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Multiplexed Memory-Insensitive Quantum Repeaters
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Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is
the first step towards technologies such as perfectly secure message transmission and distributed
quantum computing. To date, the most promising proposals require quantum repeaters to mitigate
the exponential decrease in communication rate due to optical fiber losses. However, quantum
repeaters are exquisitely sensitive to the lifetimes of the memory elements they use. We propose a
new approach based on a real-time hardware reconfiguration of multiplexed quantum nodes. This
scheme should enable the construction of multiplexed quantum repeater networks that are largely
insensitive to the coherence times of the quantum memory elements.

PACS numbers: 42.50.Dv,03.65.Ud,03.67.Mn

Quantum communication, networking, and computa-
tion schemes utilize entanglement between several ele-
ments as their essential resource. This entanglement en-
ables phenomena such as quantum teleportation and per-
fectly secure quantum communication [1, 2, 3, 4, 5]. It is
the generation of the entangled states, and the distance
over which we may physically separate them, that deter-
mines the maximum range of quantum communication
devices. To overcome the exponential decay in signal fi-
delity over the communication length, Briegel et al. [6, 7]
proposed an architecture for noise-tolerant quantum re-
peaters, using an entanglement connection and purifica-
tion scheme to extend the overall entanglement length
using several pairs of quantum memory elements, each
previously entangled over a shorter fundamental segment
length. A promising implementation utilizing atomic en-
sembles, optical fibers and single photon detectors was
proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) [8].

The difficulty in implementing a practical quantum
repeater is connected to short atomic memory coher-
ence times and large loss rates in the transmission
channels. Recently, advances in both atomic memories
[9, 10, 11, 12] and in the generation of atomic memory-
compatible photons which propagate in the low-loss op-
tical fiber window [13] have been made. However, con-
structing quantum memory elements for the telecommu-
nication window with the coherence times necessary for
intra-continental communication remains challenging.

In this Letter we propose a new entanglement gener-
ation and connection architecture using a real-time re-
configuration of multiplexed quantum nodes. This strat-
egy improves communication rates dramatically for short
memory times. We propose an implementation of this
scheme using atomic ensembles-based memory elements.

Entanglement-length doubling with ideal memory

elements.— A generic quantum repeater consisting of
2N + 1 distinct nodes is shown in Fig. 1a. The first
step is to generate entanglement between adjacent mem-
ory elements in successive nodes. We assume each such
process succeeds with probability P0. After entangle-

ment generation one employs an entanglement connec-
tion process that extends the entanglement lengths from
L0 to 2L0, using either a parallelized (Fig. 1b), or mul-
tiplexed (Fig. 1c) architecture. This first entanglement
connection succeeds with probability P1, followed by sub-
sequent entanglement-length doublings with probabilities
P2,...,PN , until the terminal quantum memory elements,
separated by L = 2NL0, are entangled.

For the simplest case of entanglement-length doubling
with a single memory element per site (N = n = 1),
we calculate the average time to successful entanglement
connection for both ideal (infinite) and finite quantum
memory lifetimes. This basic process is fundamental to
the operation of the more complex N -level quantum re-
peaters. In essence, an N -level quantum repeater can
be considered as a single entanglement connection of two
(N − 1)-level systems.

We define a random variable Z to be the waiting time
for an entanglement connection attempt, involving mea-
surements on the two internal memory elements (from
here on times are measured in units of L0/c, where the
speed of light c includes any material refractive index).
The random variable Y ≡ 1 if entanglement connection
succeeds and zero otherwise. The time for each entan-
glement generation attempt is taken to be unity, as is
the time required for each entanglement connection at-
tempt. The total time to the first success is the sum of
the waiting time between connection attempts and the
time spent in unsuccessful trials,

T = (Z1 + 1)Y1 + (Z1 + Z2 + 2)(1 − Y1)Y2 +

(Z1 + Z2 + Z3 + 3)(1 − Y1)(1 − Y2)Y3 + ..., (1)

from which it follows that

〈T 〉 =
〈Z〉 + 1

P1
, (2)

