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Abstract

We present a scalable, integrated strategy for coupled protein and RNA detection from single cells. Our approach
leverages the DNA polymerase activity of reverse transcriptase to simultaneously perform proximity extension
assays and complementary DNA synthesis in the same reaction. Using the Fluidigm C1™ system, we profile the
transcriptomic and proteomic response of a human breast adenocarcinoma cell line to a chemical perturbation,
benchmarking against in situ hybridizations and immunofluorescence staining, as well as recombinant proteins,
ERCC Spike-Ins, and population lysate dilutions. Through supervised and unsupervised analyses, we demonstrate
synergies enabled by simultaneous measurement of single-cell protein and RNA abundances. Collectively, our
generalizable approach highlights the potential for molecular metadata to inform highly-multiplexed single-cell analyses.
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Background
Recently, there has been an explosion of papers that

utilize highly-multiplexed single-cell RNA profiling

(through quantitative reverse transcription-polymerase

chain reaction (qRT-PCR) [1, 2] or sequencing [3–9]) to

investigate the extent, causes, and consequences of cellu-

lar heterogeneity. Although incipient, this body of work

has convincingly demonstrated that covariation in gene

expression across single cells can be used to identify dis-

tinct cell states and circuits, as well as their molecular

markers and drivers, respectively [1, 2, 4–10]. In parallel,

orthogonal studies have shown that endogenous protein

levels and activity can vary dramatically between single

cells [1, 11–14] with important functional consequences

and predictive power [1, 11, 12, 14]. Nevertheless, a

gene’s RNA and protein levels do not necessarily

correlate [15–18] and the long-standing question of how

RNA expression patterns covary with and are driven by

the levels and activities of various protein species re-

mains underexplored [10, 15, 19, 20].

To date, given the limited number of RNAs and pro-

teins that can be simultaneously assayed in situ and the

noise associated with any one measurement [3, 10], the

state-of-the-art has been to quantitatively record the levels

of select cell surface proteins (index sort) during the

fluorescence-activated cell sorting (FACS)-based isolation

of single cells that normally precedes single-cell RNA pro-

filing. This and related approaches can effectively link pre-

cision single-cell protein measurements – and thus much

of the scientific community’s accrued data and knowledge

– to high-dimensional single-cell RNA profiles, enabling

deeper insights [1, 10, 21–24]. However, these techniques

are fundamentally limited in both the number (ntotal ~15

due to spectral overlap [10, 25]) and type of protein tar-

gets (extracellular, since the fixation and permeabilization

required for intracellular staining can degrade cellular

RNA [26, 27]) they can assay.
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One potential way to address these shortcomings of

scope and scale is to encode the abundance of both

RNAs and proteins in DNA space using reverse tran-

scription (RT) [2] and proximity extension assays (PEA)

[28], respectively – this renders both analytes stable,

amplifiable, and quantitatively detectable (Fig. 1). The

latter method, PEA, is a continuation of the proximity

ligation assay (PLA) [29] that relies on the binding of

two antibodies in proximity to generate a DNA reporter

with low background noise. In PEA, pairs of monoclo-

nal or polyclonal antibodies are functionalized with

pairs of single-stranded DNA oligonucleotides with com-

plementary 3’ ends. When co-localized by binding to their

target protein, these oligonucleotides hybridize and can be

extended by a DNA polymerase to generate a protein-

indexed DNA molecule. This DNA reporter can then be

co-amplified with complementary DNA (cDNA) [2] and

co-detected by qPCR or sequencing. Importantly, PEA

has greatly enhanced detection specificity over assays that

rely on single antibody binding, such as flow cytometry or

immunofluorescence (IF), due to its reliance on dual rec-

ognition by pairs of antibodies [30].

To date, this enhanced specificity has enabled multi-

plexed detection of antigens in 1 μL plasma samples

[28] and even single-cell lysates [31]. Indeed, we re-

cently demonstrated single-cell resolution for PEA-

based protein measurements in multiwell plates while

co-detecting RNA via qRT-PCR [31], echoing a previ-

ous report on a small panel of DNA, protein, and RNA

targets [32], and in line with recent work that used

PLA and qRT-PCR in reverse-emulsion droplets to

examine the levels of a single protein and RNA [33]. In

these examples, cellular RNA and protein expression

were simultaneously profiled by splitting the lysate

from a single cell (in half, three unequal portions

(20:40:40), or half, respectively).

Although significant first steps, these demonstrations

suffered from a few major shortcomings, most notably:

(1) material loss associated with sample transfer, which

reduces sensitivity and increases technical noise [31, 32];

and, (2) complicated workflows that are technically chal-

lenging to implement on multiple targets in a scalable,

unified fashion, such as with an integrated fluidic circuit

(IFC; like a C1 IFC [4, 21, 22]), reverse-emulsion drop-

lets [7, 8], or microwells [34, 35]. As one potential alter-

native, Frei et al. recently developed a proximity ligation

assay for RNA (PLAYR) to couple both RNA and pro-

tein quantification into a single mass cytometry readout

[36]. While this enables rapid evaluation of RNA and

protein across thousands of single cells, it is intrinsically

limited by the number of heavy metal tags available.

To increase the number of probes and cells that can

be simultaneously assayed, we have developed a new ex-

perimental method to detect and quantify several RNAs

Processing of up to 96 cells on the C1
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Fig. 1 Overview of the integrated PEA/STA protocol. a Workflow for PEA/STA detection in single cells. Gray and red represent PEA probe specific
and complementary oligonucleotides and their copies, black represents RNA, purple represents random primers, and blue represents cDNA reverse
transcribed and copied from RNA. b Schematic of the script used on the C1 system to perform PEA/STA
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and proteins from the same single cell in one reaction

chamber. Our approach utilizes reverse transcriptase as

the DNA polymerase for both RT of cellular RNA and

extension of PEA oligonucleotides to enable cDNA syn-

thesis and PEA to proceed in a single series of reactions

(see “Methods”). We implement our integrated profiling

protocol on the C1 system to examine single cells from

a human breast adenocarcinoma cell line (MCF7 cells)

treated with phorbol-12-myristate-13-acetate (PMA),

and benchmark our coupled RNA and protein mea-

surements against in situ hybridizations and IF staining,

respectively, as well as recombinant proteins, ERCC

Spike-Ins, and population lysate dilutions (see “Methods”).

Through a series of supervised and unsupervised compu-

tational analyses, we explore relationships between protein

and RNA abundance. Overall, our method and coupled

computational approaches provide a straightforward, scal-

able strategy for simultaneously studying the expression

of many proteins and RNAs in single cells that can be

adapted to a number of experimental configurations.

Results and discussion
We sought to identify a means of integrating the PEA

and cDNA synthesis workflows so that they could be

performed in a single series of reactions. In examining

both, we identified the possibility of coupling RT and

PEA oligonucleotide extension into a single step by ei-

ther reverse transcribing RNA with DNA polymerase or

extending the hybridized DNA oligonucleotides in PEA

with reverse transcriptase. Based on literature precedent

[37], we devised a coupled PEA/specific (RNA) target

amplification (STA) script for the C1 IFC that used the

latter methodology. More specifically, our workflow is as

follows (Fig. 1a): first, individual cells are isolated in the

96 capture sites of the C1 IFC. After washing, those cells

are lysed with a buffer containing the PEA probes and

incubated to achieve binding of the antibodies to their

protein targets. Next, a DNA polymerization reaction is

performed using reverse transcriptase to simultaneously

extend the hybridized, complementary oligonucleotides

conjugated to the PEA probes and reverse transcribe cel-

lular RNA into cDNA using random primers. Import-

antly, we omit a DNAse I treatment for removing

unwanted genomic DNA (gDNA) since it could destroy

the single-stranded or double-stranded oligonucleotides

on the PEA probes (when not hybridized or hybridized

to a complementary probe, respectively). Instead, to re-

duce unwanted gDNA contamination, we designed our

STA primers to span introns where possible (poly-dT

priming could also be used), enabling RNA and gDNA to

be differentiated via a melt-curve analysis of the qPCR

product amplicons. After generating DNA reporters for

protein and RNA abundance, multiplexed preamplifica-

tion PCR is performed: for proteins, a universal primer

pair amplifies all molecules generated by the oligonucleo-

tide extension reaction; for STA, a mix of gene-specific

primer pairs amplifies target cDNAs. Following harvest

from the C1 IFC, the stable, amplified DNA libraries can

be analyzed by high-throughput qPCR (or sequencing) to

quantify both protein and RNA targets (Fig. 1b).

