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ABSTRACT: Neurochemical corelease has received much
attention in understanding brain activity and cognition. Despite
many attempts, the multiplexed monitoring of coreleased neuro-
chemicals with spatiotemporal precision and minimal crosstalk
using existing methods remains challenging. Here, we report a soft
neural probe for multiplexed neurochemical monitoring via the
electrografting-assisted site-selective functionalization of aptamers
on graphene field-effect transistors (G-FETs). The neural probes
possess excellent flexibility, ultralight mass (28 mg), and a nearly
cellular-scale dimension of 50 μm × 50 μm for each G-FET. As a
demonstration, we show that G-FETs with electrochemically
grafted molecular linkers (−COOH or −NH2) and specific aptamers can be used to monitor serotonin and dopamine with high
sensitivity (limit of detection: 10 pM) and selectivity (dopamine sensor >22-fold over norepinephrine; serotonin sensor >17-fold
over dopamine). In addition, we demonstrate the feasibility of the simultaneous monitoring of dopamine and serotonin in a single
neural probe with minimal crosstalk and interferences in phosphate-buffered saline, artificial cerebrospinal fluid, and harvested
mouse brain tissues. The stability studies show that multiplexed neural probes maintain the capability for simultaneously monitoring
dopamine and serotonin with minimal crosstalk after incubating in rat cerebrospinal fluid for 96 h, although a reduced sensor
response at high concentrations is observed. Ex vivo studies in harvested mice brains suggest potential applications in monitoring the
evoked release of dopamine and serotonin. The developed multiplexed detection methodology can also be adapted for monitoring
other neurochemicals, such as metabolites and neuropeptides, by simply replacing the aptamers functionalized on the G-FETs.

1. INTRODUCTION

Complex behaviors, such as cognition, perception, and action,
are conducted through dynamic neural networks of the brain,
which are subject to the transmission of neurochemicals.1,2

More than 200 neurochemicals have been identified in the
brain, including monoamines (dopamine (DA), serotonin),
peptides, amino acids, lipids, and other small molecules (e.g.,
acetylcholine).3,4 The abnormal level of certain types of
neurochemicals is related to various neuropsychiatric and
neurological disorders, such as Parkinson’s disease,5−10

schizophrenia,11 and Alzheimer’s disease.12 Many studies
have demonstrated the corelease of multiple neurochemicals
from neurons.13−15 For example, increasing evidence has
shown that subpopulations of ventral tegmental area (VTA)
neurons are capable of releasing glutamate and γ-aminobutyric
acid (GABA), or DA and glutamate, simultaneously.16,17 These
diverse signaling mechanisms are directly related to various
behaviors and disorders.18,19 However, our understanding of
these multiple neurochemical-involved neurotransmission
mechanisms is very limited. This is in part because current
measurement technologies have limited spatial/temporal

precision and molecular specificity for multiplexed neuro-
chemical identification and detection.
In past decades, with the advances in neuroscience and

micro-/nanofabrication, groundbreaking sensors have been
developed to target specific brain regions at different
scales.20−22 The main techniques for neurotransmitter
monitoring include the following several types: (1) nuclear
medicine tomographic imaging, such as positron emission
tomography (PET);23 (2) optical sensing techniques, such as
surface-enhanced Raman spectroscopy (SERS),24,25 fluores-
cence,26,27 chemiluminescence,28 optical fiber biosensing29 and
colorimetry;30 (3) electrochemical methods,31−33 like fast-scan
cyclic voltammetry (FSCV)34−36 and amperometry;37 (4)
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mass spectrometry;25,38,39 and (5) microdialysis sampling
(typically coupled with mass spectrometry analysis).40−44

While each of these techniques has its pros and cons,4,45,46 it
is still a challenge to build a system that can effectively capture
the dynamics of neurotransmitter release with a high temporal
resolution, cellular scale spatial resolution, superior sensitivity,
and selectivity, not to mention empowering the tools with
multiplexed monitoring capabilities. Among these methods,
FSCV, microdialysis, and genetically encoded fluorescent
sensors are three widely used or emerging techniques for
neurotransmitter monitoring.47 Specifically, FSCV possesses
better temporal resolution (milliseconds) and sensitivity
(nanomolar). Because of that, coupling FSCV or rapid pulse
voltammetry with voltammogram analysis (multivariate penal-
ized regression, partial least squares regression, and deep
learning) has been used to distinguish voltammograms from
multiple neurochemicals, thereby making it possible for
multiplexed analysis.32,48,49 FSCV, however, fails to distinguish
some structurally similar neurotransmitters, such as dopamine
and norepinephrine.50−52 Microdialysis suffers from large
temporal resolution (typically several minutes) and low spatial
resolution because of the semipermeable membrane and large
probe size (150−440 μm in diameter).53,54 Recently,
genetically encoded fluorescent sensors have been developed
to image the dynamics of neurochemical release in vivo,

including DA and glutamate.20,55−57 However, the multiplex
monitoring with high selectivity and non-overlapping spectra
beyond the dual-color imaging of glutamate and DA is
challenging.47 Additionally, the complicated genetic modifica-
tion process and the requirements of coupling with fiber
photometry for neurochemical monitoring limit the practical
applications of these genetically encoded sensors.57

A previous study reported an aptamer-modified In2O3 field-
effect transistor (FET) biosensor for small molecule detection,
including serotonin, dopamine, glucose, and sphingosine-1-
phosphate under high-ionic strength conditions.58 However,
the large device size and bulky and rigid component materials
lead to constrained spatial resolution and potential brain tissue
damage, limiting its practical application in in vivo studies.
Recently, implantable aptamer-modified field-effect transistors
were reported for monitoring serotonin or dopamine in
vivo.59,60 Although these studies represent significant progress
for individual neurotransmitter monitoring, like dopamine or
serotonin, it is still challenging to achieve simultaneous
monitoring of different types of neurochemicals with
spatiotemporal precision and molecular specificity.
Here, we report a soft neural probe for multiplexed

neurochemical sensing via the electrografting-enabled site-
selective functionalization of aptamers on G-FETs. We show
that the developed G-FET sensors selectively functionalized

