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Abstract

The ability to comprehensively explore the impact of bio-active molecules on human samples at

the single-cell level can provide great insight for biomedical research. Mass cytometry enables

quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput

capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases

mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize

human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell

communication, the signaling variability between 8 donors, and to define the impact of 27

inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14

PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample.

This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space,

reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput

screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic

investigation of human disease.

Introduction

High-throughput in vitro screening has accelerated the discovery of drug candidates, but

paradoxically coincides with a steep decline in the approval rate for novel molecular

entities1, 2. The enormous rate of attrition as drug candidates move through clinical

development can be partly attributed to the disconnect between human physiology and the in
vitro screening regimen (which cannot measure efficacy in heterogeneous tissues or detect

off-target toxicities2–4). If the original screening regimen more closely reflected human

physiology by using human samples such as PBMCs or cancer biopsies, efficacy and

toxicity could potentially be identified earlier in the development process.

High-content analysis of cellular signaling networks can provide a detailed representation of

cellular state5, 6; it is often presumed that additional biologically informative reads on

markers of pathways would be a desirable outcome for high-throughput screening.
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Compounds that target certain signaling molecules can lead to successful therapeutic

outcomes7, but many compounds that target known oncogenic lesions lack clinical

efficacy8. As such, the in vitro targets of a drug candidate cannot be used to accurately

predict efficacy in vivo due to signaling network complexity and differences between

patients or cell subpopulations of the same patient6, 7, 9–12. Therefore, high-content, single

cell analysis of signaling networks in human samples during drug development could

provide welcome insight to the manifold effects of drugs on cellular systems.

We propose that an ideal drug screening approach should have the following features. First,

it should be based on primary human samples, with systemic behavior that resembles normal

physiology and the targeted disease state. Second, subpopulation-specific system-wide

signaling networks and their correlation to cell and disease phenotypes should be quantified,

providing a comprehensive view of the cellular state. Third, inter-cellular communication

and emergent systems properties should be evaluated and fourth and finally, measurements

should be performed in high-throughput. A screening approach with these features would

enable the identification of compounds with in vivo efficacy against the targeted disease and

low toxicity at the earliest stage of drug discovery.

Methods have been previously developed in attempts to implement these features. Parallel

enzymatic or phage display assays offer exceptional in vitro selectivity profiling13–17, but do

not provide in vivo data. Cellular assays based on proliferation, apoptosis, or expression of

reporter proteins approximate in vivo activity18, but drug selectivity, mechanism of action,

and signaling network responses cannot be determined. Gene expression analysis19, 20 and

liquid chromatography coupled to tandem mass spectrometry6, 21, 22 measure thousands of

parameters, but lack throughput and single-cell resolution23, 24. High-throughput

microscopy offers deep characterization of single cells23–25, but the limited number of

surface and signaling molecules measured simultaneously restricts the breadth of analysis.

Fluorescence-based flow cytometry (FBFC) permits measurement of up to 12 molecules on

the single cell simultaneously26-28, allowing cell subpopulations and their signaling network

states to be determined simultaneously29. Drug screening applications for FBFC have been

implemented by hardware30, 31 or by sample multiplexing with fluorescent cell barcoding

(FCB)32, 33. With these adaptations, FBFC has become a powerful tool for drug screening

and pre-clinical analysis. FBFC falls short of the ideal drug screening method described

above, however, because the number of simultaneously measured parameters is limited due

to spectral overlap27, hampering the comprehensive analysis of signaling network states

within complex cell populations.

A recent advance in flow cytometry, mass cytometry, increases the number of parameters

that can be measured, reduces overlap between measurement channels, and eliminates

background autofluorescence34, 35. For mass cytometry, antibodies are labeled with

isotopically pure metals36 and quantified by inductively coupled plasma mass spectrometry

(ICP-MS). Current labeling techniques allow for 34 parameter measurements35. The large

number of parallel measurements per cell makes mass cytometry an ideal method to assay

drug candidates for cellular efficacy and selectivity.

To add high sample throughput to mass cytometry and to bring it closer to the ideal

screening approach outlined above, a cell-based multiplexing technique analogous to FCB

has been developed, termed MCB, where each sample is encoded by a unique combination

of mass-tags before multiplexing. 96-well format MCB was used to study PBMC signaling

dynamics and cell-to-cell communication, measure PBMC signaling response variability

between 8 donors, and to define the impact of 27 kinase inhibitors on PBMC

subpopulations. The high number of simultaneously measured parameters enabled context-

Bodenmiller et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2013 September 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



specific inhibitor and cell type classification by analysis within a signaling state space, as

defined by the concentration of 14 signaling proteins, rather than a single molecular readout

of a signaling protein and pathway. This analysis revealed that none of the compounds tested

was specific for a single cell type, that inhibitor activity and selectivity were strongly

context specific, and that a topology of hierarchical relationships among PBMC cell types

could be recapitulated based on signaling network responses alone.

Results

Mass-tag cellular multiplexing

The MCB method described here is an adaptation of FCB43, 44 that improves sample

throughput, reduces antibody consumption, and ensures uniformity of the antibody stain

across samples. MCB uses the molecule maleimido-mono-amide-DOTA (mDOTA) (Fig.

1a). The DOTA moiety chelates rare earth metal lanthanide(III) ions with a Kd of

approximately 10−16 and the maleimide moiety rapidly reacts covalently with cellular thiol

groups (Fig. 1a, Supplementary Fig. 1). Using binary combinations of seven pre-loaded

mDOTA-lanthanide(III) reagents, 128 (27) combinations are possible, enabling 96-well plate

multiplexing (Fig. 1b). The MCB protocol is experimentally similar to the FCB protocol

(Supplementary Note 1)32, 33 and after measurement, the dataset is deconvolved with

Boolean gating on the mDOTA-lanthanide(III) channels (Fig. 1c).