In order to evaluate the performance of our adapted

PEA/STA reaction on the C1 IFC, we first examined

dilutions of recombinant proteins and cell population

lysates. The PEA probes, developed by Olink Proteo-

mics, are intended for analysis of plasma samples and

generally target secreted proteins. In previous work

[31], we extended the list of PEA assays to include

several intracellular targets. From this joint list, we

selected 38 for our current study (Additional file 1:

Table S1). To calibrate the sensitivity of the selected

assays, we backloaded a dilution series containing re-

combinant protein targets for 25 of the 38 assays into

the C1 IFC and processed it for PEA detection (see

“Methods” and Additional file 1: Table S2). For most

of those 25, such as a recombinant AXIN1 (Fig. 2a),

we observed a wide linear dynamic range spanning an

average 8 ± 2 two-fold dilutions (mean ± standard de-

viation; n = 23), suggesting effective PEA-based pro-

tein detection on the C1 (Additional files 1 and 2:

Table S3 and Figure S1).

While this experiment enabled us to determine mo-

lecular sensitivity (Additional file 1: Table S4) and linear-

ity for the majority of our assays, it did not provide

information on whether they were quantitative about

physiologically relevant, single-cell expression levels. To

directly test this, we similarly backloaded population lys-

ate dilutions into the C1 IFC and implemented our

PEA/STA protocol. In analyzing our data, we found that

27 of the 38 PEA probes showed linear, above back-

ground responses in a range that included 1.3 cell equiv-

alents of a bulk MCF7 cell lysate (Additional files 1 and

3: Table S5 and Figure S2a and “Methods”); we retained

these and removed the others (Additional file 3: Figure

S2b) for all subsequent analyses. Interestingly, we noted

two failure modes (Additional file 3: Figure S2b): some

PEA probes showed no signal while others appeared

constantly saturated across all cell equivalents (but not

in lysis buffer controls). For the former failure mode, we

observed agreement between our population lysate and

recombinant standard experiments (CSF3R_P and

TP53_P; Additional files 2 and 3: Figure S1b and S2b).

For the latter failure mode, one could envision decreas-

ing probe concentration [38] or spiking in antibodies

without DNA conjugates to achieve linearity, but both

strategies would require further testing to determine their

merits. For RNA, meanwhile, we only observed failure

due to a lack of detection. Of the 96 RNAs we attempted

to profile in parallel using gene-specific qPCR primer pairs
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(Additional file 1: Table S6 and S7), 89 showed linear re-

sponses to backloaded MCF7 lysate dilutions about the

single-cell level (Additional files 1 and 4: Table S5 and

Figure S3a); we retained these and removed the others

(Additional file 4: Figure S3b) for all subsequent analyses.

We propose that similar population lysate dilution assays

should be used to determine the reliability of untested

PEA or qPCR probes.

To directly test the performance of our combined

single-cell PEA/STA quantification protocol on single

cells, we chose to study MCF7 cells stimulated with PMA.

Selecting this system allowed us to examine how RNA

and protein levels, and their evolution over time, relate to

important cellular behaviors [12, 31], as PMA has been

shown to activate protein kinase C signaling, inhibit cell

growth, and induce apoptosis in this human breast adeno-

carcinoma cell line [39]. Cells were exposed to PMA for

0 hr (untreated), 24 hr, or 48 hr. After, a single-cell sus-

pension was loaded into a C1 IFC and processed accord-

ing to the workflow depicted in Fig. 1 (see “Methods”).

After culling cells that showed poor RNA expression

(Additional file 1: Tables S8 and S9 and “Methods”), 87,

71, and 70 single cells remained for further analysis at the

0 hr, 24 hr, and 48 hr time points, respectively.

Before thoroughly analyzing our dataset, we first

tested whether the patterns of heterogeneity we

observed across multiple single cells using the C1 were

biologically representative. For four genes (MKI67,

BIRC5, CASP8, and ICAM1), we measured single-cell

protein and RNA expression in situ using IF staining

and RNA-FISH (see “Methods;” characteristic images

shown in Fig. 2b, Additional files 5, 6, and 7: Figures

S4a, S5a, and S6a, respectively). Figure 2c, Additional

files 5, 6, and 7: Figures S4b, S5b, and S6b depict the

RNA (left column) and protein (right column) distributions

determined via PEA/STA (top row) or and in situ (bottom

row) detection. In general, we observe good qualitative

agreement with incongruences that can be attributed to

the greater sensitivity of the in situ detection methods.

Quantile-Quantile (Q-Q) plots (Fig. 2d, Additional files 5,

6, and 7: Figures S4c, S5c, and S6c for MKI67, BIRC5,

CASP8, and ICAM1, respectively) show that our STA

detection threshold approaches 4, 16, 8, and 4 RNA

molecules for MKI67, BIRC5, CASP8, and ICAM1, re-

spectively (assuming perfect RNA detection efficiency

with RNA-FISH), with deviations likely due to ineffi-

ciencies in RT and subsequent PCR. We observed simi-

lar or greater sensitivity for STA using backloaded

ERCC RNA Spike-Ins at known concentrations (see

“Methods;” Additional file 1: Tables S4, S10, and S11,

Additional file 8: Figure S7). Additionally, for BIRC5,

CASP8, and ICAM1 RNA, the Q-Q plots show a vertical

a b c

d

Fig. 2 Benchmarking of a combined PEA/STA workflow: AXIN1 and MKI67. a Two-fold dilutions of bulk population lysate (top) and recombinant
AXIN1 protein (bottom) were backloaded into the C1 IFC and detected using the same reactions conditions employed in the PEA/STA protocol.
Each data point plotted is the average of eight replicates and error bars show the standard error of the mean. Points used for fitting the red trend
line are colored blue. Gray (green) dashes show the level above which the probability for a detection event being real is p= 0.01 (0.05). b–d Validation of
protein and RNA detection in single cells using a coupled PEA/STA script on the C1 throughout a PMA perturbation time course (0 hr = purple, 24 hr = green,
48 hr = blue). b RNA fluorescence in situ hybridization (RNA-FISH) and protein IF staining of MKI67 RNA and protein was performed to validate the C1-based,
high-throughput RNA and protein measurements. Cyan (left) shows cell nuclei and boundaries,magenta MKI67 protein (middle), and yellow MKI67 RNA (right).
Scale bars indicate 25 μm. c Qualitative agreement between the protein and RNA data obtained in situ and on the C1. Density distributions (each with their
own arbitrary units) for MKI67 RNA (left) and protein (right) obtained via qPCR (top) or in situ (bottom) staining. d Quantile-Quantile (Q-Q) plots showing the
range over which the PEA/STA measurements of MKI67 protein and RNA track linearly with IF staining or in situ hybridization
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break between STA detected and undetected at or below

the ΔCt observed for 1.3 cell equivalents in the correspond-

ing population lysate dilutions (Additional file 4: Figure

S3a), possibly driven by our choice of normalization or the

detection limits of our qPCR assays (see “Methods”). Inter-

estingly, at high expression, we observe a plateauing of

MKI67 STA detection but not RNA-FISH. Overall, STA

has a larger dynamic range, potentially due to RT and/or

PCR inefficiencies which can lead STA to overestimate the

actual number of RNA molecules by which two cells differ.