Figure 1. Design, fabrication, and working principle of G-FETs for multiplexed neurochemical monitoring. (A) Schematic illustration and (B)
optical images of the G-FETs probe fabricated on (left) 7.6 μm PI (28 mg) for multiplexed neurochemical sensing. (C) SEM image of a
representative soft neural probe that consists of two G-FETs, with each G-FET at a nearly cellular-scale dimension (50 μm × 50 μm). (D) Working
principles of G-FETs for multiplexed neurochemical monitoring. The graphene surfaces of the two side-by-side G-FETs are selectively
functionalized with −COOH and −NH2 groups through electrochemical grafting methods. The electrografted −COOH and −NH2 groups serve as
linkers to functionalize two aptamers with different functional groups (−NH2 and −COOH) through EDC/NHS reactions. When dopamine or
serotonin binds with the target-specific aptamer, it will cause the conformational change of the functionalized aptamers on the graphene, changing
the doping state of the graphene and leading to a measurable source−drain current change of the G-FETs.
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with specific aptamers can be used to simultaneously monitor
two important neural neurochemicals (serotonin and dop-
amine) with high sensitivity, selectivity, and minimal
interferences. Such a spatially controlled electrochemical
functionalization method could potentially empower the G-
FET arrays with an increased number of sensing channels for
multiplexed neurochemical monitoring, such as dopamine,
serotonin, norepinephrine, and neuropeptides, suggesting
broad applications in neuroscience research.

2. RESULTS AND DISCUSSION

2.1. Design, Fabrication, and Functionalization of G-
FETs for Multiplexed Neurochemical Monitoring. As
illustrated in Figure 1A,B, we designed a filament neural probe
(∼400 μm wide, ∼8.4 μm thick, and 6.2 mm long), consisting
of two side-by-side G-FET sensors that are selectively
functionalized with two different types of aptamers and
encapsulated with a thin layer of SU-8. The source and drain
contact pads (15 nm chromium and 90 nm gold) of G-FET
were patterned on a thin-film polyimide (PI, 7.6 μm thick)
through photolithography, metal deposition, and lift-off
processes (Figure S1A). After that, the chemical vapor
deposition (CVD)-grown graphene on copper foil was
transferred, patterned, and assembled with the fabricated
source and drain electrodes to make the G-FETs (Figure S1B).
Finally, the soft G-FET was encapsulated with a lithography-

defined thin layer of SU-8 (∼ 0.8 μm thick). Figure 1B,C
shows the optical and SEM images of the fabricated neural
probe. The neural probe possesses excellent flexibility and
ultralight mass (28 mg) with a nearly cellular-scale dimension
of 50 μm × 50 μm for each G-FET, which is much smaller
than that of microdialysis probes (150−440 μm in diameter).
The ultralow bending stiffness (∼7.9 × 10−11 N m2, a value six
orders of magnitude smaller than that of commonly used
neural probes, such as a 230 μm outer diameter optical fiber61)
and lightweight construction allow the implantation of the
probe into the deep brain area with reduced tissue damage,
inflammation, and motion artifacts.62−64

The cleanliness of the graphene surface strongly affects the
electronic properties of graphene and the final sensing
capabilities of G-FETs. Here, a simple bubble-free electro-
chemical (EC) treatment was used to rapidly clean the residual
polymethyl methacrylate (PMMA) on the graphene surface
after the wet transfer process.65 During the EC treatment, the
G-FET was used as the working electrode, Ag/AgCl was used
as the reference electrode, and Pt was used as the counter
electrode. More specifically, cyclic voltammetry (CV) scans at
a scan rate of 0.5 V s−1 (−0.7 to 0 V) were performed to
remove the residual negatively charged PMMA polymer, de-
dope the graphene surface, and recover its intrinsic electrical
properties. The cleaned graphene surface was further modified

Figure 2. Electrografting of the −COOH group and functionalization of G-FET with serotonin aptamer. (A) Schematic illustration of the
electrografting of −COOH group on the graphene surface through diazonium reaction and functionalization of the serotonin aptamer through
EDC/NHS reactions. (B) CV curves of the electrografting process to introduce the −COOH group on the graphene surface. (C) Raman spectrum
of graphene surface before and after electrografting. (D) AFM images of graphene surface before and after electrografting with the −COOH group.
(E) Transfer curves of fabricated G-FETs after different processing steps, including cleaning, electrografting, and aptamer functionalization. Vds =
200 mV. (F) Real-time source−drain current response of the G-FET serotonin sensor upon exposure to 1× PBS solution containing serotonin with
different concentrations: 10 pM, 100 pM, 1 nM, 10 nM, 100 nM, 1 μM, 10 μM, and 100 μM. The current response is defined as ΔIds/I0 × 100%,
where ΔIds and I0 are the change of the source−drain current in the presence of the target and the initial signal without the target, respectively. Vds
= 100 mV; VG = 0 mV. (G) Selectivity of the serotonin sensor. 5-HT: serotonin; DA: dopamine; NE: norepinephrine; GABA: γ-aminobutyric acid.
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with a functional group and functionalized with a specific type
of aptamer for neurotransmitter monitoring.
The graphene surfaces of the two side-by-side G-FETs were

selectively functionalized with −COOH and −NH2 groups
through electrochemical grafting methods. The electrografted
−COOH and −NH2 groups serve as linkers to anchor two
aptamers with different functional groups through the 1-ethyl-
3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxy-
succinimide (NHS) reaction (serotonin aptamer: 5′-AmC6-
CGA CTG GTA GGC AGA TAG GGG AAG CTG ATT
CGA TGC GTG GGT CG-3′; dopamine aptamer: 5′/
COOH/CGA CGC CAG TTT GAA GGT TCG TTC GCA
GGT GTG GAG TGA CGT CG-3′) for the detection of
serotonin and dopamine simultaneously. Typically, the
aptamers are attached to the graphene surface through a
pyrene-based π−π stacking.66,67 Although G-FET function-
alized with π−π stacking usually has better sensitivity as it does
not change the structure of graphene, the weak bonding
between aptamer and graphene may make it not ideal for in
vivo applications. Different from the widely used noncovalent
π−π stacking to anchor aptamer on graphene surface,67,68 in
this study, the EDC/NHS reaction enabled the formation of a
covalent bond between the graphene surface and the
aptamers,69,70 which is critical to achieve long-term stability
of the designed neural probe in the chronic in vivo study.
G-FETs modified with target-specific recognition compo-

nents could directly enable biodetection in physiological
conditions.68 However, the shielding effect of the electrical
double layer, characterized as Debye screening length,71

prevents biosensing. Meanwhile, the small target molecules
with few or no charges could not trigger enough trans-
conductance change of G-FET, leading to a minimal response.
Recent studies showed that aptamers, selected through
SELEX,72 could overcome these limitations for small molecular
detection.58 When small molecular targets, like dopamine and
serotonin, bind with the target-specific aptamer, it will cause
the conformational change of the anchored aptamers on
graphene,58,73 changing the doping state of graphene and
leading to a measurable source−drain current change of the G-
FETs (Figure 1D). The change in source−drain current of G-
FETs can be correlated with the concentration of dopamine or
serotonin (Figure 1D).
2.2. Electrografting of the −COOH Group and