since Z and Y are independent random variables. In
the infinite memory time limit, Z is simply the waiting
time until entanglement is present in both segments, i.e.,
Z = max{A, B}, where A and B are random variables
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FIG. 1: (a) Successive entanglement connection processes of an N = 3 multiplexed quantum repeater which entangle quantum
memory element nodes separated by a distance L. In addition to these two terminal nodes the network has seven internal
nodes, each consisting of a pair of quantum memory sites. All sites contain n independent memory elements. Entanglement
generation proceeds between elements in adjacent memory sites with probability P0, creating entanglement in each segment
of length L0. In the lowest panel, shaded memory sites indicate eight successfully entangled segments. At the N = 1 level,
entanglement connection between memory elements in alternate internal nodes proceeds with probability of success P1, resulting
in entanglement-length doubling and four entangled segments of length 2L0. The successfully connected nodes are shaded, while
the nodes reset to their vacuum states are blank. The N = 2 and N = 3 levels produce similar entanglement connections with
success probabilities P2 and P3, respectively. In each case these connections result in entanglement-length doubling operations,
until success at the N = 3 level leaves the terminal nodes entangled, as shown in the upper-most panel. (b) and (c) show the
topology of the n memory element sets within two adjacent segments. The parallel communication architecture,(b), connects
entanglement only between memory elements with the same address. In contrast, multiplexing (c) uses a fast sequential
scanning of all memory element addresses within a node to enable the connection of any available memory elements at the
appropriate site.

representing the entanglement generation waiting times
in the left and right segments. As each entanglement
generation attempt is independent of previous attempts,
A and B are both geometrically distributed with success
probability P0. Using the properties of the maximum of
two geometrically distributed random variables, it follows
that,

〈T 〉∞ =
3 − P 2

0

P0P1(2 − P0)
. (3)

Entanglement-length doubling with finite memory

elements.— For finite quantum memory elements Eqs.
(1) and (2) still hold, but Z is no longer simply
max{A, B}. Rather it is the waiting time until the left
and right segments are entangled within τ time units of
each other, where τ is the quantum memory lifetime. For
simplicity, we assume that the quantum memory acts as
a step function. That is, entanglement is unaffected for
τ , and destroyed thereafter. The variables A and B are
defined as in the ideal case above. A new random vari-
able M ≡ 1 if |A−B| ≤ τ , and zero otherwise. As A and

B are geometrically distributed, Z is then given by,

Z = max{A1, B1}M1 + (min{A1, B1} + τ

+ max{A2, B2})(1 − M1)M2 + ... (4)

From this and Eq. (2) it follows that

〈T 〉τ =
〈T 〉∞ − (1+P0

P0P1
)

qτ+1

0

1−P0/2

1 −
qτ+1

0

1−P0/2

, (5)

where q0 ≡ 1 − P0. Since the entanglement generation
probability suffers from transmission losses, P0 is typi-
cally small compared to P1. Fig. 2 illustrates the char-
acteristically sharp increase in 〈T 〉τ for small τ . This
suggests that more complex quantum repeaters will ex-
hibit even poorer scaling, as N -level repeaters require
many entanglement-length doubling successes.

Parallelization and Multiplexing.— Achievement of
long coherence times remains an outstanding technical
challenge. This motivates the exploration of approaches
that might circumvent the poor scaling behavior at low
memory times. One strategy is to engineer a system that
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FIG. 2: Average success time as a function of quantum
memory lifetime for an entanglement-length doubling pro-
cess.Entanglement generation probability P0 = 0.01, and en-
tanglement connection probability P1 = 0.5. Note that the
minimum possible success time of 2, in units of light travel
time, enforces a similar minimum of the quantum memory
element lifetime.

compensates for low success rates by increasing the num-
ber of trials, placing n > 1 memory elements (element
pairs) in each external (internal) node. This improves
the chance of generating entanglement.

There are two basic ways to utilize this entanglement:
parallelization and multiplexing. In the parallel scheme,
the ith memory element pair in one node interacts only
with the ith pair in other nodes, Fig.1b. Thus, a paral-
lel quantum repeater with n2N+1 total memory elements
acts as n independent 2N+1-element repeaters and con-
nects entanglement n times faster.

A better approach is to dynamically reconfigure the
connections between nodes, using information about en-
tanglement successes to determine which nodes should
be connected. In this multiplexed scheme, the increased
number of node states that allow entanglement connec-
tion, compared to the parallel case, suggests an im-
proved entanglement connection rate between the termi-
nal nodes.

We now calculate the entanglement connection rate
of an N = 1 multiplexed system. Unlike the parallel
scheme, however, the entanglement connection rate is no
longer simply related to the average time to the first suc-
cess 〈T 〉τ . Whenever one segment has more entangled
element pairs than its partner, entanglement connection
attempts do not reset the repeater to its vacuum state.
Under this circumstance residual entanglement remains.
Simultaneous successes and residual entanglement pro-
duce average times between successes smaller than 〈T 〉τ .
When residual entanglement is significantly more prob-
able than simultaneous successes, we can approximate

the resulting repeater rates. This is certainly the case in
both the low memory time limit and whenever nP0 ≪ 1.
Our approximation involves modifying the expression for
the entanglement generation waiting time by including
cases where the waiting time is zero due to residual en-
tanglement. In Z of Eq. (4), the min{Aj , Bj} terms
represent the waiting time to an entanglement genera-
tion success starting from the vacuum state. We modify
min{Aj , Bj} → α min{Aj , Bj}, where 1-α is the proba-
bility of residual entanglement. With this change, Eq.
(4) now produces the average time between successes.
Using Eq. (2), the resulting rate is given by

〈f〉τ,n =
P1(1 − qn

0 )(1 + qn
0 − 2q

n(τ+1)
0 )

1 + 2qn
0 − q2n

0 − 4q
n(τ+1)
0 + 2q

n(τ+2)
0 + α

,

(6)

where

log α ≡
2qn

0 (1 − qnτ
0 (2 − qn

0 ))

1 − q2n
0

(n − 1) log q0.

