
VLS1 DESIGN
1999, Vol. 9, No. 1, pp. 69-81
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1999 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishors imprint.

Printed in Malaysia.

Multiplication of Matrices with Different Sparseness
Properties on Dynamically Reconfigurable Meshes

MARTIN MIDDENDORF a,., HARTMUT SCHMECK a, HEIKO SCHRODER b

and GAVIN TURNER

lnstitut (fir Angewandte Informatik und Formale Beschreibungsverfahren, Universitiit Karlsruhe, D-76128 Karlsruhe, Germany;
Department of Computer Studies, University of Loughborough, Loughborough, LE11 3TU United Kingdom;
Department of Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

(Received 5 May 1997)

Algorithms for multiplying several types of sparse n x n-matrices on dynamically
reconfigurable n n-arrays are presented. For some classes of sparse matrices constant
time algorithms are given, e.g., when the first matrix has at most kn elements in each
column or in each row and the second matrix has at most kn nonzero elements in each
row, where k is a constant. Moreover, O(kv/) algorithms are obtained for the case that
one matrix is a general sparse matrix with at most kn nonzero elements and the other
matrix has at most k nonzero elements in every row or in every column. Also a lower
bound of f(x/) is proved for thisand other cases which shows that the algorithms are
close to the optimum.

Keywords: Matrix multiplication, sparse matrices, reconfigurable arrays

1. INTRODUCTION

Mesh-connected arrays with dynamically reconfi-
gurable buses have gained considerable attention
recently because of their ability to perform a
number of interesting operations significantly
faster than other standard computational models
[8]. In particular, constant time algorithms have
been designed for problems which need noncon-
stant time on a CRCW-PRAM with bounded fan-
in (e.g., for the parity function). This is achieved
by appropriately transferring major parts of the

computation into the reconfiguration of buses.
Problems studied so far include semigroup and
parallel prefix computations, sorting, binary addi-
tion, graph problems, and image processing.

In [12] Park et al., present a constant time
algorithm for computing the product of n n-
matrices on an n2n2 reconfigurable mesh.
Although this is optimal with respect to the
VLSI-complexity measure AT2 [13], such an
algorithm has only little practical relevance, since
it can only be realised reasonably for relatively
small matrices. But for small matrices, the "con-

*Corresponding author. Fax: + + 49-721-693717, e-mail: {mmi, hsch}@aifb.uni-karlsruhe.de

69

70 M. MIDDENDORF et al.

stant" time is prohibitively large. On n x n-arrays
we have systolic algorithms for multiplying n x n-
matrices in time O(n) which is A T2-optimal again
(see e.g., [14]) and of significant practical rele-
vance. Therefore, on n n arrays we cannot hope
to get better time performance by using reconfi-
gurable buses. For sparse matrices, though, we
have a different situation, since the lower bound
for AT2 no longer applies. If the number of
nonzero elements is O(n), the number of arithmetic
operations for matrix multiplication is reduced to
at most O(n2), i.e., one should hope for algorithms
with improved time performance on n x n-arrays.

In this paper we present constant time algo-
rithms for multiplying various types of sparse
n n-matrices on reconfigurable n x n-arrays. This
is an improvement over the algorithm of Mid-
dendorf el al. [7] which achieves constant time only
for a very restricted class of sparse matrices.
Moreover, we give O(kx/) algorithms for the case
that one matrix is a general sparse matrix with at
most kn nonzero elements and the other matrix has
at most k nonzero elements in every row or every
column. We also derive a lower bound of f(x/)
for these cases which shows that our algorithms are
not far from the optimum. Our algorithms are
faster than the algorithm of E1Gindy [2] who gave
an O(k2x/g) algorithm for the special case that the
first matrix has at most k nonzero elements in each
column and the second matrix has at most k
nonzero elements in every row.
Our algorithms should also be compared with

those of Kruskal, Rudolph, and Snir [3] and
Manzini [6], who essentially give O((n/p) logp)
time algorithms for sparse matrix multiplication
on PRAM’s and hypercubes with p processors.

