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As cancer is increasingly considered a metabolic disorder, it is postulated that serum

metabolite profiling can be a viable approach for detecting the presence of cancer. By mul-

tiplexing mass spectrometry fingerprints from two independent nanostructured matrixes

through machine learning for highly sensitive detection and high throughput analysis, we

report a laser desorption/ionization (LDI) mass spectrometry-based liquid biopsy for pan-

cancer screening and classification. The Multiplexed Nanomaterial-Assisted LDI for Cancer

Identification (MNALCI) is applied in 1,183 individuals that include 233 healthy controls and

950 patients with liver, lung, pancreatic, colorectal, gastric, thyroid cancers from two inde-

pendent cohorts. MNALCI demonstrates 93% sensitivity at 91% specificity for distinguishing

cancers from healthy controls in the internal validation cohort, and 84% sensitivity at 84%

specificity in the external validation cohort, with up to eight metabolite biomarkers identified.

In addition, across those six different cancers, the overall accuracy for identifying the tumor

tissue of origin is 92% in the internal validation cohort and 85% in the external validation

cohort. The excellent accuracy and minimum sample consumption make the high throughput

assay a promising solution for non-invasive cancer diagnosis.
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Cancer is becoming a leading cause of death and a major
concern of public health, accounting for roughly 15% of all-
cause mortality worldwide1. Making an early and reliable

diagnosis of cancer is essential for a favorable prognosis2–4. Up to
date, there are only limited blood tumor biomarkers available,
including alpha-fetoprotein (AFP), cancer antigen 19-9 (CA19-9),
and carcinoembryonic antigen (CEA), whose sensitivities remain far
from satisfactory. Non-invasive screening solutions for early diag-
nosis are indispensably needed. Recently, blood-based liquid biopsy
has shown great promise as a non-invasive and sensitive approach in
detecting and localizing cancers at a relatively early stage5–7. To this
end, pan-cancer screening has attracted increasing interest with
many novel technologies explored. For example, tumor-educated
blood platelet (TEP) has been used for differentiating six common
tumors by RNA-seq of TEPs isolated from whole blood8. A multi-
analyte plasma test called CancerSEEK relies on cell-free DNA and
circulating proteins to detect eight common cancers9. Surface pro-
teins from serum extracellular vesicles have also been utilized for
classifying six different cancers10. More recently, an approach called
“DNA evaluation of fragments for early interception” was applied to
diagnose and classify up to seven different cancers by detecting
abnormal fragmentation patterns of cell-free DNA11. However, most
of these approaches require complex processing of samples,
sophisticated machinery, large blood sample volumes, and the
accuracy remains to be improved, limiting their clinical applications.

Previous studies have demonstrated potential application of
metabolomics for certain cancer diagnosis as cancer is recognized
as a metabolic disorder12. Nevertheless, a pan-cancer-screening
strategy based on metabolomics has not been developed to the
best of our knowledge. Small-molecule metabolites constitute a
unique source of cancer-specific information, as metabolic
alterations can participate directly in the process of transforma-
tion or support the biological processes that enable tumor
growth13,14. Utilization of metabolomics for clinical cancer
research has become an area with fast-growing interest15,16. Mass
spectrometry-based approaches are playing an increasingly
dominant role in the past two decades, with tremendous growth
in instrumentation, experimental protocols, and the relevant
algorithms17–20. Both non-targeted qualitative and targeted
quantitative approaches using mass spectrometry have been
developed and refined to fit certain clinical or research needs.
Current cancer metabolomics largely depend on a targeted
strategy where molecules that can be detected and recognized are
limited. In contrast, non-targeted LDI mass spectrometry has
several intrinsic advantages, including prompt analysis, high-
throughput and low sample consumption. However, LDI typically
requires an assisting organic matrix to transfer energy to the
analytes, compromising the accuracy of small-molecule metabo-
lites detection because of the background ions from the matrix21.
A nanomaterial-assisted approach could be well suited for
studying low mass range metabolomics with LDI where these
nanomaterials are capable of absorbing laser energy without
generating complex cluster ions that complicate detected
signals22. Nanomaterials have been widely used in biomedical
imaging, drug delivery and cancer treatment23–26. Inorganic
materials assisted ionization and desorption for mass spectro-
scopy has been reported on various nanomaterials such as noble
metal nanostructures, metal oxide nanoparticles, silicon and
carbon nanomaterials, etc22,27–31. Without the matrix ions
interference, this strategy typically has higher sensitivity at low m/
z region compared to traditional matrix assisted LDI, making it
possible to quantitively analyze the small molecular metabolites in
serum samples. However, the studies to date generally relies on a
single nanomaterial matrix for LDI and analysis with limited
fingerprint information, which is prone to false alarm.

Here we report a Multiplexed Nanomaterial-Assisted LDI for
Cancer Identification (MNALCI) approach for pan-cancer diag-
nostics. By using two independent nanostructured materials as
the unique matrix materials for highly sensitive multiplexed
detection and combining with machine learning for high-
throughput analysis, the MNALCI allow highly sensitive cap-
ture and analysis of the signals below 1000 Da for small-molecule
metabolites. Since the ionization/desorption efficiency can vary
among different inorganic materials and result in different sen-
sitivity across the m/z spectrum, the MNALCI produces a mul-
tiplexed fingerprinting information of metabolites from serum
samples for high fidelity cancer identification. The potential of
MNALCI was demonstrated by its excellent performance in
diagnosing and classifying up to six different types of common
cancers using minimum serum samples, including liver cancer,
lung cancer, pancreatic cancer, colorectal cancer, gastric cancer
and thyroid cancer. This approach established a low-cost, high-
throughput procedure based on trace amount of serum to diag-
nose and classify different types of cancers with high precision,
demonstrating substantial potential for standard clinical practice
in cancer diagnostics and beyond.

