
Method

Multiplexed massively parallel SELEX
for characterization of human transcription
factor binding specificities

Arttu Jolma,1,2 Teemu Kivioja,1,3 Jarkko Toivonen,3 Lu Cheng,3 Gonghong Wei,1

Martin Enge,2 Mikko Taipale,1 Juan M. Vaquerizas,4 Jian Yan,1 Mikko J. Sillanpää,5
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The genetic code—the binding specificity of all transfer-RNAs—defines how protein primary structure is determined by

DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of

specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known

for a small fraction of the ~1400 human transcription factors (TFs). We describe here a high-throughput method for

analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential en-

richment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in

parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing.

Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to

control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows

higher throughput and identification of much longer binding profiles than current microarray-based methods. In ad-

dition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding

preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by

determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3

using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to pref-

erentially bind DNA as monomers.

[Supplemental material is available online at www.genome.org. The sequence data from this study have been submitted to

the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession no. SRA012198.]

Based on the presence of one or more of the 347 known DNA-

binding domains (DBDs), it has been estimated that the human

genome encodes ;1400 potential sequence-specific transcription

factors (TFs) (Vaquerizas et al. 2009). The binding specificities of

these proteins are mostly unknown. The largest open-access re-

source for human transcription factor binding specificity models

lists only 58 moderate to high quality models for humans and 93

models for all mammals (Bryne et al. 2008). By including recent

profiles generated by protein-binding microarrays (Berger et al.

2008; Badis et al. 2009) and considering protein-level similarities

in DBDs, these models can be extended to ;300–400 human TFs.

Lower resolution binding specificity information, such as knowl-

edge of the strongest binding sequence (consensus sequence) or

proven genomic target sites, exists for a somewhat larger pro-

portion of TFs. However, because biologically important binding

sites are often not of maximal affinity (see, for example, Jiang and

Levine 1993; Tuupanen et al. 2009), this information is insufficient

formost purposes, such as predicting the effect of disease-associated

sequence polymorphisms on TF binding (Pomerantz et al. 2009;

Tuupanen et al. 2009), and prediction of functional binding sites

using bioinformatics tools such as an enhancer element locator

(EEL) (Hallikas et al. 2006).

Although occupied sites for individual TFs can be accurately

identified in cell lines and tissues using chromatin immunoprecip-

itation and the binding of TFs to genomic sequences in vivo is de-

termined by DNA sequence (Wilson et al. 2008), we currently can-

not effectively read genomic sequence to determine which sites

control gene expression and/or will be occupied by a given TF. TF

binding correlates with chromatin state (Robertson et al. 2008;

Heintzman et al. 2009) and nucleosome occupancy (Badis et al.

2008), but comparing two types of experimental data essentially

explains one set of observations with another and does not increase

our understanding of the basic biochemical reactions that de-

termine which transcription factor binding sites are occupied. To
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understand the biochemical basis of transcriptional regulation, we

need to quantitatively measure binding affinities of transcription

factors to DNA and to each other, and to use these data to develop

a model of cooperative binding of TFs and transcriptional activa-

tion. The ultimate aim here is to read the genetic code of gene ex-

pression, that is, to understand the expression of genes based on

DNA sequence.

Preparation of high-quality physical models of DNA–DBD

interactions using existing methods is laborious and expensive.

Economic and relatively simple in vitro methods, such as electro-

phoretic mobility shift assay (EMSA), nuclease footprinting (for

review, see Lane et al. 1992; Hampshire et al. 2007), or systematic

evolution of ligands by exponential enrichment (SELEX) (Kinzler

and Vogelstein 1990; Tuerk and Gold 1990) using low-throughput

sequencing are efficient in preparation of rough initial models,

which can subsequently be refined to higher precision with com-

petition assays, such as microwell-based binding assay (Hallikas

and Taipale 2006) or competitive EMSA (Moss 2001). Currently,

the onlymethod that can produce high-quality de novomodels in

relatively high throughput is universal protein binding micro-

arrays (PBMs) (Bulyk et al. 2001; Berger et al. 2006). Because the

PBM method needs relatively high amounts of purified proteins,

it is difficult to analyze proteins that need post-transcriptional

modifications or proteins that do not express well, such as many

full-length transcription factors. In addition, PBMs suffer from

limitations common to microarrays, including high cost, position

effects, and a limit to the number of sequences that can be placed

on the array. Universal PBMs cannot practically accommodate all

possible oligomers beyond 10 base pairs (bp)—therefore they

cannot be used to determine preferred spacings and orientations

between half-sites of dimeric TFs, or complete binding preferences

for TFs that prefer longer than 10-mer DNA-motifs (e.g., RFX3)

(Emery et al. 1996; Badis et al. 2009).

DNA-binding specificities can also be estimated using

methods such as chromatin immunoprecipitation by sequencing

(ChIP-seq) (Robertson et al. 2007). This method requires high-

quality antibodies and a massive number of sequencing reads. In

addition, as ChIP-seq measures occupancy of individual sites in

particular cell lines or tissues, the data generated are influenced

by other factors than protein–DNA-binding affinity, including

protein–protein interactions between the TF analyzed and other

TFs, accessibility of particular genomic sequences, and sequence

biases in the genome itself.

In this work, we introduce a high-throughput protein–DNA

binding specificity determination method that allows processing

of hundreds of individual samples in parallel. Themethod requires

low nanogram levels of proteins, and is thus compatible with

mammalian expression systems, allowing analysis of full-length

TFs and TFs that require post-transcriptional modifications. We

also describe a computational pipeline designed to assess the

quality of the results and to generate accurate binding profiles for

the TFs analyzed. To validate themethod,we use it here to generate

binding specificity profiles for 19 TFs, representing 14 different

structural classes.

Results

Expression of proteins and SELEX

To determine accurate DNA-binding specificities for human TFs,

we cloned a set of genes representing major families of human

DBDs and full-length transcription factors into a Gateway re-

combination cloning entry vector. We subsequently transferred

the collections into a recipient vector that allows expression of the

DBDs as N-terminal fusions to a streptavidin-binding–peptide-

tagged luciferase enzyme fromGaussia princeps (Fig. 1A). Theproteins

Figure 1. Schematic description of the high-throughput SELEX process. (A) Protein expression. (Top) Proteins are expressed as fusion proteins with SBP-
tagged Gaussia-luciferase. (Bottom) The GATEWAY recombination cloning system is used to transfer DNA sequences encoding DBDs or TFs from donor-
vectors to the pD40htSELEX expression vector. (B) Ligand design that accommodates multiplexing of samples using barcodes. Each DNA ligand contains
a 14-bp randomized region (14N), and a 5-bp barcode (Barcode) that uniquely identifies the individual SELEX sample. To increase specificity, each
barcode differs from all other barcodes by at least 2 bp. These variable sequences are flanked by constant sequences that include an Illumina Genome
Analyzer sequencing primer site (Seq. primer) and bridge amplification primer binding regions (Fw, Rev; arrows), which are extended in their 59 regions to
accommodate partially nested primers (used in successive SELEX rounds). (C ) Basic principle of high-throughput SELEX. A double-stranded DNAmixture
containing all possible 14-bp sequences (from B) is incubatedwith a DNA-binding protein immobilized into awell of a 96-well plate, resulting in binding of
DNA to the protein. After washing and elution, the resulting population of more specific sequences is amplified by PCR and subjected to high-throughput
single-molecule sequencing. The specificity of the TF can then be constructed by iterating the process and calculating the abundance of distinct sequences
after different numbers of cycles. In each cycle, multiple reactions are mixed into a single sequencing lane, and the TFs are identified using the barcode
sequences.
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were then expressed in transiently trans-

fected primate cells (COS1 or 293T), and

the amounts of expressed proteins were

measured by a luciferase assay (data not

shown). Subsequently, the different pro-

teins were affinity-purified using strepta-

vidin-coated 96-well plates.