To test the accuracy and robustness of the MCB method, two reference cell samples

differing in the abundance of phosphorylation on Tyr-696 on SH2 domain-containing

leukocyte protein of 76 kDa (SLP76)(Supplementary Fig. 2) were arranged in checkerboard

or striped patterns on 96-well plates for MCB analysis. After 96-well multiplexing,

quantification of phosphorylation on Tyr-696 and deconvolution, the patterns were

accurately recovered (Fig. 1d). The resulting Z-prime values from the checkerboard and

striped 96-well plates were 0.61 and 0.58, respectively, indicating that MCB is suitably

robust for high-throughput drug screening applications.

Time course analysis of PBMC signaling

To confirm that MCB allows detection of physiological signaling events in PBMCs, and to

assess subpopulation-specific signaling dynamics, we used MCB (Supplementary Fig. 3) to

perform a 96-sample time-course experiment from 0 to 4 hours (Fig. 2a; Supplementary File

1, Supplementary Note 2). 14 signaling nodes and 9 cell surface markers were measured

over 12 stimulation conditions (Fig. 2a–b). To identify PBMC populations (Fig. 2c) and

their signaling response, Spanning-tree Progression Analysis of Density-normalized Events

(SPADE)35, 37 was applied (Fig. 2b–e, Supplementary Note 2).

After interferon-alpha (IFN-α) stimulation, STAT1, STAT3, and STAT5 phosphorylation

was induced in most cell types38 (Fig. 2c–d, Supplementary Fig. 4); induction peaked at 15

minutes and then declined, although elevated STAT1 phosphorylation was maintained for 4

hours in B cells and natural killer (NK) cells (Fig. 2d). Unlike STAT3 and STAT5, pre-

stimulation and IFN-α-induced phosphorylation levels of STAT1 varied widely among cell

types; from a 2-fold induction in CD14+ monocytes, to a 5-fold induction in other cell types

(Fig. 2d). In IFN-α-stimulated T cells, STAT5 phosphorylation returned to pre-stimulation

levels after initial activation, but time-dependent differences in STAT5 induction were

observed in T cell subtypes (Supplementary Fig. 5).

Time course analysis by MCB also allows identification of time-dependent phenomena such

as feedback regulation (Supplementary Note 3, Supplementary Fig. 6–7) and inter-cellular

communication. Monocytes, which express the LPS receptor toll-like receptor 4 (TLR4)39,

responded first to LPS stimulation, with phosphorylation of the canonical LPS pathway
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members p38, ERK, and NFκB peaking at 15–30 minutes, followed by S6 phosphorylation,

which peaked after 2 hours (Fig. 2e; Supplementary Fig. 8) in agreement with previously

reported results40. Cells with little or no LPS receptor expression39, including B cells, T

cells, and NK cells, responded to LPS at later time points, with STAT3, STAT5, and ITK

phosphorylation occurring in T cells and NK cells after 2 hours and STAT1 phosphorylation

in B cells after 4 hours (Fig. 2e; Supplementary Fig. 9), which is likely due to inter-cellular

communication through IL6 or other factors such as TNF-α, which are known to be released

by monocytes after LPS stimulation41. These results show that the MCB method can be used

to identify novel, dynamic signaling events and intercellular communication on the network

scale level in complex, heterogeneous cell samples.

Comparison of signaling response in PBMCs from multiple donors

To assess variability in signaling between donors, eight PBMC samples were interrogated by

MCB (Fig. 1, Fig 3a). As in the previous experiment, 14 signaling nodes and 9 cell surface

markers were measured over 12 stimulation conditions (Fig. 3a, Supplementary Fig. 6) and

analyzed by SPADE37. Samples were collected 30 minutes after stimulation, as the previous

time-course experiment revealed maximal signaling response at this point for most stimulus

and phosphorylation site pairs.

Cell type percentages varied between the donor PBMC samples (Supplementary Table 1).

Monocytes ranged from 15 % (donor 7) to 26 % (donor 3), T cells from 29 % (donor 3) to

51 % (donor 2) and B cells ranged from 4 % (donor 2) to 11 % (donor 3). A similar range of

cell percentages was also visible for the cell subtypes (Supplementary Table 1). The relative

expression levels of the surface markers used for immune-phenotyping were largely similar

across the donor samples (e.g. CD3, Fig. 3b), except for CD33, with donors 3 and 4 showing

lower expression (Fig. 3c)42.

Despite differences in cell type abundances, cell signaling in each cell population was

similar across the 8 donor samples, including S6 phosphorylation after BCR/FcR-XL

induction (Fig. 3d, Supplementary File 2). Systematic evaluation in signaling response

similarity between donors revealed high correlation of fold-change induction for each

stimulus, phosphorylation site and cell type combination between donors (Fig. 3e), ranging

from 0.67 (donor 4 vs. donor 6) to 0.93 (donor 7 vs. donor 8) (Fig. 3e). Exceptions existed:

contrary to all other donors, phosphorylation on STAT5 and STAT3 was hardly induced in

T cells after INF-α stimulation in donor 6 (Fig. 3f, Supplementary Fig. 10), but on STAT1

(Supplementary Fig. 11). These results show that cellular signaling is largely similar

between individual donor PBMC samples, even if the cell type abundances vary.

