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Abstract 

 
Let G  be a multiplicative group and R  be a G -graded commutative ring and M  

a G -graded R -module. Various properties of multiplicative ideals in a graded ring 
are discussed and we extend this to graded modules over graded rings. We have also 
discussed the set of P -primary ideals and modules of R  when P  is a graded 
multiplication prime ideals and modules.  
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1. Introduction 

 
Let G  be a group. A ring R  is called G -graded  ring if there exist a family 

{ }g g G
R

∈
 of additive subgroup of R  such that gg G

R R
∈

= ⊕  that g h ghR R R⊂  for 

each ,g h G∈ . A R - module M  is called R -graded Module over G  if 

gg G
M M

∈
= ⊕  and g h ghR M M⊂  for all ,g h G∈ . Thus each gM  submodule 

of M  is gR R= - module. An element of a graded ringR  is called homogeneous if 

it belongs to g
g G

M
∈
U . If an element m M∈ is belongs to    g

g G
M

∈
U , then m  is 

called homogeneous element and the set of all homogeneous elements of M  is 
denoted by ( )H M (for a ring R  is denoted by ( )H R ). A graded submodule N  of a 
graded R  -Module M  (R  is a graded ring) is a submodule such that   

( )g gg G g G
N M N N

∈ ∈
= ⊕ ∩ = ⊕ . Equivalently, N  is graded in M  if and only if  
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N  has a homogeneous set of generators. If gg G

R R
∈

= ⊕  and gg G
R R

∈
′ ′= ⊕  are two 

graded ring, then the mapping : R Rφ ′→  whit 1 1( )R Rφ ′=  is called graded 

homomorphism if ( )g gR Rφ ′⊂ , for all g G∈ . 

If gg G
M M

∈
= ⊕ and gg G

M M
∈

′ ′= ⊕  are two gradedR -modules (R  is a graded 

ring), the mapping : M Mλ ′→  is called graded homomorphism if 
( )g gM Mλ ′′⊂   for all g G∈ . A graded ideal P  of a graded ring R  is called gr-

prime if whenever , ( )x y H R∈  with xy P∈  then x P∈ or y P∈ . And a graded 
submodule of a graded module M  over a graded ring R  is called gr-prime 
submodule ifrx N∈ , for ( )r H R∈  and ( )x H M∈ , then x N∈ or rM N⊂ .  
A graded ideal m  of a graded ring R  is called gr-maximal if it is maximal in the 
lattice of graded ideals ofR . (similarly we have for R -modules). A graded ring R  is 
called a gr-local ring if it has unique gr-maximal ideal. LetR   be a graded ring and let 

( )S H R⊂  be a multiplicatively closed subset ofR . Then the ring of fraction  1S R−  

is a graded ring which is called a gr-ring of fractions. Indeed, 1 1( )gg G
S R S R− −

∈
= ⊕  

where 1 , , , deg( )( )
deg( )g

r rS R r R s S g
s s

− ⎧ ⎫
= ∈ ∈ =⎨ ⎬
⎩ ⎭

. And 1 1( )gg G
S M S M− −

∈
= ⊕  

where 1 , , , deg( )( )
deg( )g

m MS M m M s S g
s s

− ⎧ ⎫
= ∈ ∈ =⎨ ⎬
⎩ ⎭

. Consider the ring gr-

homomorphism 1: R S Rπ −→  defined by
1

( ) rrπ = . And 1: M S Mπ −→ is 

called gr-homomorphism  if 
1

( ) mmπ = . Let P  be any gr-prime ideal of a graded 

ring R  and consider the multiplicatively closed subset ( )S H R P= − . We denote 

the graded ring of fraction 1S R− of R  by g
pR and we call it the gr-localization ofR . 

This is a gr-local with the unique gr-maximal ideal 1S P−  which will be denoted by 
g
pPR .Let I  be a graded ideal in a graded ringR  . The graded radical of I (gr-

rad( I )) is defined the set of all gx R∈ such that for each g G∈ , there exists 

0gn >  such that gn
gx I∈ . A graded radical submodule N  of a gradedR -

moduleM   (R  is a graded ring) is the intersections of graded prime submodules of 
M  such that containing N  as a submodules. A submodule N  of on R -module 
M  is called multiplication ifN IM= , for some gr-ideal I  of R .If each  sub 
module of M  is gr-multiplication , M  is called gr-multiplication R -module. 
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In this paper, we study some properties of gr-multiplication submodules in a graded  
multiplication R-module M , when M  is gr-module over gr-ring R . And give a 

characterization of finitely generated gr-multiplication submodules of a gr-
multiplication M  over a gr-ring R .  