The DNA-binding specificity of the

proteins was determined using a modifi-

cation of the SELEX procedure (for review,

see Roulet et al. 2002; Yang et al. 2007)

adapted to parallel processing of the sam-

ples through all protein production, se-

lection, and sequencing phases. TheDBDs

were allowed to bind to their preferred

ligands from a pool of double-stranded

DNA oligonucleotides containing all pos-

sible 14-nucleotide (nt) sequences flanked

by a barcode sequence indicating the

identity of the sample, and two common

adapter/primer sites (Fig. 1B). After washing, the bound oligonu-

cleotides were recovered and amplified and used as a new set of li-

gands in the subsequent selection cycles. The process was iterated

up to five times to generate a set of products for sequencing (Fig.

1C). In such samples, it is expected that the relative amount of

a sequence with specific affinity to the TF will increase in each

cycle until sequences with higher affinity will start to effectively

compete against it. Thus, diversity of the sequence pool decreases,

and the average affinity increases in each cycle, until only the

absolutely highest affinity site remains.

Multiplexed sequencing and initial analysis of data

The amplified DNAs from each selection cycle were quantified,

mixed together, and sequenced using massively parallel sequenc-

ing. The average output of accepted reads per lane (see Methods)

was 6.6 million (varying between 4.0 and 9.6 million). Using 256

oligonucleotides with different barcode sequences allowed the

analysis of binding specificities of 256 different TFs in a single se-

quencing run. Before SELEX analysis, all barcoded oligonucleo-

tides were sequenced to assess the quality of the 14-mer random

sequences; The barcodes had an average of 37,590 reads, with

249 out of 256 (97%) having more than 5000 reads. Three out of

the 256 ligand pools that had low sequence complexity (a high

number of identical 14-mer sequences) and/or strong nucleotide

bias were excluded at this stage.

Approximately 23% of the sequences precipitated using the

C2H2 zinc finger-domain TF GLI2 contained the GLI consensus

sequence GACCACCCA (Kinzler and Vogelstein 1990; Hallikas

et al. 2006) in either forward or reverse orientation after three

rounds of SELEX (Fig. 2, 0.0046%expected by random). Analysis of

other TFs that showed specific enrichment of sequences yielded

similar results (Fig. 2), and very similar enrichment profiles were

observed when the same TF was analyzed in two separate SELEX

experiments (Fig. 2, TCF4).

Bioinformatic quality control

Members from different TF families were selected for further

analyses based on the following criteria: (1) robust enrichment of

sequences that are related to each other without excessive loss of

sequence complexity; (2) no binding to constant regions; and (3)

exponential enrichment of specific sequences without detectable

contamination from adjacent wells. The selection was performed

using a computational pipeline ‘‘Inimotif’’ that allowed analysis

and visualization of key aspects of the data (Fig. 3).

For a functioning SELEX, it is expected that themost enriched

sequences are related to each other. To visualize whether this is

the case, we first determined the incidence of all subsequences of

length 5–11.We then identified for each length the most enriched

subsequence. Subsequently, we plotted the incidence of all sub-

sequences observed as a function of the number of substitutions

required (Hamming distance) to convert them to the most en-

riched subsequence or its reverse complement. In successful cases,

the reverse complement of the most enriched sequence was also

strongly enriched, together with some sequences having single-

base mismatches to these sequences (Fig. 3A, left panel). In failed

cases, the most enriched sequence was present in very low num-

bers, and the other enriched sequences were often unrelated to it

(Fig. 3A, right panel).

We next assessed the contribution of the constant sequences

to TF binding. If no binding to the flanking constant and/or bar-

code sequences is observed, the most enriched sequence should

be distributed relatively evenly across all possible positions on the

forward and reverse strand of the 14-bp random sequence (Fig. 3B,

left panel). If, however, the factor binds to either the barcode or

flanking constant sequences, a clear preference is observed in the

position of the enriched sequences (Fig. 3B, right panel). In the

case shown, the protein RFX4 appears to strongly prefer one po-

sition, as binding at this position allows the barcode ‘‘GTTGC’’ of

the selection oligomer to form part of the RFX4 recognition se-

quence. To correct for these types of error, the experiment can be

repeated with oligomers designed with different flanking regions.

Finally, to control for the quality of individual SELEX cycles,

we analyzed the incidence of 100 most enriched sequences and

200 random sequences in all cycles. In functional cases, the high-

affinity sequences are enriched exponentially (Fig. 3C, left panel).

If a SELEX round has failed, no enrichment is observed for that

round (data not shown). If DNA from one well has contaminated

an adjacent well containing a different TF and DNAs from both

wells are subsequently mixed to the same sequencing reaction,

different sequences can appear to enrich during different SELEX

rounds (Fig. 3C, right panel). This type of error can be subsequently

identified and corrected by pooling the sequenced samples to

Figure 2. Enrichment of specific sequences during the SELEX process. (A) Position weight matrices
built around the most enriched sequence for four different TFs (see Methods for details). The height of
the letter at each position is directly proportional to the incidence of the indicated base in sequences
where all other bases exactly match the most enriched sequence. Note that clear enrichment of se-
quences is observed after one or two SELEX rounds, and that two separate experiments for TCF4 result in
a very similar enrichment pattern. In the first cycle, the algorithm used here detects incorrect binding
profile for PRDM1 (asterisk) due to a low number of the relatively long consensus sequences. The en-
richment of high-affinity sequences can, however, be detected by seeding the algorithmwith consensus
from the later cycles (see Supplemental Fig. S4A). (B) The fraction of all fragments containing the most
enriched sequence from the third SELEX cycle plotted as a function of the SELEX cycle.

High-throughput SELEX for TF-specificity analysis
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smaller subpools that do not contain sequences from adjacent

wells prior to sequencing (e.g., Fig. 3C, cf. left and right panels).

To assess the overall efficiency of the protein expression

and SELEX methods, we analyzed DBDs for 17 of a total of 27

ETS family members, all of which are known to bind to DNA in

a sequence-specific manner. Five factors (29%) expressed at low

levels. Of the 12 that expressed highly, nine (75%) showed clear

enrichment of specific sequences after

three to five cycles in at least one experi-

ment (see Supplemental Table S4).