Functionalization of the Serotonin Aptamer on G-FET.
The strategy for developing the serotonin aptamer-function-
alized G-FET sensor is illustrated in Figure 2A. Briefly, an
aqueous solution of NaNO2 was dropwise added to p-
aminobenzoic acid (p-ABA) (0.5 M HCl) to form a
homogeneous mixture. The mixed solution was then kept in
an ice/water bath to form a diazonium salt (ClN2

+-Ph-
COOH). The selected G-FET array was then immersed into
the above solution and used as a working electrode to link the
−Ph-COOH on the graphene surface by applying CV scans
from −0.6 to 0.5 V for five cycles (scan rate = 100 mV s−1).
During the first cycle, a reduction peak appeared at −0.4 V,
which disappeared during the subsequent cycles, and the CV
curves gradually became stable after the second scan, indicating
the electrochemical reduction of ClN2

+-Ph-COOH to form the
modified graphene-Ph-COOH surface74 (Figure 2B). The
surface functionalization of graphene with −Ph-COOH can be
further proven by the Raman (Figure 2C) and atomic force
microscopy (AFM, Figure 2D) tests. The Raman spectra of
graphene on G-FET before and after electrochemical grafting

are shown in Figure 2C. There are two prominent peaks for the
bare graphene, a single symmetric 2D band at ∼2700 cm−1 and
a G band at ∼1580 cm−1. The intensity ratio between the 2D
band and the G band is around 2.22, which is a typical
characteristic of monolayer graphene, indicating that the
transferred graphene on G-FET remains in high quality after
the transferring process.75 Furthermore, after the electro-
grafting process, there is a new D band appearing at ∼1350
cm−1, which usually represents the defects and disordered
graphite structures.76 The appearance of the D band indicates
the success of the electrochemical grafting reaction, which
broke the sp2 bond of graphene and linked the −Ph-COOH on
graphene through the diazonium reaction. The ratio of I2D/IG,
after electrografting of the −COOH group, is 1.47, indicating
the binding of the functional −COOH group on the graphene
surface. A clear surface morphology change of graphene can be
observed from the AFM image after the electrochemical
grafting process. As shown in Figure 2D, compared to the pure
graphene surface, a much rougher surface with small
nanoparticles can be observed from the AFM image of the
electrografted graphene surface. The significant surface
morphology change could be attributed to the electrografting
formation of −Ph-COOH on graphene. The electrografting
was further highlighted by the cyclic voltammetric character-
ization of the graphene surface before and after the
electrografting (Figure S2). After electrografting, the anodic
current of Fe(CN)6

4− to Fe(CN)6
3− significantly reduced,

suggesting the barriers on the graphene surface to the electron
transfer. The grafted −Ph-COOH on graphene serves as a
linker to functionalize the serotonin aptamer with an −NH2
group through an EDC/NHS reaction.
Figure 2E shows the transfer curves of the fabricated G-

FETs after electrochemical cleaning, electrografting, and
aptamer functionalization. Clearly, after the electrochemical
cleaning process, there is an upward left shift of the V-shaped
transfer curve. The slightly increased current response and left
shift of the Dirac point suggested that the electrochemical
cleaning increased the conductivity and changed the doping
state of the graphene.66,68 The downward and right shift of the
transfer curve after the electrografting of the −COOH group
further proves the successful diazonium reaction, which broke
the sp2 bond of graphene and introduced the −Ph-COOH
group, leading to the increased resistance and reduced current
response. After the serotonin aptamer functionalization with
the EDC/NHS reaction, we can see a downward left shift of
the transfer curve, mainly due to the non-electrostatic stacking
interactions between the aptamer and the graphene or the
donor effect.68

To quantify the sensing performance of the functionalized
G-FET serotonin sensor, the probe was exposed to the target
solution with various concentrations to record the source−
drain current (Ids). The electrical response is defined as ΔIds/I0
× 100%, where ΔIds is the source−drain current change caused
by the addition of serotonin and I0 is the initial signal without
the addition of serotonin. During the measurement, the gate
voltage VG was fixed at 0 mV to avoid possible chemical
reactions such as water electrolysis, dielectric layer breakdown,
and the denaturing of the recognition components. As seen in
Figure 2F, the electrical response decreases as the increase of
serotonin concentration ranging from 10 pM to 100 μM in
phosphate-buffered saline) (1× PBS, pH 7.4), which covers the
physiologically relevant serotonin concentration in cerebrospi-
nal fluid (CSF).45,77 The serotonin sensor achieves a limit of
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detection (LOD) of as low as 10 pM. To investigate the
molecular specificity of the functionalized G-FET serotonin
sensor, the electrical response of the serotonin sensor was
monitored when exposed to other neurochemicals, which had
concentrations three orders of magnitude higher than that of
serotonin, including dopamine, norepinephrine, and γ-amino-
butyric acid (Figure 2G). Compared to the response when
exposed to 100 μM dopamine, norepinephrine and γ-
aminobutyric acid, the serotonin sensor showed at least a 17
times higher response when exposed to 100 nM serotonin,
indicating its high selectivity for serotonin monitoring.
2.3. Electrografting of the −NH2 Group and

Functionalization of the Dopamine Aptamer on G-
FET. The −Ph-NH2 group was electrografted on the graphene
surface through the diazonium reaction (Figure 3A). Briefly,
the selected G-FET pattern was used as a working electrode
and then immersed into the prepared diazonium salt (ClN2

+

−Ph-NH2) solution to link the −Ph-NH2 on the graphene
surface by using CV scans for five cycles from −0.6 to 0.5 V
(scan rate = 100 mV s−1). After the first cycle, the reduction
peak at −0.2 V disappeared, while stable CV curves formed
after the second cycle, indicating the electrochemical reduction
of ClN2