Systematic quantification of PBMC response to kinase inhibition

To systematically quantify PBMC type response to kinase inhibition, 96-well MCB

technique was applied to PBMCs treated with an 8-step, 4-fold dose-response titration of 27

unique small molecule inhibitors, to allow calculation of the half-maximal inhibitory

concentration (IC50) and percent inhibition (Fig 4a). 12 stimulation conditions were used for

30 minutes to maximize signaling space coverage (Fig. 4b). Seven channels were used for

MCB, nine for cell surface marker quantification to resolve 14 cell types (Fig. 4c) and 14 to

quantify protein phosphorylation sites (Fig. 4d), covering important signaling pathways in

all cell types for a network-wide signaling map (Supplementary Fig. 6). A single PBMC

donor sample was used for all inhibitors to allow comparability, and one inhibitor, the

JAK1/JAK2 inhibitor ruxolitinib (CAS # 941678-49-5), was tested against four donors to

determine inhibitor response variability.
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Per inhibitor, 18,816 phosphorylation site levels were quantified (12 stimuli × 8 doses × 14

cell types × 14 phosphorylation sites), yielding 2,352 dose-response titrations (14 cell types

× 14 phosphorylation sites × 12 stimuli) for a total of 63,504 dose titrations. The extracted

parameters of all dose response curves, including IC50, fold-change, percent inhibition

values, the corresponding confidence intervals and Z-prime scores are given in

Supplementary File 3. To visualize the data, the inhibitor IC50 values and percent inhibition

were systematically organized and plotted in a cell type specific manner into a two-

dimensional layout guided by canonical pathways (Fig. 5, Supplementary Files 4–6).

Inhibitor selectivity

In order to assess inhibitor selectivity, we compared the known targets of each inhibitor

(Supplementary Fig. 6) to its MCB-generated inhibition fingerprint (Fig. 5; Supplementary

Files 4–6). Kinase inhibitors with a wide range of targets based on their in vitro inhibition

profiles such as staurosporine(CAS # 62996-74-1)13, 14, 16, 17 (Fig. 5b–c, column 22) or the

receptor tyrosine kinase (RTK) inhibitors sunitinib (CAS # 557795-19-4)14, 16, 17 (Fig. 5b–c,

column 24), reduced phosphorylation levels of at least one measured signaling protein in all

cell types under all conditions while other inhibitors showed more selectivity for cell type

and stimulus. Comprehensive analysis of signaling network response patterns allowed

putative determination of inhibitor selectivity:

JAK-STAT pathway coupled cytokine receptors activate a specific set of JAKs (of the four

possible: JAKs 1–3, TYK2) upon ligand binding, which in turn phosphorylate a defined

subset of STAT proteins (STAT1–6)43, 44. Seven of the stimuli used (IFN-α, IFN-γ, G-CSF,

GM-CSF, IL-2, IL-3, IL-12) induce previously reported JAK-STAT pairs (Supplementary

Table 1), allowing the selectivity of JAK inhibitors to be assessed. These inhibitors included

ruxolitinib45, clinically approved for treatment of myelofibrosis, tofacitinib (CAS #

477600-75-2), a JAK3 inhibitor in phase 3 clinical testing against rheumatoid arthritis,

lestauritinib (CAS # 111358-88-4), a JAK2 and tyrosine kinase inhibitor entering a phase 1

clinical, and several research tool compounds, including JAK2 inhibitor III (CAS #

118372-34-2), JAK3 inhibitor VI (CAS # 856436-16-3) and pan-JAK inhibitor I (CAS #

457081-03-7).

Reduced phosphorylation of various STATs after GM-CSF, IL3, IL2, G-CSF, IFN-α, and

IFN-γ stimulation in diverse cell types was observed after tofacinib inhibition, indicating

pan-JAK inhibition (Supplementary Fig. 12a). Higher IC50 values on JAK2 dependent

phosphorylation of STAT5 after IL-3 or GM-CSF stimulation compared to JAK1 and/or

JAK3 dependent phosphorylation after IL-2 or IFN-α stimulation (Supplementary Fig. 12a

& 12b) suggest that both JAK1 and JAK3 and to a lesser extent JAK2 or TYK2 are inhibited

by tofacinib. This is in agreement with our in vitro kinase inhibition profile (Supplementary

Table 3), but differs slightly to other prior in vitro data16.

Broad inhibitory effects on STAT phosphorylation after GM-CSF, IL3, IL2, G-CSF, IFN-α,

and IFN-γ stimulation were also observed for ruxolitinib (Supplementary Fig. 13),

lestauritinib (Supplementary Fig. 14) and the pan-JAK inhibitor I (Supplementary Fig. 15),

in agreement with our in vitro inhibition profile (Supplementary Table 3). Furthermore,

lestauritinib and the pan-JAK inhibitor showed sizeable effects on signaling outside the JAK

pathways (Supplementary Fig. 14 & 15), indicating that these inhibitors broadly affected

many signaling network nodes.

Detailed inhibition profile analysis of JAK2 inhibitor III (Supplementary Note 4,

Supplementary Fig. 16a–b) and JAK3 inhibitor VI (Supplementary Note 5, Fig. 17a–b)

indicated inhibition of TYK2 activity rather than JAK2 activity and Jak1 and Jak3,

respectively (Supplementary Results). Comparison of the JAK2 inhibitor III MCB results
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with the in vitro kinase assay results were surprising (Supplementary Table 3): it did not

inhibit JAK-family kinases at concentrations up to 10µM. This discrepancy between in vitro
and in vivo results could be due to an allosteric mechanism of inhibition not recapitulated in
vitro, or additional off-target effects. The JAK2 Inhibitor III structure suggests that it is not

an ATP-competitive inhibitor, because it is bulkier than most ATP-competitive kinase

inhibitors and it lacks the critical H-bond donor and acceptor pair46.

These and analysis for inhibitors of the PI3K-AKT-mTOR-p70S6K signaling pathway

(Supplementary Note 6, Fig. 5b colored boxes, Supplementary Fig. 18–20) show that the

detailed analysis of inhibitor-induced signaling state by MCB provides the cellular inhibitor

fingerprint and target selectivity with unprecedented resolution and throughput in complex

cellular mixtures.

