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Abstract
In this paper we study the multiplication and composition operators induced

by operator valued maps on Bochner spaces (Lorentz-Bochnerand rearrangement
invariant-Bochner) and discuss their closedness, compactness and spectrum.

Introduction

Let f be a complex-valued measurable function defined on a� -finite measure space
(�, A, �). For s � 0, define� f the distribution functionof f as

� f (s) = �(f! 2 � : j f (!)j > sg).
By f � we mean thenon-increasing rearrangementof f given as

f �(t) = inffs> 0: � f (s) � tg, t � 0.

For t > 0, let

f ��(t) =
1

t

Z t

0
f �(s) ds and f ��(0) = f �(0).

For 1< p � 1, 1� q � 1, and for a measurable functionf on � definek f kpq as

k f kpq =

8>><
>>:
�

q

p

Z 1
0

(t1=p f ��(t))q dt

t

�1=q
, 1< p <1, 1� q <1

sup
t>0

t1=p f ��(t), 1< p � 1, q =1.

The Lorentz space Lpq(�) consists of those measurable functionsf on � such
that k f kpq <1. Also k � kpq is a norm andL pq(�) is a Banach space with respect to
this norm. TheL p-spaces for 1< p �1 are equivalent to the spacesL pp(�). Let us
recall that simple functions are dense inL pq(�) for q 6=1 and also the duality results
L�p1 = L p01 for 1 < p < 1 as well asL�pq = L p0q0 for 1 < p, q < 1, where p0, q0
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denote the conjugate exponent ofp, q respectively, that is, 1=p+ 1=p0 = 1 = 1=q + 1=q0.
The reader is referred to ([3, 4, 8, 12, 14 and 17]) for more details on Lorentz spaces.

The Banach function space Kis defined as the space of those complex-valued
measurable functions on� for which the normk � kK on K has the following proper-
ties: For each measurable functionf , g, fn (n 2 N), we have
(1) k f kK = 0 a.e., f = 0 a.e.;ka f kK = jajk f kK ; k f + gkK � k f kK + kgkK

(2) jgj � j f j a.e.) kgkK � k f kK ,
(3) j fnj % j f j a.e.) k fnkK % k f kK , and
(4) E 2 A with �(E) <1) k�EkK <1 and

R
E j f jd� � cEk f kK for some constant

cE, 0< cE <1, depending onE and the normk � kK but independent off .
A function f in a Banach function spaceK is said to have absolutely continuous

norm if k f �nkK ! 0 for each sequencefEngn satisfying En! ' � a.e. If each func-
tion in K has absolutely continuous norm thenK is called Banach function space with
absolutely continuous norm.

A rearrangement invariant spaceis a Banach function spaceK such that whenever
f 2 K and g is equimeasurable function withf , then g 2 K and kgkK = k f kK . We
recall a result from [3, p.59].

Theorem 0.1. Let (K (�), k � kK ) be a rearrangement invariant Banach function
space on a resonant measure space(�,A,�). Then the associate space(K 0(�), k�kK 0)
is also a rearrangement invariant space and these norms are given by

kgkK 0 = sup

�Z 1
0

f �(s)g�(s) ds: k f kK � 1

�
, g 2 K 0

and

k f kK = sup

�Z 1
0

f �(s)g�(s) ds: kgkK 0 � 1

�
, f 2 K .

For a Banach function space with absolutely continuous norm, the Banach dual co-
incide with its associate space. The Lorentz spaceL pq(�), for 1< p<1, 1� q �1
is a rearrangement invariant Banach function space with upper and lower Boyd indices
both equal to 1=p with the dualL�pq(�) coincides with the associate spaceL

0
pq(�).

For details on Banach function spaces and rearrangement invariant spaces, one can
refer to [3, 10] and references therein.

Let X be a Banach space and for a strongly measurable functionf : � ! X,
where (�, A, �) is a � -finite measure space, define a functionk f k as

k f k(!) = k f (!)k for all ! 2 �.

All the notations make sense forf by replacing the modulus by norm. This leads
to the natural definition of the rearrangement invariant-Bochner spaceK (�, X), with



MULTIPLICATION AND COMPOSITION OPERATORS 631

norm k � kK and the associate spaceK 0(�, X) with norm k � kK 0 given by

kgkK 0 = sup

�Z 1
0
k f k�(s)kgk�(s) ds: k f kK � 1

�
, g 2 K 0

and

k f kK = sup

�Z 1
0
k f k�(s)kgk�(s) ds: kgkK 0 � 1

�
, f 2 K .