Generation of binding models

Using the tools described above, we could

identify a successful SELEX enrichment

for at least one member for 14 of the 23

majorDBD classes (Table 1; Supplemental

Table S2; Supplemental Archive S1). We

next identified the most enriched sub-

sequence for all lengths between 4 and 13

for all the factors after all of the SELEX

cycles. Subsequently, we generated 5–12

base-long position weight matrices for

all samples by counting the number of

occurrences of all subsequences that dif-

fered from the most enriched subse-

quences by 1 base. This analysis was done

for two consecutive cycles, with the first

of the cycles used as background to cor-

rect for nonspecific carryover of DNA

from the starting material (for details, see

Methods). The following criteria were

then used to select the optimal matrix for

each protein: To limit statistical error,

profiles were selected that were of mini-

mum length allowing incorporation of all

highly specific positions and that were

derived from at least 500 but preferably

more than 3000 subsequences. To mini-

mize the distortion caused by the expo-

nential enrichment of sequences, such

profiles were generally selected from the

earliest possible SELEX cycle. The result-

ing binding models were based on be-

tween 602 and 16,585 sequences. In cases

where the same factor appeared to bind in

monomeric and dimeric configurations,

optimal lengths were selected for all such

binding modes.

Validation of results

To validate the SELEX binding method,

we analyzed whether our method gives

results that are similar to those obtained

using PBMs, using the same protein pu-

rified from Escherichia coli that was used

in an earlier PBM experiment (mouse

EOMES DBD fused to GST). The profile

generated for EOMES using our method

was very similar to the PBM-derived pro-

file (Supplemental Fig. S1).

To further evaluate the quality of the obtained matrices, we

first analyzed them by comparing them computationally with

existing profiles from the Jaspar2 database (Bryne et al. 2008) and

from the literature (Fisher et al. 1991; Grange et al. 1991; Pollock

and Treisman 1991; Verrijzer et al. 1992; Mader et al. 1993; Merika

and Orkin 1993; Meyers et al. 1993; Kroeger and Morimoto 1994;

Clauss et al. 1996; Emery et al. 1996; Kel et al. 1999; Hallikas et al.

Figure 3. Description of the bioinformatic visualization and quality-control pipeline. (A) Hamming
distance plot. Incidences of all possible subsequences of length 10 (substring count) are plotted as
a function of their Hamming distance (number of substitutions) from the most enriched sequence or its
reverse complement. To facilitate visualization, random floating point values between �0.3 and 0.3 are
added to all plotted x and y values. Note that in a successful experiment (left, GLI2), clear enrichment of
sequences is observed, andmany enriched sequences are found at a short Hamming distance (1 to 2). In
a failed experiment (right, FOXO3), enrichment is very weak, and the enriched sequences are not clearly
related to each other. (Insets) Position weight matrices from the same experiments. (B) Position plot.
(Bottom) Fractional incidence (frequency) of subsequences of indicated length at each position in both
strands (blue), the forward (direction indicated in top; light blue), and reverse (yellow) strand of the 14-
bp random sequence. Numbers are separately normalized for each set of bars to add up to 100%, and
uniform distribution (red) is shown as control. (Left) Note that in cases where flanking sequences do not
interfere with binding, a very uniform distribution of sequences is observed. (Right) In cases where a part
of the binding sequence for a TF is found in the constant region or barcode, a strong positional bias is
observed. (C ) Enrichment plot. Enrichment of a sample of the most enriched sequences and random
sequences are plotted as a function of the SELEX cycle. (Left) Note that the enriched sequences show
exponential enrichment (log scale), whereas the random sequences are not appreciably enriched.
(Right) In cases of barcode contamination (see text), different sequences can appear to enrich in dif-
ferent SELEX cycles ([black sequence] correct; [red sequence] contaminating sequence). The data in C
are from SELEX analysis using purified ARID5A protein-coated plates (see Methods).
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2006; Berger et al. 2008; Badis et al. 2009; Lord et al. 2009). For the

comparison, we used the method based on minimal Kullback–

Leibler divergence described inWei et al. (2010).Most of the binding

profiles clustered near the existing profiles for the same or related

factors where such profiles were available (Fig. 4). Consistent with

the presence of one or two factors from most DBD families in our

analysis, the binding profiles distributed relatively evenly across the

binding specificity space (Fig. 4).

More detailed analysis of the generated profiles revealed that

they were generally in very good agreement with existing position

weight matrices where such data were available for the same pro-

tein or for a related protein from human or other species (Fig. 5A).

In many cases, the same factor was found to bind both in mono-

meric and dimeric configurations. If a factor had a dimericmode(s)

of binding, strongly preferred orientations and spacings between

sequences that resembled the corresponding monomeric se-

quences were observed for each factor (Fig. 5B).

To analyze whether the binding profiles obtained were rele-

vant for the in vivo situation, we performed chromatin immuno-

precipitation by sequencing (ChIP-seq) experiments for RFX3 and

NFATC1 in K562 and Jurkat cells, respectively. In both cases,

identification of the enriched sequence motifs from the ChIP-seq

peaks using the MEME algorithm (Bailey and Elkan 1995) revealed

a profile that was very similar to that obtained using SELEX (Fig.

6A). Furthermore, both dimeric NFATC1 sites were also enriched in

the ChIP-seq peaks. Similarly, the dimeric ERG profile we identify

here was enriched in ERG ChIP-seq peaks identified by Wei et al.

(2010) (Fig. 6B). The ERG dimer profile and both NFATC1 dimer

profiles were also enriched in peaks that did not contain matches

for the respectivemonomer sites (in all cases, the P-valuewas lower

than 2.2E-16, the limit imposed by computational precision for

binomial distribution).

In all cases, the binding sites were preferentially located near

the summits of the ChIP-seq peaks (Supplemental Fig. S6). These

results suggest that the obtained profiles and the identified dimeric

binding modes are biologically relevant.

Discussion

High-throughput SELEX method

We report here a SELEX-basedmethod that allows high-throughput

analysis of transcription factor binding specificity. The method

utilizes massively parallel single-molecule sequencing technology,

which eliminates all cloning steps and results in generation of a very

large number of individual sequencing reads. The number of sam-

ples that can be analyzed in parallel is increased by the use of se-

lection oligonucleotides containing barcoded flanking sequences

and constant regions that contain binding sites for bridge-amplifi-

cation and sequencing primers. The selected fragments can thus be

directly sequenced without a ligation or template-switching step,

decreasing the risk of sequence bias and DNA contamination. The

design of the selection oligomer is similar to that recently described

by Zykovich et al. (2009).

These changes in aggregate result in both dramatically in-

creased sequence yield and throughput over previously described

SELEXmethods. Themethod was used here to study DNA-binding

proteins, but can easily be adapted also to the analysis of protein–

RNA binding and for generation of oligonucleotide-based affinity

reagents (aptamers).