Results
Gold nanoshell (GNS) and porous silicon nanowires (SiNW)
for LDI. The first type of nanomaterials utilized was Au/SiO2

core/shell nanoparticles. GNS was previously reported to have
superior performance over other Au nanostructures such as
nanospheres and nanorods in LDI application, which could be
attributed to its rough surface and strong surface plasmonic
effect32,33. In our case, Au shell was grown on the silica core to
form core-shell nanospheres by absorbing pre-synthesized Au
nanoseed on the silica beads and in-situ growing into continuous
nanoshell34. The morphology and optical properties of the core/
shell nanoparticles were characterized by TEM, SEM and UV–vis
absorption. As shown in Fig. 1a, the nanoparticles were sized
about 150 nm and exhibited relative rough surfaces, as compared
to the smooth appearance of bare silica nanobeads, which was a
result of nucleation and growth from multiple Au nanoparticle
seeds. The elemental mapping using TEM-EDAX technique
unambiguously proved the formation of core-shell structures with
enriched Si and O elements in the core and Au elements in the
shell, from which the shell thickness of ~17 nm was estimated
(Fig. 1b, Supplementary Fig. 1). The UV–Vis absorption peaks
around 680 nm of the GNS nanoparticle also revealed the for-
mation of Au shell on insulating core structure (Supplementary
Fig. 1a). Interestingly, the nanoparticle solution also demon-
strated strong absorption in UV region, which could be caused by
the rough nature of the shell structure33. This unique property
may largely benefit the energy absorption from the UV laser
excitation of LDI.

The second type of nanomaterials utilized was highly porous
silicon nanowires obtained from n-type silicon wafer using Ag-
assisted chemical etching25. Porous silicon or silicon nanowires
were previously used for LDI-MS in small-molecule analysis to
enable hydrophobic surface for higher LDI efficiency22,35,36. In
our case, porous feature was enabled with increased concentra-
tion of H2O2 during the Ag catalyzed solution etching, which
favored the interaction of small molecular metabolites with the
enlarged surface area. As shown in Fig. 1c, high density nanowire
forest was readily obtained with nanowire length controlled by
etching time. The transmission electron microscopy (TEM)
proved the porous nature of the nanowires with irregular pores
in 5–10 nm region (Fig. 1c inset, Supplementary Fig. 2c). The
broad absorption in the UV region may be originated from the
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quantum confinement in the porous nanowires with wide-range
distribution of the critical dimensions. (Supplementary
Fig. 2a)37,38. Additionally, this highly oxidative etching process
generated amorphous SiO2 layer covering the silicon nanocrys-
tallined core, rendering the hydrophilic nature for water
dispersion. By simply sonicating the etched silicon wafer in
water, centimeter sized sample could produce milli-liter nanowire
solution for thousands of samples (Supplementary Fig. 2b). This
greatly reduced the material cost, making it affordable for clinical
application.

In a typical procedure, 0.5 μL of serum sample from an
individual was spotted on the target plate followed by 1 μL of
nanomaterials and dried under room temperature where
nanomaterials were utilized to assist detection of the analytes
(Fig. 1d and see more details in methods). As ionization/
desorption process varied among different nanomaterials, GNS-
assisted LDI generated more signal in the rage of 200–300 Da
while SiNW produced more information below 200 Da. (Fig. 1e)
As comparison, a direct mix with traditional α-cyano-4-
hydroxycinnamic acid (CHCA) matrix and serum sample could
hardly produce any signal, even at 10 times enlargement, possibly
due to the interference of lipids39. Although lipid interference
using CHCA diminished with over 50 times dilution of serum
samples, this would be challenging to generate signals on low
abundance metabolites, making it difficult to produce distin-
guishable m/z features among healthy and cancerous samples.

Establishment of MNALCI for pan-cancer diagnosis. Based on
both GNS and SiNW-assisted LDI, MNALCI was established and
tested for pan-cancer screening in two hospital-based cohorts in
China. The Shanghai cohort composed of 1008 individuals that
include 203 healthy controls and 805 patients diagnosed with

stage I–IV cancers according to American Joint Commission on
Cancer (AJCC): liver cancer (n= 139), lung cancer (n= 76),
pancreatic cancer (n= 97), colorectal cancer (n= 238), stomach
cancer (n= 119) and thyroid cancer (n= 136) from Zhongshan
Hospital, Fudan University in Shanghai, China. The Hefei cohort
including 175 individuals that include 30 healthy controls and
145 patient with stage I–IV cancers: liver cancer (n= 29), lung
cancer (n= 28), colorectal cancer (n= 30), stomach cancer
(n= 30), thyroid cancer (n= 28) from the First Affiliated Hos-
pital of Anhui Medical University in Hefei, China was further
investigated as an external validation cohort in the present study.
Unfortunately, in the Hefei cohort blood samples for pancreatic
cancer were not available. The general characteristics of all the
patients and controls were summarized in Table 1. These six
types of cancers were selected because they were listed among top
10 cancers in China40,41. The diagnoses of all the cancers were
made by pathological verification Specific histopathologic types of
cancers were adopted in the current study, including hepatocel-
lular carcinoma (HCC), non-small cell lung adenocarcinoma
(NSCLC), pancreatic ductal adenocarcinoma (PAAD), colorectal
adenocarcinoma (CRC), gastric adenocarcinoma (GC) and
papillary thyroid carcinoma (PTC). None of the patients received
any treatment for cancer before serum samples were collected,
including surgery, chemotherapy, radiotherapy, etc. In contrast,
non-cancerous healthy controls of 203 individuals had normal
biochemical profiles (including serum tumor antigens), negative
ultrasound (abdominal, thyroid), radiological (lung), and endo-
scopic (colorectum, gastric) findings, and no previous history of
any type of cancer.