+-Ph-NH2 to −Ph-NH2 on the graphene surface
(Figure 3B). From the Raman spectrum (Figure 3C), we
observed a high intensity of the D band and an I2D/IG ratio of
1.32, indicating a covalent functionalization of the graphene
surface after the electrografting. AFM images demonstrated the

formation of rough structures on the graphene surface after the
electrografting process, which provides additional evidence to
show the success of the diazonium reaction (Figure 3D). The
electrografting of −NH2 group was further supported by the
CV scan of G-FET (electrolyte containing 1 mM Fe(CN)6

3−

and 0.10 M KNO3), in which a significantly reduced anodic
current was observed after the electrografting process (Figure
S3).
The transfer curves of the bare G-FET, cleaned G-FET, and

G-FET with electrografting (-NH2 group) and dopamine
aptamer functionalization are shown in Figure 3E. A reduction
of the source−drain current and p-doping effect were observed
after the electrografting process, mainly due to the diazonium
reaction, which broke the sp2 bond of graphene and introduced
the −Ph-NH2 group. Like the serotonin aptamer, surface
functionalization with the dopamine aptamer caused a left shift
of the transfer curves. To study the sensing performance of the
G-FET dopamine sensor, G-FETs functionalized with
dopamine aptamers were exposed to the target solution with
various concentrations. As seen in Figure 3F, the electrical
response increases with the increase of physiologically relevant
dopamine concentration ranging from 1 nM to 100 μM in 1×
PBS. Signal drifts were observed in Figure 3F, which could be
attributed to imperfect binding and the resulting rearrange-
ment of aptamer structures and to the non-specific adsorption
on the graphene surface. It has been known that FSCV lacks
the molecular specificity to distinguish dopamine from

Figure 3. Electrografting of the −NH2 group and functionalization of G-FET with dopamine aptamers. (A) Schematic illustration of the
electrografting of the −NH2 group on the graphene surface through the diazonium reaction and the functionalization of the dopamine aptamer
through EDC/NHS reactions. (B) CV curves of the electrografting process to introduce the −NH2 group on the graphene. (C) Raman spectrum of
the graphene surface after electrografting with the −NH2 group. (D) AFM image of graphene surface electrografted with the −NH2 group. (E)
Transfer curves of bare G-FET, cleaned G-FET, and G-FET after electrografting (−NH2 group) and dopamine aptamer functionalization. Vds =
200 mV. (F) Real-time current response of the dopamine sensor upon exposure to 1× PBS solution containing dopamine with different
concentrations: 1 nM, 10 nM, 100 nM, 1 μM, 10 μM, and 100 μM. The current response is defined as ΔIds/I0 × 100%, where ΔIds and I0 are the
change of the source−drain current in the presence of the target and the initial current signal without the target, respectively. Vds = 100 mV; VG = 0
mV. (G) Selectivity of dopamine sensor. 5-HT: serotonin; DA: dopamine; NE: norepinephrine; GABA: γ-aminobutyric acid.
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norepinephrine due to the overlap of voltammetric pat-
terns.45,78 To investigate whether the G-FET dopamine
sensors could distinguish dopamine from norepinephrine and
other neurochemicals, the electrical response of the dopamine
sensor was recorded when exposed to other neurochemicals
that had concentrations three orders of magnitude higher than
that of dopamine (Figure 3G). Compared to the electrical
responses toward the detection of 100 μM norepinephrine,
serotonin, and γ-aminobutyric acid solution, the dopamine
sensor showed a 22 times higher response toward the detection
of 100 nM dopamine, indicating a high molecular specificity of
the dopamine sensors.
2.4. Electrografting-Enabled Site-Selective Function-

alization of both Serotonin and Dopamine Aptamers
on G-FETs for Multiplexed Neurochemical Monitoring.
To enable the simultaneous monitoring of dopamine and
serotonin in a single neural probe, the graphene surfaces of two
G-FETs were sequentially functionalized with −COOH and
−NH2 through the electrografting method (Figure 4A). After
that, through the EDC/NHS reaction, the serotonin aptamer
with the −NH2 group and the dopamine aptamer with the
−COOH group were able to selectively link on the graphene
surfaces functionalized with −COOH and −NH2, respectively.
Figure 4A illustrates the electrografting and functionalization
process of G-FETs for multiplexed neural probe design. One of
the major challenges for multiplexed detection in a single
neural probe is the crosstalk and interferences between the two
sensors. Here, to study the possible interferences between the
dopamine and serotonin sensors, we simultaneously measured
the electrical response of dopamine and serotonin sensors
toward the detection of dopamine and serotonin ranging from
10 pM to 100 μM (Figure 4B,C). The response of the
serotonin sensor decreased with the increase of serotonin
concentration ranging from 10 pM to 100 μM in 1× PBS. In
contrast, the response of the dopamine sensor only slightly
increased (∼1.1%) toward the detection of interfering
serotonin with a concentration of up to 100 μM (Figure 4B
and Table S1). Figure 4C shows the real-time response of
dopamine and serotonin sensors when exposing the multi-
plexed neural probe to various dopamine concentrations
ranging from 10 pM to 100 μM in 1× PBS. Like serotonin
sensors, the dopamine sensors achieve a LOD of 10 pM. A
minimal sensor response (∼ −0.6%) was observed when
exposing the serotonin sensor to interfering dopamine with a
concentration of up to 100 μM (Figure 4C and Table S2). The
minimal crosstalk and interference are further highlighted by
measuring the transfer characteristics of G-FET serotonin
sensors exposed to dopamine and G-FET dopamine sensors
exposed to serotonin (Figure S4). Overall, these studies
demonstrate the feasibility of multiplexed monitoring of
dopamine and serotonin in a single neural probe with small
crosstalk and interferences, suggesting its potential to study the
corelease of multiple neurochemicals in broad neuroscience
applications.
In this study, we observed a decrease in electrical response

(VG = 0 mV) with the increase of serotonin concentration
mainly due to the conformational change of aptamer in the
presence of serotonin bringing the aptamer away from the
graphene channel,58 leading to a decrease of transconductance
and an n-doping effect on graphene surface (Figure 4D).
Different from the serotonin aptamer, the presence of
dopamine causes an increase in the source−drain current of
the G-FET dopamine sensor (VG = 0 mV), mainly due to the

conformation change of dopamine aptamer, bringing it closer
to the G-FET surface,58 leading to a p-doping effect on G-FET
(Figure 4E).