We alsominiaturized the protein production and purification

steps, making the method compatible with mammalian expres-

sion systems. The method can thus be applied to the analysis of

full-length transcription factors (Fig. 5), and also proteins that re-

quire native expression, dimerization partners, and/or post-tran-

scriptional modifications for activity.

Compared to earlier SELEX-based TF DNA-binding profiles,

the profiles we describe here are based on 100–1000-fold higher

Table 1. The analyzed human DNA-binding domains listed according to the family they represent

TF family
Members

(approximately) Interpro IDs
Representative

member(s) (HGNC)a

Zinc finger C2H2 670 IPR007087; IPR015880; IPR001356; IPR001827; IPR003350 GLI2, PRDM1
Homeodomain 250 IPR009057; IPR007086; IPR000047; IPR000747; IPR001005I MEIS2, POU2F2

IPR012287; IPR014778
bHLH 87 IPR011598 TFEB, TCF4
bZip 51 IPR004826; IPR004827; IPR008917; IPR011616; IPR011700 CEBPE, XBP1
Nuclear horm. Rec. 50 IPR001628; IPR001103; IPR001409 RXRG
Forkhead 50 IPR001766 FOXJ3
P53 45 IPR002117; IPR008967; IPR011539; IPR011615; IPR012346 NFATC1, EOMES
HMG 40 IPR009071; IPR015101; IPR000135; IPR000637; IPR000910 —
ETS 27 IPR000418 EHF (full length)
IPT/TIG 20 IPR002909 NFATC1
POU 17 IPR000327; IPR013847 POU2F2
MAD 15 IPR001132; IPR003619; IPR013019 —
SAND 10 IPR000770; IPR010919 —
IRF 9 IPR001346 —
E2F/TDP 9 IPR003316 —
ZNF-GATA 9 IPR000679 GATA1
DM 7 IPR001275 —
Heat shock 7 IPR000232 HSF2
STAT 7 IPR012345; IPR013801 —
CP2 6 IPR007604 —
RFX 6 IPR003150 RFX3
AP2 5 IPR013854 —
MADS-box 5 IPR002100 MEF2C
Other families (<5 each) 18 groups —

aHUGO Gene Nomenclature Committee.
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numbers of sequences. For each of the factors we describe, the

number of sequences is on the same order of magnitude as that

attainable using SELEX-SAGE (Roulet et al. 2002), a much more

costly and labor-intensive protocol. The large number of sequences

also improves effectiveness of quality control (Fig. 3) and decreases

statistical error in the profiles.

High number of reads allows effective quality control of results

SELEX can produce errors by multiple mechanisms. First, having

too few molecules in the reactions can result in bottleneck effects,

which reduce the complexity of the selectable oligonucleotide

pool and result in amplification of erroneous sequences. Second,

PCR amplification can introduce bias to the pool of sequences

analyzed. Third, constant linker sequences included in the ligand

DNA can contain regions with high affinity to the DNA-binding

protein inducing either a total failure of the selection process, or

positional biases into the location of the DNA-binding elements.

To correct for these error sources, we developed a computational

pipeline that allows quality control of the data and identification

of common problems, including lack of enrichment, binding of

TFs to constant sequences, cross-contamination of samples, and

failure of individual SELEX rounds. All of these quality-control

steps critically depend on the fact that enough data can be gen-

erated to assess the enrichment of a large number of sequences in

each cycle.

Our method also allows generation of profiles from early

SELEX cycles, decreasing the distortion caused by the exponential

enrichment of the ligands. Furthermore, the large amount of data

allows analysis of composite/dimeric sites (Fig. 5B) and pairwise

correlation between sequence positions (data not shown).

A particular feature of SELEX is the exponential enrichment

of high-affinity binding sequences. Each round enriches sequences

in amanner related to their affinity toward the ligands, that is, if all

DNA binding is specific and each sequence is initially present at

equal concentration and in large excess compared to the TF, a se-

quence that has 10-fold lower affinity to a TF than the sequence

with highest affinity will be present at 10-fold lower concentration

than the highest affinity sequence after the first cycle, and 100-fold

lower concentration after the second cycle. In practice, when

random sequence libraries are used, the high-affinity sites will be

approaching saturation by the TF, resulting in lower than expected

Figure 4. Distance dendogram based on theminimum Kullback-Leibler divergences between TF position weight matrices from the Jaspar database and
reference matrices of Figure5. Note that the binding profiles generated using the SELEX method are in general similar to existing matrices for the same or
related factors in cases where they are available. Note also that the profiles generated using SELEX for 14 of the 23 major DNA-binding domain families
occupy most major branches of TF binding specificities, highlighting the broad utility of the method.

Jolma et al.

866 Genome Research
www.genome.org



discrimination between medium- and high-affinity sites. Thus,

although we consistently observe exponential enrichment of

bound sequences, the enrichment ratios do not exactly follow

biochemical affinity—the enrichment for lower-affinity sequences

is consistently higher in each cycle than what is expected from

their affinity relative to themaximum affinity sequence. Thus, in

effect, the exponential enrichment and saturation counteract

each other, and the models generated using our multinomial

model (see Methods) after two to four SELEX cycles are much clo-

ser to biochemical affinity than what is expected from a purely

relative-affinity-based exponential enrichment. For example, the

models for ERG and GLI2 that are closest to biochemical affinity

Figure 5. Binding profiles. (A) Comparison of determined binding-specificity models with previously known data. The left columns indicate the
transcription factor analyzed and its DNA-binding domain family. The SELEX cycle from where the model is derived and the number of independent
sequences included in it are also indicated. The previousmodel for the same protein or for the closest related ortholog (o) or paralog (p) is shown, including
reference. These are RUNX1 for RUNX3, mouse RXRA for RXRG, RFX1 for RFX3, mouse MEIS1 for MEIS2, mouse EHF for EHF, mouse POU2F2 for POU2F2,
mouse MEIS1 for MEIS2, CEBPA for CEBPE, and MEF2A for MEF2C. References: (1) Kel et al. (1999); (2) Badis et al. (2009); (3) Wei et al. (2010); (4) Lord
et al. (2009); (5) Hallikas et al. (2006); (6) Merika and Orkin (1993); (7) Meyers et al. (1993); (8) Emery et al. (1996); (9) Berger et al. (2008); (10) Kroeger
and Morimoto (1994); (11) Fisher et al. (1991); (12) Pscherer et al. (1996); (13) Clauss et al. (1996); (14) Grange et al. (1991); (15) Pollock and Treisman
(1991). (B) Monomeric and dimeric bindingmodes. Factors that can bind DNA either asmonomers or as dimers are shown; arrows indicate orientations of
the monomeric sites. Two dimeric motifs, dimer1 (top) and dimer2 (bottom), were found for NFATC1; a profile similar to the dimer2 has been previously
reported by Falvo et al. (2008) for the paralog NFATC2.
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measured by a competition-ELISA-like approach (Hallikas et al.

2006; Wei et al. 2010) are from selection cycle 3 (Supplemental

Fig. S3).