Cell type selectivity

Simultaneous quantification of signaling responses in 14 cell types in parallel allowed

analysis of cell type selectivity for each inhibitor. No inhibitor showed exclusive selectivity

for a single cell type, and inhibitors with broad pathway activity such as staurosporine and

sunitinib displayed little to no cell type selectivity (Fig. 5b–c, columns 22 and 24). In

general, the inhibition profile of HLA-DRmid monocytes differed from those of other cell

types (Supplementary File 4). Inhibitors of the Src family kinases (SFKs) and receptor

tyrosine kinase (RTKs) dasatinib (CAS # 302962-49-8), LCK inhibitor (CAS #

213743-31-8), and PP2 (CAS # 172889-27-9) inhibited SFK downstream signaling

components in monocytes compared to other cell types, including SYK, PLCγ2, and BLNK,

often independent of stimulation (Supplementary Fig. 21–22). Many inhibitors in addition to

the JAK inhibitors and sunitinib affected JAK-STAT signaling in monocytes

(Supplementary Fig. 21–22), independent of stimulation conditions indicating that under the

conditions of our assay, SFK and JAK-STAT signaling pathways are active in monocytes,

but inactive in T cells, B cells, dendritic cells, and NK cells.

The data also enabled the comparative analysis of signaling network responses to inhibition

in closely related cell types. Only few compounds differ at this level, including imatinib

(Supplementary Note 7, Supplementary Fig. 23), the c-Jun N-terminal kinase (JNK)

inhibitor SP600125 (CAS # 129-56-6, Supplementary Note 7, Supplementary Fig. 24) and

the aminoquinone antitumor antibiotic, streptonigrin (CAS # 3930-19-6). Streptonigrin

induced differential signaling responses in monocyte subtypes (Supplementary Note 7,

Supplementary Fig. 25a–d) and in T cells and B cell subtypes on S6, PLCγ2, SLP76/BLNK

and STAT5, often independently of the stimulation (Supplementary Fig. 25c;

Supplementary Fig. 25d, columns 10–14, yellow boxes). In CD8+ T cells and IgM+ B cells

streptonigrin had low IC50 values and strongly inhibited phosphorylation, but only a weak

inhibition was observed in CD4+ T cells and IgM− B cells (Supplementary Fig. 25c;

Supplementary Fig. 25d, columns 10–14, yellow boxes) on the same sites. An exception was

when cells were stimulated with PMA/ionomycin; inhibition of most signaling molecules

was detected in most cell types (Supplementary Fig. 25d, row 11, grey and red boxes).

Streptonigrin interferes with cell replication, transcription, and cell respiration47, but how

this might lead to the observed differences is unclear. An overview of the cell type profiles

of each inhibitor tested is shown in Supplementary File 4.

Overall, these results demonstrate that MCB can be used to reveal how different cell types

and their underlying signaling network states are uniquely affected by given inhibitors,

underscoring the need for deep signaling profiling for supporting the development of cell

type-specific compounds.
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Systematic analysis of cell type and inhibitor similarity

Due to the large number of signaling molecules quantified per cell type under many

conditions, the inhibitor-induced cellular signaling can be used to characterize the cell types

and inhibitors, ranging from the analysis of cell types and inhibitors over the complete

dataset to analysis of a drug’s effect in a single cell type and condition. To analyze cell type

similarity, a matrix of IC50 values representing inhibitor impact for each cell type,

stimulation, and phosphorylation site was generated. Likewise, to analyze inhibitor

similarity, a matrix of IC50 values representing cell type response for each inhibitor,

stimulation, and phosphorylation site was created. Principal Component Analysis (PCA)

was performed on each of these matrices to ask which cell types or inhibitors were similar in

the reduced-dimensionality space.

In the PCA over all conditions, cell types with related immune functions such as the

lymphocytes were grouped closely in PC space, forming their own cluster (Fig. 6a). A

second and third cluster was formed by the monocyte lineage with closely related monocyte

subtypes being also closest in PC space. The corresponding bi-clustering (Supplementary

Fig. 26) of all cell types recapitulated these observations, showing that at this level of

signaling network resolution, the established endpoint topology of hematopoiesis39 in

PBMCs was recapitulated based on signaling network response alone.

When the input matrix was restricted to the streptonigrin-induced signaling responses (Fig.

6b), a distinct picture emerged: Closely related immune cell types were differentially

affected, as CD8+ T cells, IgM+ B cells, CD14− surfaceneg. and NK cells formed their own

cluster in PC space, distant from CD4+ T cells and IgM− B cells. The PCA also captured the

differences in inhibitor impact among the monocyte subtypes compared to the PCA over all

conditions, in concordance with the previous section.

In a second analysis, the matrix was pivoted to ask which inhibitors clustered together in the

reduced-dimensionality space defined by all cell type signaling states and conditions (Fig.

6c). The general kinase inhibitors staurosporine, lestauritinib and streptonigrin and the SFK

and RTK inhibitors sunitinib, PP2, dasatinib and LCK inhibitor formed their own cluster in

PC space, reflecting their overall high impact on signaling networks across cell types/

conditions.

Restricting the input matrix to monocytes after IFN-α stimulation across all inhibitors, the

question of which inhibitors similarly impact JAK-STAT signaling can be addressed (Fig.

6d). JAK2 inhibitor III, JAK3 inhibitor VI, tofacinib, crassin (CAS # 28028-68-4),

SP600125 (a JNK inhibitor), and VX680 inhibitor (CAS # 639089-54-6) formed a tight

group. As described above, the JAK inhibitors inhibited JAK-STAT signaling after IFN-α
stimulation in most cell types, however, also Crassin displayed a similar profile (Fig. 5c,

row 4, pink box) reproducing a recent finding32. SP600125, besides its assumed selectivity,

inhibited phosphorylation of STAT3, STAT5, but not STAT1 (Fig. 5c, column 21, yellow

box; Supplementary Fig. 24, Supplementary Fig. 27), across many cell types. The ability of

SP600125 to inhibit JAK-STAT signaling was confirmed by in vitro kinase inhibition assays

(Supplementary Table 3). Here IC50 values of 974nM, 736nM, 344nM and 440nM were

measured for JAK1, JAK2, JAK3 and TYK2, respectively. VX680, an inhibitor of Aurora

kinases, which is also active against BCR-ABL, FLT3, and JAK248, was close to SP600125

in PC component space. Inspection of Fig. 5c (column 28, blue box) showed that

phosphorylation of STAT3 and STAT5 were inhibited in the presence of VX680 after IFN-

α stimulation in many cell types (Supplementary Fig. 28a; Supplementary Fig. 28b, row 5,

green box). This suggests that VX680 inhibits JAK1 and, even more potently according to

the in vitro data, TYK2 (Supplementary Table 3). However, for VX680 no or only weak

inhibition of phosphorylation on STAT5 was observed after GM-CSF or IL3 stimulation,
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indicating, contrary to the in vitro data, absence of JAK2 inhibition (Supplementary Fig.

