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Abstract
In this paper we study the multiplication and compositioremgpors induced
by operator valued maps on Bochner spaces (Lorentz-Bochmerrearrangement
invariant-Bochner) and discuss their closedness, compsstand spectrum.

Introduction

Let f be a complex-valued measurable function defined enfinite measure space
(2, A, ). Fors >0, definex¢ the distribution functionof f as

wi(s) = u(fw € Q: | f(0)| > s}).
By f* we mean thenon-increasing rearrangememf f given as
f*t) =inf{s> 0: u¢(s) <t}, t=>0.
Fort > O, let
1 t
f() = f/ f*(s)ds and f*(0)= f*(0).
0

For 1< p<o0, 1<q <o00, and for a measurable functioh on  define| | ,q as

q 00 dt 1/q

{—/ (tl/pf**(t))q—} , l<p<oo, 1<g<oo
Ifllpg=1LPJo t

supt¥/P £ (t), 1<p<oo g=00.

t>0

The Lorentz space kq(€2) consists of those measurable functiohson © such
that || f | pqg < 00. Also |- ||pq is @ norm andL pq(2) is a Banach space with respect to
this norm. Thel P-spaces for k p < oo are equivalent to the spacés,(€2). Let us
recall that simple functions are denselinqy(€2) for g # cc and also the duality results

L3 = Lpe for 1 < p < oo as well asLp, = Lpg for 1 < p, q < oo, where p/, ¢
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630 S.C. RORA, G. DATT AND S. VERMA

denote the conjugate exponent fg respectively, that is, Ap+1/p'=1=1/g+1/q".
The reader is referred to ([3, 4, 8, 12, 14 and 17]) for moraitlebn Lorentz spaces.

The Banach function space Ks defined as the space of those complex-valued
measurable functions ofe for which the norm| - ||k on K has the following proper-
ties: For each measurable functidn g, f, (n € N), we have
@) Ifllk =0 aes f=0ae;laflk =lallflik; If +glk < I fllk + gl
() lgl < |fl ae.= |gllk < flk,

Q) Ifal /1fl ae.= [ fallk /" Iflk, and
(4) E e Awith u(E) <00 = |lxellk < o0 ande |[fldu < cg| fllk for some constant
Ce, 0 < Cg < o0, depending orE and the norm|| - || but independent off.

A function f in a Banach function spack is said to have absolutely continuous
norm if || f xnllk — O for each sequenciE,}, satisfyingE, — ¢ u a.e. If each func-
tion in K has absolutely continuous norm th&nhis called Banach function space with
absolutely continuous norm.

A rearrangement invariant spads a Banach function spadé such that whenever
f € K and g is equimeasurable function with, theng € K and ||g|lx = || f|lk. We
recall a result from [3, p.59].

Theorem 0.1. Let (K(2), || - llk) be a rearrangement invariant Banach function
space on a resonant measure sp&e.A, u). Then the associate spak’(<2), || - |l«-)
is also a rearrangement invariant space and these norms arengby

ngan:sup{/ (9 () ds: |1 f 1k 51}. geK’
0
and
nan:sup{/ F(9)g°(9) ds: ||9||K/§1}, fek.
0

For a Banach function space with absolutely continuous nah@ Banach dual co-
incide with its associate space. The Lorentz spagg(2), for L< p<oo, 1<q<o0
is a rearrangement invariant Banach function space witletuppd lower Boyd indices
both equal to 1p with the dualL},(€2) coincides with the associate spab'gq(sz).

For details on Banach function spaces and rearrangemeariant spaces, one can
refer to [3, 10] and references therein.