Meanwhile, in our protein measurements, we observe a

substantially higher detection threshold for PEA and a

slightly larger dynamic range for IF. The former observation

may be due to PEA’s dual detection requirement, which

limits the contribution of non-specific primary antibody

binding that can skew in situ methods like IF. Taken to-

gether, these observations lead us to conclude that while in

situ measurements are more sensitive than PEA/STA, the

latter provides linear and highly multiplexable information

on single-cell protein and RNA abundance.

We next examined the underlying structure of our

dataset by performing a principal component analysis

(PCA). PCA, using either the 27 proteins or 89 RNAs,

distinguished PMA-treated from untreated cells, with

protein providing clearer separation despite fewer targets

evaluated (Additional file 9: Figure S8a, c, respectively).

A random forest prediction algorithm (see “Methods”)

supported this, yielding greater areas under the curve

(AUC) for protein receiver operating characteristic

(ROC) curves (0.98, 0.94, and 0.86 for protein versus

0.81, 0.80, and 0.57 for RNA at 0 hr, 24 hr, and 48 hr, re-

spectively; Additional file 9: Figure S8b, d). Meanwhile,

by using both protein and RNA data (Additional file 9:

Figure S8e), we obtained AUCs of 0.99, 0.94, and 0.84

for the three time points, respectively (Additional file 9:

Figure S8f). This suggests that, in certain instances, pro-

tein levels may be better biomarkers of environmental

conditions [12], potentially due to either greater stability

[16], a more direct role in cellular activity, or buffering

from transcriptional noise [40] (also reflected in a lower

average coefficient of variation (σ/μ); Additional file 10:

Figure S9). This conclusion agrees with our previous

results using split lysates in a different model system with

a partially overlapping set of targets [31].

To explore the interrelationship between RNA and

protein expression, we next investigated correlations

among the 27 genes targeted with both RNA and protein

assays. In single cells, the correlation between RNA and

protein quantities can be strongly influenced (and

decoupled) by the transient nature of eukaryotic tran-

scription [41], temporal delays between transcription

and translation [3, 16, 19], differences in degradation

rates [10, 15–17, 19], and technical noise [42]. For all

RNA-protein pairs, we calculated Spearman correlation

coefficients (ρ) at each time point (see “Methods”),

obtaining an average (± standard deviation) correlation

value of 0.25 (±0.23), 0.27 (±0.16), and 0.25 (±0.20) for

the 0 hr, 24 hr, and 48 hr treatment time points, respect-

ively (Fig. 3a). Intriguingly, the distribution of correlation

values appears to tighten immediately after stimulation

and then relax (p values from F test for variance are 0.08

and 0.30 for the 0 to 24 hr and 24 to 48 hr transitions,

respectively). This trend may reflect the fact that, prior

to stimulation, cellular activity across the targets assayed

is more influenced by the aforementioned factors, which

again come to dominate after a directed response to

PMA.

When we investigated the relationship between each

target’s mean expression, variance, and correlation

(Additional file 10: Figure S9), we generally observed

that RNAs with medium to high expression across cells

had higher correlations prior to stimulation. After, the

largest correlations appeared in RNAs with small to

medium means and high cell-cell variance – this could

reflect correlated activation of RNA and protein in only

a subset of cells (bimodality), echoing previous findings

in induced systems [3]. When focusing on significant

changes in correlation (see “Methods”) between time

points, we see that CAV1 and FADD decrease in correl-

ation within 24 hr, while the MET correlation increases.

If we focus instead on the shift between 0 and 48 hr, we

see that correlations between AXIN1, CAV1, CDH1,

FADD, HIF1A, and NPM1 RNA and protein are re-

duced, while those for APC, EIF4EBP1, MET, and PLAU

increase. Finally, between 24 and 48 hr, HIF1A, IGF1R,

and IGFBP3 RNA and protein decrease in correlation

while EIF4EBP1 and PLAU increase (Fig. 3b). To bet-

ter understand these PMA-induced shifts, we plotted

the coefficients of variation for single-cell RNA and

protein expression individually and found striking sta-

bility (Additional file 10: Figure S9) despite substantial

variability between time points in the level of RNA ex-

pression among expressing cells and in the frequency

of cells expressing a given protein (Additional files 11

and 12: Figures S10 and S11). Thus, even individual cel-

lular perturbations can yield complex and heteroge-

neous RNA and protein responses across single cells

(Fig. 3a, b, Additional files 10, 11, and 12: Figures S9,

S10, and S11).

One particularly striking gene in Fig. 3b is MET, which

has negligible correlation between protein and RNA

levels in untreated cells (ρ = 0.03) but a strong positive

correlation after PMA treatment (ρ = 0.53 and 0.42 for

24 and 48 hr cells, respectively). In re-investigating our

STA data, we observed two distinct melting tempera-

tures for the MET qPCR assay, indicating a complication

due to the presence of splice variants. Because the librar-

ies generated by preamplification are a stable archive, we
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re-analyzed them with new qPCR assays targeting add-

itional sites contained within the original amplicons. For

MET RNA, our preamplification primers were specific

for exons 9 and 10, creating an amplicon that potentially

spanned intron 9. Figure 3c shows this portion of the

MET gene and the six assays we designed and deployed

to interrogate the two isoforms previously known to

exist in this segment of the MET transcript, as well as

the unspliced transcript (primer sequences provided in

Additional file 1: Table S7, all of which were determined

to be quantitative from population dilution experiments

except MET.2_R). Using a combination of the ΔCt

values and correlations between the various MET STA

assays and MET_P (Additional file 13: Figure S12), we

determined that the change in correlation between pro-

tein and RNA levels was primarily due to MET.5_R

(short isoform, spliced) and MET.6_R (exon 10).

The distribution of different splice forms is evident in

the scatterplot of MET.3_R (unspliced) versus MET.5_R

(spliced) shown in Additional file 14: Figure S13. Across

all three time points, a higher density of cells had only

MET.3_R transcript (x-axis) than only MET.5_R

transcript (y-axis), and an intermediate number of cells

had both forms. Interestingly, the statistically significant

increase in the proportion of cells with MET.3_R tran-

script at 24 hr (Fisher’s exact test p values = 0.0056 and

0.040 for comparing 24 h versus 0 and 48 hr, respectively)

suggests that this transcript is actively being transcribed

and processed during this time course. Still, because stop

codons exist in the unspliced reading frame of intron 9,

only the spliced forms of the MET transcript can be trans-

lated into MET protein (N.B. we assume that the MET

PEA measurement, which relies on a polyclonal raised

against the short MET isoform, primarily reflects the short

isoform’s abundance, although further experiments will be

needed to examine the sensitivity of the antibody for the

long isoform and its contribution to the results).

Figure 3d shows the distributions of MET_P and

MET.5_R (short isoform, spliced) for 0 hr, 24 hr, and

48 hr. For the protein, frequency of detection increased

with PMA treatment (Benjamini–Hochberg (BH) ad-

justed Fisher’s exact p value = 1.1 × 10−17; Mann–Whitney

U test for increased expression levels was not conducted

since less than 10 unstimulated cells had expression above
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Fig. 3 Time dynamics of the correlations between RNA and protein abundance. a The density of RNA:protein Spearman correlation coefficients
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temporal correlation pattern, the correlations of the same gene across time points are juxtaposed. *, p value < 0.05; **, p value < 0.01. c, d
Translational control of MET protein expression. c Approximate primer (red) locations for assays used to dissect splicing status of MET transcripts.
RefSeq entries NM_000245.2 (short form) and NM_001127500.1 (long form) are the two reported splice isoforms of the MET transcript. The thinner
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the limit of detection; Additional file 1: Table S12 provides

differential expression for all targets between stimulated

and unstimulated cells, while Additional file 1: Tables S13,

S14, and S15 report targets differentially expressed be-

tween time points). Meanwhile there is no statistically sig-

nificant change in the expression of spliced transcript (BH

adjusted Fisher’s exact and Mann–Whitney U test p

values = 0.90 and 0.088, respectively). A potential parsimo-

nious explanation for this observation is that MET protein

abundance is translationally regulated, which would ac-

count for the change in protein to RNA correlation from

negligible to positive after PMA treatment. Intriguingly,

putative control of MET protein levels by splicing (via

skipping of exon 2) has previously been reported in many

tissues [43]. This raises the question of whether the high

proportion of single cells with only unspliced transcript

observed in our study also reflects an aspect of MET regu-

lation. While further experiments are needed to explore

this, our observation of potential translational control em-

phasizes why, on these time scales and in this system, pro-

tein may be a better reporter of biological state than RNA.