28b, red boxes).

These results show that PCA allows characterization and identification of similar cell type

responses to a given inhibitor and that the inhibitor-induced signaling states were sometimes

independent of cell type immune function/identity, indicating enormous cellular signaling

network plasticity. In addition, PCA allowed rapid classification of inhibitors based on their

profiles at a given drug exposure or in a given experimental condition, and suggests novel

specificities for inhibitors SP600125 and VX680.

Comparison of inhibition response in PBMCs from multiple donors

To establish whether the inhibition datasets generated from a single PBMC donor are

generalizable, or if there is variability in inhibitor response between donors, we measured

the impact of ruxolitinib on four of the eight donor samples previously described that best

represent the variability between donors (Fig. 3). Supplementary Fig. 29 shows that the

response to inhibition between donors was similar overall, but also showed marked

differences. While ruxolitinib inhibited INF-α stimulated phosphorylation on STAT1 on

IgM+ B cells, IgM− B cells and CD4+ T cells in all donors analyzed (Supplementary Fig. 29,

green boxes), the same site was only inhibited in two out of four donors in CD8+ T cells

(Supplementary Fig. 29, row 10, red box). Similarly, G-CSF induced phosphorylation on

STAT3 in CD14− HLA-DRmid monocytes was inhibited in all donors except donor 4

(Supplementary Fig. 29, row 4, blue box). Closer inspection of these differences in inhibitor

response revealed they were often due to inhibition curves that fall directly above or below

the R2/fold change cutoff used as a threshold for calling a site “inhibited” (see Material and

Methods), and this was often compounded by differences in the level of pathway activation

observed between donors after stimulation (Fig. 3). We have observed such fluctuations in

human PBMCs particularly in cases of chronic diseases involving inflammation (GPN, data

not shown) - indicating in part that the differences observed might indicate differing “set

points” in cell subset specific activation due to prior immune encounters.

Therefore, it can be concluded that the 27 state-based kinase inhibitor profiles previously

described are a comprehensive resource describing normal healthy immune response to

kinase inhibition, but also underlines the need to measure several donor samples if an

inhibitor must be extensively analyzed, e.g. before a clinical trial.

Comparison of in vivo vs. in vitro inhibition profiles

In the last analysis we asked how the data generated by MCB agrees with existing in vitro
kinase assay data16, 17. Again we used the matrix of IC50 values representing inhibitor

impact for each cell type, stimulation, and phosphorylation and the dataset from

Anastassiadis et al.16 and Davis et al.17, containing kinome-wide in vitro inhibition/IC50

values for 14/9 of the compounds analyzed in this study (Supplementary File 7). For all

datasets, pairwise distances between the compounds were computed. To assess the

correlation between the in vivo and in vitro datasets, the pairwise distances were plotted

against each other (Fig. 6e–f).

In general, inhibitors being related or unrelated to other inhibitors in the in vitro dataset

displayed a similar behavior in the in vivo datasets, resulting in correlation coefficients of

0.74 and 0.75, respectively. An exception was JAK3 inhibitor VI. Here the distance was

greater to most inhibitors in the in vitro dataset compared to the in vivo dataset.

Nevertheless, for most compounds analyzed throughout this manuscript the in vitro
inhibition profile (e.g., Go-6983, rapamycin, GDC-0941, JAK inhibitors, etc.) is largely in

agreement with the MCB data (depending upon the cell type) and supports understanding
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the signaling network responses observed on a gross cellular level. But caution is indicated

by the data insofar as lacking generality depending upon the stimulation condition, the cell

types, and even the donor tested.

These results show that both approaches correlate and that the datasets are highly

complementary for the mechanistic investigation of cellular signaling pathways.

Discussion

MCB makes possible high-throughput experiments that were impractical to perform using

FBFC or mass cytometry alone. MCB was used here to analyze PBMC signaling dynamics,

cell-to-cell communication and to comprehensively profile small molecule drug regulators

based on PBMC signaling network response. In these experiments, 18,816 phosphorylation

levels were quantified in 1,344 cell populations from 96 multiplexed samples for each

inhibitor.

By using n metal isotopes for binary-encoded MCB, 2n samples can be multiplexed. This

allows over 10,000 samples to be multiplexed in a single tube with 15 channels remaining

for antibody detection. At this scale, MCB becomes an attractive technique for high-

throughput drug screening and genome-wide RNAi knockdown studies.

Despite several limitations (Supplementary Note 8), the approach presented here allows

analysis that span from the systems-level down to single pathways and molecules. In the

experiments described, high-level compound classification suggested novel molecular

targets and indicated novel mechanisms of action for widely used kinase inhibitors. The

ability to identify bio-active compounds such as JAK2 Inhibitor III that presumably would

not have been identified by in vitro screening highlights a key advantage to the in vivo MCB

approach.

As MCB enables signaling events to be monitored over time, it provides an opportunity to

study signaling pathway connectivity, inhibitor impact on feedback signaling49,, and

intercellular communication50. Time-resolved single cell analysis can reveal differences

between immediate and subsequent indirect, adaptive effects caused by crosstalk of

interwoven signaling pathways. Here, the in vivo MCB method and in vitro kinome

screening methods16, 17 are complementary, because state-based analysis of activation and

signaling dynamics in combination with kinase inhibitors that have been characterized in
vitro is a potentially useful paradigm for the investigation of pathway mechanism,

connectivity, and dynamics.