Both GNS and SiNW-assisted LDI tests on a serum sample
yielded rich information with numerous peaks, with subtle variations
among cancerous samples and controls. These multiplexed
fingerprinting information by different nanomaterials were then
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Fig. 1 Preparation of two nanomaterials for MNALCI. a Characterization of gold nanoshell (GNS): SEM showing relative uniform size distribution ~150 nm
in diameter and the rough surface feature (n≥ 5 randomly selected). b TEM images (n≥ 3 randomly selected) and EDX analysis of the elemental
distribution with O (azure), Si (red) and Au (yellow), proving the core-shell nanostructure. c Characterization of porous silicon nanowires: cross-section
SEM image of the etched Si wafer showing high density nanowires forest (n≥ 5 randomly selected). (inset), TEM image showing highly porous nature of
individual nanowires (n≥ 3 randomly selected). d Schematic of GNS and SiNW-assisted LDI measurement. e Comparison of typical LDI signals of a
representative serum sample mixed with GNS, SiNW and CHCA.
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combined and analyzed by a machine learning classifier. A wrapper
approach was used to conduct feature selection. An SVM recursive
feature elimination (SVM-RFE) procedure was adopted to order
variables to the norm of the weights. First, all data were taken to
compute the norm of the weights for different features. Then the
features with the smallest norm were eliminated. This process is
repeated until all features are ranked42,43. To establish metabolic
fingerprints for pan-cancer diagnosis and classification, we used an
SVM based approach44. As a popular classification algorithm for
computer vision, medical imaging, and bioinformatics, SVM finds
decision boundary in a high or infinite vector space by maximizing
the distance between the hyperplanes. Additionally, ensemble
learning was applied to combine multiple weak classifiers into a
stronger one45.

The Shanghai cohort was split into a training cohort and an
internal validation cohort (Supplementary Fig. 3). A two-step SVM
procedure was devised for MNALCI to map the metabolite profiles
in the training cohort, including 643 cancer patients and 163 healthy
controls (Fig. 2a and Supplementary Fig. 3). The first SVM classifier
separated cancerous samples and healthy controls, based on GNS,
SiNW, or both. The fusion model which combined GNS and SiNW
enabled a 99% sensitivity at 93% specificity as exhibited on the
Receiver Operating Characteristic (ROC) curve. The sensitivity and
specificity were calculated under the binary classification between
cancerous samples and healthy controls. The area under the curve
(AUC) of the fusion model was 0.994 for distinguishing cancers
from healthy controls, which was superior to either GNS or SiNW-
assisted model alone (Fig. 2b). After discriminating cancer patients
from healthy controls, a second SVM classifier was used to
distinguish among six different cancers. As shown in the confusion
matrix, under the specificity of 93%, the overall accuracy of fusion
model was 91% for multi-cancer classification where the individual
accuracy varied between 83% for NSCLCs and 98% for HCCs and
PAADs among different cancer types and controls (Fig. 2c). In
contrast, the accuracy of GNS-assisted SVM model was 87% at 82%

specificity (Supplementary Fig. 4a), while that of SiNW-assisted
SVM model was 86% at 84% specificity (Supplementary Fig. 4d).

To evaluate the accuracy of MNALCI, we first tested with the
single-blinded internal validation cohort, including 162 patients
and 40 healthy controls. For distinguishing cancers from healthy
controls, the fusion model had 93% sensitivity at 91% specificity,
and an AUC of 0.999 (Fig. 2d). At 91% specificity, the fusion
model for multiclass cancer discrimination had an overall
accuracy of 92%, ranging from 82% for NSCLCs to 100% for
PAADs, HCCs and PTCs (Fig. 2e). In contrast, the accuracy of
GNS-assisted model was 84% at 86% specificity, while that of the
SiNW-assisted model was 85% at 78% specificity (Supplementary
Fig. 3b, e). Then we tested with another single-blinded external
validation cohort (Hefei cohort), including 145 patients and 30
healthy controls. The fusion model had 84% sensitivity at 84%
specificity, and an AUC of 0.990 (Fig. 2f). At 84% specificity, the
fusion model for multiclass cancer discrimination had an overall
accuracy of 85% (Fig. 2g). The accuracy of GNS-assisted model
fell to 77% at 73% specificity and that of SiNW-assisted model fell
to 77% at 84% specificity (Supplementary Fig. 4c, f).

In a cancer-screening scenario, it is imperative to have very
high specificity to avoid false positive results and unnecessary
anxiety. To this end, a threshold value (θ) was introduced. As θ
increases, the specificity increases while the sensitivity decreases
(see supplementary for more details). For the fusion model, the
highest accuracy was achieved when θ was set to 1.0
(Supplementary Data 1). When the specificity was raised to
98% as θ increases, the overall accuracy of cancer classification
persisted at 87% (Supplementary Fig. 4a). This result was much
better than single nanomaterial-assisted models (Supplementary
Figs. 5d and 4g), which is consistent seen in both internal and
external validation results (Supplementary Fig. 5).

Clinical implications of MNALCI. Besides cancer identification
and classification, MNALCI also provided important clues for

Table 1 Summary of patient and healthy control clinical characteristic.

Patient type Cohort N Gender Age AJCC stage

M F I II III IV

HCC Training 111 93 18 55.41 ± 10.67(25–80) 41 37 33 –
Internal 28 27 1 55.54 ± 13.35(31–77) 10 11 7 –
External 29 24 5 56.66 ± 8.22(38–74) 23 3 3 –

NSCLC Training 60 30 30 57.63 ± 11.88(30–80) 41 9 8 2
Shanghai 16 3 13 59.50 ± 9.54(40–76) 11 3 2 –
External 28 7 21 58.46 ± 10.35(36–74) 25 3 – –

PAAD Training 77 44 33 64.03 ± 8.44(47–83) 26 38 9 4
Internal 20 14 6 60.50 ± 9.20(45–80) 5 8 4 3
External / / / / / / / /

CRC Training 191 119 72 60.50 ± 10.63(31–84) 24 41 26 100
Internal 47 32 15 58.23 ± 10.98(29–83) 2 11 6 28
External 30 18 12 64.57 ± 9.26(48–84) 16 – 14 –

