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Abstract

Let G be a multiplicative group and R be a G -graded commutative ring and M
a G -graded R -module. Various properties of multiplicative ideals in a graded ring
are discussed and we extend this to graded modules over graded rings. We have also
discussed the set of P -primary ideals and modules of R when P is a graded
multiplication prime ideals and modules.
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1. Introduction

Let G be a group. A ring R is called G -graded ring if there exist a family

{Rg }geG of additive subgroup of R such that R = g?G Rg that Rth c Rgh for

each g,heG. A R- module M is called R-graded Module over G if

M= Mg and Rth Cl\/lg for all g,h €G. Thus each |\/|g submodule

9eG h

of M is R= Rg - module. An element of a graded ringR is called homogeneous if

it belongs to U M g - If an clement M e M is belongs to U M g » then M s
geG geG

called homogeneous element and the set of all homogeneous elements of M is

denoted by H (M ) (for a ring R is denoted by H (R)). A graded submodule N of a

graded R -Module M (R is a graded ring) is a submodule such that
N=@®(M_nN)= @ N _.Equivalently, N is gradedin M ifand only if
g ¢ g 9
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N has a homogeneous set of generators. fR= @ R andR'= @ R’ are two
geG 9 9eG 9

graded ring, then the mapping ¢:R—>R’" whit ¢(15)=1, is called graded
homomorphism if ¢(Rg) - Ré ,forall g €G.

IfM=@M_and M'= @ M/ are two gradedR -modules (R is a graded
EECI g 9

ring), the mapping A:M —> M’ is called graded homomorphism if
A(M g) cM é for all g €G. A graded ideal P of a graded ring R is called gr-

prime if whenever X,y € H (R) with Xy € P then X e Pory €P . And a graded

submodule of a graded module M over a graded ring R is called gr-prime
submodule iffX €N , for r e H(R) and X e H(M ), then X €N or rM N .

A graded ideal M of a graded ring R is called gr-maximal if it is maximal in the
lattice of graded ideals of R . (similarly we have for R -modules). A graded ring R is
called a gr-local ring if it has unique gr-maximal ideal. Let R be a graded ring and let

S c H(R) be a multiplicatively closed subset of R . Then the ring of fraction SR

is a graded ring which is called a gr-ring of fractions. Indeed, SR = @ (S™'R) g
geG

where (S‘IR)g ={r§,r eR,seSyg =%}. And S™'M =gc:>6(s—1|v| )q

where (S7'M) = m,m eM,seS,g :M . Consider the ring gr-
9 |s deg(s)
homomorphism 7R —>S™'R defined by7z(t’)=rT. And 7:M >S'M is

m
called gr-homomorphism if 7z(m) = T Let P be any gr-prime ideal of a graded
ring R and consider the multiplicatively closed subset S =H (R) —P . We denote
the graded ring of fraction SR of R by Rg and we call it the gr-localization of R .

This is a gr-local with the unique gr-maximal ideal S™'P which will be denoted by
PRS Let | be a graded ideal in a graded ringR . The graded radical of | (gr-

rad(l )) is defined the setof all X g € R such that for each g €G, there exists

n, >(0 such thatX gng el . A gradedradical submodule N of a gradedR-

moduleM (R is a graded ring) is the intersections of graded prime submodules of
M such that containing N as a submodules. A submodule N of on R-module
M is called multiplication ifN =IM , for some gr-ideal | of R.If each sub
module of M is gr-multiplication, M is called gr-multiplication R -module.
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In this paper, we study some properties of gr-multiplication submodules in a graded

multiplication R-module M , when M is gr-module over gr-ring R. And give a
characterization of finitely generated gr-multiplication submodules of a gr-
multiplication M over a gr-ring R.

Definition 1 Let R be a graded ring over the group G and M an R-graded

module. A graded submodule N of M is called graded multiplication . If K <N
g

then there is an gr-ideal of R such that K = NI .

Definition 2 A graded R-module M is called gr-multiplication module if every
gr-submodule of M is gr-multiplication .

Definition 3 A graded ideal Q of a graded ring R is called gr-primary if

Q # Rand whenever, a,b e H (R) whit ab €Q , then a€Q or b" €Q If Q
is gr-primary ideal of R and gr-rad (Q) =P , we say that Q is gr-p-primary.

