and subcel-

lular compartments, including cytokeratins (epithelial cells), Na+-K+-ATPase (cytoplasmic membranes), S6 

ribosomal protein (cytoplasmic compartment), and DAPI (nuclear compartment).

This combination of  antibodies was multiplexed to be measured in a total of  20 imaging cycles (Table 1). 

Antigen sensitivity to the dye inactivation process was determined in preliminary experiments, and epitopes 

that appeared more sensitive to the effects of  dye inactivation were quantified in earlier staining cycles. All 

samples were also stained with DAPI, a fluorescent stain that binds strongly to A-T–rich regions in DNA 

and labels nuclei. Images were registered using a previously described registration procedure using DAPI 

images from each staining round. Membrane, cytoplasm, and nuclear compartments in the tumor area were 

automatically segmented at the single-cell level using Na+-K+-ATPase, S6, DAPI, and cytokeratin.

To determine whether repeated staining and destaining might destabilize phosphoepitopes, we tested 

our multiplexed assay on tissue sections representing different degrees of  PI3K pathway activity. These 

samples were generated by inoculating immunodeficient mice subcutaneously with HER2-amplified 

human BT-474 breast cancer cells and treating mice with a single dose of  the dual PI-3K/mTOR inhibitor 

NVP-BEZ235 (18) 3 hours prior to tumor harvest. Three mice were treated with vehicle, three mice were 

treated with 10 mg/kg NVP-BEZ235, and three mice were treated with 40 mg/kg NVP-BEZ235. One 

FFPE section from each xenograft tumor was stained. Compared with tumors from vehicle-treated mice, 

tumors from mice treated with NVP-BEZ235 showed a dose-dependent decrease in phospho-eukaryotic 

translation initiation factor 4E-binding protein 1 (p-4EBP1, image cycle 17) and decreased staining for 

Table 1. List of protein antigens

Imaging cycle number Cy3 Cy5

0 No staining No staining

1 AR c-Myc

2 No staining No staining

3A S6 (pS235+pS236) S6

4 No staining No staining

5 Na-K-ATPase Pan-cadherinB

6 No staining No staining

7 Pan-cytokeratinC Ki-67

8 No staining No staining

9 LDH-A PDK-1 (pS241)

10 No staining No staining

11 HK-2 ER

12 PR HER2

13 Glut-1 EGFR (pY1068)

14 No staining No staining

15 IGF1R MAPK1 (pT202+pY204)

16 EIF4E (pS209) Tumor protein 53

17 Pecam1 4EBP1 (pT37+pT46)

18 No staining No staining

19 TR1 PTEN

20 NDRG-1 CA-9

Two to three antigens were measured in each staining cycle. Background imaging was inserted between multiple 

staining cycles to capture tissue autofluorescence (AF) for subsequent AF removal from marker images. Tissue AF 

continues to decrease in the first few rounds (due to tissue chromophore bleaching by the dye inactivation solution) 

and stabilizes by the fifth bleaching round. ACycle 3 included staining with a third Cy2-labeled antibody (histone H3 

pS10); Bpan-cadherin includes all cadherins (E, N, P, R); Cpan-cytokeratin includes type I cytokeratins 10, 14, 15, 16, and 19 

(stained by AE1) and type II cytokeratins 1, 5, 6, and 8 (stained by PCK26 antibody).

http://dx.doi.org/10.1172/jci.insight.87030
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phospho S6 ribosomal protein (p-S6, image cycle 3). We observed no decrease in staining for total S6 ribo-

somal protein (Figure 2A).

We next applied the multiplexing method to FFPE tumor samples from 26 women who underwent 

primary surgery for stage II/III breast cancer at Memorial Sloan Kettering Cancer Center (MSKCC). 

All patients had locally advanced invasive ductal carcinoma (IDC) (Supplemental Table 2). A single 3- 

to 5-μm thick tissue section from each tumor was used, and 30 to 40 fields of  view (FOVs) were placed 

throughout each specimen (Supplemental Figure 1). Each FOV was independently reviewed by a breast 

cancer pathologist (E. Brogi) to ensure the presence of  invasive carcinoma. FOVs containing benign mam-

mary glands or ductal carcinoma in situ, either in isolation or admixed with invasive carcinoma (Sup-

plemental Figure 2), were excluded from further analysis. Eight to thirty FOVs per tumor (mean: 21.4; 

median: 22.5) contained at least 90% IDC cells and were included in our subsequent analysis (Figure 2B 

and Supplemental Table 3).