Single-cell RNA expression profiling classically uses

known protein biomarkers to pre-gate cells into subpopu-

lations via FACS (and alternative methods) [1, 10, 21–23].

While this enables transcriptome-wide exploration of the

differences between those discrete populations, each com-

parison represents a separate experiment. Here, because

we quantified the levels of several RNAs and proteins in

each single cell, we were able to gate our cells in silico on

every measured RNA and protein to test if and how each

marker bifurcated our data within a single experiment

(Additional file 1: Table S16 and Additional file 15: Figure

S14 a, b). Moreover, this allowed us to reverse-gate our

data by RNA, enabling us to determine the impact of

RNA expression on a host of expressed proteins. In

examining the MET family, cells positive for the original

MET_R STA assay (full length; Fig. 3c), not surprisingly,

express MET.1_R (unspliced), MET.3_R (intron 9), and

MET.4_R (long isoform and unspliced) at a higher fre-

quency and MET.1_R, MET.3_R, MET.4_R, and MET.6_R

(exon10) at higher levels. Additionally, dividing the data

on MET_P detection shows that a MET_P expressing cell

is more likely to have elevated expression of MET_R and

MET.5_R (short isoform and spliced RNA), along with

more frequent detection of MET.4_R and MET.6_R;

reciprocally, MET.5_R expressing cells show elevated

MET_P, MET.6_R, and MET_R. Here, the smaller p values

associated with MET.5_R predicting MET_P suggests that,

under certain conditions, RNA expression can be a better

indicator of protein abundance than vice versa.

In addition to in silico gating, our data enabled di-

rected questions of how the levels of upstream protein

regulators and downstream RNA targets covary within

known pathways. Of particular interest, given its role in

apoptosis, is CASP8, a member of the caspase family. A

survey of the literature revealed that CCNE1, CDKN1B,

EGFR, and RB1, all profiled here, are downstream tar-

gets of CASP8 [44–46]. A differential expression analysis

after in silico gating on CASP8_P abundance showed a

statistically significant decrease in the frequency of

CDKN1B_P detection and elevated levels of RB1_R.

When we examined the correlation structure of these

downstream targets along with CASP8_R levels, we

did not see statistically significant separation between

cells in which CASP8_P is detected (white) and those

in which it is not (black) (Fig. 4a, cluster membership

1 versus 2 denoted by red and blue labels, respectively,

p value = 0.67, Fisher’s exact test). However, by over-

laying time point metadata onto the clusters, we ob-

served that cluster 2 is significantly enriched for

unperturbed cells (p value = 0.00012, Fisher’s exact

test). By growing a correlation network from this seed

set of RNA and protein probes (see “Methods”), we

were also able to observe stimulation-induced changes

in the seed network’s members (e.g. edge degree = 0 at

0 hr but edge degree ≥ 1 over the 24 or 48 hr networks).

This included cell cycle controllers (MYC_R, APC_R,

PTEN_R, MTOR_R) and links to alternative modes of

intracellular and intercellular regulation, such as cell

surface (IL6R_R, IL6R_P, TNFRSF10B_P, ICAM1_P) and

downstream signaling molecules (STAT3_R, SMAD4_R,

PPARG_R) (Fig. 4b–d).

To better understand patterns in the genes correlated to

the CASP8 circuit, we conducted an unbiased functional

analysis of enriched gene ontologies using the Database

for Annotation, Visualization and Integrated Discovery

(DAVID) [47] (see “Methods”). When analyzing genes that

only correlate to the CASP8 seed network in untreated

cells, we observed an enrichment for annotations associ-

ated with cell division, cell cycle, and chromosome

organization (BH adjusted p values < 10−10). Examining

targets only correlated at 24 hr after PMA stimulation, we

observe enrichments for DNA binding and transcription

regulation (BH adjusted p values < 10−10), highlighting the

cell state changes induced by PMA stimulation. Finally,

when we examine genes only correlated to the CASP8 cir-

cuit at 48 hr, we observe enrichments for cancer pathways

(BH adjusted p values < 10−7), consistent with the breast

adenocarcinoma origins of MCF7 cells.

To explore whether our quantification of RNA or pro-

tein abundance per single cell could be similarly used to

inform the results of unsupervised protein or RNA ana-

lyses, we examined the extent to which observed RNA

or protein level vectors correlated with the axes of vari-

ation in a protein or RNA PCA, respectively. Additional

file 15: Figure S14c, d show correlations between the

first two PCs over all protein or RNA targets and the

expression of either ESR1_R or AXIN1_P, respectively
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[22]. Looking at Additional file 15: Figure S14c, we can

see that ESR1_R levels correlate with separation in the

protein-level PCA; considering the stimulation status of

the cells (Additional file 9: Figure S8), this suggests that

ESR1_R levels decrease with stimulation. A similar plot

over RNA shows that AXIN1_P (Additional file 15:

Figure S14d), meanwhile, correlates strongly with RNA

PC1, independent of PMA, suggesting involvement in a

stimulation-independent axis of variation. Although the

clusters representative of stimulation condition are not

well resolved in the RNA PCA, we envision that a similar

analyses performed on PCAs showing greater separation

will help guide hypothesis generation and follow-up

experimentation in future studies [3, 4].

Conclusions

We have presented a new method for simultaneously

quantifying several proteins and RNAs from the same

single cell in a single series of reactions, which we have

validated with select in situ hybridization and IF
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Fig. 4 Determining intracellular circuits from known and in silico discovered networks. a Heatmap showing cell vs. cell correlation across a circuit
scaled such that the maximum of both STA & PEA measurements are 1. The circuit is regulated by CASP8, with gates along the top indicating
CASP8_P detection (white) or lack thereof (black) and time point (0 hr = purple, 24 hr = green, 48 hr = blue). The two major clusters are labeled 1
(red) and 2 (blue). b–d Changes in the Spearman correlation network from the known CASP8 circuit measured at 0, 24, and 48 hr, nodes grouped
by edges. Edges represent correlations greater than 0.3 between CASP8 network and other targets. Red text indicates protein; black text indicates
RNA; number of edges indicated by node size; colored boxes adjacent to the clusters indicate the time points for which a correlation coefficient
greater than 0.3 exists between the target and the CASP8 network
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experiments, as well as recombinant protein, bulk cell

lysate, and ERCC Spike-In dilutions. Our integrated,

single-chamber approach – which can be executed in an

IFC – yields a highly multiplexed, coupled protein and

RNA dataset that allows examination of the correlations

and ties between several proteins and RNAs in mamma-

lian cells. Here, we have used this workflow to study

how these correlations and their expression underpin-

nings evolve over time in MCF7 cells under PMA per-

turbation. Moreover, since the unique dataset obtained

via our generalized approach enabled many in silico ex-

periments from a single in vitro experiment, we were

able to discern how the levels of specific proteins and

RNAs impact the expression of all other measured tar-

gets, saving time and money compared to conventional

approaches [3–8, 10, 21–24].