2.5. Multiplexed Monitoring in aCSF with BSA. To
evaluate the sensing performance of aptamer-functionalized
multiplexed neural probes in a more complex environment, we
exposed the dopamine and serotonin sensors to solutions with
various concentrations of dopamine or serotonin in aCSF with
proteins [1 mg/mL bovine serum albumin (BSA), 13 mM
glucose, 125 mM NaCl, 3 mM KCl, 2.5 mM CaCl2, 1.3 mM
MgSO4, 1.25 mM NaH2PO4, and 26 mM NaHCO3]. BSA, as a

Figure 4. Electrografting-enabled site-selective functionalization of G-
FETs for multiplexed neurochemical monitoring in a single neural
probe. (A) Schematic illustration for the electrografting and
functionalization process of G-FETs for multiplexed monitoring.
The graphene surfaces of two G-FETs are sequentially functionalized
with −COOH and −NH2 groups through the electrografting method.
After that, the serotonin aptamer with the −NH2 group and dopamine
aptamer with the −COOH group are immobilized on the graphene
surfaces functionalized with −COOH and −NH2, respectively. (B)
Real-time response of serotonin and dopamine sensors when exposing
a multiplexed neural probe to various serotonin concentrations
ranging from 10 pM to 100 μM in 1× PBS. Vds = 100 mV; VG = 0 mV.
(C) Real-time response of dopamine and serotonin sensors when
exposing a multiplexed neural probe to various dopamine
concentrations ranging from 10 pM to 100 μM in 1× PBS. Vds =
100 mV; VG = 0 mV. (D) Transfer curves of the G-FET serotonin
sensor before and after introducing the target serotonin solution (100
μM in 1× PBS). Vds = 200 mV. (E) Transfer curves of G-FET
dopamine sensor before and after introducing the target dopamine
solution (100 μM in 1× PBS). Vds = 200 mV.
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commonly used protein, was chosen to mimic the protein-rich
brain microenvironment.79 As shown in Figure 5A,B, the

electrical response increases/decreases with the increase of the
physiologically relevant concentration range of dopamine or
serotonin from 10 pM to 100 μM. In addition, no significant
differences were observed in the sensor response with the
addition of 1 mg/mL BSA in aCSF (Figure 5C,D),
demonstrating the potential applications of multiplexed neural
probes in protein-rich brain microenvironments.
2.6. The Stability of Multiplexed Neural Probes in Rat

CSF. Furthermore, we studied the stability of aptamer-
functionalized G-FET dopamine and serotonin sensors in rat
CSF (BioIVT Elevating Science). The study started with
monitoring the transfer curve of aptamer-functionalized G-
FETs before and after incubating in rat CSF at room
temperature for 24, 48, 72, and 96 h. It is not surprising that
a significant leftward downshift of transfer curves are observed
after incubating the device in rat CSF for 24 h (Figure 6A and
Figure S5), probably due to the non-specific adsorption of
proteins in rat CSF on the sensor surface. We then wondered
whether this leftward downshift of transfer curves influenced
the capability of multiplexed neural probes to monitor
dopamine and serotonin. To answer this question, after

incubating in rat CSF at room temperature for 96 h, we
used multiplexed neural probes to monitor different concen-
trations of dopamine ranging from 1 nM to 10 μM in aCSF. As
shown in Figure 6B, the electrical responses of dopamine
sensors increase with the increase of the physiologically
relevant concentration range of dopamine from 1 nM to 10
μM. In contrast, a minimal sensor response was observed for
serotonin sensors (Figure 6B). Compared with the electrical
responses of the as-prepared multiplexed neural probes, the
incubation with rat CSF for 96 h causes a reduction of sensor
signals at higher concentrations (100 nM and 10 μM) (Figure
6C), probably due to the non-specific adsorption of various
proteins in the complex rat CSF on the sensor surface that
could block the available aptamers to capture the dopamine.
Inspired by these stability studies of monitoring dopamine, we
also studied the stability of multiplexed neural probes for

Figure 5. Multiplexed neurochemical monitoring in aCSF with BSA
protein. Real-time response of the multiplexed neural probes when
exposed to various concentrations of (A) dopamine and (B) serotonin
solutions ranging from 10 pM to 100 μM in aCSF with 1 mg/mL BSA
protein. Vds = 100 mV; VG = 0 mV. Comparison of the electrical
response of the multiplexed neural probes for monitoring (C)
dopamine and (D) serotonin detection with and without 1 mg/mL
BSA protein. n ≥ 3. All data are represented as means ±SD. The
statistical significance of differences between mean values was
determined using Student’s t tests for two independent means with
one-tailed hypothesis. ns indicates that the difference of the means is
not significant at the 0.05 level.

Figure 6. Stability of multiplexed neural probes in rat CSF. (A)
Transfer curves of dopamine sensors before and after incubating in rat
CSF for 24, 48, 72, and 96 h at room temperature. Vds = 200 mV. (B)
Real-time responses of the multiplexed neural probes to various
concentrations of dopamine in aCSF before and after incubating in rat
CSF solution for 96 h at room temperature. Vds = 100 mV; VG = 0
mV. (C) Comparison of the sensor response for monitoring
dopamine before and after incubating in rat CSF solution at room
temperature for 96 h. (D) Transfer curves of serotonin sensors before
and after incubating in rat CSF for 24, 48, 72, and 96 h at room
temperature. Vds = 200 mV. (E) Real-time responses of the
multiplexed neural probes to various concentrations of serotonin in
aCSF before and after incubating in rat CSF solution for 96 h at room
temperature. Vds = 100 mV; VG = 0 mV. (F) Comparison of the
sensor response for monitoring serotonin before and after incubating
in rat CSF solution for 96 h at room temperature. For C and F, n = 3,
*P < 0.05. All data are represented as means ±SD. The statistical
significance of differences between mean values was determined using
Student’s t tests for two independent means with one-tailed
hypothesis. ns indicates that the difference of the means is not
significant at the 0.05 level.
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monitoring serotonin by incubating the probe in rat CSF at
room temperature for 24, 48, 72, and 96 h (Figure 6D−F).
Like dopamine sensors, we observed a leftward downshift of
transfer curves (Figure 6D) as well as a reduction of sensor
response for monitoring higher concentrations of serotonin
(10 nM and 100 nM) (Figure 6F). Nevertheless, the
multiplexed neural probe retained the capability of monitoring
serotonin ranging from 1 to 100 nM in aCSF with minimal
crosstalk (Figure 6E). Overall, these studies showed that
multiplexed neural probes maintain the ability to simulta-
neously monitor dopamine and serotonin with minimal
crosstalk after incubating in rat CSF at room temperature for
96 h, although a reduced sensor response was observed at a
higher concentration range, likely due to the adsorption of
proteins onto the sensor surface.
2.7. Ex Vivo Studies in Harvested Mice Brain Tissue.