The quantification of  protein coexpression patterns relies on the assumption that the majority of  tumor 

cells complete all staining cycles and that the architecture of  the tumor section remains sufficiently intact 

to allow image coregistration between different staining cycles. We therefore examined the extent of  tissue 

loss/shift in each sample at the level of  individual FOVs, shown for one representative sample (072, Figure 

2C) and also for the entire data set (Figure 2D). Most FOVs (>80%) included the majority of  cells (84.9%) 

after completion of  all imaging cycles. About 10% of  cells were removed from the analysis due to lack of  

image registration.

We next compared the staining intensity for ER (imaging cycle 11), PR (imaging cycle 12), and HER2 

(imaging cycle 12) with the measurements of  the same markers on an adjacent tissue section with validated 

assays used in routine clinical practice. Hormone receptor status was determined by IHC, and HER2 status 

was determined by IHC and FISH. These validation experiments were done without knowledge of  the 

multiplexed staining results. For all 3 proteins, the staining distribution in our multiplexed immunofluo-

rescence (IF) assay distinguished tumors that were considered “positive” versus “negative” (Figure 2E), as 

defined by established guidelines for hormone receptor and HER2 testing in breast cancer (19). Three of  

twenty-six samples showed divergent results for PR staining (Supplemental Figure 3). In two of  these cases, 

the percentage of  PR+ cells in the examined FOVs was 10% or fewer. Because the results from the clinical 

laboratory improvement amendments (CLIA) assay are based on the analysis of  the entire tumor, regional 

heterogeneity in hormone receptor expression, which is well recognized in breast cancer (20), may have 

accounted for the discordant results.

Identification of  protein coexpression patterns. We next sought to identify patterns of  protein coexpression 

across all breast cancer samples in our study. We pooled the intensity measurements for 18 proteins from 

all segmented IDC cells (n = 638,577) and performed K-medians clustering analysis to find common cell 

biomarker groupings. Segmentation markers (Na+-K+-ATPase, pan-cadherin, S6, pan-cytokeratin, CD31) 

and markers with weak focal or nonspecific staining (androgen receptor [AR], IGF-1 receptor [IGF1R], his-

tone H3 pS10, and p53) were excluded from this analysis. We identified 8 distinct patterns of  protein coex-

pression. Adding more clusters after this point did not add further resolution (Figure 3A and refs. 21, 22).

Genome-wide RNA expression profiling of  human breast cancer has characterized “intrinsic” disease 

subtypes (23). There are two predominantly ER+ intrinsic molecular subtypes (i.e., luminal A and luminal 

B) and two predominantly ER– intrinsic subtypes (i.e., HER2-enriched and basal-like) (24). Several of  

our protein expression clusters (Figure 3B) broadly aligned with these intrinsic breast cancer subtypes. 

Clusters 6 and 8, for example, were ER– and HER2– and resembled the basal-like subtype, with additional 

PTEN loss in cluster 8 compared with cluster 6. Cluster 7 was also hormone receptor– but showed the 

highest relative level of  HER2 expression, consistent with the HER2-enriched subtype. Clusters 1 and 2 

were hormone receptor+ and HER2– and showed low expression of  the tumor cell proliferation antigen 

Ki-67, likely marking the luminal A subtype. The assignment of  clusters 3 to 5 to a particular intrinsic 

breast cancer subtype was more ambiguous, perhaps reflecting the molecular heterogeneity of  the luminal 

B breast cancer subtype (24).

To validate the patterns of  protein coexpression identified in our analysis and their relationship to 

specific breast cancer subtypes, we turned to a data set of  over 700 human breast cancer specimens that 

were previously analyzed by The Cancer Genome Atlas (TCGA) initiative (25). In addition to the genomic 

data, this data set contains reverse phase protein array (RPPA) data with 187 antibodies (26). Consensus 

hierarchical clustering of  this group of  tumors (n = 747) identified 8 clusters. Since each TCGA breast 

http://dx.doi.org/10.1172/jci.insight.87030
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Figure 2. Validation of staining approach. (A) Quantification of phosphoepitopes. Nude mice (n = 3 per group) harboring subcutaneous BT-474 human breast 

cancer xenografts were treated with a single dose of the dual PI3K/mTOR kinase inhibitor NVP-BEZ235 (10 mg/kg or 40 mg/kg) or vehicle. Tumors were col-

lected 3 hours later, routinely processed, and stained with our multiplexed immunofluorescence method. Top: representative immunofluorescence images from 

one tumor per cohort, p4EBP1 = red; pS6 = green; DAPI = blue. Bottom: quantification of staining results. *P < 0.05, **P < 0.01, t test, comparing each treatment 

group to the control group. Original magnification: ×20, zoom ×6. (B) Number of field of views (FOVs) examined for each tumor. Only FOVs with more than 

90% IDC cells were included. (C) Tissue loss during successive imaging cycles shown for one representative tumor sample (tumor 072). The y axis depicts the 

fraction of tumor cells that remain attached to the slide in each FOV (FOVs 1–18) during each imaging cycle and can be coregistered through all cycles. Each line 

graph represents one FOV. (D) Tissue loss during successive imaging cycles shown for all 26 breast cancer samples. The y axis depicts the fraction of remaining 

cells (solid line) with a 95% confidence interval (between quantile 2.5% and 97.5%). 638,577 IDC cells that could be coregistered throughout all staining cycles 

were included in the subsequent proteomic analysis. (E) Correlation of multiplexed immunofluorescence staining results with clinical laboratory improvement 

amendments (CLIA) assays for estrogen receptor (ER) (left) and HER2 (right) from the same tumor. ER was determined by IHC, HER2 was determined by FISH. 