Fig. 3 compares the entanglement connection rates of
the multiplexed (〈f〉τ,n) and parallel (n〈f〉τ,1) architec-
tures for several different n values against a computer
simulation of the multiplexed case. As expected, multi-
plexed entanglement connection rates do exceed those of
the equivalent parallelized repeaters. The improvement
from multiplexing in the infinite memory case is com-
paratively modest. However, the multiplexed connection
rates are dramatically less sensitive to decreasing mem-
ory lifetimes when compared to parallelized systems. We
note that for the given parameters the performance of the
n = 5 multiplexed repeater exceeds that of its n = 10 par-
allelized counterpart, reflecting a fundamental difference
in their dynamics and scaling behavior.

To further illustrate the memory insensitivity of mul-
tiplexed repeaters, we plot the fractional entanglement
connection rate, relative to the infinite memory limit,
for several values of n in Fig. 4. As parallelized rates
scale by the factor n, such repeaters all follow the same
curve, assuming identical system parameters. By con-
trast, multiplexed repeaters become less sensitive to co-
herence times as n increases. This improved performance
in the low memory limit is a characteristic feature of the
multiplexed architecture.

N -level quantum repeaters.— To calculate entangle-
ment connection rates for N > 1 repeaters we proceed
by direct computer simulation. It is our expectation that
the qualitative behavior of the connection rates remains
similar to the N = 1 case. Furthermore, the N = 1
analysis provides a check of the simulation results.

To simulate an N -level quantum repeater requires a
specific choice of entanglement connection probabilities.
We choose the particular physical implementation pro-
posed by DLCZ [8]. For the DLCZ protocol, one must
specify the total distance L, the number of segments 2N ,
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FIG. 3: Entanglement-length doubling rates for parallel and
multiplexed architectures. Entanglement connection with an
N = 1 quantum repeater, using n = 1, n = 5, and n = 10
elements per site and the same parameters as in Fig. 2. Solid
lines represent multiplexed quantum repeaters, while dashed
lines indicate parallelization. Data points denote simulated
values for the multiplexed case. For lower memory lifetimes,
the multiplexed n = 5 repeater outperforms the n = 10 par-
allel repeater.
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FIG. 4: Fractional entanglement-length doubling rates. Scal-
ing behavior of multiplexed and parallel systems is compared
for different values of n. All parallel architectures for arbi-
trary n follow the dotted line.

the loss γ of the fiber connection channels, and the effi-
ciency η of retrieving and detecting an excitation created
in the atomic ensemble based quantum memory elements.

The entanglement generation probability is given by
P0 = η0 exp(−γL0/2), where η0 is related to the fi-
delity F ≈ 1 − η0 [8]. A set of recursion relations
gives the entanglement connection probabilities as a func-

tion of η: Pi = (η/(ci−1 + 1))(1 − η/(2β(ci−1 + 1))),
ci ≡ 2ci−1+1−η/β, i = 1, ...N . Neglecting detector dark
counts, c0 = 0. Here β = 1 for photon number resolv-
ing detectors (PNRDs) [8] whereas β = 2 for non-photon
resolving detectors (NPRDs). Though the two sets of
recursion relations appear similar, there is an important
physical difference: in the NPRD case, even ideal re-
trieval and detection efficiencies, η = 1, result in decreas-
ing entanglement connection probabilities, Pi+1 < Pi. In
the PNRD case, ideal detectors result in constant con-
nection probabilities, Pi+1 = Pi. For values of η < 1
photon losses result in a vacuum component of the con-
nected state in either case. For NPRDs, the inability to
distinguish between one- and two-photon pulses leads to
an additional vacuum contribution. Removing the vac-
uum component requires a final projective measurement,
which succeeds with probability ǫ = 1/(c3 + 1).

Consider a 1000 km communication link. Assume a
fiber loss of 10γ/ ln 10 = 0.16 dB/km, η0 = 0.05, and
a photonic retrieval and detection efficiency of η = 0.5.
Taking N = 3 (L0 = 125 km) results in the entanglement
generation probability P0 = 0.005. For concreteness, we
treat the NPRD case. The above recursion relationships
for NPRDs produce the entanglement connection prob-
abilities: P1 = 0.4375, P2 = 0.2655, P3 = 0.1479, and
ǫ = 0.16.