{} {NE, SW} {NS, EW}{NESW}

(b)

(a)

FIGURE Reconfigurable mesh-connected array.

indicated by using thick lines. The bus switch
setting for a particular PE is described by a set of
strings like {NS, EW} for simultaneous north-
south and east-west connection (see Fig. l(b)).
Except for minor modifications it is enough to
assume for all algorithms in this paper that every
PE can connect at most two of its ports at a time.

Every PE can read from every bus it is
connected to, but only one PE at a time can write
the value of one of its registers on a bus, i.e., we
have CREW-buses. If no PE writes on a bus then
its value is 0. Every PE has a constant number of
registers of length (1 + e) log n (Note that we do
not allow that the number of registers depends on
the parameters of the problem instances). Every
PE knows its row and column indices. Within one
time step every PE can locally configure the bus,
write to and/or read from one of the buses it is
connected to, and perform some local computa-
tion. Signal propagation on buses is assumed to
take constant time regardless of the number of
switches on the bus. This is the standard assump-
tion for this model of computation, some techno-
logical justification is given in [5].

2. MODEL OF COMPUTATION

Our model of computation is an SIMD n x n-array
of processing elements (PE’s) with dynamically
reconfigurable buses as depicted in Figure 1.
Various possibilities for configuring the buses are

3. SPARSE MATRICES

Let A be an n n-matrix. As is obvious from
looking e.g., at [3], [6] and [11], there is no
generally agreed upon definition of the sparseness
of A, although the minimal requirement is that the
number of nonzero elements is significantly less

DYNAMICALLY RECONFIGURABLE MESHES 71

than n2. We use the characterisation introduced in
[7].

Let rA(ca) denote the maximal number of
nonzero elements per row (column) of A and let
kA be the smallest integer such that the number of
nonzero elements in A is at most k.n. Then A is
called

weakly sparse iff ka E O(1),
row sparse iff ra E O(1),
column sparse iff c4 E O(1),
uniformly sparse iff it is row and column sparse.

Furthermore, we assume that the number of
nonzero elements of sparse n n-matrices is f(n),
i.e., it is not too small.
The main reason for studying sparse matrices is

that they occur quite frequently in numerical
computations and that the time complexity of these
computations is often determined by the complex-
ity of operations on matrices. Therefore, it would
be very profitable to have reduced time and space
complexities for operations on sparse matrices
compared with full matrices. In particular, the
multiplication of weakly sparse matrices needs at
most O(n2) arithmetic operations. If both matrices
are uniformly sparse, this is even further reduced to
O(n) and the product matrix is uniformly sparse,
too. Systolic algorithms for matrix multiplication
on mesh-connected n n-arrays cannot exploit the
potential sparseness of its operands. As we show in
the following section, the situation is different for
arrays with reconfigurable buses.

4. MULTIPLICATION OF SPARSE
MATRICE.S

In this section we present several algorithms for
the multiplication of sparse n x n matrices A and B
on reconfigurable arrays. While the algorithm of
Middendorf et al. [7] achieves constant time
multiplication only for uniformly sparse matrices,
the algorithms presented below achieve constant
time for a much wider range of sparse matrices. In
particular the algorithms need time O(CA" ca) if

both A and B are column sparse, O(rA. re) ifA and
B are row sparse, and O(ra.cn) if A is row sparse
and B is column sparse. For the case that A is
column sparse and B is row sparse we show a
lower bound of ft(v/max{ca, rn} n). E1Gindy [2]
gave an O(c,.rn.x/’g) algorithm for this case. We
obtain a faster algorithm with time O(x/ca.rn.n).
But this algorithm is only a special case of more
general algorithms described here for the case that
one of the matrices is weakly sparse. These algori-
thms need time O(v/kA.ct.n), O(v/kA.rt.n),
O(x/cA.k. n), and O(v/rA.k.n), respectively.

Initially, the elements a o. and bij of matrices A
and B are stored in processing elements (i,j) of the
array. This situation may occur whenever A and B
are the result of some previous computation
performed on the array. We have to compute the
product C A-B such that afterwards element Cij
of C is stored in PE(i,j). In the following we refer
to elements of matrices A, B, and C stored in a PE
as A-, B-, and C-elements.
For the first algorithm we assume that A and B

are column sparse, i.e., ca, cnEO(1). The algorithm
is illustrated in Figure 2.

