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ABSTRACT. In this paper we show that the multiplication operator on the
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INTRODUCTION

Let D be the open unit disk in C. Let dA denote Lebesgue area measure on
the unit disk D, normalized so that the measure of D equals 1. The Bergman space
L2

a is the Hilbert space consisting of the analytic functions on D that are also in
the space L2(D, dA) of square integrable functions on D. Because the nonnegative
powers {zn} span the Bergman space L2

a, {
√

n + 1zn}∞
n=0 form an orthonormal

basis of L2
a.

For a bounded analytic function φ on the unit disk, the multiplication oper-
ator Mφ is defined on the Bergman space L2

a by

Mφh = φh

for h ∈ L2
a.

Let en =
√

n + 1zn. Then {en}∞
0 form an orthonormal basis of the Bergman

space L2
a. On the basis {en}, the multiplication operator Mz by z is a weighted

shift operator:

Mzen =

√
n + 1
n + 2

en+1.

So it is usually called the Bergman shift.
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A reducing subspace M for an operator T on a Hilbert space H is a subspace
M of H such that TM ⊂ M and T∗M ⊂ M. In [7] and [8] we have studied reduc-
ing subspaces of multiplication operators on the Bergman space via the Hardy
space of the bidisk. The multiplication operator Mz is a weighted shift. The gen-
eral multiplication operator Mφ is a holomorphic calculus of the weighted shift.
Shift operators have been studied very extensively [2], [3]. In [4], Stessin and Zhu
obtained a complete description of the reducing subspaces of weighted unilateral
shift operators of finite multiplicity to shed a light on that MzN on the Bergman
space has N nontrivial minimal reducing subspaces, but the multiplication oper-
ator by zN on the Hardy space has infinitely many reducing subspaces.

A natural question is to characterize the multiplication operators on the
Bergman space unitarily equivalent to a weighted unilateral shift operators of
finite multiplicity. This paper continues our study on the multiplication opera-
tors Mφ on the Bergman space in [7], [8] by using the Hardy space of the bidisk
to completely answer the question. Our main result of this paper almost says
that only MzN up to unitary equivalence is a weighted unilateral shift operator of
finite multiplicity.

THEOREM 0.1. If the multiplication operator Mφ on the Bergman space is unitar-
ily equivalent to a weighted unilateral shift operator of finite multiplicity, then φ = cφN

λ ,
for a constant c and some Möbius transform φλ(z) = z−λ

1−λz
.

Let T denote the unit circle. The torus T2 is the Cartesian product T×T. Let
dσ be the rotation invariant Lebesgue measure on T2. The Hardy space H2(T2)
is the subspace of L2(T2, dσ), each function in H2(T2) can be identified with the
boundary value of the function holomorphic in the bidisk D2 with the square
summable Fourier coefficients. The Toeplitz operator on H2(T2) with symbol f
in L∞(T2, dσ) is defined by

Tf (h) = P( f h),

for h ∈ H2(T2) where P is the orthogonal projection from L2(T2, dσ) onto H2(T2).
For each integer n > 0, let

pn(z, w) =
n

∑
i=0

ziwn−i.

Let H be the subspace of H2(T2) spanned by functions {pn}∞
n=0. Thus

H2(T2) = H⊕ cl{(z− w)H2(T2)}.

Let

B = PHTz|H = PHTw|H

where PH be the orthogonal projection from L2(T2, dσ) onto H. So B is unitarily
equivalent to the Bergman shift Mz on the Bergman space L2

a via the following
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unitary operator U : L2
a(D) → H,

Uzn =
pn(z, w)

n + 1
.

This implies that the Bergman shift is lifted up as the compression of an isometry
on a nice subspace of H2(T2). Indeed, for each Blaschke product φ(z) with finite
order, the multiplication operator Mφ on the Bergman space is unitarily equiva-
lent to φ(B) on H.

By Lemma 13 in [7], it is easy to see that for each Blaschke product φ with
order N, H can be decomposed as a direct sum of at most N reducing subspaces
of Mφ. We will show that if φ has more than two distinct roots and at least one
root is repeated, then H can not be decomposed as a direct sum of N reducing
subspaces of Mφ (Theorem 3.1).