GC Training 96 61 35 57.84 ± 11.24(28–81) 2 8 33 53
Internal 23 17 6 54.48 ± 11.77(26–76) – 3 7 13
External 30 20 10 56.77 ± 11.60(35–84) – 2 8 20

PTC Training 108 28 80 43.79 ± 12.13(21–67) 94 13 1 –
Internal 28 9 19 42.29 ± 9.91(27–62) 27 1 – –
External 28 8 20 44.82 ± 9.30(24–62) 26 2 – –

HC Training 163 93 70 47.29 ± 10.60(23–76) / / / /
Internal 40 24 16 49.27 ± 11.45(28–70) / / / /
External 30 22 8 42.40 ± 6.43(31–52) / / / /

HCC hepatocellular carcinoma, NSCLC non-small-cell lung cancer, PAAD pancreatic adenocarcinoma, CRC colorectal carcinoma, GC gastric cancer, PTC papillary thyroid carcinoma, HC healthy control,
Internal The patients and healthy controls for the internal validation set from Zhongshan Hospital, Fudan University, Shanghai, China as an internal validation cohort, External The patients and healthy
controls for the external validation set from the first Affiliated Hospital of Anhui Medical University, Hefei, China as an external validation cohort, M male, F female, AJCC American Joint Committee on
Cancer.
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potential small-molecule biomarkers. After training with can-
cerous patients and healthy controls, top 10 discriminative m/z
features of each cancer type vs healthy control along with their
corresponding P values were selected for GNS and SiNW-assisted
LDI, respectively (Fig. 3a–i and Supplementary Data 2). Unlike a
box plot in which all of the plot components correspond to actual
datapoints, the violin plot features a kernel density estimator of
the underlying distribution that illustrates the overall probability
density. Heatmaps with top 30 features were also generated for
visualization of the differences among six types of cancers as well
as healthy controls (Supplementary Figs. 6 and 7). The unique
metabolites, represented by different clusters of m/z values,
underscored the differences in metabolome found in the circu-
lation of each cancer type. Furthermore, across these top m/z
peaks for different cancer types, 8 metabolite biomarkers were
identified and confirmed with LDI MS/MS and LC-MS/MS
(Supplementary Figs. S8–S23), namely 2-oxovaleric acid, hista-
mine, glucose, 5-hydroxymethyluracil, 2-Furoic acid, methylma-
lonic acid, 4-methylcatechol and L-carnitine. Most of these
metabolites were reported elsewhere for the link of cancer
events46–52. Importantly, amongst all 120 m/z features, these 8
metabolites correspond up to ~30 signals from Fig. 3, while some
of the other m/z features may attribute to different ionization or
fragments of the metabolites. It is also interesting to notice
that some of the metabolites showed a preference for GNS or

SiNW-assisted LDI. For example, 5-hydroxymethyluracil, which
corresponded to m/z= 164.98, appeared 4 times in Fig. 3 with
GNS-assisted LDI while methylcatechol, which corresponded to
m/z= 147.02, also appeared 4 times in Fig. 3 with SiNW-assisted
LDI, indicating different interaction mechanism between analytes
and nanomaterials. In addition, all LDI MS/MS spectra of the
discriminatory features presented in Fig. 3 were showed in the
supplementary materials (Supplementary Fig. 24–35).

The ability to detect cancers at relatively early stages is one of
the most important attributes for an excellent diagnosis. In the
present study, AUCs of almost all cancer types reached 1.000 in
the training cohort, internal validation cohort and external
validation cohort under ideal settings: each individual cancer
group alone vs. healthy controls, without the interference of other
cancers (Supplementary Fig. 36). Next, we further generated ROC
curves for each type of cancer using all patients vs healthy
controls of Shanghai cohort according to different cancer stages,
with the exception of GC due to limited number of early-stage
patients in our cohort. The AUC for the earliest-stage cancers
(stage I) was 0.999 for HCC, 0.922 for NSCLC, 1.000 for PAAD,
0.998 for CRC and 0.969 for PTC. Actually the median AUCs
were similar for all four stages, namely 0.998 for stage I cancer,
0.9992 for stage II (ranging from 0.935 for NSCLS to 1.000 for
PAAD), 0.9997 for stage III (ranging from 0.966 for NSCLC to
1.000 for HCC and PAAD), and 0.9998 for stage IV (ranging

Fig. 2 Detection and classification of cancers by MNALCI. Flow Diagram for MNALCI (a). ROC curves with the best accuracy of the GNS-assisted SVM
model, SiNW-assisted SVM model and the fusion model for distinguishing patients from healthy controls in the training cohort (b), internal validation
cohort (d) and external validation cohort (f). Confusion matrix summarizing the cancer classification results in the training cohort (c), internal validation
cohort (e) and external validation cohort (g) using the fusion model.
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from 0.998 for PAAD to 1.000 for HCC) (Supplementary Fig. 37).
These results demonstrated huge potential of MNALCI spotting
patients with early-stage cancers.

Among the 6 different types of cancers included in the current
study, HCC, PAAD and CRC have relatively sensitive and specific
serum tumor antigen markers: AFP for HCC, CA19-9 for PAAD
and CRC, and CEA for CRC, respectively. Those three serological
markers are commonly used for cancer screening, as well as
surveillance after surgery or other treatment. We compared
MNALCI and those three tumor markers for HCC, PAAD and
CRC detection. In the Shanghai cohort, 47 of 137 HCC patients
(35.77%) were AFP negative (AFP < 20 ng/ml, stage I n= 18,
stage II n= 17 and stage III n= 12); 11 of 94 PAAD patients
(11.70%) were CA19-9 negative (CA19-9 < 37 U/ml, stage I n= 2,
stage II n= 7, stage III n= 1 and stage IV n= 1); 109 of 232 CRC
patients (46.98%) were CEA negative (CEA < 5 ng/ml, stage I
n= 24, stage II n= 35, stage III n= 22 and stage IV n= 28) and
149 of 230 CRC patients (64.78%) were CA19-9 negative (CA19-
9 < 37 U/ml, stage I n= 24, stage II n= 47, stage III n= 25 and
stage IV n= 53). Here, our study showed that MNALCI
recognized almost all AFP negative HCC, CA19-9 negative
PAAD, CEA or CA19-9 negative CRC. Only 2 of 137 HCCs
(1.46%), 1 of 94 PAADS (1.06%), 1 of 232 CRCs for CEA (0.43%)
and 2 of 230 CRCs for CA19-9 (0.87%) were misclassified as
healthy controls (Fig. 4a–d). In contrast, AFP positive and AFP

negative HCCs could not be well distinguished by this method,
neither could CA19-9 positive/negative PAADs or CEA positive/
negative CRCs (Supplementary Fig. 38). These results suggested
that MNALCI was independent of and superior to these tumor
markers.