Overall, our methodology yields cellular protein-level

metadata that can be used to better interpret and anno-

tate the results of unsupervised RNA analyses. Indeed,

much of the excitement regarding single-cell genomic

approaches, such as single-cell RNA-Seq [3–9, 21–24,

34], stems from their ability to help identify cell types,

states, and circuits in a genome-wide manner. While pu-

tative biomarkers and drivers of these behaviors can be

found by differential expression and gene set enrichment

analyses, establishing the utility of these factors as bio-

markers – e.g. if RNA X is differentially expressed between

two subpopulations, will protein X also separate them? –

requires follow-up labeling and/or perturbation experi-

ments [3–8, 10, 21–24]. By conducting these experiments

simultaneously, we have removed this roadblock. This

could dramatically accelerate the discovery cycle, given

complications associated with visualizing several RNAs in

live cells [48], working with fixed cells [26], and the dis-

connect between RNA and protein levels [10, 15–17].

From an experimental perspective, current methods for

sensitive detection of proteins in single cells require affin-

ity reagents, such as the antibodies used here. Although

our investigation analyzed 27 proteins, assaying a larger

number per single cell is limited only by the availability

and functionalization of high affinity antibodies. Further,

the development of new or different protein-binding re-

agents (e.g. aptamers [29], nanobodies [49]), as well as the

incorporation of established PEA-based methods for prob-

ing post-translational modifications and protein com-

plexes [50], should further boost the power and promise

of our approach. Ultimately, we envision that each of our

analyses, performed using the method outlined here or

variants that include immuno-PCR [51], single-cell RNA-

Seq [3, 4, 10], or measurements of other cellular variables

[10, 52, 53], will enable identification of biologically mean-

ingful differences between cells and their molecular

markers, generating unprecedented insights into the

drivers of cellular heterogeneity.

Methods
Cell culture and drug treatment

Low-passage number human breast adenocarcinoma cell

line MCF7 cells were maintained in high glucose

Dulbecco’s Modified Eagle Medium supplemented with

10 % fetal bovine serum and incubated at 37 °C in a 5 %

CO2 atmosphere. For PMA treatment, 3 mL of cell cul-

ture was seeded into each well of a 6-well plate at a

density of 5 × 104 cells/mL and the cells were allowed to

settle. Subsequently, PMA was added to each of the

wells at a final concentration of 1 μM for the treated

cells and, after mixing, the multiwell plates were placed

in the incubator for 24 hr or 48 hr. At time points 0 hr,

24 hr, and 48 hr post culture, cells were trypsinized, pel-

leted, and run on the C1 using a custom PEA/STA

protocol.

RNA fluorescence in situ hybridization (RNA-FISH)

and protein IF staining experiments were performed as

previously described [3]. Briefly, 5 × 103 cells were

seeded into the interior wells of a black, imaging-grade

glass-bottom 96-well plate and allowed to settle. Import-

antly, before adding cells, each well was cleaned with

ethanol, treated with 100 μL of 0.01 % poly-L-lysine for

1 hr at 37 °C, washed, and dried overnight in a biosafety

cabinet. After seeding cells, PMA was added to the wells

at a final concentration of 1 μM for the treated 24 hr or

48 hr conditions and 0 μM for the 0 hr (untreated) con-

dition. Prior to fixation, the culture media was replaced

with 100 μL of Hanks’ Balanced Salt Solution supple-

mented with 1 mg/mL Wheat Germ Agglutinin 350

(WGA, Life Technologies, Thermo Fisher Scientific) for

a 10 min incubation at 37 °C. The cells were then

washed twice with phosphate buffered saline (PBS), fixed

with 4 % formaldehyde in PBS at room temperature for

30 min, washed three times with PBS, and used for FISH

and IF staining as described below.

Selecting PEA/STA probes

PEA standard curves were generated (Additional file 3:

Figure S2) using diluted MCF7 cell lysates ranging in aver-

age cellular content from 10.63 to 0.04 cells (full data table

with ∆Ct measurements is provided as Additional file 1:

Table S5 along with the corresponding STA data). While

we evaluated a range of dilutions from 0.04 to 42.5 cell

equivalents, we excluded the two highest dilutions (21.25

and 42.5 cell equivalents) because the PEA reaction dis-

played poor assay performance as evidenced by decreased

amplification efficiency of the spike-in Extension Control

and Oligo Reference probes depicted in Additional file 16:

Figure S15. In Additional file 3: Figure S2, each red line

represents the trend line generated from the points col-

ored blue, with the y-axis depicting ∆Ct (as described fur-

ther in “Data analysis: PEA/STA and calculating ∆Ct”)

relative to a lysis buffer background control (n = 8). The
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range used for the linear fit was found by evaluating every

continuous range and picking the best R2 value with a cost

of 0.03 for removing points, followed by manually extend-

ing or shortening the range where needed. Certain assays

(e.g. EIF4EBP1_P) display a “hook” effect, which is evident

when the concentration of target protein exceeds a thresh-

old such that PEA probes occupy separate target mole-

cules as opposed to the same one [38]. This reduction in

the frequency of co-incidence binding events results in

fewer DNA reporter molecules and thus a loss of signal.

Probes in Additional file 3: Figure S2b were labeled un-

reliable and removed from later analysis due to either

insensitivity, saturation, and/or failure to exceed the

limit of detection within the physiological range (around

1.3 cell equivalents).

The results of this population lysate dilution experi-

ment (see below) were corroborated with standard

curves generated using 25 diluted recombinant proteins

(Additional file 1: Table S3 and Additional file 2:

Figure S1). Here, two probes (also filtered out by the above

population lysate dilution experiments) did not display any

signal (CSF3R_P and TP53_P, Additional file 2: Figure S1b)

and thus were removed from all subsequent analyses.

In the same vein, a population lysate dilution experi-

ment was designed to validate our STA probes (Additional

file 1: Table S5 and Additional file 4: Figure S3). Probes

that did not have a linear detection range or were not

sensitive (Additional file 4: Figure S3b) were removed

from later analysis.

Recombinant protein and ERCC assay

Recombinant proteins (listed in Additional file 1: Table

S2) were dissolved in a mixture of PBS and 1× C1 loading

reagent. Serial dilutions of each protein were made using

1× C1 reagent in PBS. The only differences between this

C1 run and the PEA/STA protocol for single cells was that

the serially diluted proteins were backloaded into the C1

IFC using the outlet ports and cell wash buffer was loaded

into the cell inlet instead of a single-cell suspension

culture. ∆Ct for these samples (n = 8 for each dilution;

Additional file 1: Table S3) was calculated in reference to

wells with only lysis buffer (n = 8) and error bars are sup-

plied plotted ± standard error of the mean (SEM).

Using the lysis buffer controls, we determined the

mean and standard deviation of background for each

target. These values enabled us to assign probabilities to

detection. We defined our limit of detection as the few-

est number of molecules which were detected at a confi-

dence of greater than 0.01 in seven of the eight replicate

measurements. Our limits of detection are presented as

Additional file 1: Table S4 for recombinant proteins and

ERCC Spike-Ins (described below). Detection is defined

as a Ct value that has a probably less than 0.01 of being

background noise.

ERCC Spike-Ins (ERCC RNA Spike-In Mix 1, Thermo

Fisher Scientific 4456740) were also diluted in a mixture

of PBS and 1× C1 loading reagent. Serial dilutions of the

ERCCs were made using 1× C1 reagent in PBS. As with

the recombinant proteins, the serially diluted ERCCs

were backloaded into the C1 IFC using the outlet ports

and cell wash buffer was loaded into the cell inlet in-

stead of cell culture. ∆Ct for these samples (n = 8 for

each dilution) was calculated in reference to wells with

only lysis buffer (n = 8) or to a threshold Ct of 24 if un-

detected in lysis buffer alone, and error bars are supplied

plotted ± standard error of the mean (SEM; Additional

file 1: Table S11 and Additional file 8: Figure S7). Detec-

tion and limit of detection for each ERCC was also calcu-

lated as above for the recombinant proteins (Additional

file 1: Table S4).