With high-throughput systems-level coverage of the most important signaling pathways and

their interconnections for each cell type, the cellular signaling states induced by inhibitors

could be used as a metric for pre-clinical development. Similar MCB analyses performed on

defined disease samples could be used to categorize drug effects, or drug combinations, to

eventually guide therapeutic strategies based on discrete knowledge of a patient’s cellular

phenotypes and genotypes. Additionally, the MCB method could be used directly as a tool

for personalized medicine, with the pathway activation and drug response of a patient’s in
vivo or ex vivo tissue samples used to guide therapy decisions. This initiates the creation of

a “minable” systems map of signaling states that reveals the modular formats that evolution

uses to build a flexible immune network (thus linking signaling responses to underlying

gene networks39), enabling more precise pharmacokinetic, pharmacodynamic, and complex

biomarker discovery in a variety of clinical contexts.
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Data availability

All dose response curves can be viewed and all raw data can be downloaded from

www.cytobank.org/nolanlab.

The determined IC50 values, fold changes, percent inhibition values, confidence intervals

and Z-prime scores are available in Supplementary File 2.

Kinase inhibitors

All inhibitors and the used concentrations are shown in Table 1 of the Supplementary

Material and Methods.

Preparation of barcoding reagents

Two molar equivalents of maleimido-mono-amide-DOTA (Macrocyclics) were added to

each metal chloride in 20 mM ammonium acetate, pH 6.0. Solutions were then immediately

lyophilized and resulting solids were dissolved in DMSO to 10 mM for long-term storage at

−20°C.

PBMC isolation, culture, and stimulation

Human peripheral blood, collected based on an IRB-approved protocol, was obtained from

the Stanford Blood Bank. The samples obtained from healthy donors were collected in

heparin sulfate anticoagulant by leukapheresis and stored at room temperature for 4–6 hours.

The peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Paque density

centrifugation. The isolated PBMCs were resuspended in freezing solution (90% FBS, 10%

DMSO) and stored under liquid nitrogen for future use. For each use, PBMCs were thawed

and then washed twice with room temperature PBMC media (RPMI, 5% FBS, 2 mM L-

glutamine with 100 U/ml penicillin and 100 µg/ml streptomycin), incubated for 1 hour at

37°C in 5% CO2, and then stimulated as shown in Supplementary table 1 by the addition of

IL-2, IL-3, IL-12, G-CSF, GM-CSF, interferon-α, interferon-γ, or LPS at 30 ng/ml, sodium

orthovanadate at 125 µM, phorbol 12-myristate 13-acetate (PMA) at 50 nM, Ionomycin at 1

µg/ml, or a mixture of anti-IgG, anti-IgM, anti-IgK, and anti-IgL at 10 µg/ml each (BCR/

FcR-XL). The stimuli used in this study are shown in Table 2 of the Supplementary Material

and Methods.

Antibodies used for analyses

Metal-labeled antibodies were prepared as described by Bendall et al.35. Briefly, antibodies

were obtained in carrier-protein-free PBS and then prepared using the MaxPAR antibody

conjugation kit (DVS Sciences) according to the manufacturer’s protocol. After determining

the percent yield by measurement of absorbance at 280 nm, the metal-labeled antibodies

were diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH) for

long-term storage at 4°C. Antibodies used in this study are listed in Table 3 of the

Supplementary Material and Methods.

Accuracy and robustness assessment of MCB

For this analysis K562 cells, a human myelogenous leukemia cell line, either untreated or

treated with orthovanadate were used. Orthovanadate is a broadly active protein tyrosine

phosphatase inhibitor that increases cellular tyrosine phosphorylation levels. The induction

of SH2 domain-containing leukocyte protein of 76 kDa (SLP76) phosphorylation on

Tyr-696 in the orthovanadate-treated cells was observed to be highly similar in multiplexed
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samples (Supplementary Fig. 2) compared to non-multiplexed ones, indicating that the MCB

method does not alter mass cytometry measurement or introduce artifacts.

Time course experiment

Approximately 20 million PBMCs were aliquoted into a 96-well 2-ml block. After resting

for 60 minutes at 37°C, the PBMCs were stimulated with agents listed in Supplementary

Table 1 for 0 minutes, 1 minutes, 5 minutes, 15 minutes, 30 minutes, 60 minutes, 120

minutes and 240 minutes.

Inhibitor dose-response experiments

Approximately 20 million PBMCs were aliquoted into a 96-well 2-ml block. After resting

for 45 minutes at 37°C, the PBMCs were pretreated with the indicated small molecule

kinase inhibitors for 15 minutes, and then stimulated with agents listed in Supplementary

Table 1 for 30 minutes in the presence of the inhibitor.

PBMC fixation and permeabilization

At the indicated time point after stimulation, 1.6% formaldehyde (final concentration) was

added to the PBMC media and cells were incubated at room temperature for ten minutes.

The formaldehyde was then diluted to 0.8% with additional PBMC media, and the fixed

cells were centrifuged at 600 × g for 5 minutes at 4°C. After aspirating the supernatant, the

cell pellet was resuspended in ice-cold methanol and transferred immediately to −80°C for

long-term storage.

Cell barcoding and antibody staining

PBMC samples in methanol were brought from −80°C to 4°C on ice, washed once with Cell

Staining Media (CSM, PBS with 0.5% BSA, 0.02% NaN3), and then once with PBS. The

cells were then resuspended in PBS, and DMSO stocks of the barcoding reagent were added

at 1:100 (to 100nM final concentration). The cells were incubated at room temperature for

30 minutes, washed three times with CSM, and then pooled into a single FACS tube for

staining with metal-labeled antibodies for 1 hour at room temperature. A staining volume of

300 µl was used (~1×108 cells/ml). After antibody staining, the cells were washed twice

with CSM, and then incubated for 10 minutes at room temperature (or overnight at 4°C)

with an iridium-containing intercalator (DVS Sciences) in PBS with 1.6% formaldehyde.