Hotspot gene mutation tests of tumor tissues have emerged as
the basis for tumor molecular pathology, laying foundation for
tumor classification and precision medicine. In the Shanghai
cohort, 36 of 69 NSCLC tumors had EGFR mutation (52.17%), 49
of 103 CRC had KRAS mutation (47.57%), and 91 of 130 PTC
had BRAF mutation (70%). However, MNALCI showed no
significant difference between EGFR mutant patients and wild-
type patients in NSCLC, KRAS mutant and wildtype patients in
CRC and BRAF mutant patients and wildtype patients in PTC
(p= 0.680, 0.198 and 0.103, respectively). (Supplementary
Fig. 39). Therefore, MNALCI was unable to provide information
related to cancer genetic status.

Discussion
Unlike the widely used GC/LC-MS, MNALCI adopts biochemical
signatures derived by non-targeted semiquantitative mass spec-
troscopy for diagnosis. Instead of relying on a single biomarker,
MNALCI utilizes all metabolite signals detected between
100–1000 Da. In clinical laboratories, GC/LC-MS analysis of
small metabolites is typically developed with the knowledge of

Fig. 3 Discriminating features of each cancer type versus healthy controls. Violin plots of top 10m/z LDI intensity distributions of each cancer type vs
healthy control chosen by MNALCI. (The middle dash lines indicated median value of the LDI intensities of each corresponding m/z while the upper and
lower dotted lines indicated intensity values of first quartile and third quartile. Gray represented healthy control while the colored represented cancer
patients). a HCCs vs healthy controls by GNS-assisted LDI. b HCCs vs healthy controls by SiNW- assisted LDI. c NSCLCs vs healthy controls of GNS-
assisted LDI. d NSCLCs vs healthy controls by SiNW-assisted LDI. e PAADs vs healthy controls by GNS-assisted LDI. f PAADs vs healthy controls by
SiNW-assisted LDI. g CRCs vs healthy controls by GNS-assisted LDI. h CRCs vs healthy controls by SiNW-assisted LDI. i GCs vs healthy controls by GNS-
assisted LDI. j GCs vs healthy controls by SiNW-assisted LDI. k PTCs vs healthy controls by GNS-assisted LDI. l PTCs vs healthy controls by SiNW-assisted
LDI. It should be noted that all red bolded numbers represented for certain metabolites discovered in this report. (Supplementary Figs. 8–23).
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their chemical structures53,54. In contrast, the MNALCI does not
require the knowledge of chemical structures of specific meta-
bolites, but mainly relied on the overall fingerprint of a group of
metabolites, which could be statistically quantified and compared.
This strategy is ideally suited for low-cost and high-throughput
diagnosis. Here, we showed that serum metabolome revealed by
MNALCI could offer valuable diagnostic information for up to
six different major cancers, clearly demonstrating that trace
amount of serum could be employable for pan-cancer screening.
The subtle alteration of metabolome underlying each type of
cancer was adequately captured by this method. It would be
interesting to characterize, investigate and compare the key
metabolites underlying those discriminative m/z values among
different cancers in future mechanistic studies.

In the present study, we took advantage of SVM and ensemble
learning. SVM scaled relatively well to high-dimensional data,
provided good generalization, and delivered a global solution.
Thanks to two independent nanomaterials, ensemble learning
combined two weak classifier (GNS and SiNW) into a strong one
(fusion model), which significantly improved the overall accuracy
of both cancer diagnosis and classification. For example, in the
internal validation test, the fusion model avoided 20 mistakes
during the binary classification process and 17 mistakes in the
cancer classification process, which could have been inaccurately
classified using single nanomaterial-assisted model (Supplemen-
tary Fig. 40, Table 10). GNS and SiNW varied considerably in

their ionization/desorption efficiencies, resulting in different
sensitivity across the m/z spectrum for LDI, thus providing the
rationale for utilizing two nanomaterials.

It should be reiterated that MNALCI does not mean to replace
other methods developed for liquid biopsy. On the contrary, we
believe this approach could be combined with screening strategies
based on other biomarkers, such as mRNA, miRNA, mutated or
5-Hydroxymethylated cfDNA, circulating proteins, etc5,8,55,56. As
shown in Supplementary Fig. 39, our assay was unable to dis-
criminate common pathogenic mutations in NSCLC, CRC and
PTC. Nevertheless, liquid biopsies based on cfDNA mutations rely
heavily on the presence of driver gene mutations, whose sensitivity
could be compromised for those cancers with negative driver
mutations, which accounted for a significant portion of cancers9.
The combination of multiple liquid biopsy strategies could provide
additional information and further enhance the accuracy in
diagnosing cancers and identifying the tumor tissue of origin.