Algorithm CC

In all the PEs initialise the C-element to 0.

REPEAT

1) FOR k:=l TO n PARDO

Broadcast the topmost nonzero A-ele-
ment of column k together with its row
index to all the PE’s in row k (i.e.,
configure all PEs (i, /) {NESW} and all
other PEs {NS, EW}).

PAREND

2) FOR all PEs PARDO

Multiply the broadcasted A-element a
with the local B-element b, i.e., compute
a product p a.b

PAREND

72 M. MIDDENDORF et al.

j

PE with topmost nonzero
A-element in column

|!

I|

a) Step 1 of CC: Send topmost nonzero A-element b) Step 3 of CC" In each column at most c
of column to all PE’s in row i, i=l,...,n p s have to be send to final row

FIGURE 2 Illustration of Algorithm CC.

3) Route the maximally cBp’s of each column
along column buses to their final row and
add them to the current C-values.

Discard the topmost nonzero A-element
of each column (i.e., the next element
becomes the new topmost element).

UNTIL all the nonzero A-elements have been
discarded.

Steps (1) and (2) take constant time. Since there
are at most cB nonzero p’s in every column, Step
(3) needs at most time O(c) by making use of the
reconfigurable buses in a straightforward way.
Therefore, the time complexity of Algorithm CC is
O(c.c).
To show the correctness of the algorithm,

consider one iteration of the loop: Let aik be the
current topmost nonzero A-element in column k.
aik is broadcast to all the PE’s in row k and
subsequently multiplied with all the nonzero B-
elements in this row, e.g., with some bj. The
product ai.bj is then moved to row and added to
the current value of cij. In this way all the scalar
products ci2 are computed correctly. Observe, that
each column of the product matrix may contain

cA.c nonzero elements. Hence, it seemsdifficult to
improve on the running time of Algorithm CC.

Obviously, the algorithm can easily be adapted
to the case of row sparse matrices A and B, where
it would need time O(r4.rn).

If A is row sparse and B is column sparse, we
suggest to use the following algorithm:

Algorithm RC

In all the PE’s initialise the C-element to 0.

REPEAT

1) Broadcast the topmost nonzero B-element
of every column together with its row
index over its column.

REPEAT

2) Broadcast the leftmost nonzero A-
element of every row together with
its column index over its row.

3) FOR all PEs PARDO

If the PE received matching in-
dices, multiply the broadcasted A-

DYNAMICALLY RECONFIGURABLE MESHES 73

and B-elements and add the pro-
duct to the local C-element.

PAREND

4) Discard the leftmost nonzero A-
element of every row.

UNTIL all the nonzero A-elements
have been discarded.

5) Discard the topmost nonzero B-element of
each column and "reactivate" all the
nonzero A-elements.

UNTIL all the nonzero B-elements have been
discarded.

All the Steps (1) to (5) need constant time each.
Since Steps (2), (3), and (4) are repeated rA times for
every iteration of the outer loop, the total time of
Algorithm RC is O(rA.cB). This could be reduced to
O(r + cB), if all the nonzero elements of a column
ofB could be stored in every PE of this column. But
since we do not allow the number of registers of a
PE to depend on problem parameters ra or c, this
can not be done in general.
The correctness of Algorithm RC can be seen as

follows:

Let bkj be the topmost nonzero B-element of
column j. After Step (1) this element is known to
all the PE’s in column j. Let aik be the leftmost
nonzero A-element of row i. In Step (3) this
element is multiplied with all the B-elements
broadcasted in Step (1) having row index k. In
particular, aik will be multiplied with bkj, and the
product is added correctly to the C-element at this
PE(i, j). When all the A-elements have been
discarded, the B-elements broadcasted in Step (1)
have been combined with all matching A-elements.
Therefore, these B-elements are discarded (in Step
(5)), whereas the A-elements have to be reactivated
to be combined with the B-elements broadcasted
in the next execution of Step (1). In this way, all
the necessary computations of the matrix multi-
plication are performed correctly.