Green represents samples that were negative in the CLIA assay, and red represents samples that were positive in the CLIA assay. The cut-o� for the ER CLIA 

assay was 1% of cells staining positive for ER. The cut-o� used for CLIA HER2 FISH amplification was a HER2/CEP17 gene copy number ratio of 2.0 or greater.

http://dx.doi.org/10.1172/jci.insight.87030
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cancer sample has been assigned to one of  the “intrinsic” breast cancer subtypes using a RNA-Seq–based 

50-gene subtype predictor (PAM50) (27), we were able to examine the composition of  each proteomic 

cluster by breast cancer subtype. Several clusters were enriched for a specific breast cancer subtype (Figure 

3C). For example, most of  the breast cancers expressing RPPA cluster 1 were basal-like cancers, whereas 

the majority of  breast cancers expressing RPPA cluster 7 were of  the HER2-enriched subtype. Luminal A 

and luminal B tumors appeared more heterogeneous in their patterns of  protein coexpression, reminiscent 

of  the findings from our IF-based analysis.

Ten of  the eighteen protein antigens (50%) that we examined in our MultiOmyx analysis were also rep-

resented in the TCGA-RPPA analysis, including ER, PR, HER2, PTEN, phospho-EGFR (Y1068), phos-

pho-PDK1 (S241), phospho-MAPK (T202/Y204), phospho-4EBP1 (T37/T46), c-Myc, and phospho-S6 

ribosomal protein (S235/S236). We therefore examined the expression of  these protein antigens in the 8 

Figure 3. Protein coexpression clusters in human breast cancer. (A) Consensus clustering was used to determine the optimum cluster set. The graph 

shows the relative change in area under cumulative distribution function for K = 2–15: when K increases, a positive change in the area under the curve 

decreases. After K = 8, the relative change is minimal and the curve flattens, suggesting that K = 8 is the best close-to-true partition. (B) Heatmap 

showing expression levels of each protein (log2) within the 8 clusters. IF, immunofluorescence. Rows were arranged following the lateral dendrogram. (C) 

Consensus hierarchical clustering of protein coexpression patterns in the TCGA breast cancer data set (747 human breast cancers). Protein expression was 

measured by reverse phase protein array (RPPA) using 187 antibodies. Pie charts indicate the association of each RPPA cluster with intrinsic breast cancer 

subtypes. Subtype annotation (PAM50) was available for 633 of 747 tumors. Numbers below each cluster indicate the number of human breast cancer 

samples belonging to each cluster. (D) Heatmap of the expression levels (RPPA) of the 10 proteins that were also represented in the multiplexed IF assay 

(see B). Genomic alterations in PTEN and HER2 are indicated above the RPPA cluster assignment.

http://dx.doi.org/10.1172/jci.insight.87030
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RPPA protein expression clusters (Figure 3D). Despite the differences in methodology, we identified con-

sistent patterns. For example, RPPA cluster 1 (Figure 3D) resembled IF cluster 8 and was characterized 

by reduced expression of  PTEN, ER, PR, HER2, phospho-EGFR (Y1068), and phospho-PDK1 (S241). 

RPPA cluster 7 resembled IF cluster 7 by showing elevated expression levels of  HER2 and its phosphory-

lated coreceptor EGFR (Y1068) and reduced expression of  ER and PR. In terms of  genomic alterations, 

RPPA cluster 8 was enriched for clusters with PTEN deletion, whereas RPPA cluster 7 almost entirely 

consisted of  breast cancers with HER2 gene amplification.

Intertumoral and intratumoral distribution of  protein coexpression clusters. Our analysis of  protein expression 

at the single-cell level allowed us to determine the distribution of  cells representing each protein expression 

cluster within the entire patient cohort and also within each tumor. When viewed across all of  638,577 

tumor cells included in our analysis, cells representing each of  the protein expression clusters were fairly 

evenly distributed, ranging from 7.8% (cluster 6) to 18.5% (cluster 2) of  all neoplastic cells (Figure 4A).