Definition 4 An gr-submodule N of graded R-module M is called gr-primary,

if aeH(R), beH(M) and ab eN ,then beN or a"M <N for some

integer N >0
Recall that if N, K are two gr-submodules of a graded R-module M , then

(N ZK)={I‘ ER‘I’K CN} is a graded ideal of R.

Lemma 1 Let | be a graded ideal in a graded ring R then | is multiplication if
| N J=1(J:I) for gr-ideal J | .

Proof. Suppose that Jc| for some gr-ideal J of R.Then
J=1nJ=1(J:1).Hence J is gr-multiplication ideal of | .

Conversely, Let | be a graded multiplication ideal in R, Let J be any graded
ideal of R Then | M J |, so there is a graded ideal K of R such that
| N J=IK Therefore K (I nJ):1)c(J:1), and then
| nJ=IK cl(J:l). On the other hand, clearly | (J:1)c| m J. Hence
J=InJ=(J:1)l.

Proposition 1 Let M be a graded R-module (R is a graded ring). Then M is
gr-multiplication if for every gr-submodule N of M , N =[N : M M .

Proof. Let M be gr-multiplication R-module, and N a gr-submodule of M |
then there isan gr-ideal | of R such that N =IM , as IM N we have
| c[N:M] and N =IM cM[N:M]. Since [N:M]JM cN, so
N =[N :M ]M . Conversely it is clearly. Recall that Graded R -module M is
called graded cyclic if M =RX , for some X e H(M).
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Theorem 1 Let M be a gr-multiplication Module over a graded local ringR .
Then M is gr-multiplication if M is a graded cyclic R -module .
Proof. If M =<m > for some M € H(M ) then clearly M is gr-multiplication

R-module .Conversely, Let M =<m ‘0{ € A>where each M is a homogeneous

clement (M _eH(M)). Since M is gr-multiplication ~we have
Rn_=[M_:MIM asM=>Rn =>[m MM =M [m :M]).

achA acA acA
If Z[ma :M]=R, then [m_:M]=R. Since otherwise if Va[m :M]=R,
aeA ’

then [M :M]c J, where J is the only maximal ideal of R, and hence

Z[ma :M]=Rc J thatis a contradiction, so [m_ :M]=R for some a, € A
0

achA
therefore <m_>=[mM_ :M]M =M  Hence M is gr-principal. If
ao ao
Z[maZM]iR, then Z[ma:M]c J, and then
achA acA
M=>[m MIMcMcM therefore M =M , henceM =<0>.
achA

Proposition 2 . If M is gr-multiplication R -module where R is a graded ring,
and ScH(R)) is a multiplicatively closed subset of R. Then S™'M is a gr-

multiplication S™'R -module.

Proof. Let K be a graded SR submodule of S'M . ThenK =S™!N for
some graded submodule of N of M . Now since M is gr-multiplication R -

module, then N =[N :M M so S'N =(S7'[N : M ])(S'M )HenceS™'M is

a gr-multiplication S™'R -module.

Definition 5 A graded submodule N of graded R-module M is locally gr-
principal if N -RF? is gr-principal for every gr-prime ideal P of R.

Proposition 3 Let R be a gr-local ring with graded maximal ideal J and M a
graded R -module such thatM =< m,m,,--,m, >, where M, € H (M) for every

1<i <k ,then M =<m, > for some 1<i <K .

Proof. Suppose that M =<a> for some aeH(M) and
k k
M =<a, a,,-a, > then@=>)ra andeach @ =S d,soa= ) rsa
i=l1 i=l
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k k

and a(1-2rixi)=0 if I-ZI’iSi is a unit in R then a =0 since
i=1 i=1

a,a =0, for all 1<i<k. and M =<0>=<6LI >, for all

k k k
=12,k .If I-Z:I’isi is not a unit, then Zrisi ¢ J and so Zrisi is a
i=1 i=1 i=1
unit. Therefore, there is an | 6{1,2, . --,k} such that I’i Si is a unit. Otherwise since

k

each I'S, is not unit thenl’; X, € M, foralli =1,2,---,Kk ,hencezriSi €M . That
i=l

is a contradiction. So rs, is a unit for some 1, then S, is a unit. Hence

1

a=ass’ :a,l‘156<a,I > Then M =<a, >.

Theorem 2 Let M =<m m,,--m, > be a finitely generated graded R-
module over a graded ring R . Then the following are equivalent .

(HM  is gr-multiplication .

(2) M s locally gr-principal .

k
(3)Z[mi :Mi]ZR,where Mi =<, a4y, A& _, A 0 >
i=l

Proof. (1) (2) By Theorem 1 .