 
Definition 1  Let R  be a graded ring over the group G  and M  an R -graded 

module. A graded submodule N  of M  is called graded multiplication . If  
g

K N<  

then there is an gr-ideal of R  such that K NI= . 
 
Definition 2 A graded R -module M  is called gr-multiplication module if every 

gr-submodule of M  is gr-multiplication . 
 
Definition 3 A graded ideal Q of a graded ring R  is called gr-primary if  

Q R≠ and whenever, , ( )b H R∈a  whit b Q∈a , then Q∈a  or nb Q∈ .If Q  
is gr-primary ideal of R  and gr-rad ( )Q P= , we say that Q   is gr-p-primary.  

 
Definition  4  An gr-submodule N  of graded R -module M   is called gr-primary, 

if ( )H R∈a , ( )b H M∈  and b N∈a ,then b N∈  or nM N⊂a for some 
integer 0n ≥ . 

Recall that if , N K  are two gr-submodules of a graded R-module M  , then 

{ }( : )N K r R rK N= ∈ ⊂  is a graded ideal of R .  

 
Lemma  1   Let I  be a graded ideal in a graded ring R  then I  is multiplication if  

( : )I J I J I∩ =  for gr-ideal J I⊂ . 
Proof.     Suppose that J I⊂  for some gr- ideal J  of R .Then 

( : )J I J I J I= ∩ = . Hence  J  is gr-multiplication ideal of I . 
Conversely, Let I  be a graded multiplication ideal in R , Let J  be any graded 

ideal of R  Then I J I∩ ⊂ , so there is a graded ideal K of R  such that 
I J IK∩ = .Therefore (( ) : ) ( : )K I J I J I⊆ ∩ ⊆ , and then 

( : )I J IK I J I∩ = ⊂ . On the other hand, clearly ( : )I J I I J⊂ ∩ . Hence 
( : )J I J J I I= ∩ = . 

 
Proposition 1 Let M  be a graded R -module (R  is a graded ring). Then M  is 

gr-multiplication if for every gr-submodule N  of M , [ : ]N N M M= .  
Proof. Let M  be gr-multiplication R -module, and N  a gr-submodule of M , 

then there is an gr-ideal I  of R  such that N IM= , as IM N⊂  we have 
[ : ]I N M⊂  and [ : ]N IM M N M= ⊂ . Since [ : ]N M M N⊂ , so 
[ : ]N N M M= . Conversely it is clearly. Recall that Graded R  -module M  is 

called graded cyclic if M Rx= , for some ( )x H M∈ . 
 



  

20                                                                              A. Khaksari and F. Rasti Jahromi 
 
 
Theorem   1  Let M  be a gr-multiplication Module over a graded local ringR . 

Then M  is gr-multiplication if M  is a graded cyclic R -module . 
Proof. If M m=< > for some ( )m H M∈  then clearly M  is gr-multiplication 

R -module .Conversely, Let M m Aα α=< ∈ >where each M α  is a homogeneous 

element ( ( ))m H Mα ∈ . Since M  is gr-multiplication we have 

[ : ]Rm M M Mα α= ,as [ : ] ( [ : ])
A A A

M Rm m M M M m Mα α α
α α α∈ ∈ ∈

= = =∑ ∑ ∑ .

If [ : ]
A

m M Rα
α∈

=∑ , then 
0

[ : ]m M Rα = . Since otherwise if [ : ]m M Rαα∀ ≠ , 

then [ : ]m M Jα ⊂ , where J  is the only maximal ideal of R , and hence 

[ : ]
A

m M R Jα
α∈

= ⊂∑  that is a contradiction, so 
0

[ : ]m M Rα =  for some Aα ∈
o

 

therefore [ : ]m m M M Mα α< >= =
o o

 Hence M  is gr-principal. If  

[ : ]
A

m M Rα
α∈

≠∑ , then [ : ]
A

m M Jα
α∈

⊂∑ , and then 

[ : ]
A

M m M M JM Mα
α∈

= ⊆ ⊂∑  therefore JM M= ,   hence 0M =< > . 