Breast cancers varied considerably in their extent of  intratumoral heterogeneity. The majority of  breast 

cancers (24 of  26) contained one protein expression cluster that was expressed in at least 50% of  all tumor 

cells. In about one-third of  tumors (9 of  26), this dominant cluster represented over 95% of  all tumor 

cells. The remaining two-thirds of  breast cancers were more heterogenous and consisted of  admixtures of  

tumor cells representing multiple protein expression clusters (Figure 4B). There was a trend toward higher 

intratumoral heterogeneity in ER+ tumors, but this relationship was not significant when heterogeneity was 

defined as either the number of  clusters expressed in more than 1% of  neoplastic cells (P = 0.25) or the 

fraction of  FOVs containing cells representing 3 of  more different protein expression clusters (P = 0.06) 

(Supplemental Figure 4).

We also examined the distribution of  cancer cells representing each protein coexpression cluster within 

the different regions of  each tumor (Supplemental Figure 5). In some tumors, for example, tumor 673 

(Figure 4C), heterogeneity appeared regional. Tumor 653 showed a similarly regional pattern of  protein 

expression, with focal expression of  clusters 6 and clusters 8. This combination of  protein expression clus-

ters within the same tumor is consistent with regional loss of  PTEN (Supplemental Figure 6). Other breast 

cancers, for example, tumor 633 (Figure 4C), harbored an admixture of  cells representing different protein 

expression clusters within many FOVs throughout the majority of  the specimen.

Relationship between protein expression and in vivo tumor retention of  FDG. All patients in our study under-

went PET imaging with the radiotracer 18F-fluorodeoxyglucose (FDG) within 4 weeks prior to their breast 

cancer surgery. As expected for a group of  patients with treatment-naive breast cancer (28), we observed a 

wide range in FDG tumor uptake, quantified as standardized uptake value (SUVmax) (Figure 4D).

We next examined the relationship between in vivo FDG tumor uptake and the expression of  each of  

the protein coexpression clusters identified by IF. In a multivariate analysis, expression of  IF clusters 6, 7, 

and 8 was associated with high FDG uptake (Table 2). Perhaps surprisingly, tumors with the greatest extent 

of  heterogeneity, defined as the fraction of  FOVs containing 3 or more distinct protein expression clusters, 

did not show increased FDG uptake. In contrast, a linear regression model demonstrated that increased 

intratumoral heterogeneity correlated inversely with SUVmax (P = 0.04) in the subset of  hormone recep-

tor+ breast cancers (17 of  26) (Supplemental Figure 7).

In terms of  individual protein markers, high FDG uptake was associated with high expression of  the 

proliferation marker Ki-67, low expression of  ER and PR, and low expression of  PTEN. High FDG uptake 

was also associated with intratumoral heterogeneity in expression (high standard deviation) of  N-Myc 

downregulated gene 1 (NDRG1) (Supplemental Figure 8), perhaps representing regional differences in 

turnover of  this tumor suppressor protein. A recent study reported that NRGD1 phosphorylation at threon-

ine 346 targets NRGD1 for protein degradation and is associated with PTEN silencing in basal-like breast 

cancer (29). Consistent with this finding, we observed the comparatively lowest levels of  NDRG1 protein 

expression (Figure 3B, IF cluster 8) and the comparatively highest levels of  NDRG1 phosphorylation (thre-

onine 346) (Figure 3D, RPPA cluster 1) in breast cancers with PTEN silencing.

Our univariate analysis also showed a positive correlation between GLUT1 expression and FDG-PET 

positivity, but this relationship was not statistically significant in our multivariate analysis (Supplemental 

Figure 8). The inconsistent relationship between GLUT1 protein expression and FDG-PET positivity has 

been well documented in the literature (30) and may be due to a variety of  reasons, including the regulation 

of  GLUT1 transport function through additional posttranslational mechanisms and the coexpression of  

other glucose transporters that mediate cellular import of  the radiotracer.
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Figure 4. Distribution of protein coexpression clusters. (A) 

Relative frequency of tumor cells representing each cluster within 

the complete data set (638,577 IDC cells from 26 human breast 

cancers). (B) Intertumoral distribution of cells representing each 

protein coexpression cluster. Each row in the table represents one 

tumor sample, and each column represents one protein coexpression 

cluster. Tumors were sorted by the extent of intratumoral hetero-

geneity, with the most homogenous tumor on top (99% of tumor 

cells expressing cluster C6) and the most heterogenous tumor at the 

bottom (coexistence of cancer cells representing 5 di�erent protein 

coexpression clusters, with 3 clusters [C1, C2, and C4] contributing 

about one-third of the tumor cells each). The number in each cell 

indicates the percentage of neoplastic cells expressing a particular 

protein coexpression cluster. The percentage of cells expressing the 

most abundant cluster is shown in the area graph to the right and is 

50% or greater (dashed line) in most tumors. (C) Intratumoral dis-

tribution of cells representing each protein coexpression cluster. Pie 

charts show the distribution of protein expression clusters in each 

field of view. Shown are 3 representative patterns. See Supplemental 

Figure 5 for a complete view of all breast cancer samples. (D) FDG 

tumor uptake in 26 patients with invasive ductal breast cancer. FDG 

uptake was measured by PET and quantified as standardized uptake 

values (SUVmax).