The downside of the saturation of the sites is that although

the model correctly describes the rank of affinities of the included

sequences and gives a surprisingly good estimate of affinity after

two to four cycles, the derivation of exact biochemical affinity

from the sequencing data is not trivial. Twomethods have recently

been developed to correct for the saturation effect, QPMEME

(Djordjevic et al. 2003) and BEEML (Zhao et al. 2009). Of these, we

were able to analyze our cycle 1 GLI2 data with BEEML, which

resulted in a very similar profile to that we obtained using our data

analysis method (Supplemental Fig. S4). Theoretical consider-

ations suggest that a method such as QPMEME that generates

binding models from enrichment ratios of individual sequences

rather than from the absolute number of occurrences of the se-

quences should be able to generate a model that more accurately

represents biochemical affinity. Unfortunately, QPMEME could

not be used to analyze our data as it requires an internal control for

each factor and cannot account for nonspecific DNA carryover. In

addition to dealing with carryover and saturation, future method

development in such enrichment ratio-based models should also

concentrate on correcting for sequencing errors. Although the

;0.5% error rate due to PCR and sequencing does not materially

affect absolute count-based models such as ours, such errors badly

confound purely ratio-based approaches. This is because sequenc-

ing errors cause sequences that have no affinity and high affinity to

enrich at the same rate if they are within 1 bp of each other (ab-

solute numbers are more than 100 times different, but the rate of

enrichment is the same).

Comparison with existing methods

Compared to the previous high-throughput microwell-based

method that we developed (Hallikas et al. 2006), the method

described here allows a larger number of parallel samples (only a

maximum of five 96-well plate wells are needed per TF), and can

reveal complex binding specificities without previous knowledge

of a high-affinity site. Compared to existing state-of-the-art meth-

ods that can identify binding profiles without prior information—

SELEX-SAGE (Roulet et al. 2002) and universal protein-binding

microarrays (Berger et al. 2006)—our method has 100–1000-fold

higher throughput. The applicationofmassively parallel sequencing

eliminates complicated and expensive cloning steps and makes

the method easy to set up in any modern laboratory. In addition,

compared to PBMs, our method requires much less protein and is

thus more compatible withmammalian expression. In addition, it

can also identify >10-bp-long binding sequences, which are com-

monly observed when TFs bind in dimeric or multimeric config-

urations. In theory, even in the miniaturized format used here, all

possible 14-bp-long sequences are expected to be present more

than 3000 times in the reactions at the start of cycle 1. Thus, with

real TFs that do not have absolute specificity for all bases, we expect

that a similar method using a somewhat longer random region

could be used to identify binding preferences that are at least 20 bp

long.

Transcription factor binding models

The utility of the SELEX method and the associated informatics

pipeline was analyzed by generation of binding profiles for 14

different transcription factor DNA-binding domain subfamilies.

In cases where detailed binding information was available, our

data were in broad agreement with the existing data. However,

in many cases, our data revealed much more information about

the binding preferences of the analyzed TFs than what was pre-

viously available.

Out of the four cases where to our knowledge, only consensus

binding data or relatively limited numbers of bound sequences

were publicly available, our data were consistent with the earlier

results for three of the factors—TFEB (Fisher et al. 1991), XBP1

(Clauss et al. 1996), and PRDM1 (Lord et al. 2009). In the case of

TCF4, our optimal binding sequence CAGGTG(C/T) differed by

one position from the previously reported bound sequence

CAGATGT identified from the somatostatin receptor II gene by

Pscherer et al. (1996). However, significant enrichment was also

Figure 6. Validation of binding models by ChIP-seq. (A) Comparison of
in vitro derived binding models for RFX3 and NFATC1 and previously
described models (Kel et al. 1999; Badis et al. 2009) with motifs that are
enriched in peaks from a ChIP-seq experiment for the same factors. The
MEME algorithm was used to identify enriched motifs in the ChIP-seq
peaks. For both factors, two different antibodies were used in the exper-
iments shown; the expectation value for the motifs is indicated on the
right. (Top) Note that both our model and the model of Badis et al. (2009)
(PBMmodel) are supported by ChIP-seq. For NFATC1, the position where
our model matches the ChIP-seq-derived model better than the previous
model is boxed. Note also that the ChIP-seq-enriched motif for NFATC1
(bottom) appears to contain also signal (g/a)TGA(g/c) that is located right
of the NFATC1monomer profile tGGAAAa(t/a). This signal is likely derived
from a dimerization partner, as it is well known that NFAT proteins di-
merize with many other TFs (Macian 2005). (B) Relative fractions of peaks
containing monomer and dimer sites and combinations thereof for
NFATC1 and ERG (ChIP-seq data fromWei et al. 2010). For all matrices, the
cut-off score was set to yield 1 site per 10 kb of human genome. Note that
a significant fraction of peaks contain motifs that match the dimer model
but not themonomermodel. The total fraction of peaks with sites was 24%
and 14% for NFATC1 and ERG, respectively.
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observed for the CAGATGT sequence (Fig. 5A; Supplemental Fig.

S2a), suggesting that CAGATGT does bind TCF4 albeit at a lower

affinity than the CAGGTG(C/T) motif. Taken together, where

existing profiles were derived from a limited number of sequences,

our data significantly improved on the existing binding models.

In cases where the existing profiles were derived from more

sequences or were generated using protein-binding microarrays

(Berger et al. 2008; Badis et al. 2009), our profiles were in good

agreement with the existing data. However, some notable differ-

ences were seen, including POU2F2 and RFX3. In the case of the

POU2F2 protein, whose DBD is composed of two subdomains—a

POU-homeodomain and a POU-specific domain—the sequences

that enrich most efficiently in our SELEX are consistent with the

earlier described consensus gAATAT(g/t)CA (Verrijzer et al. 1992)

for the POU-specific DBD, whereas the motif found using PBM is

the classical TATGCAAAT motif, which is thought to be a com-

posite of the POU-specific and homeodomainDBDs (Verrijzer et al.

1992). This classical motif is also enriching during the SELEX

rounds, but not as efficiently (Supplemental Fig. S2b). These dif-

ferences could be due to the presence of two binding modes for

POU2F2, of which the composite mode likely displays slower dis-

sociation kinetics (see Verrijzer et al. 1992), and could thus be

preferentially identified using PBMs due to the longwashes used in

that protocol.

In the case of RFX3, the most enriched sequences in our data

are closer to the model described by Emery et al. (1996) than the

profiles derived using PBMs. The most enriched sequences are

consistent with a model of dimeric binding, wherein the ideal

substrate for the RFX3 protein is a 14-mer palindromic sequence

that is composed of two GTT(G/A)CC sequences in head-to-tail

orientation with an ‘‘AT’’ spacer. In contrast, all PBM-derived pro-

files are clearly different from the earlier data or the profile gen-

erated from our most enriched sequences. However, we do observe

weaker enrichment of a 10-base sequence that corresponds to the

PBM-derived primary consensus sequence, GTTGCTANGG (Sup-

plemental Fig. S2c). Both of these models are supported by our

ChIP-seq experiments as well (Fig. 6A). Thus, our results are con-

sistent with the presence of multiple alternative DNA-recognition

modes for RFX family of proteins as suggested byBadis et al. (2009).