 
Proposition 2  . If M  is gr-multiplication R -module where R  is a graded ring, 

and ( )S H R⊂ ) is a multiplicatively closed subset of R . Then 1S M− is a gr-

multiplication 1S R− -module. 
Proof. Let K  be a graded  1S R− -submodule of 1S M− . Then 1K S N−=  for 

some graded submodule of N  of M . Now since M  is gr-multiplication R -

module, then [ : ]N N M M=  so 1 1 1( [ : ])( )S N S N M S M− − −= Hence 1S M−  is 

a gr-multiplication 1S R− -module.  
 
Definition 5  A graded submodule N  of graded R -module M  is locally gr-

principal if g
pN R⋅  is gr-principal for every gr-prime ideal P  of  R . 

 
Proposition 3    Let R  be a gr-local ring with graded maximal ideal J  and M  a 

graded R -module such that 1 2, , , kM m m m=< ⋅ ⋅⋅ > , where 1 ( )m H M∈  for every 

1 i k≤ ≤ , then iM m=< >  for some 1 i k≤ ≤ . 

Proof. Suppose that M =< >a  for some ( )H M∈a  and 

1 2, , , kM =< ⋅ ⋅⋅ >a a a , then 
1

k

i i
i

r
=

=∑a a and each i is=a a , so 
1

k

i i
i

r s
=

=∑a a   

 



  

Multiplication graded modules                                                                                   21 
 
 

and 
1

0)
k

i i
i

r x
=

=∑a(1 -   if  
1

k

i i
i

r s
=
∑1 -  is a unit in R  then 0=a  since 

0, i i is= =a a a , for all 1 i k≤ ≤ . and 0 iM =< >=< >a , for all 

1 2, , ,i k= ⋅⋅⋅ . If 
1

k

i i
i

r s
=
∑1 -  is not a unit, then  

1

k

i i
i

r s J
=

∉∑  and so 
1

k

i i
i

r s
=
∑  is a 

unit. Therefore, there is an 1 2, , ,{ }i k∈ ⋅⋅⋅  such that i ir s  is a unit. Otherwise since 

each i ir s  is not unit then i ir x M∈ , for all 1 2, , ,i k= ⋅⋅⋅ , hence
1

k

i i
i

r s M
=

∈∑ . That 

is a contradiction. So i ir s  is a unit for some i , then is  is a unit. Hence 
1 1

i i i is s s− −= = ∈< >a a a a  Then iM =< >a . 
 
Theorem   2   Let 1 2, , , kM m m m=< ⋅ ⋅⋅ >  be a finitely generated gradedR -

module over a graded ring R . Then the following are equivalent . 
(1)  M  is gr-multiplication . 
(2) M  is locally gr-principal . 

(3)
1
[ : ]

k

i i
i

m M R
=

=∑ , where 1 2 1 1, , , , , ,i i i kM − +=< ⋅ ⋅⋅ ⋅ ⋅⋅ >a a a a a  

Proof.         (1)→  (2) By Theorem 1 .  
(2) →  (3) Let M  be a locally gr-principal. Then for graded prime ideal P of R , 

we have by Proposition 3 1 2
11 1 1 1

, , , ,g gk i
p p

m m m m
MR m R=< ⋅ ⋅⋅ >=< >=< >  

for some 1 2, , ,{ }i k∈ ⋅⋅⋅ }. Hence for any gr-prime ideal P  of  

[( ) : ]g g g
i p i p pR m R M R R= , where 1 2 1 1, , , , , ,i i i kM − +=< ⋅ ⋅⋅ ⋅ ⋅⋅ >a a a a a  and 

then 
1 1

( [( ) : ] [( ) : ]
k k

g g g g
i i p i p i p p

i i
m M R m R M R R

= =

= =∑ ∑ . Since iM  is finitely 

generated for each i , There for 
1
(( ) : )

k

i i
i

m M R
=

=∑ . 

(3) →  (2) Suppose that
1
(( ) : )

k

i i
i

m M R
=

=∑ . Then for any gr-prime P  of R  we 

have 
1 1 1

( [( ) : ] ([( ) : ]) ( [( ) : ])
k k k

g g g g g
i p p i p i i p p

i i i
m R M R m M R m M R R

= = =

= = =∑ ∑ ∑ . 

Therefore, there is 1 2, , ,{ }i k∈ ⋅⋅⋅  such that (( ) : )g g g
i p p pm R MR R=  and then  
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1
( )g g i

p i pMR R⊂ =< >
a

a . It follows that 
1

g i
pMR =< >

a
 for each gr-prime ideal 

P  of R . Hence M  is locally gr-principal. If M  is a graded module over the graded 

ring R  we define the 
( )

( ) [( ) : ]g

x M
M x Mθ

∈

= ∑ . It is clear that ( )g Mθ  is a graded 

ideal of R  . 
 