Let X be a Banach space and for a strongly measurable fundtio® — X,
where €, A, 1) is a o-finite measure space, define a functiph|| as

1) = f()] foral e

All the notations make sense fdr by replacing the modulus by norm. This leads
to the natural definition of the rearrangement invarianttd@r spaceK (2, X), with
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norm | - ||k and the associate spa& (2, X) with norm | - ||x- given by
o0
gl =sup{/o 1" s)lgli*(s)ds: I fllk =< 1}, geK’
and
o0
Il = SUD{/O I fII*(s)llgli*(s) ds: llgliks < 1}, f e K.
The Lorentz-Bochner spadey(2, X), is a rearrangement invariant-Bochner space,

where the norm is defined by

p
supt™P| f1**(t), 1< p<o00,q=oo.
t>0

q [® dt) v
{—/ (tl/"nfn**(t))q—} , l<p<oo, 1<g<o0
I fllpg = 0 t

The Lorentz spack (2, X) is a Banach space and we still have the density of simple
functions in it and its dual is

L5g(2, X) = Lyq (R, X*),

where X* has the Radon-Nikodym property. The particular case wherqg is studied

in ([5]) whereas for more general case for certain Banadicést includingL ,q one

can refer to ([6]). In ([4])L pq(€2, X) is studied in terms of a space of vector measures.
For a strongly measurable functian Q — 2(X), the class of all bounded opera-

tors on Banach spack, the multiplication transformatiom,: L pq(€2, X) — L(£, X)

is defined as

(My F)() = u(@)(f (@), foral e,

where L(2, X) is the space of all strongly measurable functions. For agiogular
measurable transformatidn 2 — Q, the composition transformatid@y: L pq(2, X) —
L(2, X) is given by

(Cr () = {(T(), foral oeQ.

These transformations are studied on various spaces by maparchers in ([1, 7, 9,
11, 13, 15, 16, 18 and 19]), in particular dr, space in ([16]), in Orlicz space in
([9]) and on Lorentz space in ([11 and 13]). It is natural tdeex the study to more
general class. For the detail of these spaces one can ref§2,t@, 8, 10 and 17])
and the references therein.

This paper is divided into three sections. In the first segtithe multiplication
operators with some of its properties like invertibilityange and compactness are dis-
cussed. The next section is devoted to the study of composidperators and in the
last section an attempt has been made to study the spectraltyplivation operators.
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1. Characterizations

Let u be a strongly measurable operator valued mapfonThen the bounded-
ness, invertibility and compactness of the multiplicatimmerator M, induced byu is
characterized in terms af.

Using the arguments given in ([9 and 11]) we can easily prbeefollowing results:

Theorem 1.1. The multiplication transformation M L pq(€2, X) — L pq($2, X) is
bounded if and only if & L*(2, B(X)). Moreover

IMull = [[ullee = inftk > 0: p(fw € Q2: [u(@)] > k}) = O}.

For X =CN, a particular case of Theorem 1.1 is considered in ([7]).
Proof. In caseu € L*(2, B(X)), then simple computations give

IMy () < llullsoll FII(), for all  f e Lpg(2, X),
which implies
My fllpg < llullecl f Il pg-

Conversely, suppos®/, is a bounded operator ohpq(£2, X). In caseu is not in
L>°(€, B(X)), then we can find a sequen¢E,, ) of disjoint measurable subsets with
finite measure such that

lu(w)l| > n; for each w € E,, andn; — oo asi — oo, Ny = 1.

For eachw € E,,, let x,, € X be such thaf|x,, || =1 and||u(w)X, || > n;. For eachi,
define f; as

Xy, 1T @€ Ey
0, otherwise.

fi(w) = {
Then eachf; e Lpq(€2, X). Also we have
My fi ") = ni | il (1)
and hence

My il pg = Nill fi pg-

This contradicts the boundedness Mf,. Moreover one can easily verify thdM,| =
lUlloo- O

Theorem 1.2. If My is a linear transformation from kq(€2, X) to itself then M,
must be bounded
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The proof is along the line of proof of Theorem 2.4 ([9]).

Theorem 1.3. Let (2, A, ) be a finite measure spac&hen M;: Lpy(S2, X) —
L pg(€2, X) is invertible with inverse M for somev € L*(£2, ®B(X)) if and only if
(1) u(w) is invertible for u-almost allw € 2 and
(2) there exists > 0 such that

lu(@)()N = €l
for all x in X and u-almost allw € Q.

Proof. SupposeM, is invertible andM;? = M, for somev € L>(Q, B(X)). For
eachx € X, defineCy: @ - X as

Ci(w)=x, forall weQ.