1. PREMIMINARIES

We need some basic constructions from [7]. Let

Kφ = span{φl(z)φk(w)H; l, k > 0}.

Then Kφ is a reducing subspace for both Tφ(z) and Tφ(w), and so Tφ(z) and Tφ(w)
are also a pair of doubly commuting isometries on Kφ. Introduce the wandering
space

Lφ = kerT∗φ(z) ∩ kerT∗φ(w) ∩ Kφ.

Let L0 be kerT∗φ(z) ∩ kerT∗φ(w) ∩ H. In [7], for each e ∈ L0, we construct

functions {dk
e} and d0

e in Lφ such that for each l > 1,

pl(φ(z), φ(w))e +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
e ∈ H

and
pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))d0

e ∈ H.
We have a precise formula of d0

e but dk
e is orthogonal to kerT∗φ(z) ∩ kerT∗φ(w) ∩ H,

and for a reducing subspace M, and e ∈ M,

pl(φ(z), φ(w))e +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
e ∈ M.

The relation between d1
e and d0

e is given in [7] and stated as follows:

THEOREM 1.1. If M is a reducing subspace of φ(B) orthogonal to the distin-
guished reducing subspace M0, for each e ∈ M ∩ L0, then there is an element ẽ ∈
M∩ L0 and a number λ such that

d1
e = d0

e + ẽ + λe0.

We will often use the above theorem and the following theorem from [7].
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THEOREM 1.2. If φ is a finite Blaschke product, then there is a unique reducing
subspace M0 for φ(B) such that φ(B)|M0 is unitarily equivalent to the Bergman shift.
In fact,

M0 = span
l>0

{pl(φ(z), φ(w))e0},

and
{ pl(φ(z),φ(w))e0√

l+1‖e0‖

}∞
0 form an orthonormal basis of M0.

We call M0 the distinguished reducing subspace for φ(B). M0 is unitarily
equivalent to a reducing subspace of Mφ contained in the Bergman space, de-
noted by M0(φ). The space plays an important role in classifying the minimal
reducing subspaces of Mφ [7], [8]. If 0 is a zero of φ, it was shown [5] that

M0(φ) = span{φ′φn : n = 0, 1, . . . , m, . . .}.

The following lemmas give some properties for functions in H or H⊥.

LEMMA 1.3. If f is in H2(T2) and continuous on the closed bidisk and e is in H,
then

〈 f (z, w), e(z, w)〉 = 〈 f (z, z), e(z, 0)〉 = 〈 f (w, w), e(0, w)〉.

Proof. Since f (z, w) is continuous on the closed bidisk, there are a sequence
{Pn} of polynomials of z and w converging uniformly to f (z, w) on the closed
bidisk. Thus it suffices to show

〈Pn(z, w), e(z, w)〉 = 〈Pn(z, z), e(z, 0)〉 = 〈Pn(w, w), e(0, w)〉.

Noting that T∗zl |H = T∗wl |H, we see that

T∗Pn(z,w)e = T∗Pn(z,z)e = T∗Pn(w,w)e.

This gives

〈Pn(z, w), e(z, w)〉 = 〈1, Pn(z, w)e(z, w)〉 = 〈1, T∗Pn(z,w)e〉 = 〈1, T∗Pn(z,z)e〉

= 〈1, Pn(z, z)e(z, w)〉 = 〈Pn(z, z), e(z, w)〉 = 〈Pn(z, z), e(z, 0)〉.

Similarly we also obtain the following which completes the proof:

〈Pn(z, w), e(z, w)〉 = 〈Pn(w, w), e(0, w)〉.

The proofs of the following lemmas are easy and left for readers.

LEMMA 1.4. For h(z, w) ∈ H2(T2), h is in H⊥ if and only if h(z, z) = 0, for
z ∈ D.

LEMMA 1.5. Suppose that e(z, w) is in H. If e(z, z) = 0 for each z in the unit
disk, then e(z, w) = 0 for (z, w) on the torus.

The above lemma tells us that a function in H is completely determined by
its value on the diagonal. The following result says that e(z, w) is symmetric with
respect to z and w.
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LEMMA 1.6. If e(z, w) is in H, then

e(z, w) = e(w, z).

LEMMA 1.7. Suppose f (z, w) is in H. Let F(z) = f (z, 0). Then, for each λ ∈ D,

f (λ, λ) = λF′(λ) + F(λ).