Single-cell PEA/STA processing in C1 system

Cell processing and preparation for single-cell capture

in the C1 were performed according to the manufac-

turer’s instructions (Fluidigm Corporation). The PEA/

STA protocol for the analysis of single cells was imple-

mented using the Script Builder™ feature of the C1

system. In particular, after capturing single cells in the

C1 IFC, lysis of captured cells was performed in a lysis

mix containing 1× lysis buffer (0.5 % NP-40, 50 mM

Tris–HCl, pH 8.4, 1 mM EDTA), 8 % incubation solution

(Olink Proteomics), 7.6 % incubation stabilizer (Olink

Proteomics), 0.05 nM each PEA probe, and 1× C1 loading

reagent (Fluidigm 100–5170). The lysis conditions were

37 °C for 120 min and 10 °C for 1 min. After lysis, a com-

bined reverse transcriptase and PEA probe extension reac-

tion was performed in a mix containing 1× RT master

mix (Fluidigm 100–6299) and 1× C1 loading reagent using

the conditions 42 °C for 60 min, 85 °C for 5 min, and

10 °C for 1 min. PCR was then performed in PCR mix con-

taining 1× PreAmp Master Mix (Fluidigm Corporation,

100–5581), 50 nM of each preamplification primer,

0.1× PEA solution (Olink Proteomics), and 1× C1 load-

ing reagent. The conditions for PCR were 95 °C for

5 min, 20 cycles of 96 °C for 20 s and 60 °C for 6 min,

followed by 10 °C for 1 min. After harvesting from the

C1, RNA expression was determined on the Biomark

HD system using 2× Sso Fast EvaGreen Supermix with

Low ROX (Bio-Rad 172–5212) and the script 96.96

Fast PCR +Melt.v2.pcl. The expression of proteins was

determined with the Olink Proteomics assay setup and

OLINK.pcl script on the Biomark HD system.

RNA-FISH and protein IF staining

After fixation, RNA-FISH and IF were performed as

previously described [3]. Briefly, the QuantiGene View-

RNA ISH Cell Assay (Affymetrix, Inc.) was performed

with minor modifications. First, cells were not treated
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with Protease QS to keep the proteome intact for sub-

sequent IF staining. Second, in order to stop the proto-

col, after hybridizing probes (BIRC5 type 1, VA1-11137,

CASP8 type 1 VA1-12315-06, ICAM1 type 1 VA1-

12360-06, and MKI67 type 1, VA1-11033, Affymetrix,

Inc.), cells were washed 3× with FISH Wash Buffer

(described in the QuantiGene ViewRNA ISH Cell Assay

protocol) and stored in 6× Saline-Sodium Citrate buffer

overnight at 4 °C. The following morning, cells were

washed 2× with FISH Wash Buffer and the protocol

was resumed. After hybridizing label probes, the cells

were washed 3× with RNA-FISH Wash Buffer and 2×

with PBS before incubating them for 1 hr at room

temperature with a Block & Permeabilize Buffer (3 %

IgG-Free Bovine Serum Albumin (BSA, Jackson Immu-

noResearch), 0.2 % Triton-X 100 in PBS). The cells

were then transferred to a primary staining solution of

Block & Permeabilize Buffer supplemented with 4 μg/

mL primary antibody (BIRC5: NB500-201, Novus Bio-

logicals; CASP8: AF705, R&D Systems; ICAM1: AF720,

R&D Systems; MKI67: ab15580, Abcam, Inc.) and incu-

bated at 4 °C overnight. The following morning, cells

were washed 3× in IF Wash Buffer (0.5 % BSA, 0.05 %

Triton-X 100 in PBS) and developed in a secondary

antibody staining solution containing Block &

Permeabilize Buffer + 4 μg/mL secondary antibody (Alexa

Fluor 488 goat anti-rabbit IgGH+ L, A11034; Alexa Fluor

488 Donkey Anti-Sheep IgGH+ L, A-11015; Alexa Fluor

488 Donkey Anti-Goat IgGH+ L, A-11055, Thermo Fisher

Scientific) at room temperature for 1 hr. Cells were then

washed 2× in PBS and stained with DAPI (Affymetrix, Inc.;

per the manufacturer’s recommendations) on a rocker for

1 min and imaged on an Olympus IX83 inverted micro-

scope using the following excitation wavelengths: 405 nm

– WGA and DAPI stains; 488 nm – secondary anti-

bodies for IF; and 546 nm – type 1 FISH probes. Fi-

nally, to quantify RNA expression or total protein

level, the images were processed using a custom

Matlab script as previously reported [3]. The number

of cells quantified at 0 hr, 24 hr, and 48 hr after

treatment, respectively, for each experiment were:

BIRC5 – 1142, 1386, and 921 cells; CASP8 – 5757,

3724, and 2066 cells; ICAM1 – 5679, 2097, and 1548

cells; MKI67 – 1699, 836, and 378 cells. Both raw

density plots and Q-Q plots were generated to con-

firm qualitative agreement between in situ data gener-

ated by IF and RNA-FISH and the qPCR data

generated by PEA/STA, respectively.

Data analysis: PEA/STA and calculating ∆Ct
The qPCR data for RNAs and proteins from the Bio-

mark were analyzed by Fluidigm Real-time PCR analysis

software using Linear (Derivative) Baseline Correction

and Auto (Global) Ct Threshold Method. Exported Ct

values (Additional file 1: Table S8) were then converted

to ∆Ct values (Additional file 1: Table S9). For RNA, this

was done using the equation of 24 minus Ct [2]. If the

value was negative or if the qPCR never passed thresh-

old, then the result was assigned 0 for undetected. Indi-

vidual cells were characterized by the number of RNAs

detected, with a median value of 54 RNAs detected per

cell (57.5 after culling cells, 55 after culling cells and re-

moving unreliable STA targets (Additional file 4:

Figure S3b)). If less than 35 RNAs were expressed in a

given cell after removing unreliable STA targets, then

that cell was culled from the dataset. For protein, back-

ground was estimated from samples where no cell was

captured in the C1, of which there were 5, 17, and 13

zero-cell samples at 0 hr, 24 hr, and 48 hr time points,

respectively. Since there was no significant difference

(by all time points pairwise T test) in the background

Ct values when the time points were analyzed separ-

ately, the average value for all 35 zero-cell samples

was used as the background value for each PEA

probe, with protein Ct values above 24 (including un-

detected values of 999) set to a Ct of 24. Exported

protein Ct values were then converted to ∆Ct values

using each protein's average background value minus

Ct. If the resulting ∆Ct value was negative, it was

assigned to 0.

PCA and random forest classification

The culled data were used to conduct a PCA with the

prcomp function in R, from which we observed separ-

ation based on time point. Ellipses were scaled to 68 %

of the probability, or 1 standard deviation from the time

point’s centroid. For every PCA, each target was first

standardized to ensure equal representation.

For the random forest classification, we supplied the

randomForest function from the randomForest package

in R with all of the principal component scores for the

“train” data, consisting of four-fifths of our samples ran-

domly drawn with replacement. The model was then

evaluated with the remaining one-fifth of the dataset to

calculate sensitivities and specificities in a 1-vs.-Rest

comparison, leveraging the prediction and performance

functions from the ROCR package in R.