Encouraged by the capability of multiplexed neural probes for
simultaneously monitoring dopamine and serotonin after
incubating in rat CSF, we finally evaluated the sensing
performance of aptamer-functionalized G-FET dopamine and
serotonin sensors in ex vivo brain tissues harvested from wild-
type C57BL/6J mice. Figure 7A,B shows the schematic
illustration and optical image of the measurement setup
where a multiplexed neural probe is implanted into the
mouse’s brain tissue and an Ag/AgCl electrode is used as a
gate. It should be noted that bioresorbable or removable
implantation shuttles are typically used for the precise
implantation of soft neural probes into targeted brain
regions.80 For those ex vivo studies in harvested mice brain
tissues, we do not have a concern about brain damage and
associated immune responses. Therefore, we fabricated
aptamer−gFET sensors on a relatively thick PI substrate (76
μm thick) to avoid the need for implantation shuttles or
tungsten stiffeners for precise probe implantation.
To mimic the evoked release and diffusion of dopamine and

serotonin in brain tissue by using electrical and/or
pharmacological stimulations, the dopamine (10 μM, 2 μL)
or serotonin solution (100 nM, 2 μL) was infused into the
brain tissue through the injection site by using a Hamilton
microsyringe. These concentrations were chosen to represent a
physiologically relevant dopamine81 or serotonin36 release
upon pharmacology and/or electrical stimulations. The
electrical response of dopamine and serotonin sensors rapidly
changes upon the injection and diffusion of dopamine or
serotonin solution into the brain tissue and then slowly decays
due to dopamine or serotonin diffusing away from the sensor
surface (Figure 7C,D). To further prove the capability of
aptamer-functionalized G-FET dopamine and serotonin
sensors to record diffusion-related changes in dopamine or
serotonin concentration in harvested brain tissue, we
performed real-time monitoring of the transfer curves (instead
of the source−drain current) upon the injection of dopamine
or serotonin solution in harvested mouse’s brain tissue (Figure
7E,F). We observed that the transfer curves of dopamine
sensors first shifted to the right and then to the left due to the
p-doping effect on G-FET upon the conformation change of
dopamine aptamer in the presence of target dopamine (Figure
7E). In contrast, the transfer curves of serotonin sensors first
shifted to the left and then to the right because the conformal
changes of serotonin aptamer resulted in an n-doping effect on
G-FET (Figure 7F). With a fixed-gate voltage (VG) of 0 mV,
the change of source−drain current (Ids) rapidly increases/
decreases and then slowly decays with the injection of

dopamine or serotonin solution (Figure 7G,H), which is
consistent with the real-time source−drain current monitoring.
In our control experiments, the sensor signal changes induced
by injecting 2 μL of aCSF are much smaller than those caused
by the perfusion of 2 μL of 100 nM serotonin or 10 μM
dopamine in aCSF (Figures S6 and S7). To further mimic the
evoked release and diffusion of dopamine or serotonin, the
continuous transfer curve monitoring was also performed in
brain tissue phantom (0.6 wt % agarose in 1× PBS and soaked
in 1× PBS for 24 h) upon the infusion of dopamine or
serotonin solution (Figure S8A). Like the study in harvested
brain tissues, the transfer curves of dopamine sensors shift to
the right first and then to the left (Figure S8B), while the

Figure 7. Ex vivo studies in harvested mouse brain tissue. (A)
Schematic illustration and (B) optical image of a multiplexed neural
probe implanted into a harvested mouse brain tissue for monitoring
dopamine and serotonin. Real-time response of a multiplexed neural
probe implanted in the harvested mouse brain tissue upon the
injection of (C) dopamine solution (10 μM in aCSF, 2 μL) and (D)
serotonin solution (100 nM in aCSF, 2 μL). Vds = 100 mV; VG = 0
mV. Continuous monitoring of transfer curves of the neural probe
implanted in the harvested mouse brain tissue when injecting (E)
dopamine solution (10 μM in aCSF, 2 μL) and (F) serotonin solution
(100 nM in aCSF, 2 μL). Vds = 200 mV. Source−drain current
response at VG = 0 mV for the (G) dopamine and (H) serotonin
sensors.
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transfer curves of serotonin sensors shift to the left first and
then to the right (Figure S8C). The source−drain current at
the fixed-gate voltage of 0 mV increases (or decreases) first and
then shows a slow decay (Figures S8D,E), mainly due to the
binding between the aptamer and the target (rapidly increase
or decrease) upon the injection of target solution and the
diffusion of the target molecules away from the sensor surface
(slow decay). Overall, these ex vivo studies in harvested mice
brain tissue and studies in brain tissue phantom suggest the
potential application of aptamer-functionalized multiplexed
neural probes for monitoring the evoked release of dopamine
and serotonin in vivo.

3. CONCLUSIONS

In summary, we developed a soft neural probe for the
multiplexed monitoring of dopamine and serotonin, two
important neurochemicals playing critical roles in mood
control, rewarding, motor control, and reinforcement learning.
The multiplexed neural probes are developed based on the
electrochemically grafted site-selective functionalization of
−COOH and −NH2 onto an ultrasensitive G-FET and
sequential surface functionalization with targeted aptamers.
The developed multiplexed neural probes show high
sensitivity, molecular specificity, nearly cellular-scale spatial
resolution, and minimal crosstalk. The neural probes maintain
the ability to perform multiplexed monitoring of dopamine and
serotonin after incubating in rat CSF for 96 h at room
temperature. Ex vivo studies using harvested mouse brain
tissue demonstrate the multiplexed monitoring of dopamine
and serotonin upon injecting physiologically relevant concen-
trations of dopamine or serotonin solutions. Future work is
needed to develop surface coatings to prevent protein
adsorption on the sensor surface and study the corelease of
dopamine and serotonin through in vivo studies. Overall, this
study opens the door for neuroscientists to study where and
how the corelease of multiple neurochemicals modulates the
diverse outputs of the brain. The developed multiplexed neural
probes can also be adapted to interface with other organs,
including the spinal cord, heart, and peripheral nerves, where
multiplexed detection is needed.