Except for the multiple broadcast of matrix A
Algorithm RC could be seen as an asynchronous
version of one of the standard systolic algorithms
for matrix multiplication, where matrices A and B
are moved simultaneously over the rows and
columns of the array, respectively.
The multiplication of a column sparse matrix A

with a row sparse matrix B is considerably more
difficult: Ifwe try to use Algorithm CC, we have to
move cs products to their final positions (in Step
(3)), but there may be f(n) nonzero products. In
Algorithm RC we would even end up with a time
of O(n2). The following lower bound result implies
that any algorithm for the multiplication of a
column sparse matrix A with a row sparse matrix
B needs time ft(v/max{cA, rB} n). This improves
the first lower bound of f(x/-) for this case given
in [10]. The idea for the improvement is due to
Kunde [4].

THEOREM Any algorithm for the multiplication of
a column sparse matrix A and a row sparse matrix B
on an n x n-array with reconfigurable buses needs in
the worst case time f(x/’rB n), even if c4 1, and
9t(x/’cA n), even if rs 1.

Proof For the case ca=l consider the two
matrices depicted in Figure 3: A has exactly one
nonzero element (which is 1) in every column and
n nonzero elements altogether. B has r nonzero
elements in every row and rB.n nonzero elements
altogether. If the nonzero elements of B are
pairwise different, then, in the product matrix C,
for every ci with i, j < v/r. n there is exactly
one nonzero B-element bkj=Ci. Therefore, all
these r.n elements of C are nonzero. To compute
these we have to move at least ft(r.n) elements of
B into an area of the array having a boundary of
length O(x/’r. n). This takes at least time

ft(v/r, n). The case r=l is similar and is
omitted.

In the rest of this paper we consider the case that
one of the matrices is only weakly sparse. First we
get the following lower bound result.

74 M. MIDDENDORF et al.

A:

rl3:n’ I

sequence of ones

B:

"1- sequence of rB nonzero
elements

[] - nonzero elements of C

FIGURE 3 Worst case matrices A, B, and C.

COROLLARY On an n x n array with reconfigur-
able buses we have the following lower bounds for
the multiplication of weakly sparse matrices."

(a) for A weakly sparse and B row sparse we need
time f(v/max{kA, rs} n) in the worst case

(b) forA column sparse andB weakly sparse we need
time f(v/max{cA, ks) n) in the worst case

(c) for A weakly sparse and B uniformly sparse we
need time f(v/ka n) in the worst case even if
rB CB

(d) for A uniformly sparse and B weakly sparse we
need time [2(x/ks n) in the worst case even if
rA CA 1.

Proof We obtain (a) and (b) immediately from
our theorem. For the Case (c) consider the matrices
depicted in Figure 4. A similar argument as in the
proof of the theorem shows the lower bound. Case
(d) is easily obtained from Case (c). 1

Now we give algorithms for the case that one of
the matrices is only weakly sparse. For the first
algorithm we assume that A is weakly sparse and B
is row .sparse. A special case of this is that A is
column sparse.
For ease of description we assume that A has

exactly k.n nonzero elements, k,, rs and cs divide
n, and x/k, n, x/’ka rs n are integers. Let M’

DYNAMICALLY RECONFIGURABLE MESHES 75

A

nonzero elements ofA
c:

one

^ nonzero elements of C

FIGURE 4 Worst case matrices A, B, and C.

be the submesh of the reconfigurable mesh M that
consists of all PE’s in columns + i.rs for E [0,
k,-l]. We have kA.ra < n (otherwise contradic-
tion to assumption kA, rsE O(1)). The reader is
referred here to the example given after the
description of the algorithm.

Algorithm WR

(1) Rearrange the nonzero A-elements such that
each processor in the submesh M’ contains one
nonzero A-element.

(2) Sort the nonzero A-elements in lexicographic
order with respect to their indices such that they
are in row-major order in the submesh M’.

(3) Mark each PE(i, j) if there is a nonzero A-ele-
ment with column indexj in row of the mesh.