http://dx.doi.org/10.1172/jci.insight.87030
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Discussion
We present an approach to spatially map protein coexpression patterns in solid tumors, an unmet need 

in current tumor heterogeneity research (9). Several technologies have been developed to address this gap 

in knowledge. QIF with automated quantitative analysis provides a linear dynamic range and is clinically 

offered by Genoptix for prediction of  recurrence risk in ER+ patients using a combination of  ER, PR, 

Ki-67, and HER2 (31). QIF can simultaneously assess up to 10 proteins in a single cell with the use of  

multispectral fluorescence imaging (32). However, as the number of  protein targets increases, overlapping 

dye emission spectra and the number of  distinct animal species that are needed for each primary-secondary 

antibody combination become challenging. Labeled-mass spectrometry imaging (33) has the potential to 

provide simultaneous quantitative analysis of  up to 100 proteins using lanthanide metal isotopes. These 

isotopes are not found in normal tissue, eliminating problems with tissue background signal and resulting 

in high sensitivity. However, this technology is limited by the availability of  metal tags (only ~32) and 

validated antibody conjugates (34). Furthermore, the latter approach requires sample ablation for isotope 

release, rendering samples unsuitable for additional downstream analysis such as FISH. Advantages of  

MultiOmyx are that single-cell analysis of  upward of  60 proteins is possible and tissue is kept intact.

Our examination of  more than 600,000 breast cancer cells allowed us to identify distinct clusters of  

protein coexpression in breast cancer and examine their distribution within each tumor and between differ-

ent tumors. For most proteins, the fold difference in expression between clusters was only modest (less than 

2-fold). This might be explained by the limited dynamic range of  antibody-based protein detection or could 

represent the true extent of  differential protein expression. The latter conclusion seems more likely based 

on a recent proteomic comparison of  different breast cancer subtypes using a modified stable isotope label-

ing with amino acids in cell culture approach (35). Together, these findings suggest that extensive protein 

measurements and robust bioinformatic approaches will be required to characterize the cancer proteome 

and its associated phenotypes in human cancer samples.

Our multiregion analysis suggests that a substantial fraction of  treatment-naive human breast cancers 

show only modest intratumoral heterogeneity, with about one-third of  all tumors expressing a dominant 

protein coexpression pattern in ≥95% of  all malignant cells. In a prior study, 4 of  6 breast cancers showed 

remarkably similar genetic profiles across even morphologically distinct areas of  each case (36). Another 

study reported a single clonal subpopulation in 7 of  16 examined human breast cancers (37). More recent 

multiregion sequencing failed to detect significant differences in mutations between different tumor regions 

in 23 of  50 (46%) breast cancers (5). Together, these findings suggest that at least a subset of  treatment-na-

ive human breast cancers may be considerably less heterogeneous than other human cancers submitted to 

similarly detailed analyses. In the subgroup of  breast cancers with more extensive intratumoral heterogene-

ity, we identified two distinct spatial patterns. Some tumors showed geographically constrained expansion 

of  subclones, whereas others showed intermingling of  subclones in multiple areas, again consistent with 

recent genomic studies (5, 38). Differences in the extent and pattern of  intratumoral heterogeneity might 

reflect differences in motility between distinct cancer cell populations (39), a hypothesis that remains to be 

tested. Taken together, the convergence of  our proteomic results with recent genomic evaluations of  intra-

tumoral heterogeneity in human breast cancer supports the hypothesis (9) that there are fewer distinct cell 

states in a tumor than the degree of  genetic, epigenetic, and transcriptional heterogeneity might suggest. 

Further studies are warranted to determine to what extent current breast cancer therapies alter the patterns 

Table 2. Relationship between in vivo FDG tumor uptake and protein coexpression clusters

Multivariate analysis

Predictor of FDG-PET uptake Slope P Value

(Intercept) 5.42 8.54E-08

Cluster 6 0.08 8.84E-03

Cluster 7 0.06 9.49E-03

Cluster 8 0.16 1.89E-06

Adj.R2 0.67

FDG, 18F-fluorodeoxyglucose; Adj.R2, adjusted R2.
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of  intratumoral heterogeneity and promote the acquisition of  drug resistance (40).