Correlation analysis

Spearman correlation coefficients (ρ) were calculated for

each of the genes that were evaluated as both RNA and

protein. A Lilliefors test was conducted to confirm nor-

mality of the correlation distributions, after which differ-

ences in the time point distributions were evaluated

using T and F tests, all of which returned negative for

rejecting the null hypothesis of equal mean and variance,

respectively. This, of course, is dependent on our sample

size (27 genes in total), though we note a large deviation
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in variance from time point 0 to 24. Statistically signifi-

cant changes in correlation were noted in the text and

Fig. 3b if the delta correlation between any two time

points had a probability less than 0.05 of being drawn

from the null distribution. A null distribution was gener-

ated for each gene by mixing the time point labels for

each cell 10,000 times and calculating a null correlation

mean and standard deviation. These mean and standard

deviation were used to calculate p values using the nor-

mal distribution. In Additional file 10: Figure S9, correla-

tions are also shown as color values on plots of mean

expression versus standard deviation. The dashed lines

drawn on the plots indicate the standard deviation for a

given mean if expression is only detected in 10 cells.

Trajectory analysis

Cells were binned into four quadrants for every gene

measured for both protein and RNA depending on the

detection of both targets using a probability of 0.01 as a

cutoff. Relative proportions of cells with low protein and

RNA, low protein and high RNA, high protein and high

RNA, and high protein and low RNA were clustered to-

gether for all genes with matched PEA/STA probes

using a Spearman correlation. A distance metric of 0.75

was used to partition genes into similar clusters (Additional

file 12: Figure S11, denoted by distinct colors). Representa-

tive plots from each cluster illustrate the changing fraction

of cells within each of these gates across time.

Differential expression and in silico gating

Prior to analyzing targets for differential expression, we

examined our data to determine the most appropriate

statistical test. Following precedent [4, 42], we

attempted to fit our target expression distributions by

perturbation time point to both a normal (two param-

eter) and a three-parameter model (normal + fraction

expressing). From this analysis, 22/92, 25/93, and 20/90

were fit with a normal distribution (p value > 0.01) and

54/68, 44/57, and 31/51 were fit with the three-

parameter model (p value > 0.01) for 0 hr, 24 hr, and

48 hr, respectively. Since only approximately two-thirds

of the models passed a Chi-squared goodness-of-fit test,

we decided to conduct two tests: (1) a Fisher’s exact test

to determine if the proportion of cells expressing a tar-

get above the detection threshold was changing; and (2)

a Mann–Whitney U test to determine if the distribution

of expressing cells was changing significantly.

We then gated and bifurcated our data 116 times (the

total number of quantitative targets measured by

qPCR) based on detection of a given target and evalu-

ated whether any of the remaining 115 targets were

differentially represented in the two groups. Tests for

difference in proportion (Fisher’s exact test) of cells

expressing were conducted for every gate – target

combination if the number of cells for which the target

was undetected exceeded ten for the two populations.

Complementarily, tests for difference in distribution

(Mann–Whitney U test) among expressing cells were

conducted for every gate – target combination if the

number of cells for which the target was detected

exceeded ten for the two populations. BH correction

was then applied for each in silico experiment to adjust

for false discoveries.

Correlation network analysis

To determine the correlation network among our targets

and observe how it changed following perturbation, we

partitioned our data by time point and calculated Spear-

man correlation (ρ) between the seed CASP8 network

and every other target quantified. To determine a

threshold for significant correlation, we generated a null

distribution for each gene-gene pair by mixing the cell

labels for each pair 10,000 times and calculating a null

correlation mean and variance. From this analysis, the

mean correlation for every gene-gene pair was less than

0.005 and the variance never exceeded 0.015. Based on

those parameters, we calculated the threshold for 0.01

probability of being drawn from the background to be

0.29. Therefore, Spearman correlations over 0.3 were

considered edges. We calculated edge-degree (the num-

ber of edges shared with the CASP8 seed network) for

each target for each network and sized the nodes ac-

cording to this rank (Fig. 4). Lastly, we performed Gene

Ontology enrichment using DAVID [47] across each set

to assess the characteristics of the most strongly and

sparsely regulated nodes and to test for the presence of

expected connections.

Additional files

Additional file 1: Supplementary Table. Supplementary tables with
legends in the first sheet called "Supplementary Table Legends". (XLSX 985 kb)

Additional file 2: Figure S1. Standard protein probe curves using
recombinant proteins. Two-fold dilutions of recombinant proteins were
backloaded into the C1 IFC and processed according to the PEA/STA
protocol. Shown here are the PEA measurements, with the y-axis values
representing ∆Ct values from only lysis buffer. Gray (green) dashes show
the level above which the probability for a detection event being real is
p = 0.01 (0.05). Each data point plotted is the average of eight separate
capture sites in the C1 IFC with error bars showing the standard error of
the mean. Points used for fitting the red trend line are colored blue. Most
probes evaluated with recombinants worked well (a) with the exception
of CSF3R_P and TP53_P (b), whose lack of detection was also seen in the
protein lysate dilutions (Additional file 3: Figure S2). (PDF 315 kb)

Additional file 3: Figure S2. Standard protein probe curves using
lysed and diluted MCF7 cells. Two-fold dilutions of population lysate
were backloaded into the C1 IFC and processed according to the PEA/STA
protocol. Shown here are the PEA measurements with the y-axis

values representing ∆Ct, which are calculated as the signal over a lysis
buffer only control. Certain assays (e.g. EIF4EBP1_P) display a “hook”
effect. The effect occurs when the concentration of a target protein
exceeds a threshold beyond which PEA probes begin to occupy separate
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target molecules as opposed to the same one. This results in a reduction
of signal due to a reduction in the number of proximal events. Each data

point plotted is the average of eight separate capture sites in the C1 IFC
with error bars showing the standard error of the mean. Gray (green)
dashes show the level above which the probability for a detection event
being real is p = 0.01 (0.05). Points used for fitting the red trend line are
colored blue, the background plot color indicates which treatment cells
were taken from (0 hr = purple, 24 hr = green, 48 hr = blue). Probes are
categorized as (a) usable or (b) unusable. (PDF 557 kb)

Additional file 4: Figure S3. Standard RNA probe curves using lysed
and diluted MCF7 cells. Two-fold dilutions of population lysate were
backloaded into the C1 IFC and processed according to the PEA/STA
protocol. Shown here are the STA measurements with the y-axis values
representing ∆Ct values from lysis buffer alone or a threshold value of 24
if undetected in pure lysate. Certain assays (e.g. ACTB_R) display a “hook”
effect, as seen in Additional files 2 and 3: Figures S1 and S2, potentially
due to reagent saturation. Each data point plotted is the average of eight
separate capture sites in the C1 IFC with error bars showing the standard
error of the mean. Gray (green) dashes show the level above which the
probability for a detection event being real is p = 0.01 (0.05). Points
used for fitting the red trend line are colored blue, the background plot
color indicates which treatment cells were taken from (0 hr = purple,
24 hr = green, 48 hr = blue). Genes are categorized as (a) usable or
(b) unusable. (PDF 1087 kb)

Additional file 5: Figure S4. Additional benchmarking of a combined
PEA/STA workflow: BIRC5. a–c Validation of protein and RNA detection in
single cells using a coupled PEA/STA script on the C1 throughout a PMA
perturbation time course (0 hr = purple, 24 hr = green, 48 hr = blue).
a RNA-FISH and IF staining of BIRC5 was performed to validate the
C1-based, high-throughput RNA and protein measurements. Cyan (left)
shows cell nuclei and boundaries, magenta BIRC5 protein (middle), and
yellow BIRC5 RNA (right). Scale bars indicate 25 μm. b Qualitative
agreement between the protein and RNA data obtained in situ and on
the C1. Density distributions (each with their own arbitrary units) for
BIRC5 RNA (left) and protein (right) obtained via qPCR (top) or in situ
(bottom) staining. c Q-Q plots showing the range over which the PEA/STA
measurements of BIRC5 track linearly with IF staining or in situ
hybridization for the same. (PDF 79799 kb)