4. EXPERIMENTAL SECTION

4.1. Materials. Chemical vapor deposition (CVD)-grown
monolayer graphene was purchased from Graphenea. Poly-
methyl methacrylate (PMMA, inherent viscosity ≈ 1.25 dL/g
(lit.), crystalline), acetone (laboratory reagent, ≥99.5%),
anisole (anisole, anhydrous, 99.7%), acetonitrile (ACN,
anhydrous, ≥99.8%), hydrochloric acid (HCl, ACS reagent,
37%), tetrabutylammonium hexafluorophosphate (TBAPF6,
ACS reagent, ≥98%), sodium nitrite (NaNO2 ACS regent,
≥97%), 4-aminobenzoic acid (p-ABA, ACS reagent, ≥99%), p-
phenylenediamine (PPD, 98% (GC)), dimethylaminopropyl)-
N-ethylcarbodiimide hydrochloride (EDC), N-hydroxysulfo-
succinimide sodium salt (NHS), bovine serum albumin (BSA),
agarose, dopamine (DA), serotonin, norepinephrine (NE), and
γ-aminobutyric acid (GABA) were purchased from Sigma-
Aldrich. Polydimethylsiloxane (PDMS, Sylgard 184) was
purchased from Dow SYLGARD. Rat CSF (RAT01CSF-
0104036, gender-pooled) was purchased from BioIVT
Elevating Science. AZ 5214E, SU8 photoresists were purchased
from Integrated Micro Materials. Serotonin aptamer (5′-
AmC6-CGA CTG GTA GGC AGA TAG GGG AAG CTG

ATT CGA TGC GTG GGT CG-3′) and dopamine aptamer
(5′/COOH/CGA CGC CAG TTT GAA GGT TCG TTC
GCA GGT GTG GAG TGA CGT CG) were reported by a
previous study58 and purchased from Integrated DNA
Technologies, Inc. All of the chemicals and materials were
used without further purification after purchase.

4.2. Fabrication and Electrochemical Cleaning of G-
FETs. 4.2.1. Preparation of Graphene Patterns. A piece of
CVD-grown monolayer graphene (Graphenea) was first coated
with PMMA A4 solution (4 g of PMMA dissolved in 96 g of
anisole) to get the PMMA/graphene/Cu stack, which was then
heated at 180 °C for 5 min and slowly cooled down to room
temperature. The PMMA/graphene/Cu was further cut into
small pieces and floated on the surface of the copper etchant
for 5 min to remove the Cu film. After that, the obtained
PMMA/graphene film was transferred into 0.1 M HCl for 10
min and then washed with deionized (DI) water three times. A
piece of Si wafer was then used to pick up the transferred
PMMA/graphene film. After drying in air overnight at room
temperature, PMMA A2 solution (2 g of PMMA in 98 g of
anisole) was applied onto the surface of the PMMA/graphene/
Si to release the possible wrinkles in graphene. Then, PMMA/
graphene/Si was immersed into acetone for 4 h to remove the
PMMA. The obtained graphene/Si was spin-coated (at 500
rpm for 10 s followed with 1500 rpm for 25 s; acceleration of
300 rmp/s) with the photoresist (AZ5214), followed by baking
at 95 °C for 3 min on a hot plate. A predesigned mask was
used to form desired patterns on the graphene surface by
oxygen plasma. Finally, the graphene pattern with a size of 60
μm × 60 μm was obtained by removing the photoresist with
acetone.

4.2.2. Preparation of the Source−Drain Electrodes. A
mixture of PDMS elastomer and curing reagent (10:1 ratio)
was first spin-coated on a glass slide (75 mm × 50 mm), which
was then cured in a 70 °C oven for 10 min. After that, a PI film
was laminated onto the semicured PDMS surface, followed by
another 50 min curing at 70 °C. Then, the PI film was spin-
coated with a AZ5214 photoresist and baked at 95 °C for 3
min on a hot plate. With exposure to UV light through a
designed mask and development, interdigitated patterns were
formed on the surface of PI film. An RF sputter (AJA Orion-8)
was used to deposit Cr with a 15 nm thickness and Au with a
90 nm thickness on top of the patterned PI film. A lift-off
process was carried out to form the source−drain electrodes on
the soft PI film.

4.2.3. Graphene Transfer to Source−Drain Electrodes and
Device Encapsulation. The obtained graphene patterns were
first coated with PMMA A4 solution to form a PMMA/
graphene/Si stack, which was then heated at 180 °C for 5 min
and naturally cooled down to room temperature. Next, the
above stack was immersed in 1 mM NaOH solution until the
PMMA/graphene pattern stack detached from the Si wafer
surface and floated on the solution. The PMMA/graphene
pattern was washed with DI water three times and then
transferred on the PI film-containing source and drain contact
pads under a microscope. Similarly, after overnight drying in
the air, the PMMA A2 solution was dropped on the PI film to
release the possible wrinkles on the graphene. After immersing
the PI film covered by the PMMA/graphene pattern stack into
acetone for 4 h, the PMMA layer can be removed to get the
graphene pattern on the preconstructed source and drain
contact pads. Finally, the source and drain electrodes were
encapsulated with SU8 (2000.5, MicroChem) following the
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standard photolithography protocol. The final thickness of the
SU8 layer and the active sensing area of graphene are 0.8 μm
and 50 μm × 50 μm, respectively.
4.2.4. Electrochemical Cleaning of the G-FETs. The

fabricated G-FETs were first cleaned by using an electro-
chemical method.65 More specifically, a non-aqueous electro-
lyte containing acetonitrile (Sigma Aldrich) and 100 mM
tetrabutylammonium hexafluorophosphate (TBAPF6, Sigma
Aldrich) was used to perform the electrochemical cleaning
using an Autolab potentiostat (Autolab PGSTAT128N). The
G-FET was used as the working electrode (WE) with a
platinum wire as a counter electrode (CE) and Ag/AgCl
electrode as a reference electrode (RE). The CV was
performed under the potential window from −0.7 to 0 V vs.
Ag/AgCl at a scan rate of 0.5 V s−1 for 100 cycles. After the
electrochemical treatment, the cleaned G-FET was rinsed
several times using pure acetonitrile and DI water to remove
the residual electrolyte from the graphene surface.
4.3. Surface Functionalization of the G-FETs.