For α ∈ D, let kα be the reproducing kernel of the Hardy space H2(T) at α.
That is, for each function f in H2(T),

f (α) = 〈 f , kα〉.

For an integer s > 0, define

ks
α(z) =

s!zs

(1− αz)s+1 .

Let φ be a Blaschke product with zeros {αk}K0 and αk repeats nk+1 times. That is,

φ(z) =
K

∏
k=0

( z− αk
1− αkz

)nk+1
.

The order of φ is given by

N =
K

∑
i=0

(ni + 1).

We assume that α0 = 0, and so φ(z) = zφ0(z) where φ0 is the following Blaschke
product:

φ0(z) = zn0
K

∏
k=1

( z− αk
1− αkz

)nk+1
.

For each α ∈ D and integer t > 0, let

(1.1) et
α(z, w) =

t

∑
s=0

t!
s!(t− s)!

ks
α(z)kt−s

α (w).

The Mittag-Leffler expansion of the finite Blaschke product φ0 is

φ0(z) =
K

∑
i=0

ni

∑
t=0

ct
i k

t
αi

(z),

for some constants {ct
i}. Define

e0(z, w) =
K

∑
i=0

ni

∑
t=0

ct
i e

t
αi

(z, w).

Clearly,
e0(z, 0) = φ0(z).

Simple calculations give the following lemmas.
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LEMMA 1.8. For each α ∈ D and t > 0, then

et
α(z, z) =

(t + 1)!zt

(1− αz)t+2 .

LEMMA 1.9. For each F(z, w) ∈ H2(T2),

〈F, et
α〉 = [(∂z + ∂w)tF(z, w)]|z=w=α.

Noting that the dimension of L0 is N and {eti
αi (z, w) : 0 6 i 6 K, 0 6 ti 6 ni}

are linearly independent, we immediately have the following lemma.

LEMMA 1.10. We have

L0 = span{eti
αi (z, w) : 0 6 i 6 K, 0 6 ti 6 ni}.

Consequently, the above lemma gives the following lemma.

LEMMA 1.11. For each function F(z, w) ∈ kerT∗φ(z) ∩ kerT∗φ(w), there is a func-
tion E(z, w) ∈ L0 such that

F(z, 0) = E(z, 0).

Theorem 18 in [7] only gives the existence of the family of functions {d(k)
e } ⊂

Lφ 	 L0. It will be useful to know how those functions are constructed from e.

Theorem 1.14 will give a recursive formula of {d(k)
e }. First we need the following

simple but useful lemma.
For two functions x, y in H2(T2), the symbol x⊗ y is the operator on H2(T2)

defined, for g ∈ H2(T2), by

(x ⊗ y)g = [〈g, y〉H2(T2)]x.

LEMMA 1.12. On the Hardy space H2(T2), the identity operator equals

I = TzT∗z + ∑
l>0

wl ⊗ wl = TwT∗w + ∑
l>0

zl ⊗ zl .

LEMMA 1.13. Suppose that φ(z) = zφ0(z) for some Blaschke product φ0(z) with
finite order. If f is a function in H2(T2), then for each l > 1,

T∗z−w(pl(φ(z), φ(w)) f ) = pl(φ(z), φ(w))T∗z−w f + φ0(z)pl−1(φ(z), φ(w)) f (0, w)

− φ0(w)pl−1(φ(z), φ(w)) f (z, 0).

Proof. Let f ∈ H2(T2). By Lemma 1.12, we have

T∗z (pl(φ(z), φ(w)) f )

= T∗z
[

pl(φ(z), φ(w))
(

TzT∗z + ∑
i>0

wi ⊗ wi
)

f
]

= T∗z [pl(φ(z), φ(w))(TzT∗z f )] + T∗z
[

pl(φ(z), φ(w))
(

∑
i>0

wi ⊗ wi
)

f
]
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= pl(φ(z), φ(w))(T∗z f ) + T∗z
[

pl(φ(z), φ(w))
(

∑
i>0

wi ⊗ wi
)

f
]
.