Then
ICxII™(8) = I1X11 X[0, (221 (1)
and
X1, if 0<t<pu)
ICI™(t) = 1 |Ix]]

M) itz u(Q).
This gives||Cx |l pq = IIXI(P)Y9x(2) and hencey € L po($2, X). As M1 =M, we have
U(@)v(w)X = v(w)u(w)x =%, forall xe X and for all we Q.
This impliesu(w) is invertible for allw € Q. Also for eachx € X andw € €,
IXII = lv(@)u(@)x]l < l[v(@)lTu(@)X]l < l[vllelu(@)XI.
Hence

lu(@)x| > €llx|] for xe X, we R, where €=

ollo

Conversely if the conditions (1) and (2) are true, then(ib) is inverse ofu(w),
we find for allw € @ and f € L pq(2, X),

u(@)v(w)(f (@) = v(e)u(@)(f (v)).
Thus

MM, f =f =M,Myf, forall f e Lpg(2 X).
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Condition (2) implies

ellv(@)x]l < lu(@)v(@)x|l = [IXIl,

lv(w)x|| < e x|, forall weQ andx e X,

and this givesy € L*(2, B(X)). ThereforeM, is invertible and this proves the result.
0

Theorem 1.4. Let M, € B(Lyq(2, X)). Then M, has closed range if and only
if there existse > 0 such that for almost allv € S, the support of u

lu(w)x|| > €|lx]| for all x e X.
Proof. Suppose for some > 0,
lu(w)x| > €||x||, forall x e X andp-almost allw € S.

Let L pq(S) denote the subspace of all thogein L q(€2, X) which vanish outsideS,
then L p(S) is a closed invariant subspace Mf,. Also for eachf in Ly4(S), we have

Myl =€l f1.

This givesMy| s has closed range and so bf;,.
Conversely, suppos®l, has closed range. Then there existsean O such that

IMyfllpg = €llfllpg forall f in Lpg($2, X).
Let E ={w € S: |u(w)Xx]| < (e/2)|Ix]| for somex € X}.

If w(E) > 0, then we can find a measurable subBetf E such that O< u(F) <
oo. For eachw € F, let x, € X such that

€ .
Iu(@)Xoll < SlI%ll - with[IX, | = 1.

Define fp: @ — X as

fe () = , If weF
Fi =10, otherwise.

Then fr € Lpg(S) and [Myfllpq < €llfllpg- Therefore u(E) = 0 and hence for
u-almost allw € S,

u(@)x]| > §||x|| for all x e X. O
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ExampLE 1.5. Consider = (0, 1] with Lebesgue measure. L&t=1,. Define

u: Q— %B(,) as
. 1
U(a)): [|2, if we (0, §i|

0, otherwise

where 15(Xq, X2, X3, ...) = (X1, X2, 0,...). ThenMy € B(L pg(£2, X)) asu € L*=(2, B(X)).
But My is not invertible asu(w) is not invertible for allw in (1/2, 1].

ExAMPLE 1.6. LetQ = (1, 2] and X any Banach space, anfw) = wl for all
w € Q. Thenu € L*(2, B(X)) and eachu(w) is invertible and|u(w)x]| > ||| for all

x € X and My, is invertible.

ExampPLE 1.7. LetQ=(0,1]. Defineu: @ — 9(l,) asu(w) = 1,,, wherel,: |, —
I, given by

|w(X1, X2, X3, . . ) = (a)Xl, wXo, 0, .. )
Then for eachw € (0, 1], I, € B(l2) and |1, = w. Fore > 0,

P, if e>1
[e, 1], if e=<1.

(€ (0, 2] )l > elx] Vi €12} = |
Thus there does not exist ary> 0 such that
lu(w)x| > €||x|| for all x el, and a.e. ort2.
Hence M, does not have a closed range in view of Theorem 1.4.
For eache > 0, defineu, as

U = {w € Q: |u(w)X]|| > €||x|| for somex € X}.

Theorem 1.8. My in B(L pq(2, X)) is compact if Lyq(u.) is finite dimensional
for eache > 0, where

Lpg(ue) = {f € Lpg(2, X): f vanishes outside .
Proof. For each natural numbar define

u(w), if weuyn
0, otherwise.