The Lorentz-Bochner spaceL pq(�, X), is a rearrangement invariant-Bochner space,
where the norm is defined by

k f kpq =

8>><
>>:
�

q

p

Z 1
0

(t1=pk f k��(t))q dt

t

�1=q
, 1< p <1, 1� q <1

sup
t>0

t1=pk f k��(t), 1< p � 1,q =1.

The Lorentz spaceL pq(�, X) is a Banach space and we still have the density of simple
functions in it and its dual is

L�pq(�, X) = L p0q0 (�, X�),
where X� has the Radon-Nikodym property. The particular case whenp = q is studied
in ([5]) whereas for more general case for certain Banach lattices includingL pq one
can refer to ([6]). In ([4])L pq(�, X) is studied in terms of a space of vector measures.

For a strongly measurable functionu: �!B(X), the class of all bounded opera-
tors on Banach spaceX, the multiplication transformationMu : L pq(�, X)! L(�, X)
is defined as

(Mu f )(!) = u(!)( f (!)), for all ! 2 �,

where L(�, X) is the space of all strongly measurable functions. For a non-singular
measurable transformationT: �! �, the composition transformationCT : L pq(�, X)!
L(�, X) is given by

(CT f )(!) = f (T(!)), for all ! 2 �.

These transformations are studied on various spaces by manyresearchers in ([1, 7, 9,
11, 13, 15, 16, 18 and 19]), in particular onL p space in ([16]), in Orlicz space in
([9]) and on Lorentz space in ([11 and 13]). It is natural to extend the study to more
general class. For the detail of these spaces one can refer to([2, 3, 8, 10 and 17])
and the references therein.

This paper is divided into three sections. In the first section, the multiplication
operators with some of its properties like invertibility, range and compactness are dis-
cussed. The next section is devoted to the study of composition operators and in the
last section an attempt has been made to study the spectra of multiplication operators.
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1. Characterizations

Let u be a strongly measurable operator valued map on�. Then the bounded-
ness, invertibility and compactness of the multiplicationoperatorMu induced byu is
characterized in terms ofu.

Using the arguments given in ([9 and 11]) we can easily prove the following results:

Theorem 1.1. The multiplication transformation Mu : L pq(�, X)! L pq(�, X) is
bounded if and only if u2 L1(�, B(X)). Moreover

kMuk = kuk1 = inffk > 0: �(f! 2 � : ku(!)k > kg) = 0g.
For X = CN , a particular case of Theorem 1.1 is considered in ([7]).
Proof. In caseu 2 L1(�, B(X)), then simple computations give

kMu f k�(t) � kuk1k f k�(t), for all f 2 L pq(�, X),

which implies

kMu f kpq � kuk1k f kpq.

Conversely, supposeMu is a bounded operator onL pq(�, X). In caseu is not in
L1(�, B(X)), then we can find a sequencehEni i of disjoint measurable subsets with
finite measure such that

ku(!)k > ni for each ! 2 Eni , and ni !1 as i !1, n1 = 1.

For each! 2 Eni , let x!i 2 X be such thatkx!i k = 1 andku(!)x!i k > ni . For eachi ,
define fi as

fi (!) =

�
x!i , if ! 2 Eni

0, otherwise.

Then eachfi 2 L pq(�, X). Also we have

kMu fi k�(t) � ni k fi k�(t)
and hence

kMu fi kpq � ni k fi kpq.

This contradicts the boundedness ofMu. Moreover one can easily verify thatkMuk =kuk1.

Theorem 1.2. If Mu is a linear transformation from Lpq(�, X) to itself, then Mu

must be bounded.
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The proof is along the line of proof of Theorem 2.4 ([9]).

Theorem 1.3. Let (�, A, �) be a finite measure space. Then Mu : L pq(�, X)!
L pq(�, X) is invertible with inverse Mv for somev 2 L1(�, B(X)) if and only if
(1) u(!) is invertible for�-almost all! 2 � and
(2) there exists� > 0 such that

ku(!)(x)k � �kxk,
for all x in X and�-almost all! 2 �.

Proof. SupposeMu is invertible andM�1
u = Mv for somev 2 L1(�, B(X)). For

eachx 2 X, defineCx : �! X as

Cx(!) = x, for all ! 2 �.