Despite these promising results, the current study has several
limitations. First, the sample size of the external validation cohort
was small and without PAAD patients. Future studies should
ideally include multi-center blinded cohorts with larger size and
comparable composition of cancers for validation. Secondly, for
each type of cancer, the total number of patients included was
relatively small for machine learning. If more cancer types were
included, the accuracy for classifying each individual cancer could
be compromised. Nevertheless, the accuracy of MNALCI is

Fig. 4 Comparison between MNALCI and serum tumor antigens in diagnosing specific cancers. The cutoffs for MNALCI score (the horizontal line) were
set to 1.0 for the highest accuracy while the cutoffs for tumor antigens (the vertical line) were as per manufacturer’s recommendation. a Comparison of the
probability by MNALCI with serum AFP for the detection of HCC and healthy control. b Comparison of the probability by MNALCI with serum CA19-9 for
the detection of PAAD and healthy control. c Comparison of the probability by MNALCI with serum CEA for the detection of CRC and healthy control.
d Comparison of the probability by MNALCI with serum CA19-9 for the detection of CRC and healthy control. Fusion models were applied to all four
figures.
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expected to increase if more high-quality data are available for
training. Third, the discrimination relied mainly on the clusters of
m/z and some of the metabolites (Fig. 3a–i and Supplementary
Fig. 8–23), without knowing the identities of all the small meta-
bolites. Finally, systemic factors such as chronic or transient
inflammatory diseases, metabolic diseases, and other non-
cancerous diseases may also influence the metabolic profile.
These interfering conditions should be evaluated in future studies.

Our study has laid conceptual and practical foundation for a
cost-effective and high-throughput technique for screening mul-
tiple cancers. The cost of the test is estimated to be less than $100
in the foreseeable future and a fully equipped lab can facilitate the
measurement and analysis of over 3000 samples per day. The 6
cancer types studied here accounted for 3,929,000 newly diag-
nosed cancers and 2,338,000 (65%) of the estimated cancer deaths
in China in 201541,57. Prospective studies in a large population
will be required to validate its clinical utility. With more opti-
mization and data training, MNALCI could ultimately be trans-
lated to clinics to assist precision medicine, helping define and
locate common malignancies.

Methods
Preparation of silicon nanowires (SiNWs). n-Si (100) wafer with a resistivity of
0.008–0.02Ω·cm was used for porous silicon nanowires through a two-step method:
Firstly, Si pieces were immersed into a buffered oxide etchant for 2min to remove the
native oxide layer. Then, the Si pieces were immediately transferred into an Ag
deposition solution containing 4.8M HF and 0.005M AgNO3 for 1min at room
temperature. The Ag-deposited silicon pieces were sufficiently rinsed with deionized
water to remove extra silver ions and then immediately soaked into an etchant bath
composed of 4.8M HF and 0.8M H2O2 for 60min. At the target etching time, the Si
pieces were through washing by water to remove surface Ag as well as HF residues.
Afterwards, the Si pieces were immersed into concentrated HNO3 to remove Ag
residues and obtain the pure silicon nanowires for 1 h. The nanowire solution was
prepared by simply sonicating the etched wafer in DI water (Supplementary Fig. 2b).

Preparation of gold nanoshells (GNS)
APTES functionalization of silica core. 0.5 ml silica nanosphere (120 nm, Tianjing
Daer Science and Technology Ltd, also see the SEM of Supplementary Fig. 1d)
solution of concentration (2.5%) were mixed with 10mL ethanol, and ultrasonicated
for 2 min to obtain uniform dispersion. Then, 150 ul 3-aminopropyltriethoxysilane
(APTES) was added into the sol-gel solution under stirring, followed by 3 h heat
batch treatment at 90 °C. After cooling to room temperature, the as-functionalized
nanoparticles were washed three times in ethanol by centrifugation at 2700 × g for
10min, and finally resuspended in 2 mL ethanol.

Modification of silica core with gold seeds. Colloidal Au nanoseed was synthesized
by Tetrakis (hydroxymethyl) phosphonium chloride (THPC) reduction of chlor-
oauric acid. The THPC solution was prepared by mixing 0.5 mL of 1M NaOH,
12 mL of THPC and 47.5 mL of H2O. Under rapid stirring, 2.06 mL of 1 wt%
aqueous chloroauric acid (HAuCl4· 3H2O) was quickly added and a color change to
medium brown color can be observed in 1 min, indicating the formation of gold
nanocolloids. The final solution was stored and aged at 4 °C for at least 12 h before
use. The size of the seeds is estimated to be around 4 nm according to the UV
absorption (Supplementary Fig. 1b). To decorate the silica nanospheres with gold
nanoseeds, 2 mL amine-functionalized silica nanospheres in ethanol was mixed
with 2 mL above gold seed solution and 6 mL water at ambient condition and kept
for 10 min and transferred to 4 °C for at least 24 h. Finally, the gold-seeded silica
nanospheres were washed three times, resuspended in 2 mL water and stored at
4 °C (Supplementary Fig. 1e).

Growth of gold nanoshells. 25 mg of potassium carbonate were dissolved in 100 mL
DI water, and 2 mL of 1% HAuCl4· 3H2O was added to produce a colorless
solution. This solution was aged at least 24 h before use. While stirring vigorously,
20 ul of gold nanoseeds modified silica nanoparticles was added to 8 mL of the
above solution. After stirring for 10 min, 50 µL formaldehyde (37%) as reducing
agent was slowly added, and continue to stirring for 24 h for complete reduction.
The resulted production was washed with DI water for at least three times before
following biosensing usage (Supplementary Fig. 1f).

Clinical samples. Human serum samples in the training and internal validation
cohort were collected at Zhongshan Hospital Fudan University in Shanghai, China.
Serum samples in the external validation cohort were collected at the First Affili-
ated Hospital of Anhui Medical University in Hefei, China. All cancer diagnoses
were based on pathology. All the serum samples were collected before treatment,

including surgery, chemotherapy, radiotherapy, etc. All samples were anonymized,
and only the gender, age and cancer-related lab results and pathological diagnosis
were recorded. The healthy control serum samples in the training and internal
validation cohort were collected at the Medical Examination Center (MEC) of
Zhongshan Hospital Fudan University and control samples in the external vali-
dation cohort were collected at the MEC of the First Affiliated Hospital of Anhui
Medical University. All healthy controls had normal biochemical profiles
(including serum tumor antigens), negative ultrasound/radiological findings and
no previous history of any type of cancer. All relevant ethical regulations were
complied with. The study was approved by the Ethics Committee of Zhongshan
Hospital Fudan University and the First Affiliated Hospital of Anhui Medical
University. Written informed consent was obtained for all participants.