Un(w) = {
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Then eachM,, is compact and for eacli in Lpq(2, X),
{weQ:[|(un — u)(@)(f(@)I = s} € {we Q: | f(w)] > ns},

1
(Mg, — M) FII*(t) < ﬁll fI(t).
Thus
1
[(My, — My) lpg = ﬁ” f Il pg-
This gives thatM,, is compact. O

ExamMpPLE 1.9. Q=(0, 1] and X =1,. Defineu asu(w) = l,, wherel,: 1, — |,
given by Ix(Xq, X2, X3, ... ) = (X1, X2, 0,...). Then|u(w)|| =1, for all v € Q. Also

Q, if e>1
¢, if e<l.

Ue = {w € 2 u(e)|l ze}=[

Thus

_ |0, if e>1
Lpalli) = {qu(sz, X), if e<1.

Hence fore < 1, Lpg(ue) is infinite dimensional forg > p > 1, as for each > 1,
filw)=(0,0,...,w,0,...) belongs toL pq(2, X).

Theorem 1.10. If u is a strongly measurable operator valued map such that fo
some k> 0, [Ju(w)x|l > K[IX|, ¥X € X whenevelju(w)|l >k, then M, in B(L p4(£2, X))
is compact if and only if kq(u.) is finite dimensional for each > 0.

Proof. In caseM, is a compact operator theM |, u,.) iS also a compact oper-
ator and also for eachi e L pq(€2, X),

Muxu, Tl = €llxu. fllpg-

ThusMylL,,u.) is invertible and being compact we find thagq(u,) is finite dimensional.
Converse follows by using the Theorem 1.8. O

ExaMPLE 1.11. LetX be a Banach space = (a, b), defineu: Q — B(X) as
u(w) =wl, Yo € Q. Then we findu € L*(2, B(X)) so thatMy € B(L p4(2, X)).
Also |lu(w)|| = k if and only if u(w)x|| > K|IX]l, YX € X.
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Theorem 1.12. Let K(£2, X) be the rearrangement invariant spaces on resonant
measure spacé2, A, 1). Then the multiplication transformation Mon K(2, X) is
bounded if and only if & L*(£2, 5(X)). Moreover

Myl = lullec = inf{k > 0: u({w € Q: [Ju(@)|l > k}) =0}
Proof. In caseu € L*®(L2, B(X)), then simple computations give
My () < llulleo |l FII*(t), for all f e K(2, X).

Hence forg € K'(, X), the associate space,
/ My flI*(s)llgll*(s) ds < IIUIIOO/ I f1I*(s)llgli*(s) ds.
0 0

Taking supremum over aly € K’'(2, X) with ||g|llk <1, we get
My fllk < llullooll fllk, forall f e K(Q, X).
The converse follows with the same computation as made imThs®wrem 1.1. [

Similarly the Theorems 1.3, 1.4, 1.8 and 1.10 hold on regearent invariant-
Bochner space& (€2, X) along the same lines of proofs.

2. Composition operators

This section is devoted to a study of composition opera@ron L pq(€2, X), 1<
p<o0, 1<q=<o0andK(£, X) induced by a non-singular measurable transformation
T: Q2 — Q, where @, A, 1) is ao-finite measure space. The results presented here
generalize the results of R.K. Singh ([16]), R. Kumar ([1&a})d H. Takagi ([18 and
19]). Their proofs, being on the same lines can be easily dtatad, therefore are
omitted.

Let xo be a fixed element oK with || Xo|| = 1. Then for each measurable subset
E of @, define the characteristic functigne as

Xo, if wekE
0, otherwise.

re(@) = {
Then we find

Ixell*®) = xo,uEp®) and lxellpg = (P)YI((E)YP.
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Theorem 2.1. A non-singular measurable transformation 2 — Q induces the
composition operator €: L pg(€2, X) = Lpg(2, X) (f — foT) if and only if for some
b> 0,

uT~YE) < bu(E) foral E e A.
Moreover
ICT|l = (inflk > 0: uT XE) < ku(E), VE € A)YP.

Corollary 2.2. T induces G on Lpg(2, X) if and only if T~ is absolutely
continuous with respect ta and fr, the Radon-Nikodym derivative ofT ~ with re-
spect tou, belong to 1°°(<2).