Noting

pl(φ(z), φ(w)) =
l

∑
k=0

φ(z)kφ(w)l−k = φ(w)l + φ(z)
l

∑
k=1

φ(z)k−1φ(w)l−k

= φ(w)l + zφ0(z)
l

∑
k=1

φ(z)k−1φ(w)l−k,

and (
∑
i>0

wi ⊗ wi
)

f = f (0, w),

we obtain

T∗z
[

pl(φ(z), φ(w))
(

∑
i>0

wi ⊗ wi
)

f
]

= T∗z [pl(φ(z), φ(w)) f (0, w)]

= T∗z [φ(w)l f (0, w)] + T∗z
[
zφ0(z)

l

∑
k=1

φ(z)k−1φ(w)l−k f (0, w)
]

= φ0(z)
[ l

∑
k=1

φ(z)k−1φ(w)l−k
]

f (0, w) = φ0(z)pl−1(φ(z), φ(w)) f (0, w).

This gives

(1.2) T∗z(pl(φ(z), φ(w)) f )=pl(φ(z), φ(w))(T∗z f )+φ0(z)pl−1(φ(z), φ(w)) f (0, w).

Similarly, we also have

(1.3) T∗w(pl(φ(z), φ(w)) f )= pl(φ(z), φ(w))(T∗w f )+φ0(w)pl−1(φ(z), φ(w)) f (z, 0).

Combining (1.2) and (1.3) yields as desired

T∗z−w(pl(φ(z), φ(w)) f ) = pl(φ(z), φ(w))T∗z−w f + φ0(z)pl−1(φ(z), φ(w)) f (0, w)

− φ0(w)pl−1(φ(z), φ(w)) f (z, 0).

The following theorem gives a recursive formula for those functions {dk
e},

which will be used in the construction of de.

THEOREM 1.14. Suppose that e is in L0 and {dk
e} are a family of functions in

H2(T2). Then for a given integer n > 1,

pl(φ(z), φ(w))e +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
e ∈ H,

for each 1 6 l 6 n, if and only if the following recursive formula holds

φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd1
e (z, w) = 0;
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and, for 1 6 k 6 n− 1,

φ0(z)dk
e (0, w)− φ0(w)dk

e (z, 0) + T∗z−w(dk+1
e )(z, w) = 0.

Proof. For a given e ∈ L0 and a family of functions {dk
e} ⊂ H2(T2), for each

integer l > 1, let

El = pl(φ(z), φ(w))e +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
e .

El is in H for each 1 6 l 6 n, if and only if T∗z−wEl = 0 for each 1 6 l 6 n. We
need only show that for each 1 6 l 6 n, T∗z−wEl = 0 is equivalent to the recursive
formula in the theorem.

By Lemma 1.13, we have

T∗z−wEl

= T∗z−w[pl(φ(z), φ(w))e] +
l−1

∑
k=0

T∗z−w[pk(φ(z), φ(w))dl−k
e ]

= pl(φ(z), φ(w))T∗z−we + φ0(z)pl−1(φ(z), φ(w))e(0, w)

− φ0(w)pl−1(φ(z), φ(w))e(z, 0) +
l−1

∑
k=1

[pk(φ(z), φ(w))T∗z−wdl−k
e

+ φ0(z)pk−1(φ(z), φ(w))dl−k
e (0, w)− φ0(w)pk−1(φ(z), φ(w))dl−k

e (z, 0)]

= pl−1(φ(z), φ(w))[φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd1
e ]

+
l−2

∑
k=0

[pk(φ(z), φ(w))(T∗z−wdl−k
e + φ0(z)dl−k−1

e (0, w)− φ0(w)dl−1−k
e (z, 0))]

since e is in L0. Thus T∗z−wEl = 0 for each 1 6 l 6 n if and only if

φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd1
e = 0,

and
T∗z−wdl−k

e + φ0(z)dl−k−1
e (0, w)− φ0(w)dl−1−k

e (z, 0)) = 0,

for 1 6 k < l 6 n. This completes the proof.

LEMMA 1.15. If for a function f ∈ H, pl(φ(z), φ(w)) f ∈ H, for each l > 0, then
f (z, 0) = λφ0(z), for constant λ.