LDI test of serum samples. All MS measurements were performed on an Autoflex
Max mass spectrometer (Bruker Daltonics, Bremen, Germany), within a mass
range of 100–1000 Da, while the spectra were manually examined using the
FlexAnalysis 3.4 software (Bruker Daltonics, Bremen, Germany). In a typical
process, 0.5 uL of serum samples were spotted on a polished steel target plate MTP
384 and air-dried followed by another 1 uL of GNS or SiNW nanomaterials. The
MS spectra were acquired in the reflection positive mode with smartbeam-II laser
at 355 nm with a laser frequency of 1000 Hz.

A random walk of 25 shots at raster spot and 20 different spots were measured
for each individual sample, therefore, 500 satisfactory shots were obtained.
Evaluation parameters were set so that only spectra containing at least one peak
with a resolving power of greater than 300 and a signal-to-noise ratio of more than
30 in the m/z range of 100–500 were accumulated. The MS/MS measurements were
conducted under a TOF/TOF LIFT mode.

The overall performance of the mass spectrometer was checked every 9 samples
as a group using a stocked human serum standard (aliquoted and frozen). In
addition, a “home-made” standard consisting serine (m/z= 105.09), glucose (m/
z= 180.16), tryptophan (m/z= 204.23), sucrose (m/z= 342.29), maltotriose (m/
z= 504.44) and amylopentaose (m/z= 828.72) was test each run for calibration.
After calibration for each run, all the standard spots were collected for a PCA
analysis, the results were considered consistent when the intensity data of the
standard spectrum were gathered within a predetermined range. Any outlier
standard will need to be retested altogether with the other 8 samples in the
same group.

LC-MS/MS verification
Sample preparation. 100 μL of 80% methanol was added into a 2 mL centrifuge tube
with 50 μL of serum samples. The samples were vortexed for 10 s before ultrasonic
oscillation at 4 °C for 30 min. After which, the samples stood at 4 °C for 60 min and
centrifuged at 13,780 × g at 4 °C for 10 min. The supernatant was then taken and
sampled for LC-MS/MS analysis.

LC-MS/MS analysis. Instruments:
Liquid Chromatography: Waters ACQUITY UPLC;
Mass Spectrometry: (AB SCIEX 5500 QQQ-MS).
Column: Waters Acquity UPLC HSS T3 (1.8 µm, 2.1 mm × 100 mm)
Chromatographic separation conditions: Column temperature: 40 °C; Flow rate:

0.30 mL/min; Mobile phase composition: mobile phase A is water +0.1% formic
acid, mobile phase B is acetonitrile; Running time: 5 min; injection volume: 5 uL.

MS parameters. Ion source: ESI+; Curtain Gas: 35 psi; Collision Gas:9 arb; Ion
Spray voltage: −4500 V; Temperature: 450 °C; Ion Source Gas1:55 arb; Ion Source
Gas2: 55 arb.

Multiple reaction monitoring (MRM) acquisition. The development process of the
multiple reaction monitoring (MRM) mass spectrometry method was as follows.
First, the parent ion Q1 was found, then the collision energy was changed from
small to large, and the parent ion was crushed. Different ion pairs are produced
according to different energy sizes. During the development of the method, the
most appropriate collision energy was optimized to form ion pairs with obvious
characteristics and high response. The selected specific parent ions were induced to
collide, and the interference of other ions was eliminated. Only the selected specific
parent ions were collected by mass spectrometry. Sub ions should be at least three
times stronger than the parent.

The gradient of mobile phase

Time (min) Flow rate (mL/min) %A %B Curve

Initial 0.300 90.0 10.0 Initial
1.00 0.300 90.0 10.0 6
3.00 0.300 10.0 90.0 6
4.00 0.300 10.0 90.0 6
4.10 0.300 90.0 10.0 6
5.00 0.300 90.0 10.0 6
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Threshold value θ. After MNALCI scores (see Details of Data Analysis) were
obtained from all the samples, a threshold value θ was introduced as a parameter
that determined the boundary between cancerous patients and healthy controls,
where:

cancerours;MNALCIscore≥ θ

healthy;MNALCIscore < θ

�

As θ increases, more samples were considered healthy, hence the specificity
increases while the sensitivity decreases. θ ranges between 0.0 and 1.0 for single
model and the highest accuracy (minimum false positive and false negative) was
achieved when θ was set to 0.5. For fusion model, θ ranges between 0.0 and 2.0. The
highest accuracy was achieved when θ was set to 1.0 (Supplementary Data 1).
However, in a large population screening scenario, we wanted to ensure high
specificity to avoid misdiagnosing healthy controls. Detailed calculations of the
internal and external validation cohorts were presented in Supplementary
Data 3–6.

Overall workflow of data analysis. The overall workflow was composed of data
preprocessing, model training and model validation. An internal validation cohort
from Zhongshan Hospital, Fudan University and an external validation cohort
from the First Affiliated Hospital of Anhui Medical University were used to test
MNALCI. After the threshold value (θ) was set for different specificity, SVM model
was built to compute the average validation error.

Data preprocessing. In order to obtain reliable results, the Mass Spectrometry
dataset of Zhongshan cohort was randomly divided into two partitions. A part of
80% was used as a training cohort; the other 20% was left as internal validation
cohort to verify the supervised machine learning model. The training cohort and
the (internal and external) validation cohort were prepared separately but using the
same strategy. First, like other analytical platforms, the raw data were preprocessed
with several data preprocessing steps such as baseline correction and noise
reduction. This was followed by normalization step, which could ensure repro-
ducible comparisons. Finally, a calibration procedure was employed.