Increased retention of  the radiotracer FDG in breast cancer has been associated with loss of  hormone 

receptor expression, increased HER2 expression, and the basal-like intrinsic breast cancer subtype (28, 41, 

42). Silencing of  the PTEN tumor suppressor has also been associated with increased glycolytic activity 

(43, 44) and is more common in basal-like breast cancer (45). The relationship between FDG-PET posi-

tivity and PI3K pathway activation in breast cancer warrants further study. Our current study showed that 

FDG-PET positivity is highest in tumors with hormone receptor loss and loss of  PTEN, a negative regu-

lator of  the PI3K pathway. However, hormone receptor+ tumors, which harbor activating mutations in the 

catalytic domain of  PI3K more often than other types of  breast cancers, generally showed lower FDG-PET 

positivity, and we did not observe a significant correlation between FDG uptake and phosphorylation of  

the PI3K pathway members p-S6, p-eIF4E, or p-4EBP1. Our conclusion that protein clusters 6, 7, and 8 are 

markedly associated with increased FDG uptake emphasizes the prominence of  glycolytic metabolism in 

ER– breast cancers. ER+ tumors show a wider range in FDG uptake, and high FDG uptake has been associ-

ated with worse clinical outcomes in this subgroup (28). The inverse relationship between intratumoral het-

erogeneity and FDG uptake in the subgroup of  ER+ tumors suggests that heterogeneity per se may not be 

an indication of  aggressive tumor biology, at least when measured at the level of  the proteome. In contrast, 

it is intriguing to speculate that the coexistence of  multiple tumor cell states and the absence of  a dominant 

“clone” might be a reflection of  less aggressive tumor growth.

While our methodology remains vulnerable to the general limitations of  antibody-based protein quan-

tification and observer-dependent selection of  protein markers, the work presented here provides a tem-

plate to interrogate the spatial distribution of  cell populations and signaling networks in routinely collected 

tumor biopsies and link these findings with clinically relevant cancer phenotypes.

Methods

Patient selection and PET image acquisition

Our study included 26 patients who presented for operative management of  primary breast carcinoma and 

were imaged with FDG-PET within 4 weeks prior to surgery. All patients had locally advanced disease, 

were treatment naive, and had a histopathological diagnosis of  invasive ductal breast cancer (Supplemental 

Table 2). All patients fasted for at least 6 hours prior to 18F-FDG-PET imaging, and blood glucose levels 

were obtained before examination. Patients were injected with 370 to 555 MBq (10–15 mCi) pyrogen-free 

18F-FDG, and imaging was performed 50 to 60 minutes later on an ADVANCE (General Electric Medical 

Systems) whole-body PET/CT scanner in accordance with the MSKCC PET protocol. A standard ROI 

analysis tool provided with the scanner was used to calculate the maximal FDG concentration within the 

primary tumor mass. SUVmax values were obtained by correcting for the injected dose and patient weight, 

again using the standard software tools. Only FDG uptake in the primary site was analyzed.

Tissue specimens

All tissue samples were obtained from surgically resected tissue and routinely processed and embedded in 

paraffin in the anatomic pathology laboratory at MSKCC. FFPE 3- to 5-micron-thick tumor tissue sections 

were stained with H&E and reviewed by a breast cancer pathologist (E. Brogi), and 25 to 30 FOVs were 

placed in each tumor for further analysis. Following the initial selection, FOVs containing predominantly 

benign breast parenchyma or ductal carcinoma in situ or showing invasive carcinoma intermingling with 

either were excluded from the analysis. Sections with >90% of  IDC cells were subjected to analysis (Sup-

plemental Figure 2 and Supplemental Table 3). A total of  8 to 30 FOVs (IDC only) per tumor were used for 

data analysis (Figure 2B). This represented on average about 35,000 neoplastic epithelial cells per carcinoma.

Reagents and cell lines

For each target antigen, we evaluated multiple clones of  primary antibodies for sensitivity and specificity. 

Clones with the best performance characteristics were conjugated, compared with the unconjugated anti-

body, and then used for multiplex staining (Supplemental Table 1). The targeted epitope was also tested 

for stability following the signal inactivation as described previously (17) and summarized below. BT-474 

cells were obtained from the ATCC. Subcutaneous human breast cancer xenografts were established by 

hind limb inoculation of  nu/nu athymic mice with 1 × 106 BT-474 human breast cancer cells. When the 
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mean tumor volume of  the cohort reached 400 to 500 mm3, tumor-bearing mice (n = 3 per group) received 

a single dose of  NVP-BEZ235 (10 and 30 mg/kg or vehicle) and were sacrificed 3 hours later. Tumors were 

excised, fixed in 4% paraformaldehyde, transferred to 70% ethanol, and stored at 4°C until embedding.