Proof. Suppose that pl(φ(z), φ(w)) f ∈ H, for each l > 0. Let dk
f = 0. Then

pl(φ(z), φ(w)) f +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
f ∈ H,

for each l > 1. By Theorem 1.14, we have

φ0(z) f (0, w)− φ0(w) f (z, 0) = 0.
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This gives
f (z, 0)
φ0(z)

=
f (0, w)
φ0(w)

holds for all (z, w) ∈ D× D except for a finite vertical or horizontal lines. Thus
the equality holds for an open subset of D2, and so there is a constant λ such that
f (z, 0) = λφ0(z) on the unit disk. This completes the proof.

The following theorem is proved in [7] and is used in the proof of Theo-
rem 1.17.

THEOREM 1.16. If for a function f ∈ H, pl(φ(z), φ(w)) f ∈ H, for each l > 0,
then there exists a constant λ such that f = λe0.

Next for a given e ∈ L0, we will show that there is a unique function de ∈
Lφ 	 e0 such that, for each l > 1,

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de ∈ H.

THEOREM 1.17. For a given e∈L0, there is a unique function de ∈ Lφ	e0 such
that

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de ∈ H
for each l > 1. If e is linearly independent of e0, then de 6= 0. Moreover, the mapping

e → de

is a linear operator from L0 into Lφ 	 e0.

Proof. First we show the existence of de. For the given e, by Theorem 18 in
[7], there is a function d1

e ∈ Lφ such that

p1(φ(z), φ(w))e + d1
e ∈ H.

By Theorem 1.14 we have

(1.4) φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd1
e (z, w) = 0.

Since e(z, w) is in H, by Lemma 1.6, d1
e (z, w) is symmetric with respect to z and w.

In addition, p1(φ(z), φ(w)) is also symmetric with respect to z and w. This gives
d1

e (z, w) = d1
e (w, z). Thus d1

e (z, 0) = d1
e (0, z). By Lemma 1.11, choose a function

ẽ(z, w) ∈ L0 such that d1
e (z, 0) = ẽ(z, 0). Hence d1

e (0, z) = ẽ(0, z), because ẽ(z, w) is
also symmetric with respect to z and w. Let de = d1

e − ẽ. Clearly,

p1(φ(z), φ(w))e + de ∈ H, and de(z, 0) = de(0, z) = d1
e (z, 0)− ẽ(z, 0) = 0.

Letting d̃1
e = de and d̃k

e = 0, for k > 1, by (1.4), we have the following equations:

φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd̃1
e (z, w)

= φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−w[d1
e (z, w)− ẽ(z, w)] = 0,

φ0(z)d̃k
e (0, w)− φ0(w)d̃k

e (z, 0) + T∗z−w(d̃k+1
e )(z, w) = 0− 0− 0 = 0,
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for 1 6 k 6 l−1. The last equality in the first equation follows from T∗z−w ẽ(z, w)
= 0. By Theorem 1.14, we conclude that, as desired,

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de ∈ H.

Next we show that if there is another function be ∈ Lφ such that

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))be ∈ H,

for each l > 1, then de − be = µe0 for some constant µ.
Since

pl−1(φ(z), φ(w))[de − be] = pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de

− (pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))be) ∈ H,

letting f = de − be, we have that f ∈ H and pl(φ(z), φ(w)) f ∈ H. By Theo-
rem 1.16, we obtain that f = λe0 to conclude

de = be + λe0.

If de = 0, i.e.,
pl(φ(z), φ(w))e ∈ H,

then Theorem 1.16 again implies that e = λe0. This gives that if e is linearly inde-
pendent of e0, then de 6= 0.

As showed above, we know that the mapping e → de is well-defined from
L0 into Lφ 	 e0. To finish the proof we need to show that the mapping is linear.
To do so, let e1 and e2 be in L0. For given constants c1 and c2, we have

pl(φ(z), φ(w))e1 + pl−1(φ(z), φ(w))de1 ∈ H,

pl(φ(z), φ(w))e2 + pl−1(φ(z), φ(w))de2 ∈ H,

pl(φ(z), φ(w))[c1e1 + c2e2] + pl−1(φ(z), φ(w))dc1e1+c2e2 ∈ H.

Thus pl−1(φ(z), φ(w))[c1de1 + c2de2 − dc1e1+c2e2 ] ∈ H, for each l > 1. By Theo-
rem 1.16,

c1de1 + c2de2 − dc1e1+c2e2 = c3e0,
for some constant c3. But de1 , de2 , and dc1e1+c2e2 are orthogonal to e0. We conclude

c1de1 + c2de2 − dc1e1+c2e2 = 0.