Additional file 6: Figure S5. Additional benchmarking of a combined
PEA/STA workflow: CASP8. a–c Validation of protein and RNA detection in
single cells using a coupled PEA/STA script on the C1 throughout a PMA
perturbation time course (0 hr = purple, 24 hr = green, 48 hr = blue). a
RNA-FISH and IF staining of CASP8 was performed to validate the
C1-based, high-throughput RNA and protein measurements. Cyan (left)
shows cell nuclei and boundaries, magenta CASP8 protein (middle), and
yellow CASP8 RNA (right). Scale bars indicate 25 μm. b Qualitative
agreement between the protein and RNA data obtained in situ and on
the C1. Density distributions (each with their own arbitrary units) for
CASP8 RNA (left) and protein (right) obtained via qPCR (top) or in situ
(bottom) staining. c Q-Q plots showing the range over which the PEA/STA
measurements of CASP8 track linearly with IF staining or in situ
hybridization for the same. (PDF 124616 kb)

Additional file 7: Figure S6. Additional benchmarking of a combined
PEA/STA workflow: ICAM1. a–c Validation of protein and RNA detection in
single cells using a coupled PEA/STA script on the C1 throughout a PMA
perturbation time course (0 hr = purple, 24 hr = green, 48 hr = blue). a
RNA-FISH and IF staining of ICAM1 was performed to validate the
C1-based, high-throughput RNA and protein measurements. Cyan (left)
shows cell nuclei and boundaries, magenta ICAM1 protein (middle), and
yellow ICAM1 RNA (right). Scale bars indicate 25 μm. b Qualitative
agreement between the protein and RNA data obtained in situ and on
the C1. Density distributions (each with their own arbitrary units) for
ICAM1 RNA (left) and protein (right) obtained via qPCR (top) or in situ
(bottom) staining. c Q-Q plots showing the range over which the PEA/STA
measurements of ICAM1 track linearly with IF staining or in situ
hybridization for the same. (PDF 107675 kb)

Additional file 8: Figure S7. Standard RNA probe curves using ERCC
Spike-Ins. Two-fold dilutions of ERCC Spike-Ins were backloaded into the
C1 IFC and processed according to the PEA/STA protocol. Shown here

are the STA measurements with the y-axis values representing ∆Ct values
from only lysis buffer or a threshold value of 24 if undetected in lysis
buffer alone. Plots are ordered by decreasing concentration in the ERCC
mix with bad fits arising around ERCC 14 (which corresponds to ~121
molecules loaded into the top dilution, Additional file 1: Table S10 and
S11). Each data point plotted is the average of eight separate capture
sites in the C1 IFC with error bars showing the standard error of the
mean. Gray (green) dashes show the level above which the probability for
a detection event being real is p = 0.01 (0.05). Points used for fitting the
red trend line are colored blue. (PDF 1135 kb)

Additional file 9: Figure S8. PCA separation of the various time points
(0 hr = purple, 24 hr = green, 48 hr = blue). a A PCA over all quantitative
protein targets and the corresponding ROC curves (b) for all three time
points generated from random forest decision categorization with AUC of
0.98, 0.94, and 0.86 for 0 hr, 24 hr, and 48 hr, respectively. c A PCA over all
quantitative RNA targets and the corresponding ROC curves (d) for all three
time points generated from random forest decision categorization with
AUC of 0.81, 0.80, and 0.57 for 0 hr, 24 hr, and 48 hr, respectively. e A PCA
over all quantitative protein and RNA targets and the corresponding ROC
curves (f) for all three time points generated from random forest decision
categorization with AUC of 0.99, 0.94, and 0.84 for 0 hr, 24 hr, and 48 hr,
respectively. For a, c, e, axis labels indicate which PC was used and what
percent variance it explains. (PDF 269 kb)

Additional file 10: Figure S9. Coefficient of variation colored by
correlation. Genes quantified as both RNA and protein are plotted based
on their standard deviation (y-axis) and mean (x-axis) on the left and right

hand sides, respectively. The plots in the top, middle, and bottom rows are
done at the 0 hr (purple), 24 hr (green), and 48 hr (blue) time points,
respectively. Dashed lines follow the standard deviation of a gene that
has only ten cells with uniform expression and the remaining cells have
undetectable levels (strong bimodality). (PDF 233 kb)

Additional file 11: Figure S10. Change in average, standard deviation,
and frequency of expression. Density traces (each with their own arbitrary
units) for change in mean, standard deviation, and frequency of
expression are shown for genes quantified as both RNA (a) and protein
(b). Each row depicts a time point transition (24 – 0 hr, 48 – 24 hr, 48 – 0 hr
for the top, middle, and bottom rows, respectively) for every gene with at
least two cells above detection in every time point for both RNA and
protein (19 genes). The ticks display individual measurements from each
time point transition. (PDF 508 kb)

Additional file 12: Figure S11. Analyzing gene trajectories through a
time course of PMA stimulation. Genes quantified as both RNA and protein
were made binary for each value based on detection or lack thereof. The
vector of the proportion of cells in the four quadrants of detected and
undetected for RNA and protein across the three stimulation time points
were clustered using Spearman correlation. Clusters are divided using a
distance metric of 0.75; representative trajectories through time (depicted
by color 0 hr = purple, 24 hr = green, 48 hr = blue) are shown for the genes
evaluated in situ with the bottom left quadrant representing undetected
protein and undetected RNA, the bottom right quadrant representing
undetected protein and detected RNA, the top left quadrant representing
detected protein and undetected RNA, and the top right quadrant

representing detected protein and detected RNA. The size of the dots
corresponds to the fraction of cells in that quadrant. (PDF 179 kb)

Additional file 13: Figure S12. Correlation between protein and RNA:
MET. Presented are the correlations of the various MET STAs with MET
protein (by PEA) across time points (0 hr = purple, 24 hr = green, 48 hr =
blue). We observe that the strong increase in correlation after stimulation
is most noted in MET.5_R (spliced short isoform) and MET.6_R (exon 10),
with the other STAs showing a modest increase in correlation at 24 hr
that becomes negative by 48 hr. (PDF 122 kb)

Additional file 14: Figure S13. Spliced vs. unspliced MET transcript.
Scatterplot of MET.5_R (spliced, short isoform) vs. MET.3_R (unspliced)
with density curves plotted along the axes. Time point indicated by color:
0 hr = purple, 24 hr = green, 48 hr = blue. (PDF 227 kb)

Additional file 15: Figure S14. In silico gating of samples by both
discrete and continuous methods. a, b Heatmaps show protein or RNA
targets (rows) significantly dysregulated when applying protein or RNA
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expression gates (columns). Cooler colors indicate a decrease in
expressing cells by a Fisher’s exact test (a) or the distribution of
expressing cells by a Mann–Whitney U test (b) while warmer colors
indicate the inverse. c, d In addition to discrete gating, unsupervised
analyses, such as a PCA over protein (c) or RNA levels (d), can also be
annotated by additional cellular observations (RNA or protein data,
respectively). c ESR1_R expression shows a strong Spearman's ρ of 0.60
with PC2 on a PCA computed from the protein expression. d AXIN1_P
expression shows a strong negative ρ of −0.68 with PC1 on a PCA
computed over RNA expression. (PDF 964 kb)

Additional file 16: Figure S15. Analyzing population lysate dilution
data. The Ct values observed for the two PEA standards: the extension
control (a) and oligo reference (b). Across time points (0 hr = purple, 24
hr = green, 48 hr = blue) and cell dilutions, the deviations from the lysis
buffer control are quite small except for the 42.5 and 21.25 cell
equivalent dilutions (0.05 and 0.01 probability cutoffs from the
background shown in green and gray, respectively). In these deviations
are quite small except for the 42.5 and 21.25 cell equivalent dilutions.
Therefore, those measurements are excluded from the dilution plots in
Additional files 2, 3, and 4: Figures S1, S2, and S3. (PDF 143 kb)
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AUC: Area under the curve; BH: Benjamini–Hochberg; BSA: Bovine serum
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