Image acquisition, registration, segmentation, and normalization

FFPE tissue sections were stained and imaged using the General Electric multiplex fluorescence micros-

copy platform. One tissue section was used for each tumor and underwent repeated cycles of  staining, 

imaging, and signal removal. Prior to blocking and staining with antibody conjugates, samples were dep-

araffinized, hydrated, and processed through a 2-step antigen retrieval process (Michael J. Gerdes, Anup 

Sood, and Christopher J. Sevinsky, US patent 8067241 B2). Prior to multiplex staining and imaging, each 

antigen epitope was evaluated for its stability toward our dye inactivation solution. This evaluation involved 

exposure of  serial sections to 1, 5, and 10 rounds of  exposure to inactivation solution followed by stain-

ing of  the target. The intensity and specificity of  signal were compared with another serial section with-

out exposure to the inactivation solution. This process identified both inactivation solution-sensitive and 

-insensitive antigens, with examples of  both reported previously (17). For example, the expression level of  

S6 ribosomal protein showed a decrease in signal within increasing numbers of  dye inactivation rounds, 

whereas phospho-4EBP1 (T37/T46) was not affected (Supplemental Figure 9).

Slides were imaged with Olympus IX-81 microscopes outfitted with internally developed software for 

repetitive imaging of  the same FOV. DAPI was used for image alignment between different rounds of  

imaging prior to further processing for autofluorescence removal, image segmentation, and quantification 

of  marker expression at subcellular level. Image alignment with DAPI minimized the effects of  tissue 

movement and/or tissue loss between staining rounds. Only cells with perfect (100%) alignment with cells 

in round 0 were included in the analysis.

Staining quality was assessed manually as well as semiautomatically. Manual assessment was per-

formed by visualizing staining patterns of  individual markers across all samples. Segmentation markers 

(Na+-K+-ATPase, pan-cadherin, pan-cytokeratin, S6, CD31) and markers with technical issues (e.g., weak 

focal or nonspecific staining [AR, IGF1R, histone H3 pS10, p53]) were excluded from analysis. Semiau-

tomatic analysis was used to identify high-intensity artifacts. An ImageJ (NIH) macro was developed to 

flag top 50 high-intensity objects in images of  each marker. These objects were visually assessed for true or 

artifactual staining until the highest intensity object was positively identified as a true stain. If  all 50 objects 

were found to be artifacts, the next 50 objects were selected for visual assessment.

Segmented images were visually assessed and compared with images of  segmentation markers (e.g., 

pan-cytokeratin, S6, and Na+-K+-ATPase) and virtual H&E generated from a combination of  pan-cytoker-

atin, tissue autofluorescence in the GFP channel, and DAPI. Images with failed segmentation due to weak 

staining or failed registration of  one or more segmentation markers were excluded from the analysis. To 

minimize effects due to “oversegmentation” only cells with at least 10 pixels per compartment (membrane, 

cytoplasm, and nucleus) and no more than 2 nuclei were included.

Since illumination across the FOV is nonuniform and multiple microscopes were used, we included 

commercially available fluorescent beads and in-house prepared dye-impregnated gels to normalize inten-

sity across microscopes and field flattening across the individual FOVs. Calibration standards were imaged 

every day prior to marker imaging to create calibration files that were used during image processing and 

quantification. All the slides for all the biomarkers were adjusted to a common exposure time per channel. 

Once the single-cell data was quality controlled, normalized, and transformed, each biomarker was scored 

for each patient (i.e., slide). Data analysis was limited to regions of  the tumors representing IDC, represent-

ing on average about 35,000 epithelial carcinoma cells per tumor.

Statistics

Quantification of  staining intensity. Once the single-cell data was quality controlled, normalized, and trans-

formed, each biomarker needed to be scored for each patient (slide). Three metrics of  the cell distribution 

were used to score each protein marker in each patient. (a) The mean of  the distribution metric (Fmk) 

represents the distribution of  cell intensities for all the cells for biomarker m of  patient k. The average cell 

intensity was used for patient k of  biomarker m, which represents the central location of  the distribution. 

(b) For the standard deviation of  the distribution metric, a standard deviation represented the variability of  

a distribution. For each patient, each biomarker was scored using the sample standard deviation. (c) For the 
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90% hot spot metric, a threshold was chosen at the 90% quantile of  all the cells from the entire cohort per 

biomarker. The proportion of  cells exceeding this threshold was calculated for every patient per biomarker 

and was named the 90% hot spot metric. This metric describes the allocation of  top 10% brightest cells in 

the whole cohort to each patient.

To document the concordance of  our IF staining results with the determination of  ER, PR, and HER2 

using CLIA-certified laboratory assays on adjacent tissue sections, we graphed histograms of  each marker 

(ER, PR, and HER2) on a single graph and color-coded it according to CLIA results for the same sample.