Training model. The supervised decision-making model proposed for cancer dis-
crimination had following steps:

1. Five times five-fold cross-validation. We divided the training cohort into
two subsets, one was T-training cohort with 80% of training cohort, the
remaining 20% was a T-validation data set. This process would be repeated
for 5 times to get the average training error.

2. Model training. Support Vector Machine (SVM) was applied as the
classifier, data from T-training cohort was considered as input, then the
trained SVM model was tested by the T-validation cohort and we could get
the training error. After we developed all the 5 times 5-fold cross-validation,
the average train error was obtained to train the hyper-parameters. In the
end, the training model was built by the whole training cohort with the
hyper-parameters.

Validation model.

1. Internal validation. When a threshold value was selected, the internal
validation dataset was used to compute the internal validation error.

2. External validation. Another single-blinded external validation cohort from
the First Affiliated Hospital of Anhui Medical University was tested to
obtain the final external validation error.

SVM. Support vector machine (SVM), a supervised machine learning method, was
usually applied to the two-class classification problem using a hyperplane. This
learning strategy was to maximize the margin, and SVM solution would be
transformed into a convex quadratic programming problem. It showed great
advantages solving high-dimensional small sample classification problems. The
basic idea of SVM classification was to find a hyperplane to divide the data, and
used the support vector to maximize the segmentation of the data. The basic
mathematical model was:

max
w;b

1
kwk

s:t: yiðwT � xi þ bÞ � 1≥ 0; i ¼ 1; 2; � � � ; n

where ðxi; yiÞ was the sample point of the data set, and w; bð Þ was the hyperplane.

Ensemble learning. Ensemble learning optimized the algorithm by building and
combining multiple classifier systems. In order to customize a pan-cancer diag-
nostic model, an important model of ensemble learning, namely voting method
was applied to provide better predictive results. For separating cancer and health

controls, majority-voting model was used:

HðxÞ ¼ cj; if ∑
T

i¼1
hjiðxÞ> 0:5 ∑

N

k¼1
∑
T

i¼1
hki ðxÞ

reject; otherwise

8<
:

where hi was a single classifier, fc1; c2; � � � ; cN g was the set of categories, hjiðxÞ was
the output of classifier hi on category tag cj .

For the multiclass cancer classification, we implemented the One vs. Rest (OvR)
approach: six cancer probabilities were separately obtained by the soft voting
method where the highest predicted result was chosen as the output.

Details of data analysis. A two-step SVM approach was applied to discriminate in
the validation cohort. Firstly, in the binary classification step, SVM was used to
differentiate cancers and healthy controls based on GNS-assisted and SiNW-
assisted model, respectively. The classification result was obtained by the fusion
model when the MNALCI score (sum of the probabilities of GNS and SiNW-
assisted models) was greater than 1.0. Secondly, for the multiclass cancer dis-
crimination step, a One vs Rest (OvR) approach was constructed. After which each
model of the corresponding cancer had a probability by adding the probabilities of
GNS and SiNW-assisted models, and the specific cancer was indicated with
maximum probability.

For the relatively complex multiclass cancer discrimination step, six examples
with detailed calculation were selected to exemplify different situations
(Supplementary Data 7, threshold= 1.0):

(a) Both single models classified correctly: For HCC14386 (patient ID), both
GNS-assisted and SiNW-assisted models classified the patient into HCC
correctly, with the highest probabilities (0.998 and 0.988, respectively)
among all the six cancers. As a result, the fusion model also had the highest
sum probability of 1.986 for HCC.

(b) Fusion model classified correctly but single model did not: For CRC266
(patient ID), GNS-assisted model misclassified the patient into NSCLC with
probability 0.493, while both SiNW-assisted and fusion models classified the
patient into CRC with the probability 0.652 and 1.105. For GC404 (patient
ID), GNS-assisted model classified the patient into HCC with probability
0.904 so did fusion model (with a probability of 1.356), but the SiNW-
assisted model misclassified the patient into CRC with the probability 0.546.

(c) Single model classified correctly but fusion model did not: For Lungca053
(patient ID), GNS-assisted model classified the patient into GC with a
probability of 0.665, which was the correct category. The SiNW-assisted and
the fusion model classified the patient into CRC incorrectly with the
probability 0.928 and 0.954, respectively. For CRC206 (patient ID), SiNW-
assisted model classified the patient into CRC (the correct category) with a
probability of 0.569, however, both fusion model and GNS-assisted model
classified the patient into CRC incorrectly with probabilities of 0.959
and 1.237.

(d) Neither single model classified correctly: For Lungca028 (patient ID), GNS-
assisted model misclassified the patient into CRC with the probability 0.533
while SiNW-assisted model misclassified the patient into GC with the
probability 0.527, neither of which was correct. As a result, the fusion model
also fell to the wrong category, with the highest sum probability 1.060 for CRC.

Statistical analysis. Statistical significance of the data was calculated at 95%
(p < 0.05) confidence intervals, which were calculated by binomial distribution.
MALDIquantForeign version 0.12 package in R version 3.4.4 to convert the ori-
ginal data from mzml format to csv format. Data processing and machine learning
were carried out with the Python programming language (Python version 3.7.3),
Numpy library version 1.17.2 and Pandas library version 0.25.1 for data processing
and Scikit-learn version 0.21.3, Scipy version 1.3.1 for feature selection and
machine learning. The confusion matrix, scatter diagram and ROC diagram are
drawn by matplotlib version 3.1.1. The violin diagram is drawn by seaborn version
0.9.0. To test the accuracy of the cancer discrimination, ROC curves were applied
for three different situations (GNS, SiNW, GNS + SiNW). ROC curves and AUC
values were performed by Scikit-learn (https://scikit-learn.org).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The complete data used in this study are not publicly available due to ethical restrictions.
The complete data that support the findings of this study (e.g., age, sex, LDI data, etc.) are
available from the corresponding author for research purpose only and the request will
generally be answered to within 2 weeks.

Code availability
The custom computer code utilized in this study can be found at https://github.com/
zhengjiewhu/MNALCI.
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