4.3.1. Electrochemical Grafting −COOH Group on the
Graphene Surface. The classic diazonium reaction was used
for electrochemical grafting of the −COOH group on the
graphene surface of G-FET. First, 10 mL of 2 mM NaNO2
solution drops into 10 mL of 2 mM p-aminobenzoic acid (p-
ABA) solution in 1 M HCl solution in 30 min. The mixed
solution was then degassed under nitrogen flow for 5 min and
left to react in an ice water bath for another 10 min for the
formation of the diazonium salt (ClN2

+-Ph-COOH). After
that, the G-FET was immersed into the above mixture solution
to serve as the working electrode. Saturated Ag/AgCl and Pt
electrodes were used as the reference electrode and counter
electrode, respectively. A CV scan was used to graft -Ph-
COOH onto the graphene surface at a scan rate of 100 mV s−1

within a voltage window of −0.6 to 0.5 V. Different scan cycles
were performed to optimize the electrochemical grafting
process to achieve the fully covered graphene surface with
−COOH group. Finally, the −COOH-functionalized G-FET
was thoroughly rinsed with acetonitrile and DI water to
remove the nonspecifically adsorbed substances.
4.3.2. Electrochemical Grafting of the −NH2 Group on the

Graphene Surface. The diazonium reaction was also used for
electrochemical grafting of the −NH2 group on the graphene
surface of G-FET following a similar protocol as that of
−COOH electrografting. Here, 10 mL of the 4 mM NaNO2
solution was first added dropwise into 10 mM phenylenedi-
amine (PPD) in 1 M HCl solution. After degassing using
nitrogen flow for 5 min, the mixed solution was left in an ice
water bath for 10 min to form diazonium salt (ClN2+-Ph-NH2).
CV scans were performed at a scan of 100 mV s−1 in the
potential window of −0.6 to 0.5 V for five cycles to graft the
−NH2 group on the graphene surfaces of G-FET. Finally, the
obtained −NH2-grafted G-FET was thoroughly rinsed with
acetonitrile and ultrapure DI water to remove the nonspecifi-
cally adsorbed substances.
4.3.3. Surface Functionalization of the Aptamers through

EDC/NHS Reactions. For the functionalization of G-FETs with
serotonin aptamers, the electrografted G-FETs with −COOH
groups were incubated in 1× PBS solution containing 6 mM
EDC, 3 mM NHS, and 3 μM amino group-modified serotonin
aptamer (5′-AmC6-CGA CTG GTA GGC AGA TAG GGG
AAG CTG ATT CGA TGC GTG GGT CG-3′) at room
temperature for 4 h. After that, the functionalized G-FETs

linked with serotonin aptamers were washed with DI water and
dried with N2 gas.
For the functionalization of G-FETs with dopamine

aptamers, the electrografted G-FETs with −NH2 groups
were first incubated in the 1× PBS solution containing 6
mM EDC, 3 mM NHS, and 3 μM carboxyl group-modified
dopamine aptamer (5′/COOH/CGA CGC CAG TTT GAA
GGT TCG TTC GCA GGT GTG GAG TGA CGT CG,) at
room temperature for 4 h. After that, the functionalized G-
FETs linked with dopamine aptamers were washed with DI
water and dried with N2 gas.

4.4. Materials Characterization and Sensing Perform-
ance Evaluation. 4.4.1. Materials Characterization. The
pattern and graphene microstructure of the prepared G-FETs
were characterized by scanning electron microscopy (SEM;
Teneo LV SEM equipped with energy-dispersive X-ray
spectroscopy (EDS) detector), atomic force microscopy
(AFM; mfp-3D operating in conventional intermittent contact,
Asylum Research), and Raman spectroscopy (Renishaw InVia
Raman microscope at 575 nm with 10% laser power).
Electrical measurement was performed with the Keysight
B1500A Semiconductor Analyzer and probe station.

4.4.2. Sensing Performance Evaluation. 4.4.2.1. Real-Time
Response of the Functionalized G-FETs. The real-time
response of the functionalized G-FETs with serotonin
aptamers was performed using the Keysight B1500A Semi-
conductor Analyzer and probe station. Each time, 20 μL of the
test solution was put on the sensing area of the G-FET to
record the response. After that, the test solution was quickly
removed using Kimwipes, and the next test solution was added
immediately using a second pipette. A series of freshly
prepared serotonin solutions were used to evaluate the sensing
performance of the fabricated G-FETs with serotonin
aptamers. Similarly, the real-time response of G-FETs with
dopamine aptamers was evaluated by gradually adding freshly
prepared dopamine solution.

4.4.2.2. Selectivity of the Functionalized G-FETs Sensor.
The selectivity of the functionalized G-FETs with dopamine or
serotonin aptamers was evaluated by recording the electrical
response when the G-FETs were exposed to different
neurotransmitters, such as dopamine, serotonin, norepinephr-
ine, and γ-aminobutyric acid.

4.5. Tissue Collection. Adult C57BL/6J mice obtained
from Jackson Laboratories were used for all experiments. Mice
were first anesthetized with 5% isoflurane in an induction
chamber and then held under anesthesia with a nose cone
throughout the procedure. An incision was made along the
ventral surface of the mouse to expose the diaphragm, which
was then separated from the rib cage. The rib cage was excised
to expose the heart. Using a pair of blunt forceps, the heart was
stabilized, and a needle for perfusion was inserted into the left
ventricle. A small incision was then made in the right atrium of
the heart, and 15 mL of aCSF was perfused through the
animal. Once perfused, the mice were decapitated, and the
dorsal surface of the skull was exposed with a midline incision
through the skin. The skull is then opened to expose the brain,
which is subsequently extracted and placed in aCSF. All
experiments performed were approved by the University of
Connecticut Institutional Animal Care and Use Committee
Institutional Animal Care and Use Committee (IACUC).

4.6. Statistics. Experimental data are expressed as the
mean ± standard deviation (SD). For two-group comparisons,
statistical significance was determined by one-tailed Student’s t
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tests. P < 0.05 was considered statistically significant. The
software used for statistical analysis was OriginLab.
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