Proposition  4  Let M  be a graded multiplication module over a graded ring R . 

Then 

(1) ( )gM M Mθ=  

(2) ( )gN N Mθ=  for any graded submodule N  of M . 
Proof.     (1) Let x M∈  as  M  is graded multiplication R -module, then 

[( ) : ]x x M M< >= since

[( ) : ] [( ) : ] ( )g

x M x M x M
M x x M M M x M M Mθ

∈ ∈ ∈

= < > = = =∑ ∑ ∑ . 

(2) suppose that N  is a graded submodule of M . Then [ : ]N N M M= , 
where [ : ]N M  is  a graded ideal of R . Hence 

[ : ] [ : ] ( ) ( )g gN N M M N M M M N Mθ θ= = = . 
 

Proposition  5  Let N and K be graded submodules of graded multiplication R -
module   M  and ( )S H R⊂  be a multiplicatively closed subset of R . Then  

(1) ( ) ( ) ( )g g gN K NKθ θ θ⊂  

(2) 1 1( ( )) ( ( ))g gS N S Nθ θ− −⊆  
Proof. (1) If M  is a multiplication R -module and N IM=  andK JM=  we 

defined NK IJM= . If x M∈ and y K∈ , then 
1

n

i i
i

xy r m
=

=∑ , where ir IJ∈ , 

for all 1 2, , ,i n= ⋅ ⋅⋅  and 1n ≥ . See [2]. 
Let ( )N H M∈ ∩a  and ( )b K H M∈ ∩ . It is enough to prove that 

[( ) : ][( ) : ] [( ) : ]N b K b NK⊆a a . Let 
1

[( ) : ][( ) : ]
n

i i
i

x y N b K
=

∈∑ a  where 

[( ) : ]ix N∈ a  and [( ) : ]iy b K∈ , for 1 2, , ,i n= ⋅ ⋅⋅ . Then ( )ix N ⊂ a  and 

( )iy K b⊂ , for 1 2, , ,i n= ⋅⋅⋅ . Hence, ( )i ix y NK b⊂ a  and then 

[( ) : ]i ix y b NK∈ a . Therefore 
1

[( ) : ]
n

i i
i

x y b NK
=

∈∑ a . 
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(2)

1 1 1

1 1

1

( ) ( )

( )

( ( )) ( [ ( ) : ] [ ( ) : ]

[ ( ) : ] ( ).

g

x N H M x N H M

g

x N H M

S N S x N s x N

x s N s N

θ

θ

− − −

∈ ∩ ∈ ∩

− −

∈ ∩

⊆ = ⊆

⊆

∑ ∑

∑

 Recall that a graded module M  over graded ring R  is called gr-finitely generated  
if M  is generated by a finite set of  homogeneous elements . 
 
Theorem   3  Let M be a graded R -module where R  is a graded ring. Then M  

is gr-finitely generated and locally gr-principal if ( )g M Rθ =  . 

Proof. Let J  be a gr-maximal ideal in R . Then ( )g g
J JMR x R= for some 

( )x H M∈ . Hence, [( ) : ] [( ) : ]g g g g
J J J JR x R MR x M R= =  since M  is gr-finitely 

generated. Therefore ( )g g g
J JR M Rθ=  and they by local property ( )g M Rθ = . 

 Conversely, suppose ( )g M Rθ = . Then there exist, 

1 2, , , ( )km m m H N⋅ ⋅⋅ ∈ such that 1 2( ) [( ): ] [( ): ] [( ): ]g
kR M m M m M m Mθ= = + +⋅⋅⋅+  . 

Thus 

1 2 1 2( ) [( ): ] [( ): ] [( ): ] ( ) ( ) ( )g
k nM M M M m M M m M M m M m m m Mθ= = + +⋅⋅⋅+ ⊆ + +⋅⋅⋅+ ⊂

so 1 2, ,( )kM m m m= ⋅ ⋅ ⋅  is gr-finitely generated. Let J  be a gr-maximal ideal of 

R . Since ( )g M Rθ = , there is ( )x H M∈ , with [( ) : ]x M JШ . Therefore, there 
exists r R J∈ −  with ( )rM x⊆  and then 

( )g g g g g
J J J J JrMR r R MR MR x R=< > ⋅ = ⊆ . Hence ( )g g

J JMR x R= , for any 

gr-maximal ideal J  of R  and so M  is locally gr-principal . 
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