(4) Transpose matrix B.
(5) Compute. all products apq’bqrO, p, q, r [1, n]

as follows:

FOR j TO rB DO

In each column of the mesh send thejth nonzero
B-element (if present) to all marked PE’s in the
column.

FORi= 1TOk,DO

In each row of the mesh send the B-element
that has been received by the ith marked PE,
say bqr, to all PE’s in the row that contain an
A-element with column index q. Compute the
product of the A-element with the received B-
element and send the product to a PE in the
same row that has not yet received any such
product./* Observe, that this is possible since
there are r-I PE’s between any two PE’s of
M’ in each row of the mesh. ,/

END

END

76 M. MIDDENDORF et al.

(6)

(7)

(8)

(9)

(lO)

In each row of the mesh sum all products with
the same destination.
Identify each index for which there exist
products in more than one row of the mesh
which have this index as their final row index.
Call each such index distributed.
/* Observe that products with the same
distributed row index occur in neighboring
rows of the mesh. Also, each row of the mesh
contains products with at most two different
distributed row indices. Note also that all
products with a non-distributed row index
already represent a C-element. ,/
In each row of the mesh send the products with
a distributed row index into the final column.
/* Note, there are at most two such products
with the same column index in each row. ,/
In each column of the mesh sum all products
(with a distributed row index) that have the
same destination.
/* Now all elements of C have been computed
and it remains to send them to their final
destination. ,/
Route all C-elements with a non-distributed
row index as follows:

FOR TO kA.rB DO

In each row of the mesh send the ith C-
element in the row that has a non-distrib-
uted row index in three steps to its final
destination:

Send it on a row bus to the diagonal PE.
Send it on a column bus to its final row.
Send it on a row bus to its final column.

END

(11) In each column of the mesh mark the
v/kA.rB.n uppermost C-elements with a dis-
tributed row index as white and all other C-
elements with a distributed row index as black.

(12) FOR i=1 TO x/’k rB nDO

In each column of the mesh route the ith
white C-element to its final row.

END

/, Since C contains at most ka.rB.n nonzero
elements there can be at most < v/ka rB n
columns jl, j2,...,it of the mesh containing a
black element. ,/

(13) FORi=I TOx/’ka r.nDO

Route the black elements in column ji (if
defined) in three steps to their final
destinations:

Send them on a row bus to the diagonal
PE.
Send them on a column bus to their
final row.
Send them on a row bus to their final
column.

END

Before we analyse the algorithm we give an
example that illustrates how the algorithm works.
Let A and B be the matrices presented in Figure 5.
A has 4n-1 nonzero elements and is weakly sparse
with kA 4. B is row sparse with rn= 5. Hence,
the submesh M’ consists of the processors in
columns 1, 6, 10, and 16. Figure 6 shows the
distribution of the nonzero A-elements after Step
(2), i.e., they have been send to the processors of
M’ and sorted in row major order in submesh M’.
Figure 7 shows for exemplary rows and 4 which
processors have been marked in Step (3) and which
nonzero B-elements are sent to the marked
processors in Step (5). The products that are
computed in these rows during Step (5) are
depicted in Figure 8(a). The situation after Step
(6)-when for every row products with the same
destination are summed up-is presented for rows
and 4 in Figure 8(b). Products with a distributed

row index are identified in Step (7) which is
depicted in Figure 9. During Step (8) products
with a distributed row index are sent to their final
column (see Fig. 10(a)). Then, during Step (9), in
each column products with the same destination
are summed (see Fig. 10(b)). Afterwards, in Step
(10), products with a non-distributed row index
are routed to their final destination. In Step (11)
the x/’kA r n x/20 n uppermost C-elements

DYNAMICALLY RECONFIGURABLE MESHES 77

nonzero element

Matrix A kA =4 Matrix B rB =5

FIGURE 5 Matrices A and B of the example for Algorithm WR.

6 16

FIGURE 6 After Step 2: Nonzero A-elements in submesh
M’.

with distributed row index are marked white.
Observe that there are at least ((n-3)/2) C-
elements with a distributed row index in each of
the columns n-2, n-l, and n. Thus columns n-2,
n-l, and n contain black elements if
((n-3)/2) > v/20 n. Finally, the white C-ele-
ments are routed during Step (12) and the black
ones during Step (13).