Corollary 2.3. T is measure preserving if and only ifrds an isometry

Theorem 2.4. Let Gr € B(Lpg(2, X)), L< p<o0, 1<qg<o0. Then G
has closed range if and only if there exigts- O such that f(w) > ¢ for almost all
w € S, the support of f, where f is the Radon-Nikodym derivative ofT ~1 with
respect tou.

Theorem 2.5. Ct € B(Lpq(R2, X)), g 7 oo has dense range if and only if
T1(A) = A.

Theorem 2.6. Let K(£2, X) be a rearrangement invariant space o dinite mea-
sure spacg€2, A, ). A non-singular measurable transformation: T2 — Q induces
the composition operator £on K(€2, X) if and only if for some b> 0,

uT YE) <bu(E) forall E e A.

3. Spectra

In this section an attempt is made to find the spectrum of plidétion operator
My on Lpg(S2, X), 1< p<o0, 1< <00 or K(®, X) induced by the measurable
function u: Q — 98B(X). Throughout this section we assum®, (4, u) to be a finite
measure space. The symbdts, P ando(T) refer to the point spectrum, the approx-
imate point spectrum (the set of complex numbgrsuch thatT — Al is not bounded
below) and the spectrum of the operaibrrespectively.

Theorem 3.1. Py, = Ug y@)-0(MNweer Puw))-
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Proof. If X e, co
(i.e. %]l = 1) satisfying

Puw), then for eachw € Q' assumex,, to be a unital vector

U(@)Xyp = AXyp-
Define f as

Xp, If we
0, otherwise.

f(a)):{

Then f is the eigenvector corresponding zothat is M, f = A f.
Converse is easy to prove. O

Pa

u(w)

Theorem 3.2. P§ =Uacc(N ), where

weA
C={AC Q: A is measurable ang(2\ A) > 0}.
Proof. In case\ € P,f,‘lu then we can find a sequen¢é,) such that
”Mufn_)\-fn”pq—)o as n — oo.

This gives limy_, oo (U(@)(fr(w)) — A fr(w)) = 0 for a.ew in 2. Thus we can find some
A € C such that

nIim (u(w) = A1) fr(w) =0 for all we A

Thus € P§,, for all w € A and hencer € (.5 P

()"
Conversely if2. € Upcc(MNyea Pley): then fore > 0 and for everyw € A, let x,
in X be such that

weA

weA

X, =1 and [(u(@)— A)X,ll < e.
Define f: @ — X as

f(a)) _ | X, if weA
0, otherwise.

Then
My f —2Afllpg <€l fllpg-
This givesi € Py, and hence the result. O
For a strongly measurable functian 2 — 95(X), the set
esg={reC: u(fw e Q: |lulw) — A|| < ¢€}) #0 Ve > 0}

is called the essential range of
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DErINITION 3.3. For a strongly measurable function & — B(X), we define
es$, the strong essential range ofas the set

LeC: ulfw e Q: [(u(w) — AX|| < e|lx] for somex € X}) #0, Ve > 0}.
It is obvious to check that es< es§.
Theorem 3.4. o(My) € (U,eq o(U(@))) Uess.
The proof follows using Theorem 1.3.

Finally we present some examples to verify the proper inciugsg C es§ and
to ensure that there is no relation betweerf essd | J, ., o (u(w)).

EXAMPLE 3.5. For a projection operatd? (or any operator that is not one-one)
on a Banach spac¥, defineu: @ — B(X) asu(w) = P, Vo € Q. Then 0 does not
belong to esswhereas (e es§.

ExampLE 3.6. LetQ = (0, 1], X any Banach space, define Q@ — B(X) as
U(w) = wl for w € Q. Then eachu(w) is invertible so that O does not belong to
Uypeq 0(U(w)). But for anye > 0,

p({w € Q: u(w)x]l < €lIx]l, VX € X}) = €.
Thus Oc es$.

ExAMPLE 3.7. For any operatof on a Banach spacX that is bounded below
but not invertible if we definau: @ — B(X) asu(w) =T, Yw € Q. Then 0 does not
belong to egsbut O€ |, o (U(w)).
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