However, the preferred mode of binding appears to be the dimeric

mode reported by Emery et al. (1996) that apparently cannot be

identified using PBMs that are optimally designed to identify short

binding sites (10 bp or shorter).

Dimeric modes of binding

In addition to analysis of monomeric binding, the large amount of

sequence data generated allows analysis of cases where a protein

binding to DNA as a homodimer can accommodate multiple dif-

ferent orientations and/or spacings of the monomers. This is il-

lustrated in the case of Retinoid X receptor (RXR) proteins, which

are known to form hetero- and homodimeric complexes with

themselves and other members of the nuclear hormone receptor

protein family, and to prefer these kinds of interactions over mo-

nomeric binding. In our model, RXRG shows a highly similar,

apparently homodimeric binding pattern to that first described by

Mader et al. (1993), enriching head-to-tail repeats of two GGTCA-

motifs with an almost invariable 2-bp ‘‘AA’’-spacer. Thus, while our

prediction appears to have large differences to the PBM-predicted

model for the RXRG homolog RXRA (Badis et al. 2009), the dif-

ference is probably the result of the two methods identifying the

dimeric and monomeric sites, respectively.

Dimeric modes of binding were also identified for many fac-

tors that also bound to DNA as monomers (Fig. 5B). In all cases, we

observed a preferential spacing and orientation of the ‘‘half-sites’’

of the dimer, and in some cases (e.g., MEIS2, ERG) the half-sites

appeared to be of relatively low affinity. Whereas it is theoretically

possible that the observed multimeric binding is due to the mul-

tivalency of streptavidin, and the spacing and orientation prefer-

ences are caused by steric effects, this is very unlikely, as the DBDs

are connected to the streptavidin via two flexible linkers and

a globular protein (Gaussia luciferase). In addition,members of the

same family of TFs showed different types of dimeric interactions

(e.g., EHF shows no dimer and ERG has a strong dimeric compo-

nent) (Fig. 5B; data not shown). Furthermore, dimeric sites iden-

tified for ERG and NFATC1 were also found to be enriched within

in vivo occupied sites identified for the same factors using ChIP-seq

(Fig. 6B), suggesting that the dimeric profiles identified are, indeed,

biologically relevant.

We have shown previously that in vitro generated binding

profiles such as those described here can be used together with

computational models to identify target genes of human TFs

(Hallikas et al. 2006), and polymorphisms that affect TF binding

and disease predisposition (Tuupanen et al. 2009). However, in

cases in which biologically relevant cell or tissue models exist, di-

rect measurements such as ChIP-seq and RNAi followed by ex-

pression profiling are generally more efficient at identifying TF

sites and target genes, respectively. The in vitro binding profiles

and computational models are thus best used for generating hy-

potheses on which factors may bind to a region of interest iden-

tified by genetics, and for global identification of TF targets in all

tissues. In addition, they are required for systems biologymodels of

regulatory element activity.

ChIP analyses have revealed that many regions occupied in

vivo by a given TF contain only relatively weak affinity sites for the

same TF, suggesting that cooperative reactions play a critical role in

determining which genomic sites are occupied by TFs. Under-

standing the ‘‘second genetic code’’ that explains how DNA se-

quence controls gene expression thus requires both determination

of binding specificities of transcription factors and identification

of their preferred orientations and spacings with regard to each

other. The method developed here has the potential to greatly

improve the number and quality of DNA-binding profiles, and also

to reveal preferential orientations and spacings between TFs. In-

corporation of such information into a model of transcription

would ultimately allowmovement beyond observations (i.e., ChIP,

expression profiling) and toward understanding of transcriptional

regulation based on biochemical principles.

Methods

DNA binding domain assignment

For each protein sequence (obtained from the IPI database)

(Apweiler et al. 2001) encoding a human transcription factor

(Vaquerizas et al. 2009), we mapped all matching DBD-containing

Interpro entries. As each Interpro entry contains sequence mod-

els from multiple sources (e.g., Pfam, superfamily, etc.), we de-

fined the DBD from the most N-terminal to the most C-terminal

amino acid. Some Interpro entries have parent–child relation-

ships when two or more different entries model the same DBD but

with different levels of specificity. For example, IPR007087 and

IPRO007086 have a parent–child relationship, where both are zinc

finger C2H2-type DBDs; but the parent, IPR007087, models a se-

quence of about 28 amino acids containing both the C2 and the
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H2 ends, whereas the child, IPR007086, models a subset of that

sequence containing either the C2 end (around 14 amino acids) or

the H2 end (around 10 amino acids). These parent–child entries

were treated independently. We also defined tags for the N- and

C-terminal ends of DBDs beginning with a 4-amino-acid sequence

at either end and extending them toward each other until they are

unique within the protein sequence for each TF. If a TF had mul-

tipleDBDs, all of themand sequences between themwere included

in the DBD clones.

Cloning

Amplification of the TF- and DBD-encoding sequences was per-

formed using a two-step PCR-procedure; in the first phase, DBD-

specific primers that contained the following 59 linker sequences

coding for partial AttB sites were used: Forward, AAAAAAGTT

GGCATG; Reverse, AGAAAGTTGGGTA. The secondary reactions

used a generic primer pair (GGGGACAACTTTGTACAAAAAAGT

TGGC and GGGGACAACTTTGTACAAGAAAGTTGGG) to com-

plete the AttB recombination regions. A Megaman cDNA library

(Stratagene) and the mammalian gene collection (Strausberg et al.

2002) clones where available were used as templates. The linker

sequences used here were the modified versions described by Rual

et al. (2004). The amplified products were recombined directly into

Gateway pDONR223-vector, and all clones were confirmed by se-

quencing (amino acid sequences in Supplemental Table S1).

Expression vector construction

Our expression vector design combines small and highly efficient

Gaussia luciferase to a streptavidin-binding peptide (SBP) tag,which

allows effective and economic fusion protein capture and quanti-

fication. Luciferase and SBP-coding regions were PCR-amplified

separately from pGLuc-Basic (NEB) and pCeMM-CTAP(SG)-GW (a

kind gift from Giulio Superti-Furga) (Burckstummer et al. 2006),

respectively, using the following forward and reverse primers:

attaatactagtatgggagtcaaagttctgtttgcc and ctcgtccatgtcaccaccggcccc

cttg, ggtggtgacatggacgagaagaccaccg and attaatgtttaaacttaatcgatagg

ctcgcgttgcccctg. The fragments were concatenated using fusion-

PCR, after which the insert was cloned into XbaI and PmeI sites of

the Gateway recipient-vector pDEST40 (Invitrogen). The final re-

cipient vector pDEST40_Gau-SBP was generated by shifting the

frame between the Gateway-cloned inserts and the Gaussia-SBP

coding sequence using QuickChange mutagenesis (Stratagene)

with the primers aactttgactcccattcgagcaaccactttgtacaa and tacaaagt

ggttgctcgaatgggagtcaaagttctg.