Now let us analyse the time complexity of
Algorithm WR. Step (1) will take time O(x/’k.4 n)
using standard operations for the reconfigurable
mesh. We give a sketch: Let M" be the submesh of
M containing all processors not in M’. Perform at
most x/ka" n times the following two steps: (i)
Identify the leftmost nonzero element of A in each
column of M" and send these elements to different
processors of M’ that don’t contain a nonzero
element of A. (ii) Similar to (i) but with the
topmost nonzero elements ofA in each row of M".
For Step (2) recall that sorting n numbers on the
reconfigurable mesh can be done in time O(1) [9].
To sort the k4.n numbers stored in M’ repeat
log kA times the following steps:

a. For to kA: Sort all numbers in column of
the submesh M from the bottom if is odd and
from the top if is even;

b. In parallel sort the numbers in each row of M’
with ka steps of odd-even transposition sort
(see e.g. [1]).

As a result the k.4.n numbers are sorted
columnwise in M’. Now, we give each number an
additional index in such a way that after sorting
the numbers again but this time according to the
added indices, the numbers will be sorted rowwise
in M’. Altogether, this sorting takes time
O(ka.logk4). Steps (3), (4), and (5) need time

78 M. MIDDENDORF et al.

I II+ i.l ,I l++ +il t’-’l
l,l 2,1 n-I,n-2 n.n-2
1,2 2,2 n-l,n-I n,n-I
l,n-2 2,n-2 n-l,n n,n
l,n-I 2,n-I
,n 2,n

5,5 n-l,n-2 n.n-2
5,n-2 marked PE n-l,n-I n,n-I
5,n-I n-l,n n,n
5,n

i,j sent B-elements
)

FIGURE 7 Nonzero A-elements and sent B-elements in rows and 4 during Step 5.

a) After step 5

b) After step 6

FIGURE 8 Computed products in rows and 4 after Steps 5 and 6.

O(kA), O(rs), O(rs.kA), respectively. Step (6) can
be done in time O(ka.rs) since in every row there
are at most ka products with the same destination.
Step (7) needs time O(1). Since at most ka.rs
products are in each row Step (8) can be done in
time O(ka’rs). For Step (9) time O(log(n/ka)) is
enough, since products with the same destination
can occur in at most (n/ka)+ neighboring rows
of the mesh. Step (10) takes time O(kA.rs). Each of
the final Steps (11), (12), (13) needs time
O(v/ka rs n). Altogether we see that the total
running time of Algorithm WR is
O(x/ka.ns. n). This shows that the algorithm
is not far from the lower bound. In particular, it is
faster and more general than the algorithm of
E1Gindy [2].

To show the correctness of Algorithm WR,
consider two nonzero elements ai,j and b,h. After
Steps (1) and (2) element ai,j is stored in some
PE(p, q) of the submesh M’. Then PE(p,j) is
marked in Step (3). In Step (4) element bj, h is
moved from PE(j,h) to PE(h,j). In Step (5) b,h is
first sent over a column bus to PE(p,j), since it is
marked. Then, b,h is sent to PE(p, q), multiplied
with ai,, and the product is sent to another PE, say
(p, r), in the row. In Step (8) other products stored
in row p, which have the same destination, are
added and the combined product .is stored in a
PE(p,s). First let us assume that is a non-
distributed row index. Then the product already
equals C-element q,h and is routed in Step (10) to
its final destination (it is sent first to PE(p,p), then

DYNAMICALLY RECONFIGURABLE MESHES 79

non-distributed row index

distributed row index

Ci, h and is stored in a PE in column h, say PE(o, h).
If ci, h is one of the v/kA .ra. n. uppermost C-
elements in row h, then it is sent in Step (12)
directly to its destination which is PE(i, h). Other-
wise, it is routed in Step (13) to PE(i, h) as follows:
First it is sent to PE(o, o), then to PE(i, o), and
finally to PE(i, h).