2. WEIGHTED SHIFTS

In this section we will characterize multiplication operators on the Bergman
space which are unitarily equivalent to a weighted shift of finite multiplicity to
prove our main result.

A weighted shift T of finite multiplicity n on Hilbert space H is an operator
that maps each vector in some orthonormal basis {ek}∞

k=0 into a scalar multiple of
the next nth vector

Tek = wkek+n,
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for all k. The sequence {wk} is called the weight of the weighted shift T. In fact, T
is unitarily equivalent to the multiplication operator by zn on some Hilbert space
of analytic functions on the unit disk. [2] and [3] contain many results on the shift
operators, which will be used in this paper.

Indeed, a weighted shift of finite multiplicity is unitarily equivalent to a
direct sum of finite weighted shifts. The following theorem tells us that if a mul-
tiplication operator on the Bergman space is unitarily equivalent to a weighted
shift of finite multiplicity, then the first construction in [7] will become much sim-
pler.

THEOREM 2.1. Suppose that φ is a Blaschke product with order N. If there are N
mutually orthogonal reducing subspaces {Mi} of φ(B) such that φ(B)|Mi is unitarily
equivalent to a weighted shift, then for each ei ∈ Mi ∩ L0 and each l > 1,

dl
ei

= 0.

Proof. By Theorem 1.2 we may assume that φ(B)|M1 is unitarily equivalent
to the Bergman shift. Let ei be a nonzero vector in Mi ∩ L0. By Theorem 19 in [7],
there are functions dl

ei
∈ Lφ 	 L0 such that

pl(φ(z), φ(w))ei +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
ei

∈ Mi.

Theorem 1.2 implies that dl
e1

= 0 for l > 1 and d1
ei
6= 0, for i > 1. Let

Eil = pl(φ(z), φ(w))ei +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
ei

.

Then Eil is in Mi and

φ(B)∗Eil = T∗φ(z)Eil = P
[
φ(z)

(
pl(φ(z), φ(w))ei +

l−1

∑
k=0

pk(φ(z), φ(w))dl−k
ei

)]
= pl−1(φ(z), φ(w))ei +

l−2

∑
k=0

pk(φ(z), φ(w))dl−k
ei

= Ei(l−1).

The last equality follows from P(φ(z)ei) = 0 and P(φ(z)dl
ei
) = 0. Thus {Eil}l

are orthogonal to {Ejl}l for i 6= j and so {dl
ei
}l are orthogonal to {dl

ej
}l . Since

dim[Lφ 	 L0] equals N − 1 and d1
ei

does not equal zero for i > 1, {d1
ei
} form an

orthogonal basis of Lφ 	 L0. This gives that there are constants βil such that

dl
ei

= βild
1
ei

.

Because φ(B)|Mi is a weighted shift, there is an orthonormal basis {Fl} of
Mi such that

φ(B)Fl = al Fl+1

where {al} are weights of φ(B) on Mi. Thus F0 is in the kernel of [φ(B)|Mi ]
∗, and

so F0 = λ0ei for some constant λ0. Since φ(B)∗F1 = a0F0, we have φ(B)∗[F1 −
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a0λ0Ei1] = 0. Thus F1 = a0λ0Ei1 + µ1ei. But both F1 and Ei1 are orthogonal to ei.
So µ1 = 0. Hence there is a constant λ1 such that

F1 = λ1Ei1.

By induction, we obtain that there are constants λl such that

Fl = λlEil .

This implies that {Eil} form an orthogonal set. Note that

Eil = p1(φ(z), φ(w))ei +
[ l−1

∑
k=0

pk(φ(z), φ(w))βi(l−k)

]
d1

ei
.

We conclude that βil = 0 for l > 1. This gives

Eil = p1(φ(z), φ(w))ei + pl−1(φ(z), φ(w))d1
ei
∈ Mi

and dl
ei

= 0 for l > 1. This completes the proof.

THEOREM 2.2. Suppose that φ is a finite Blaschke product and φ(0) = 0. If φ has
a nonzero root α, then there is a function e ∈ L0 such that d0

e is not orthogonal to L0.