(2) = (3) Let M be a locally gr-principal. Then for graded prime ideal P of R,
" g__ M m, m m; 9

we have by Proposition 3 MRp =<T, " Ty " >=< " >=<m, > Rp :

for somei €{l,2,--,K}}. Hence for any grprime ideal P  of
R[(mi)Rg :MiRg]:RS, where |\/|i =<a,,a,, a_,a

A |+1’...’ak> and

k k
then (Z;[(ml ):M, ]Rg = Z}[(mi )RS ‘M. Rg] = Rg . Since M, is finitely
| = | =
k
generated for each | , There for Z((mi ):M.)=R.
i=l1
k
(3) — (2) Suppose ‘[hatZ:((mi ):M.)=R. Then for any gr-prime P of R we
i=1

k k k
have (3 [(M)RY :MRI]=> ([(m,):MDRI =3 [(m;):M,)RJ =RJ.
i=l i=l1 i=1

Therefore, there is 1 €{1,2,+-,K} such that (M, )Rg M Rg) = RS and then
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a a
M RS c(a )Rg =< T' > . It follows that M Rg =< T' > for each gr-prime ideal

P of R.Hence M is locally gr-principal. If M is a graded module over the graded

ring R we define the 9 (M ) = Z [(X):M].1tis clear that @9 (M) is a graded
xe(M)
ideal of R .

Proposition 4 Let M be a graded multiplication module over a graded ring R.
Then

(HM =MHI(M)

2) N =N @9(M) for any graded submodule N of M .

Proof. (1) Let X €M as M is graded multiplication R-module, then
<X >=[(X): MM since

M=> <x>=>[X)MIM=M > [X):M]=Mo'M).

XeM XeM XeM
(2)  suppose that N is a graded submodule of M . Then N =[N : M M ,
where [N :M] is a graded ideal of R. Hence

N=[N:MJM =[N:MJ@MM =NgM).
Proposition 5 Let N and K be graded submodules of graded multiplication R -
module M and S < H(R) be a multiplicatively closed subset of R. Then
(1) 89(N)O9(K) = 89 (NK)
2) SO (N) c6°(S'(N))
Proof. (1) If M is a multiplication R-module and N =IM andK = M we

n
defined NK =IM . If X e M and y €K, then Xy :Zrimi , where T, eld,
i=l
forall i =1,2,--,n and N >1. See [2].
Let aeN"H(M) and beKnH(M). It is enough to prove that

[(@):N][(b):K]c[(ab): NK]. Let inyie[(a):N][(b):K] where

X, €[(@):N] and y, €[(b):K], for i =1,2,--,n. Then X,N c(a) and
y.Kcb), for i=12,--n. Hence, X ,y,NKc(ab) and then

X.y,; €[(ab): NK]. Therefore ixi y, €[(ab): NK].

i=l
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)
SO (NNcs™'( > [x):Nl= >  sT[(x):N]c

xeN AH (M) xeN AH (M)

Y I&)s NI o9(sTIN).

xeNmn M) |

Recall that a graded module M over graded ring R is called gr-finitely generated
if M is generated by a finite set of homogeneous elements .

Theorem 3 Let M be a graded R -module where R is a graded ring. Then M
is gr-finitely generated and locally gr-principal if @9(M ) =R .

Proof. Let J be a gr-maximal ideal in R. Then M R? =(X )R? for some
XxeH(M). Hence,R? =[(X)RJg M RJg] =[(x): M ]R? since M is gr-finitely
generated. Therefore R? =09(M )R? and they by local property 89(M ) =R.

Conversely, suppose 0°M)=R. Then there exist,
m,,m,,---,m, €H(N)such that R=6°(M)=[(m): M]+[(m,): M]+---+[(m)):M] .
Thus
M =F (MM =M[(M): M]+M[(m,): M]+---+M[(m ) : M]=(M) +(m,)+---+({m,) =M

soM = (ml,mz, e mk) is gr-finitely generated. Let J be a gr-maximal ideal of

R. Since 89 (M) =R, there is X e H(M ), with [(x): M JIIIJ . Therefore, there
exists rerR-J with rM < (X) and then

rMR? =<r > R? ‘MR? = MR? E(X)R? . Hence |\/|R§J =(x)R?Y, forany
gr-maximal ideal J of R and so M is locally gr-principal .
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