Then

kCxk�(t) = kxk�[0,�(�)](t)

and

kCxk��(t) =

8<
:
kxk, if 0 � t < �(�)kxk

t
�(�), if t � �(�).

This giveskCxkpq = kxk(p0)1=q�(�) and henceCx 2 L pq(�, X). As M�1
u = Mv we have

u(!)v(!)x = v(!)u(!)x = x, for all x 2 X and for all ! 2 �.

This impliesu(!) is invertible for all! 2 �. Also for eachx 2 X and! 2 �,

kxk = kv(!)u(!)xk � kv(!)kku(!)xk � kvk1ku(!)xk.
Hence

ku(!)xk � �kxk for x 2 X, ! 2 �, where � =
1kvk1 .

Conversely if the conditions (1) and (2) are true, then ifv(!) is inverse ofu(!),
we find for all ! 2 � and f 2 L pq(�, X),

u(!)v(!)( f (!)) = v(!)u(!)( f (!)).

Thus

MuMv f = f = MvMu f , for all f 2 L pq(�, X).
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Condition (2) implies

�kv(!)xk � ku(!)v(!)xk = kxk,
kv(!)xk � ��1kxk, for all ! 2 � and x 2 X,

and this givesv 2 L1(�, B(X)). ThereforeMu is invertible and this proves the result.

Theorem 1.4. Let Mu 2 B(L pq(�, X)). Then Mu has closed range if and only
if there exists� > 0 such that for almost all! 2 S, the support of u,

ku(!)xk � �kxk for all x 2 X.

Proof. Suppose for some� > 0,

ku(!)xk � �kxk, for all x 2 X and�-almost all! 2 S.

Let L pq(S) denote the subspace of all thosef in L pq(�, X) which vanish outsideS,
then L pq(S) is a closed invariant subspace ofMu. Also for each f in L pq(S), we have

kMu f k � �k f k.
This givesMujL pq(S) has closed range and so ofMu.

Conversely, supposeMu has closed range. Then there exists an� > 0 such that

kMu f kpq � �k f kpq for all f in L pq(�, X).

Let E = f! 2 S: ku(!)xk < (�=2)kxk for somex 2 Xg.
If �(E) > 0, then we can find a measurable subsetF of E such that 0< �(F) <1. For each! 2 F , let x! 2 X such that

ku(!)x!k < �
2
kx!k with kx!k = 1.

Define fF : �! X as

fF (!) =

�
x!, if ! 2 F
0, otherwise.

Then fF 2 L pq(S) and kMu f kpq < �k f kpq. Therefore�(E) = 0 and hence for�-almost all! 2 S,

ku(!)xk � �
2
kxk for all x 2 X.
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EXAMPLE 1.5. Consider� = (0, 1] with Lebesgue measure. LetX = l2. Define
u : �! B(l2) as

u(!) =

8<
:I2, if ! 2 �0,

1

2

�
0, otherwise

where I2(x1, x2, x3, : : :) = (x1, x2, 0,: : :). Then Mu 2B(L pq(�, X)) asu 2 L1(�,B(X)).
But Mu is not invertible asu(!) is not invertible for all! in (1=2, 1].

EXAMPLE 1.6. Let� = (1, 2] and X any Banach space, andu(!) = ! I for all! 2 �. Thenu 2 L1(�, B(X)) and eachu(!) is invertible andku(!)xk � kxk for all
x 2 X and Mu is invertible.

EXAMPLE 1.7. Let� = (0, 1]. Defineu: �!B(l2) asu(!) = I!, whereI!: l2!
l2 given by

I!(x1, x2, x3, : : : ) = (!x1, !x2, 0, : : : ).
Then for each! 2 (0, 1], I! 2 B(l2) and kI!k = !. For � > 0,

f! 2 (0, 1] : ku(!)xk � �kxk 8x 2 l2g =

��, if � > 1
[�, 1], if � � 1.

Thus there does not exist any� > 0 such that

ku(!)xk � �kxk for all x 2 l2 and a.e. on�.

HenceMu does not have a closed range in view of Theorem 1.4.

For each� > 0, defineu� as

u� = f! 2 � : ku(!)xk � �kxk for somex 2 Xg.
Theorem 1.8. Mu in B(L pq(�, X)) is compact if Lpq(u�) is finite dimensional

for each� > 0, where

L pq(u�) = f f 2 L pq(�, X) : f vanishes outside u�g.
Proof. For each natural numbern, define

un(!) =

�
u(!), if ! 2 u1=n
0, otherwise.
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Then eachMun is compact and for eachf in L pq(�, X),

f! 2 � : k(un � u)(!)( f (!))k � sg � f! 2 � : k f (!)k > nsg,
k(Mun � Mu) f k�(t) � 1

n
k f k�(t).