Proof. Recall that L0 equals kerT∗φ(z) ∩ kerT∗φ(w) ∩H. Assuming that for each

e ∈ L0, d0
e is orthogonal to L0, we will derive a contradiction.

Observe that {{esk
αk}sk=0,...,nk}k=0,...,K form a basis for L0. So for each e ∈ L0

there is a vector
(u0

0, . . . , un0
0 , . . . , u0

αK
, . . . , unK

αK ) ∈ CN

such that

e(z, w) =
K

∑
i=0

ni

∑
t=0

ut
αi

et
αi

(z, w).

Noting that dimL0 = N, we see that e → (u0
0, . . . , un0

0 , . . . , u0
αK

, . . . , unK
αK ) is a linear

invertible mapping from L0 onto CN .
Let αj be a nonzero root of φ with multiplicity nj + 1. Then

φ(t)(αj) = 〈φ, kt
αj
〉 = 0, for 0 6 t 6 nj and φ(nj+1)(αj) = 〈φ, k

nj+1
αj 〉 6= 0.

Because d0
e is orthogonal to L0 and {et

αj
}t

t=0 is in L0, we have

0 = 〈d0
e , et

αj
〉 = 〈[wφ0(w)e(z, w)− we(0, w)e0(z, w)], et

αj
〉

= 〈wφ0(w)e(z, w), et
αj
〉 − 〈we(0, w)e0(z, w), et

αj
〉.

By Lemma 1.9,

〈wφ0(w)e(z, w), et
αj
〉 = {[∂z + ∂w]tφ(w)e(z, w)}|z=w=αj

=
t

∑
s=0

t!
s!(t− s)!

φ(s)(αj){[∂z + ∂w]t−se(z, w)}|z=w=αj = 0.
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Thus
〈we(0, w)e0(z, w), et

αj
〉 = 0

for 0 6 t 6 nj. By Lemma 1.9 again, we have

0 = 〈we(0, w)e0(z, w), et
αj
〉 = {[∂z + ∂w]twe(0, w)e0(z, w)}|z=w=αj

=
t

∑
s=0

t!
s!(t− s)!

(we(0, w))(s)(αi){[∂z + ∂w]t−se0(z, w)}|z=w=αj(2.1)

for 0 6 t 6 nj. When t = 0, the above equation gives αje(0, αj)e0(αj, αj) = 0.

Noting that αje(0, αj) = 0 is equivalent to
K
∑

i=0
∑ni

t=0 ut
i e

t
αi

(0, αj) = 0, we see that

there is a function e in L0 such that αje(0, αj) 6= 0. Hence e0(αj, αj) = 0. Letting
t = 1, (2.1) gives

αje(0, αj){[∂z + ∂w]e0(z, w)}|z=w=αj + (we(0, w))(1)|w=αj e0(αj, αj) = 0,

Thus {[∂z + ∂w]e0(z, w)}|z=w=αj = 0. By induction we obtain

{[∂z + ∂w]te0(z, w)}|z=w=αj = 0,

for 0 6 t 6 nj. In particular, 0 = {[∂z + ∂w]nj e0(z, w)}|z=w=αj . A simple calculation
gives

{[∂z+∂w]nj e0(z, w)}|z=w=αj = 〈e0, e
nj
αj 〉= 〈enj

αj e0(z, w), 1〉= 〈PH[e
nj
αj (z, w)e0(z, w)], 1〉.

Because e
nj
αj is in H∞(T2) and e0(z, w) is in H, we have

PH[e
nj
αj (z, w)e0(z, w)] = PH[e

nj
αj (z, z)e0(z, w)].

Thus

{[∂z + ∂w]nj e0(z, w)}|z=w=αj

= 〈PH[e
nj
αj (z, z)e0(z, w)], 1〉= 〈enj

αj (z, z)e0(z, w), 1〉= 〈e0(z, w), e
nj
αj (z, z)〉

= 〈e0(z, 0), e
nj
αj (z, z)〉 =

〈
φ0(z),

(nj + 1)!znj

(1− αjz)
nj+2

〉
.

On the other hand, we also have

0 = φ
(nj)
0 (αj) = 〈φ0, k

nj
αj 〉 =

〈
φ0,

nj!z
nj

(1− αjz)
nj+1

〉
.