We begin by comparing the N = 1 analysis in Eqs. (3),
(5), and (6) with simulated N = 1 results. Returning to
Fig. 3 we observe that the simulation agrees well with
both the exact predictions for n = 1, and the approxi-
mate predictions for n > 1. The slight discrepancies in
the long memory time limit for larger n are quite uniform
and are well understood from the influence of simultane-
ous connection successes, which were neglected in our
analytic approximation. This produces predicted rates
which, as expected, are slightly lower than the simulated
results.

An N -level quantum repeater succeeds in entangle-
ment distribution when it has entangled the terminal
nodes with each other. Fig. 5 shows the entanglement
distribution rate of a 1000 km N = 3 quantum repeater
as a function of the quantum memory lifetime. We note
the same characteristic memory insensitivity as in the
multiplexed N = 1 repeater discussed earlier. Remark-
ably, for multiplexing with n & 10 the entanglement dis-
tribution rate is essentially constant for coherence times
over 100 ms. For memory lifetimes close or equal to the
absolute minimum, set by the light-travel time between
the terminal nodes, multiplexed repeaters with n & 10
produce rates over a billion times faster than the equiv-
alent parallel cases (not visible on the scale shown). We
note that, for memory coherence times of less than 175
ms, one achieves higher entanglement distribution rates
by multiplexing ten memory element pairs per segment
than parallelizing 1000.

Communication and cryptography rates.— The DLCZ
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FIG. 5: Entanglement distribution over 1000 km. Simulated
entanglement distribution rates for multiplexed (solid) and
parallel (dashed) N = 3 quantum repeaters employing the
DLCZ protocol with NPRDs for a range of n. The fiber
loss, entanglement generation and connection probabilities
are given in the text. Due to their larger simulation times,
the n = 1 and parallel cases are simulated only for coher-
ence times exceeding 60 ms. For coherence times longer than
100 msec, the entanglement distribution rate of multiplexed
repeaters is almost flat for n & 10. Over the same range, par-
allelized repeater rates decrease by two orders of magnitude.
Note that in the low memory region the multiplexed n = 10
repeater outperforms an n = 1000 parallel quantum repeater.

protocol requires two separate entanglement distribu-
tions, within t0, to communicate a single quantum bit,
followed by two separate local measurements. Suppose
the average success rate of entanglement distribution is
f . The average probability of success within the req-
uisite window t0 is ps ≃ [1 − (1 − f)t0 ]2. The subse-
quent measurements involve the photonic retrieval and
detection with efficiency η, and only half of the possi-
ble configuration states result in successful communica-
tion. This gives a communication rate of R = η2ps/2. It
is necessary that t0 < τ , as memory time is consumed
during the entanglement distribution process. We have
not considered the effects of dark counts, phase fluctu-
ations, and other various sources of error. When these
are non-negligible, standard linear-optics-based purifica-
tion techniques [14, 15, 16, 17] could be applied to our
multiplexing protocols.

Multiplexing with atomic ensembles.— A multiplexed
quantum repeater could be implemented using cold
atomic ensembles as the quantum memory elements. We
propose to subdivide the cold atomic gas into n inde-
pendent ensembles, each of which constitutes an individ-
ually addressable memory element, Fig. 1c. Dynamic
addressing can be achieved by fast (sub-microsecond),
two-dimensional scanning using acousto-optic modula-

tors, which allow the coupling of each memory element to
the same single-mode optical fiber. As an example, con-
sider a cold atomic sample 400 µm in cross-section, con-
fined in a three-dimensional far-detuned optical lattice.
Assuming the addressing laser beams have waists of 20
µm, multiplexing n > 100 memory elements is feasible.
To date, the longest single photon storage time is 30 µs,
limited by Zeeman energy shifts of the unpolarized, un-
confined atomic ensemble in the residual magnetic field
[12]. By employing the magnetically-insensitive atomic
clock transition in the optically confined sample, it will
be possible to extend the storage time to tens of millisec-
onds. This should enable the implementation of multi-
plexed protocols, such as those proposed, sufficient for
practical quantum communication over 1000 km.

Summary.— In conclusion, the proposed multiplexed
repeater architecture greatly magnifies the impact of ad-
vances in quantum memory elements, translating each
incremental advance in memory times into significant ex-
tensions in the range of quantum communication devices.
The improved scaling outperforms massive paralleliza-
tion with ideal detectors. These results are indepen-
dent of the particulars of the entanglement generation
and connection protocol. Ion-, atom-, and quantum dot-
based systems should all benefit from multiplexing.
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