Thus

k(Mun � Mu) f kpq � 1

n
k f kpq.

This gives thatMu is compact.

EXAMPLE 1.9. � = (0, 1] and X = l2. Define u as u(!) = I2, where I2 : l2! l2
given by I2(x1, x2, x3, : : : ) = (x1, x2, 0, : : : ). Thenku(!)k = 1, for all ! 2 �. Also

u� = f! 2 � : ku(!)k � �g =

��, if � > 1�, if � � 1.

Thus

L pq(u�) =

�
0, if � > 1
L pq(�, X), if � � 1.

Hence for� � 1, L pq(u�) is infinite dimensional forq � p > 1, as for eachi � 1,
fi (!) = (0, 0,: : : , !, 0, : : : ) belongs toL pq(�, X).

Theorem 1.10. If u is a strongly measurable operator valued map such that for
some k> 0, ku(!)xk � kkxk, 8x 2 X wheneverku(!)k � k, then Mu in B(L pq(�, X))
is compact if and only if Lpq(u�) is finite dimensional for each� > 0.

Proof. In caseMu is a compact operator thenMujL pq(u� ) is also a compact oper-
ator and also for eachf 2 L pq(�, X),

kMu�u� f k � �k�u� f kpq.

ThusMujL pq(u� ) is invertible and being compact we find thatL pq(u�) is finite dimensional.
Converse follows by using the Theorem 1.8.

EXAMPLE 1.11. Let X be a Banach space,� = (a, b), defineu : �! B(X) as
u(!) = ! I , 8! 2 �. Then we findu 2 L1(�, B(X)) so thatMu 2 B(L pq(�, X)).

Also ku(!)k � k if and only if ku(!)xk � kkxk, 8x 2 X.
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Theorem 1.12. Let K(�, X) be the rearrangement invariant spaces on resonant
measure space(�, A, �). Then the multiplication transformation Mu on K(�, X) is
bounded if and only if u2 L1(�, B(X)). Moreover

kMuk = kuk1 = inffk > 0: �(f! 2 � : ku(!)k > kg) = 0g.
Proof. In caseu 2 L1(�, B(X)), then simple computations give

kMu f k�(t) � kuk1k f k�(t), for all f 2 K (�, X).

Hence forg 2 K 0(�, X), the associate space,

Z 1
0
kMu f k�(s)kgk�(s) ds� kuk1 Z 1

0
k f k�(s)kgk�(s) ds.

Taking supremum over allg 2 K 0(�, X) with kgkK 0 � 1, we get

kMu f kK � kuk1k f kK , for all f 2 K (�, X).

The converse follows with the same computation as made in theTheorem 1.1.

Similarly the Theorems 1.3, 1.4, 1.8 and 1.10 hold on rearrangement invariant-
Bochner spaceK (�, X) along the same lines of proofs.

2. Composition operators

This section is devoted to a study of composition operatorsCT on L pq(�, X), 1<
p�1, 1� q �1 and K (�, X) induced by a non-singular measurable transformation
T : �! �, where (�, A, �) is a � -finite measure space. The results presented here
generalize the results of R.K. Singh ([16]), R. Kumar ([11])and H. Takagi ([18 and
19]). Their proofs, being on the same lines can be easily formulated, therefore are
omitted.

Let x0 be a fixed element ofX with kx0k = 1. Then for each measurable subset
E of �, define the characteristic function�E as

�E(!) =

�
x0, if ! 2 E
0, otherwise.

Then we find

k�Ek�(t) = �[0,�(E))(t) and k�Ekpq = (p0)1=q(�(E))q=p.
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Theorem 2.1. A non-singular measurable transformation T: �! � induces the
composition operator CT : L pq(�, X)! L pq(�, X) ( f 7! f ÆT) if and only if for some
b > 0,

�T�1(E) � b�(E) for all E 2 A.

Moreover

kCTk = (inffk > 0: �T�1(E) � k�(E), 8E 2 Ag)1=p.

Corollary 2.2. T induces CT on Lpq(�, X) if and only if �T�1 is absolutely
continuous with respect to� and fT , the Radon-Nikodym derivative of�T�1 with re-
spect to�, belong to L1(�).