It is easy to obtain an Algorithm CW with time
O(v/cA ka. n) for the case that A is column
sparse and B is weakly sparse (Hint: Essentially
interchange in Algorithm WR A with B and
column with row).
The next Algorithm WC for the case that A is

weakly sparse again but B is column sparse is
simpler than Algorithm WR.

Algorithm WC

In all the PE’s initialise the C-element to 0.

FIGURE 9 Products after Step 7.

to PE(i,p), and finally to PE(i, h)). On the other
hand, assume that p is a distributed row index.
Then the product is sent to PE(p, h) in Step (8). In
Step (9) it is added to all other products with the
same destination. Afterwards it equals C-element

1) Determine the columns jl, j2,...,it-of A with
at least v/k, n/x/ nonzero elements and
let hl,h2,...,ht, be the other columns of A.
Observe, that < v/ka .ca. n must hold.
Let A I(A2) be the n n matrix that match on
A in columns jl,j2,...,jr (hi, h2,...,hi,) and has
only zero elements in all other columns.
Thus, we have A A1 + A2.

a) After step 8 b) After step 9

FIGURE 10 Elements with distributed row index during Steps 8 and 9.

80 M. MIDDENDORF et al.

2) Compute .41 B as follows:

FORi= TOtDO

Send each element of column jl of A1 to all
PE’s in its row.
Send each element of row jl of B to all
PE’s in its column.
In each PE that has received an A 1-element
and a B-element multiply both elements
and add the result to the current local C-
value.

END

3) Determine A2 x B with Algorithm CC (but
without initialising the local C-elements to
zero).

The columns j,j2,...,jr can be identified easily
in time O(v/ka n/v/-). Step (1) takes time
O(t) <_ O(x/ka.cs. n). Step (2) takes time
O(ca2 cs)= O((v/ka n/v/- cs). Therefore
the time complexity of Algorithm we is
o(x/l c n).
For the correctness consider nonzero elements

ai,j and bj, h. If jE{jl,j>...,jr} then ai,j is sent in
Step (1) to all PE’s in row and bj, h is sent to all
PE’s in column h. Hence, PE(i, h) correctly receives
both elements, multiplies them, and adds the result
to the local C-value. If, on the other hand,
j {jl,j2,...,jr} then ai,j is multiplied in Step (2)
by Algorithm CC with bj, h and added to the
corresponding C-value.
One easily obtains an Algorithm RW with time

O(x/ra ks n) for the case that A is row sparse
and B is weakly sparse, since this is just the
transposed case.

5. CONCLUSION

In this paper we have described several algorithms
for multiplying different types of weakly sparse
matrices on dynamically reconfigurable arrays.
Our constant time algorithms could be combined
into a polyalgorithm which would check initially

the values of cA, rA, and ce, re and then choose the
algorithm having the smallest complexity. In the
case of a column sparse matrix A and a row sparse
matrix B there is still a small gap between our
algorithm with time O(x/’ca rs n) and the lower
bound of f(x/max{ca, r} n). If one ofA or B is
neither row nor column sparse, we can still use the
Algorithms WR, WC, RW, or CW which are also
close to the lower bound. These algorithms can be
used as long as at least one of the matrices is the
sum of a row and a column sparse matrix. Since
each weakly sparse matrix M with kn elements is
the sum of a "row sparse" matrix M’ with
r,- v/k n and a "column sparse" matrix M"
with c,,- v/k n the case that both matrices A
and B are only weakly sparse can be solved in time
O(min{klj2 ",tA/4, "at’/4 k/e} n3/4)

References

[1] Akl, S. G. (1989). The design and analysis of parallel
algorithms, Englewood Cliffs: Prentice-Hall.

[2] E1Gindy, H. (1996). "A sparse matrix multiplication
algorithm for the reconfigurable mesh architecture",
Technical Report 96-08, Dept. of Comp. Sci. and Software
Eng., University of Newcastle, Australia.

[3] Kruskal, C. P., Rudolph, L. and Snir, M. (1989).
"Techniques for parallel manipulation of sparse ma-
trices", Theoret. Comput. Sci., 64, 135-157.