The cells were then washed three times with CSM and once with PBS, diluted with water to

approximately 106 cells per ml, and filtered through a 70-µm membrane just before analysis

by mass cytometry.

Mass cytometry analysis

Cells were analyzed on a CyTOF mass cytometer (DVS Sciences) at an event rate of ~500

cells per second. The settings of the instrument and the initial post-processing parameters

were described previously34,35. For each barcoded sample several data files were recorded.

These were concatenated using a script developed in house. The cadmium ion signals with

the mass over charges of 110, 111, 112, and 114 were summed to create a single

representative channel for the CD3-QDot 605 used in the mass cytometry analysis by the

Flow Core package (http://www.bioconductor.org/packages/2.3/bioc/html/flowCore.html).

Before gating of the cell subpopulations and determination of the IC50 values, the data were

normalized as described previously35.
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In vitro kinase assays

All analyses were performed by Reaction Biology Corporation, Malvern, Pennsylvania, U S

A against active JAK1, JAK2, JAK3 and TYK2. The compounds analyzed are shown in

table 2 of the main text. All kinase reactions were performed at 10µM ATP using a 10 step,

3-fold serial dilution with 10 µM as the highest compound concentration.

Data analysis

The cell events measured for the PBMC time-course experiment were analyzed using the

software tool SPADE as described in the main text and previously35,37. All time resolved

response curves for all cell types and stimuli are shown in Supplementary File 1.

The following summarizes the SPADE algorithm within the context of this time course

dataset. First density-dependent down-sampling of all measured cell events to a defined

target number with equalization of the representation of rare and abundant cell types was

performed. The down-sampled cell events were then clustered based on expression of 9 cell

surface markers (CD33, CD20, CD3, CD4, CD7, CD123, CD14, IgM, and HLA-DR) into

phenotypically similar agglomerates of cells. Those agglomerates of cells phenotypically

similar in 10 dimensions were connected via edges to draw a minimum spanning tree. Next,

an up-sampling step was performed to assign each cell event from the initial dataset to the

most representative agglomerate. Finally, the minimum spanning tree was projected in two

dimensions, and the cell clusters of the tree were colored by median intensity level of a

given measured parameter allowing visualization of marker expression across the entire

cellular hierarchy.

The cell events measured for each inhibitor were gated according to the scheme shown in

Figure 4 (main text). Each cell type was de-barcoded individually to account for differences

in the distributions of barcode metals due to differing cell sizes. The de-barcoding was semi-

automated for each barcode channel by creating a boundary at the minimum between the

two peaks in the density estimate and then trimming 2.5% of the cells on each side of that

boundary. Subsequently, each cell was sorted into its barcode well according to the 7-digit

binary number assigned. The cells determined to be in the wells stimulated with BCR-XL

then had their IgM gates re-drawn because BCR-XL masks the IgM epitope and shifts the

IgM distribution to lower signal levels.

The dose-response curves were then computed for every combination of phosphorylation

site, modulator, and cell type. This was done by fitting the arcsinh-transformed median

signal value S at each dose to the sigmoidal functional form S = Top + (Bottom − Top)/

(1+10^(hill*(LogIC50−LogDose))). The fits were calculated using MATLAB’s

implementation of a trust region algorithm using a robust bi-square nonlinear least squares

method with each point weighted by the inverse of the standard error of the mean. To

determine which curves showed significant responses, the fitting scheme was first applied to

five control plates of cells that were treated with DMSO but not inhibitor. Then the false

positive rate was calculated for varying levels of R^2 and fold change cutoffs (Materials and

Methods Fig. 1a). An individual curve was considered a responder if it exhibited a

combination of R^2 and fold change that corresponded to a <1% false positive rate in the

inhibitor-free plates (Materials and Methods Fig. 1b) for a given analyzed phosphorylation

site (Materials and Methods Fig. 1c). All dose-response results are shown Supplementary

Files 2–4 or can be viewed at www.cytobank.org/nolanlab; each curve is shown compared to

the reference level and is overlaid on individual contour plots for each sample with DNA

along their hidden X axes. Empty plots signify samples where there were zero cell counts.
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The percent inhibitions reported for all drugs and conditions were those observed at the

highest measured inhibitor concentration, regardless of whether saturation of inhibition was

observed. For each curve, this was computed by dividing the difference between the fitted

curve at zero dose and at the highest inhibitor concentration by the absolute value of the

difference between the fitted curve at zero dose and the reference line (see Figure 1 of of the

Supplementary Material and Methods).

Principle component analysis

Principal component analysis (PCA) was used to visualize the differences between various

groups in the data, including all cell types, as well as the differences between all inhibitors.

Features that were used for the PCA analysis consisted of all IC50 values. In addition to the

overall feature matrix, PCA was run on data stratified by various subconditions, including

stimulation conditions. The control replicates were combined and averaged for this analysis.

Next, the pairwise Euclidean distance between all pairs of points (cell types or inhibitors) in

PCA space was calculated. This distance was calculated including those principal

components that recovered 90% of the total variance. K-means clustering was performed

using these distances to determine subgroups of data. A best average silhouette value over

100 replicates of K-means was used to determine the potential number of clusters for each

set of conditions, The final cluster number was determined via inspection of the silhouette

plots. In order to simplify visualization of the overall relationships among data points, a

minimum spanning tree was created for each cluster. In order to convey more information,

the values of the data points mapped to PCA space are also represented. The color of the

node represents each node’s location in the first principal component, and the size of the

node represents the location of a node in the second principal component. In addition, a

clustergram representing a biclustering for the data in each condition was generated using

the same pairwise Euclidean distance matrix described previously.

IC50 values contributing the most to principal components of interest were found by

determining those values most heavily weighed in each principal component, greater than 2

standard deviations from the mean. All of these methods were run using MATLAB’s

existing toolkits.