Corollary 2.3. T is measure preserving if and only if CT is an isometry.

Theorem 2.4. Let CT 2 B(L pq(�, X)), 1 < p � 1, 1 � q < 1. Then CT

has closed range if and only if there exists� > 0 such that fT (!) � � for almost all! 2 S, the support of fT , where fT is the Radon-Nikodym derivative of�T�1 with
respect to�.

Theorem 2.5. CT 2 B(L pq(�, X)), q 6= 1 has dense range if and only if
T�1(A) = A.

Theorem 2.6. Let K(�, X) be a rearrangement invariant space on a� -finite mea-
sure space(�, A, �). A non-singular measurable transformation T: �! � induces
the composition operator CT on K(�, X) if and only if for some b> 0,

�T�1(E) � b�(E) for all E 2 A.

3. Spectra

In this section an attempt is made to find the spectrum of multiplication operator
Mu on L pq(�, X), 1 < p � 1, 1 � q � 1 or K (�, X) induced by the measurable
function u : �! B(X). Throughout this section we assume (�, A, �) to be a finite
measure space. The symbolsPT , Pa

T and� (T) refer to the point spectrum, the approx-
imate point spectrum (the set of complex numbers� such thatT � �I is not bounded
below) and the spectrum of the operatorT respectively.

Theorem 3.1. PMu =
S�0 : �(�0)>0

�T!2�0 Pu(!)
�
.
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Proof. If � 2T!2�0 Pu(!), then for each! 2 �0 assumex! to be a unital vector
(i.e. kx!k = 1) satisfying

u(!)x! = �x!.

Define f as

f (!) =

�
x!, if ! 2 �0
0, otherwise.

Then f is the eigenvector corresponding to� that is Mu f = � f .
Converse is easy to prove.

Theorem 3.2. Pa
Mu

=
S

A2C�T!2A Pa
u(!)

�
, where

C = fA � � : A is measurable and�(� n A) � 0g.
Proof. In case� 2 Pa

Mu
then we can find a sequenceh fni such that

kMu fn � � fnkpq! 0 as n!1.

This gives limn!1(u(!)( fn(!))� � fn(!)) = 0 for a.e.! in �. Thus we can find some
A 2 C such that

lim
n!1(u(!)� �I ) fn(!) = 0 for all ! 2 A.

Thus � 2 Pa
u(!) for all ! 2 A and hence� 2T!2A Pa

u(!).

Conversely if� 2SA2C�T!2A Pa
u(!)

�
, then for � > 0 and for every! 2 A, let x!

in X be such that

kx!k = 1 and k(u(!)� �)x!k < �.
Define f : �! X as

f (!) =

�
x!, if ! 2 A
0, otherwise.

Then

kMu f � � f kpq < �k f kpq.

This gives� 2 Pa
Mu

and hence the result.

For a strongly measurable functionu : �! B(X), the set

essu = f� 2 C : �(f! 2 � : ku(!)� �k < �g) 6= 0 8� > 0g
is called the essential range ofu.
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DEFINITION 3.3. For a strongly measurable functionu : �! B(X), we define
esssu, the strong essential range ofu as the set

f� 2 C : �(f! 2 � : k(u(!)� �)xk < �kxk for somex 2 Xg) 6= 0, 8� > 0g.
It is obvious to check that essu � esssu.

Theorem 3.4. � (Mu) � �S!2� � (u(!))
� [ esssu.

The proof follows using Theorem 1.3.
Finally we present some examples to verify the proper inclusion essu � esssu and

to ensure that there is no relation between esss
u and

S!2� � (u(!)).

EXAMPLE 3.5. For a projection operatorP (or any operator that is not one-one)
on a Banach spaceX, defineu : �! B(X) as u(!) = P, 8! 2 �. Then 0 does not
belong to essu whereas 02 esssu.

EXAMPLE 3.6. Let � = (0, 1], X any Banach space, defineu : � ! B(X) as
u(!) = ! I for ! 2 �. Then eachu(!) is invertible so that 0 does not belong toS!2� � (u(!)). But for any � > 0,

�(f! 2 � : ku(!)xk < �kxk, 8x 2 Xg) = �.
Thus 02 esssu.

EXAMPLE 3.7. For any operatorT on a Banach spaceX that is bounded below
but not invertible if we defineu : �! B(X) as u(!) = T , 8! 2 �. Then 0 does not
belong to esssu but 02S!2� � (u(!)).
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