Identification of  protein expression clusters. Unsupervised clustering was performed using 18 markers 

after exclusion of  segmentation markers and markers with poor staining. A single metric, median cell 

intensity within the compartment of  interest, was used for clustering. Since marker expression can vary 

significantly between markers, the median cell values were standardized by the overall marker mean and 

standard deviation. In total, 638,577 cells remained after quality control standards were applied. Cells 

were clustered into K groups based on the 18 dimensional marker space using K-medians clustering on all 

the cells. The stepFlexclust function of  flexclust library (v. 1.3-3) for R (v. 2.15.0) was run with 20 replicates 

assuming K ranged between 2 and 15. The K-medians clustering algorithm uses Manhattan distances 

between cells and then partitions cells into K groups and calculates the median for each cluster to deter-

mine its centroid. For each K, the initial centroids are randomly chosen and the minimum within cluster 

distance solution is returned after 20 replicated runs.

For a given K, each tumor sample can be scored according to the proportion of  cells belonging to 

one of  the K clusters. For instance, if  K = 3, 3 scores can be derived for each sample, the proportion of  

total cells belonging to cluster 1, to cluster 2, and to cluster 3. All the K-1 variables can then be associated 

with FDG uptake individually or collectively. 10-fold cross validation was utilized to assess the predictive 

accuracy of  the K-1 variable model. The whole process was iterated for all the K values, ranging from 2 to 

15, in order to find the best number of  clusters for the data. Cluster sets K = 7 and 8 provided the highest 

correlation to FDG uptake, and the decision was made to use the 8 cluster set. Each of  the 8 clusters was 

associated with FDG uptake using a univariate analysis approach to calculate the coefficients and the  

P values. All of  the clusters were also fed together into the multivariate analysis pipeline.

Determine correlations with FDG uptake. Several analyses were undertaken. (a) In the univariate analysis 

to correlate biomarker metrics with FDG uptake, FDG uptake was measured by SUVmax, which has a 

continuous range from 0 to 22.1 in our cohort. A linear regression (in R) was used to assess the association 

between each biomarker metric and FDG uptake individually. The coefficients and P values for the top 

metrics are reported in Supplemental Figure 9. (b) In the multivariate analysis, automatic least absolute 

shrinkage and selection operator (lasso) selection was conducted to build a multivariate model associated 

with FDG uptake. Only the metrics with P values of  less than 0.05 from univariate analysis were consid-

ered in building up the multivariate models. Since multiple metrics for the same biomarker can appear 

highly correlated, only the top metric of  a marker was selected into multivariate model building process. 

Lasso puts L1 constraints on the regression coefficients, which shrinks the coefficients toward 0, using the 

following formula: Σ |β
j
| < s, where β is the regression coefficient for each j and j is the jth predictor in the 

multivariate regression model. The bound s is a tuning parameter. When s is large enough, the constraint 

has no effect and the solution is the standard multiple linear least squares regression. However, for smaller 

values of  s (s > 0) the solutions are shrunken versions of  the least squares estimates. Often, some of  the 

coefficients β
j
 are 0. The predictors whose regression coefficient β is 0 will automatically be excluded. So 

choosing s is like choosing the number of  predictors to use in a regression model, and cross-validation 

is a good tool for estimating the best value for s. When the tuning parameters vary, some of  the solution 

coefficients were exactly 0. This makes lasso a model selection tool for achieving parsimony. The function 

glmnet in R was used to fit a lasso-regularized linear model. The built-in cross validation selects λ at 1 stan-

dard error away from minimum mean squared error. In this automatic selection process, we did not confine 

the number of  markers in the model, but only fed the main effect of  each metric into the selection pool. No 

interactions between markers were assessed. The coefficients for ER and PR stayed at non-zero after the 

optimal λ was applied. These markers were then fed into a linear regression model to produce the unbiased 

coefficient estimate and P values. A leave-one-out cross validation was then applied to the selected markers. 

Not surprisingly, the predicted SUVmax, using the (n – 1) samples, was highly correlated with the observed 

SUVmax. (c) Using correlation between FDG uptake and extent of  tumor heterogeneity, the 8 clusters 

were not equally distributed among all the 26 tumor samples. In order to assess the degree of  intratumoral 
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heterogeneity of  each tumor a score was determined. This was done by calculating the number of  clusters 

that are present in each FOV (a 1% cut-off  was applied so that a cluster was only counted as being present 

if  >1% of  total cells in the sample belonged to that cluster). Following this, tumors were scored according 

to the number of  FOVs that were “homogenous” (<3 clusters) or “heterogeneous” (≥3 clusters). These 

counts were normalized by the number of  FOVs sampled per tumor. Next, a linear regression model was 

applied to assess whether there was a correlation between heterogeneity and FDG uptake and evaluated for 

its correlation to ER positivity.
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