Data visualization

All cell density plots and heat maps were created in Cytobank (www.cytobank.org,

Cytobank, Inc.).

Public data distribution

All collected data will be made publically available by publication on www.cytobank.org/

nolanlab.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mass-tag cell barcoding
a. Cells were covalently labeled with a bifunctional compound, maleimido-mono-amide-

DOTA (mDOTA). This compound can be loaded with a lanthanide(III) isotope ion, and

reacts covalently with cellular thiol groups via its maleimide moiety. b. Seven unique

lanthanide isotopes were used to generate 128 combinations, enough to barcode each sample

in a 96-well plate. The seven lanthanide isotopes, their masses, and their locations on the 96-

well plate are shown. c. A density dot plot of barcoded cells is shown with the y-axis and x-

axis plot showing barcoding channel 1 (lanthanum 139) vs. barcoding channel 2

(praseodymium 141). Cells positive and negative for a given channel are indicated. d. Cells

(K562) were stimulated with orthovanadate, placed in a 96-well plate as geometrical

patterns (checkerboard or striped pattern), barcoded, analyzed by mass cytometry and

subsequently deconvoluted using Boolean gating to validate the accuracy of the

(de)barcoding. The two resulting heat-maps of the measured SLP76 Tyr-696

phosphorylation levels are shown.
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Figure 2. PBMC signaling time-course experiment
a. Twelve conditions and 8 different time points were used to capture time-resolved PBMC

signal transduction from 0 to 240 min. b. The expression and localization of all quantified

cell surface markers within the SPADE tree is shown. c. 14 unique PBMC cell types were

distinguished by SPADE analysis based on surface marker expression shown in B. d. The

time-resolved response of the PBMC continuum of subpopulations to IFN-α stimulation by

STAT1 phosphorylation, as visualized by SPADE. e. Time-resolved response of the PBMC

continuum of subpopulations to LPS stimulation by NFΚB, STAT3, and STAT1
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phosphorylation, as visualized by SPADE. Putative intercellular communication is indicated

by black arrows.

Bodenmiller et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2013 September 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3. Signaling response comparison of PBMCs from eight donors
a. Twelve conditions were used to compare signaling response of PBMCs from eight

different donors after 30 min stimulation. b. The expression of the CD3 cell surface marker

within the SPADE tree for all donors is shown. c. The expression of the CD33 cell surface

markers within the SPADE tree for all donors. d. Comparison of the response to 30 min

BCR/FcR-XL stimulation of the PBMC continua of subpopulations of the analyzed donors

as visualized by SPADE shown by the median phosphorylation levels of S6 protein. e.
Correlation plot of the fold-change induction over all stimuli, phosphorylation site and cell

type pairs between donors after 30 min stimulation. f. As d, but the median of

phosphorylation on STAT5 after 30 min IFN-α stimulation is shown.

Bodenmiller et al. Page 20

Nat Biotechnol. Author manuscript; available in PMC 2013 September 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4. Analysis of PBMC response to kinase inhibition
a. The effect of 27 inhibitors on PBMC signaling was quantified by MCB, including the

IC50 value and percent inhibition of phosphorylation levels b. Experimental set-up for each

inhibitor experiment. Twelve stimulation conditions were applied for 30 min in conjunction

with an eight-point, 4-fold dilution series of each inhibitor. c. Gating scheme. 10 cell surface

markers were combined to define 14 cell types. d. For each cell type, 14 phosphorylation

sites covering many immune signaling pathways were quantified by mass cytometry.

Example dose response curves are shown for staurosporine treatment in CD4+ T cells.
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Figure 5. Overview of inhibitor impact
a. A miniaturized signaling network, guided by canonical pathways, including vertical

ordering of nodes from membrane-proximal signaling proteins to nuclear-localized

transcription, is used here to depict the effect of a stimulus or inhibitor on each quantified

phosphorylation site after 15 min incubation with the inhibitor and subsequent 30 min cell

stimulation. As some antibodies recognize different proteins in different cell types, 3 cell

type specific signaling networks are shown. In the absence of inhibitor (“No inhibitor”), the

response to each stimulus relative to the untreated state is represented as fold change by a

sized red or black circle (for induction and reduction of phosphorylation levels,

respectively). For example, activation of B cells by IFN-α caused a ~1-fold induction of
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phosphorylated STAT1 and STAT3. To visualize the effects of inhibitors (“Inhibition”),

circles were sized inversely to the IC50 and colored by amount of percent inhibition

(“Inhibition”). For example, in the presence of ruxolitinib, inhibition of phosphorylation of

STAT1 (IC50 = 23 nM, 93% inhibition) and STAT3 (IC50 = 4 nM, 147% inhibition) was

observed (Fig. 5a, “Inhibitor”), while without activation of the B cells, no observable effects

of ruxolitinib on the quantified signaling nodes were visible (Fig. 5b, yellow box). Fold-

change induction before inhibition and confidence intervals for IC50 values and percent

inhibition are not shown (Supplementary File 3). b. The impact of all inhibitors under all

stimulation conditions is shown for IgM+ B cells. c. The impact of all inhibitors on all cell

types after 30 min IFN-α stimulation is shown. Sections highlighted by color are detailed in

the main text.
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Figure 6. Principle component analysis of cell type and drug response
a. Cell type PCA analysis across all inhibitors, phosphorylation sites, and conditions. b. Cell

type PCA analysis for streptonigrin across all phosphorylation sites and conditions. c.
Inhibitor PCA analysis across all cell types, phosphorylation sites, and conditions. d.
Inhibitor PCA analysis for monocytes after IFN-α stimulation across all phosphorylation

sites. e. Pairwise distance correlation plot to show the agreement between in vivo data

generated by MCB and in vitro kinome inhibition profiles as from Anastassiadis et al.16.

Distances shown were scaled as a fraction of the maximum distance. f. As e, but pairwise

distance correlation plot between in vivo data generated by MCB and in vitro kinome

inhibition profiles as from Davis et al.17 is shown.
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