Cell culture, expression and purification of the fusion proteins

Jurkat and K562 cells were grown in RPMI1640, supplemented

with penicillin/streptomycin and fetal bovine serum (FBS, 10%).

COS1 and 293T cells were grown in DMEM supplemented with

penicillin/streptomycin and 10% FBS. Transfection of 70%–80%

confluent cells growth in 6-well plates was performed using

FugeneHD (Roche) according to themanufacturer’s instructions or

by using polyethyleneimine (PEI, 25 kDa average molecular mass;

Sigma cat. nr. 408727).

For PEI transfection, 2 mL of 0.45% (w/v) PEI in distilled water

was diluted to 50 mL of DMEM, and incubated for ;5 min. Sub-

sequently, 3mg of plasmidDNAdissolved in 50mL of 150mMNaCl

was added, and the incubation continued for 15 min, after which

themixturewas added to cells in fullmedium.Cells were grown for

48 h with one medium exchange 6–12 h after transfection.

Cells were then washed three times with PBS at room tem-

perature and lysed by addition of 200 mL of ice-cold lysis buffer

(50mMTris-Cl at pH7.4 containing 150mMNaCl, 1%TritonX-100,

and EDTA-free protease inhibitor cocktail [Roche 04693159001;

according to the manufacturer’s instructions]) followed by in-

cubation for 30 min on ice with gentle rotation. Lysates were

cleared by centrifugation (5 min at 3600g) to remove debris and

chromatin/genomic DNA, and aliquoted into 50-mL proportions

that were either used directly in the binding assay or stored at

�75°C. Protein amounts in lysates were measured by a luciferase

assay (Promega Renilla Luciferase Assay System E2820). Briefly,

1 mL of lysate was added to 20 mL of Promega lysis buffer, after

which 20mL of substrate buffer was added, and flash-luminescence

was measured with the Perkin-Elmer TopCount luminometer

(40,000,000 cps corresponds approximately to a 1-ng amount of

average-sized fusion protein [70 kDa]).

Before binding of fusion proteins into streptavidin binding

plates (Thermo Fisher; AB-1226/W), the NaCl concentration of

the lysates was raised to 1 M to inhibit interactions between DBDs

and residual genomic DNA from the lysates. The plates were first

washed twice with 300 mL of lysis buffer, after which the fusion-

protein-containing lysates were added to the wells and incubated

for 30min on ice. Thewells were thenwashed three timeswith 300

mL of lysis buffer. Wells were then blocked by 10min of incubation

with 0.5% BSA (w/v) in binding buffer (20 mM HEPES-Cl at pH 7

containing 140 mM KCl, 5 mM NaCl, 1 mM K2HPO4, 2 mM

MgSO4, 100 mM EGTA, and 1 mMZnSO4). Based on the estimation

of luciferase counts from duplicate wells, the amount of actual

affinity-immobilized and purified protein was estimated to be be-

tween 1 and 10 ng (data not shown).

For analysis of mouse ARID5A and EOMES, E. coli expression

and protein purification was performed as described in Badis et al.

(2009). About 100 ng of protein in 50 mL of PBS was used to coat

NuncMaxisorp plates for aminimumof 16 h at 4°C, and the plates

were subsequently washed with PBS and blocked as described

above. Plates directly coated with purified proteins and streptavi-

din-coated plates containing fusion proteins were then used in

SELEX as described below.

SELEX and massively parallel sequencing

Sequence of the DNA ligand is described in Supplemental Table S3.

The ligands contain all the sequence features necessary for direct

sequencing using an Illumina Genome Analyzer. The ligands were

synthesized from two single-stranded primers (Supplemental Table

S3) using Taq polymerase. The 256 barcodes used consist of all

possible 4-bp identifier sequences and a 1-bp ‘‘checksum’’ nucle-

otide, which allows identification of most mutated sequences. The

products bearing different barcodes can be mixed and later iden-

tified based on the unique sequence barcodes.

For SELEX, 50–100 ng of barcoded DNA fragments was added

to the TF or DBD-containing wells in 50 mL of binding buffer con-

taining 150–500 ng of poly(dI/dC)-oligonucleotide (Amersham

27-7875-01[discontinued] or Sigma P4929-25UN) competitor. The

resulting molar protein-to-DNA and protein-to-binding site ratios

are on the order of 1:25 and 1:15,000, respectively. The plate was

sealed and mixtures were left to compete for 2 h in gentle shaking

at room temperature. Unbound oligomers were cleared away from

the plates by five rapidwasheswith 100–300mL of ice-cold binding

buffer. After the last washing step, the residual moisture was

cleared by centrifuging the plate inverted on top of paper towels at

500g for 30 sec. The bound DNAwas eluted into 50 mL of TE buffer

(10 mM Tris-Cl at pH 8.0 containing 1 mM EDTA) by heating for

25 min to 85°C, and the TE buffer was aspirated directly from the

hot plate into a fresh 96-well storage plate.

The efficiency of the SELEX was initially evaluated by real-

time quantitative PCR (qPCR) on a Roche light cycler using the
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SYBR-green-based system and calculating the differences in eluted

oligomer amount by crossing-point analysis. Seven microliters of

eluate was amplified using PCR (19–25 cycles), and the products

were used in subsequent cycles of SELEX. Nesting primers (Sup-

plemental Table S3) moving at least 2 bp inward in each cycle

were used to prevent amplification of contaminating products.

For sequencing, approximately similar amounts of DNA from

each sample were mixed to generate a multiplexed sample for

sequencing.

Sequencing sample preparation and sequencing

PCR-product concentrations were approximated by visual com-

parison of the products and DNA marker run on EtBr-stained

samples on 2% agarose gels. Oligonucleotides were pooled from

samples in roughly equivalent amounts, and the pool was either

purified directly (QIAGEN min-elute PCR-purification kit) or, if

EtBr gels showed other bands than the expected 105-bp product,

by gel-extraction of the 105-bp band (QIAGEN min-elute gel-

extraction kit). DNA concentration was determined (Nanodrop-

spectrophotometer) and a 3 pM amount was sequenced (Illumina

Genome Analyzer mk.2) with a SELEX-sequencing-primer that

is identical to the standard Illumina Genomic DNA sequencing

primer except that it lacks the 39 terminal thymine base (Supple-

mental Table S3).

Data analysis

The sequences containing different barcodes were separated from

each other using a Perl script. Only sequences containing (1) no

bases annotated as N and (2) a valid barcode assessed by the pres-

ence of a correct 1-bp checksum nucleotide, and (3) a 5-bp exact

match to the common sequence after the 14-bp random region

were analyzed further.

These sequences (Supplemental Archive S1) were fed into the

initial quality control program IniMotif, which takes the DNA-

read-containing files as its input, finds themost enriched 5–11-bp-

long sequence substrings, and uses these as consensus sequences.