[4] Kunde, M., Personal communication.
[5] Lie, K. T. and Schr6der, H., "A fault tolerant reconfigur-

able array", Pacific Rim Conference on Fault Tolerant
Systems, December 1993.

[6] Manzini, G. (1994). "Sparse matrix vector multiplication
on distributed architectures: Lower bounds and average
complexity results", Inform. Process. Lett., 50, 231- 238.

[7] Middendorf, M., Schmeck, H. and Turner, G. (1995).
"Sparse Matrix Multiplication on a Reconfigurable
Mesh", Australian Computer Journal, 27, 37-40.

[8] Miller, R., Prasanna-Kumar, V. K., Reisis, D. I. and
Stout, Q. F. (1993). "Parallel Computations on Reconfi-
gurable Meshes", IEEE Trans. Comput., 42, 678-692.

[9] Nigam, M. and Sahni, S. (1995). Sorting n numbers on
n x n reconfigurable meshes with busses", J. Par. Distr.
Comput., 23, 37-48.

[10] Schmeck, H., Schr6der, H. and Turner, G. (1995).
"Efficient sparse matrix multiplication on a reconfigurable
mesh", Mitteilungen-Gesellschaft Jr Informatik e. V.,
Parallel-Algorithmen und Rechnerstrukturen, 13, 89-96.

[11] tasterby, O. and Zlatev, Z. (1983). Direct Methods for
Sparse Matrices, Berlin, Heidelberg, New York: Springer-
Verlag.

[12] Park, H., Kim, H. J. and Prasanna, V. K. (1993). "An
O(1) time optimal algorithm for multiplying matrices on
reconfigurable mesh", Inform. Process. Lett., 47, 109-113.

DYNAMICALLY RECONFIGURABLE MESHES 81

[13] Savage, J. G. (1981). "Area time tradeoffs for matrix
multiplication and related problems in VLSI models",
JCCS, 22, 230-242.

[14] Ullman, J. D. (1984). Computational Aspects of VLSI,
Rockville: Computer Science Press.

Authors’ Biographies

Martin Middendorf studied Mathematics and
received the diploma and Dr rer nat at the
University of Hannover, Germany. Currently he
is an Assistent Professor at the University of
Karlsruhe, Germany. His research interests in-
clude design and analysis of parallel algorithms,
VLSI-Design, and combinatorial problems in
molecular biology. He is member of EATCS and
GI. His URL is http://www.aifb.uni karlsruhe.de/
Staff/mmi.html.
Hartmut Sehmeek received his Ph.D. in Com-

puter Science from the University of Kiel, Ger-
many. He held visiting positions at Queen’s
University, Kingston, Canada; Universities of
Hildesheim and Miinster, Germany; Technical
University of Denmark at Lyngby; and University
of Newcastle, Australia. Currently, he is Professor
of Applied Computer Science at the University of
Karlsruhe, Germany. His research interests in-
clude parallel algorithms and architectures and
evolutionary computation. He is a member of

ACM, IEEE CS, and GI, and member of
programme committees of ARCS’97, EuroPar’97,
PART’97, and IPPS’98. His URL is http://
www.aifb.unikarlsruhe.de/Staft/schmeck.html.
Heiko Schriider studied Mathematics, Physics

and Computer Science at the University of Kiel
(Germany) where he received his Ph.D. in Com-
puter Science in 1977. He was Assistant Professor
of Computer Science at Kansas University (USA),
Senior Research Fellow in Canberra (Australia)
and Professor of Microelectronics in Newcastle
(Australia). He is currently Professor of CS and
HoD in Loughborough (UK). His main research
interest include massively parallel architectures
and algorithms for problems related to sorting,
image processing, visualisation, optimisation and
fault tolerance.

Gavin Turner received a Ph.D. in Computer
Science at the University of Newcastle, Australia
in 1996, and is currently a lecturer in Computer
Science at Victoria University of Wellington,
Wellington New Zealand. His main research
interests lie in the area of design and analysis of
algorithms, in particular algorithms and architec-
tures for special-purpose parallel computing. In
addition, he is interested in a wide variety of
problems from image processing, load balancing
and combinatorics.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