It then counts the occurrence of all subsequences of a given length

and plots them into a Hamming distance plot (see Fig. 3A). The

Hamming distance (the number of positions for which the corre-

sponding bases are different) for each sequence is calculated from

both the consensus sequence and its reverse complement, and the

lower value is used. Inimotif also generates a position plot (Fig. 3B)

that describes the distribution of subsequences within the 14-bp

random sequence, using all sequences within a Hamming distance

of 2 from the consensus or its reverse complement. An enrichment

plot is also generated that describes the enrichment of sub-

sequences in the SELEX cycles (see Fig. 3C).

The position weight matrix (PWM) models were generated

as follows: First, we adopted the standard assumption that the

binding affinities of individual sites of a PWM are independent of

each other (Benos et al. 2002). Then the PWM represents a multi-

nomial distribution. To estimate this distribution at site j, we take

the consensus and the three other sequences obtained from the

consensus by replacing the j-th base in turn with each of the other

three bases. The occurrence counts of these four sequences within

the DNA-reads give an unbiased estimate of the PWM at site j. For

nonpalindromic sequences, only those reads were used that con-

tained exactly one sequence that was within Hamming distance 1

of the consensus or its reverse complement.

For the matrices shown in Figure 5 and Supplemental Figures

S1–S3, the PWMs were corrected to decrease the distortion caused

by nonspecific carryover of DNA from the previous cycle. First, the

fraction of DNA that was carried over nonspecifically (l) was esti-

mated. In one SELEX cycle, the fraction f of any set of nonspecific

sequences out of total sequences is expected to decrease according

to the equation fk+1 = lfk, where fk denotes the fraction of the set of

nonspecific sequences in cycle k. Using defined sets of nonspecific

sequences can lead to sampling error. However, reasonable esti-

mates for fk+1 and fk can be derived from the sum of the number of

occurrences of all 8-mers that rank between 25% and 75% in rel-

ative abundance divided by the total number of sequences Nk+1

and Nk in cycles k + 1 and k, respectively. This is because it is likely

that <25% of all possible 8-mer sequences bind specifically to any

TF. The observed values for l calculated from our data ranged from

0.326 to 1.018. The PWM for the later cycle (Mcorrected, final result

shown) was then corrected for background caused by the non-

specific DNA carryover by the equation

Mcorrected =Mk+1�ð lNk +1=NkÞMk;

where both of the PWMs Mk and Mk+1 were generated using the

same consensus. Biologically implausible values that can arise due

to the discrete nature of sequence counts were corrected as follows:

Values for l that were >1were replaced by 1, and negative values in

the final PWM were replaced by 0. In the worst cases, such cor-

rection affected l by 1.8% and a PWM position by 3.1% (of total

reads in the model).

We also experimented with using an EM algorithm to derive

the PWMs. For this purpose, we reimplemented the MEME EM al-

gorithm described in Bailey and Elkan (1995). This method was

more sensitive and could derive PWMs from a lower number of se-

quences. However, using all of our data, the EM algorithm generally

resulted in a very similar profile to that of our multinomial method

(Supplemental Fig. S4B). In the end, we chose to use the multino-

mial models instead of the EM models as it is not clear how non-

specific DNA carryover can be accounted for in the EM algorithm.

We also tested a variant of the multinomial method in which

we had in the role of the consensus all the sequences at Hamming

distance 1 from it. The four counts for each such sequence were

formed analogously and added together. As these counts are larger

than in the basic variant, they should lead to a better estimate.

However, while the resulting PWMs turned out to be very similar

to the basic ones, they also were systematically somewhat less re-

strictive, obviously because the added distance from the consensus

means decreased affinity, and hence the relative effect of back-

ground sequences becomes larger in the larger counts. All profiles

shown were therefore generated using the multinomial model

with Hamming distance 1. Use of a smaller Hamming distance also

allowed for better separation between monomeric and dimeric

binding modes.

Chromatin immunoprecipitation by sequencing

Antibodies against NFATC1 (mousemonoclonal sc-7294x forChIP-

seq1 and rabbit polyclonal sc-13033x for ChIP-seq2 in Fig. 6),

RFX3 (sc-10662x for ChIP-seq1 and sc-10663x for ChIP-seq2), and

normal mouse and goat IgG were purchased from Santa Cruz

Biotechnology. K562 and Jurkat cell lines were used for RFX3

and NFATC1 ChIP-seq analyses. To induce nuclear localization of

NFATC1, Jurkat cells were exposed to 2 mM ionomycin and

100 ng/mL PMA for 24 h (Jin et al. 2003).

ChIP-seq and data analysis was performed essentially as de-

scribed in Tuupanen et al. (2009). Briefly, proteins were cross-linked

to DNA by incubation of cells for 10 min in medium containing

1% formaldehyde at room temperature, after which the cross-

linking was quenched, nuclei were extracted, and DNA was frag-

mented by sonication. Precleared samples were incubated with

4 mg of specific antibody overnight at 4°C, and the antibodies were

collected by incubation with 30 mL of protein G–Sepharose beads
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for 2–3 h at +4°C followed by centrifugation at 800g. Subsequently,

the beads were washed, precipitated chromatin complexes were

eluted, and the cross-links were reversed by incubating overnight

at 65°C. DNA was extracted with a QiaQuick PCR purification kit

(QIAGEN).

ChIPDNAwas quantitated by PicoGreen dsDNAquantitation

reagent (Molecular Probes). A ChIP library was prepared for se-

quencing as described in Tuupanen et al. (2009), and 120–350-bp

fragments were size-selected on a 2% agarose gel. The fragments

were enriched by 18 cycles of PCR amplification and size-selected

again (to 150–300 bp). Purified DNA (QIAGEN gel purification kit)

was quantified (Nanodrop 1000 spectrophotometer) and used

for massively parallel sequencing (Illumina Genome Analyzer)

according to the manufacturer’s instructions. Sequencing reads

were mapped to the human genome (NCBI36) using MAQ soft-

ware by Heng Li, version 0.6.5 (Li et al. 2008). Only high-quality

reads that could be reliablymapped (mapping quality score at least

30) were accepted, resulting in total of 9.35 million reads from

NFATC1 ChIP samples and 9.85 million reads from IgG control in

Jurkat cells, 9.1 million reads for RFX3 ChIP samples, and 9.2

million reads from IgG control in K562 cells. The data were then

analyzed essentially as described in Tuupanen et al. (2009). Peaks

(NCBI36 coordinates, P < 0.05) are given in tab-delimited text

format in Supplemental Data Files S1–S4. Primary sequence reads

are available in the NCBI Sequence Read Archive under accession

number SRA012198. ChIP-seq data were validated using two dif-

ferent antibodies for both factors, and by confirming a random

set of significant peaks using qPCR (antibodies sc-7294x and sc-

10663x) (Supplemental Fig. S5; Supplemental Table S5).

The sequences of the top 150 or 500 peaks of length <400 bp

according to P-value were selected for the motif analysis from each

sample. Motifs between widths 6 and 50 bases were searched from

both strands assuming zero or one binding site per sequence

(mod=zoops) using MEME version 4.1.0 and a third-order back-

ground Markov model estimated from the human genome

(NCBI36).
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