Combining the above two equalities gives

0 =
〈

φ0(z),
[ znj

(1− αjz)
nj+2 −

znj

(1− αjz)
nj+1

]〉
=

〈
φ0(z),

αjz
nj+1

(1− αjz)
nj+2

〉
.
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Hence

φ
(nj+1)
0 (αj) = 〈φ0(z), k

nj+1
αj (z)〉 =

(nj + 1)!
αj

〈
φ0(z),

αjz
nj+1

(1− αjz)
nj+2

〉
= 0.

This contradicts the fact that αj is a nonzero root of φ0 with multiplicity nj + 1.

We are ready to prove our main result.

Proof of Theorem 0.1. We may assume that ‖Mφ‖ = 1. Suppose that Mφ is

unitarily equivalent to the direct sum
N⊕

i=1
Wi where Wi is a weighted shift. Then

dimkerM∗
φ = ∑

i
dimkerW∗

i

and the essential spectrum of Mφ is

σe(Mφ) =
N⋃

i=1

σe(Wi).

Noting that Wi is subnormal, we see that the essential spectrum of Wi is a circle

with center at origin. So
N⋃

i=1
σe(Wi) is a union of circles with the same center at

origin. On the other hand, by Corollary 20 of [6], the essential spectrum of Mφ is

connected. Thus
N⋃

i=1
σe(Wi) is the unit circle and |φ(z)| = 1 on T. So φ is an inner

function.
We claim that φ is a Blaschke product with N zeros in the unit disk. If φ

is not so, there is a singularity z0 ∈ T of φ(z) (that is a point that φ(z) does not
extend analytically), by Theorem 6.6 in [1], the cluster set of φ(z) is the closed
unit disk. Note that a point η in the cluster set of φ(z) at z0 if and only if there are
points zn in D tending to z0 such that φ(zn) converges to η. This implies that the
cluster set of φ(z) at every point z0 on the unit circle is contained in the essential
spectrum of Mφ, which is a contradiction.

By Theorem 1.17, there are N linearly independent functions {ei} of L0 such
that {dei} are orthogonal to e0 and

pl(φ(z), φ(w))ei + pl−1(φ(z), φ(w))dei ∈ H.

Also we have pl(φ(z), φ(w))ei + pl−1(φ(z), φ(w))d0
ei
∈H, for l > 0. Thus pl(φ(z),

φ(w))(dei − d0
ei
) ∈ H. So dei − d0

ei
is in L0 and hence Theorem 1.16 gives that there

are constants λi such that dei = d0
ei

+ λie0. Since en0
0 is in L0 and dei is orthogonal

to L0, we have

0 = 〈dei , en0
0 〉 = 〈d0

ei
, en0

0 〉+ λi〈e0, en0
0 〉.
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On the other hand, Lemma 1.9 gives

〈e0, en0
0 〉 = 〈e0(z, w), en0

0 (z, z)〉 = 〈e0(z, 0), en0
0 (z, z)〉 = (n0 + 1)!〈φ0(z), zn0〉

= (n0 + 1)!φ(n0)
0 (0) 6= 0,

〈d0
ei

, en0
0 〉 = 〈wφ0(w)ei(z, w)− wei(0, w)e0(z, w), en0

0 (z, w)〉

= 〈φ(w)ei(z, w), en0
0 (z, w)〉 − 〈wei(0, w)e0(z, w), en0

0 (z, w)〉.

The Leibniz rule and Lemma 1.9 give

〈φ(w)ei(z, w), en0
0 (z, w)〉 = [(∂z + ∂w)n0(φ(w)ei(z, w))]|z=w=0

=
n0

∑
s=0

n0!
s!(n0 − s)!

φ(s)(0)[(∂z + ∂w)n0−sei](0, 0) = 0.

The last equality follows from the fact that 0 is a root of φ with multiplicity n0 + 1.
Similarly, we have

〈wei(0, w)e0(z, w), en0
0 (z, w)〉= [(∂z + ∂w)n0(wei(0, w)e0(z, w))]|z=w=0

=
n0

∑
s=0

n0!
s!(n0−s)!

(wei(0, w))(s)(0)[(∂z+∂w)n0−se0](0, 0).

Lemmas 1.3 and 1.9 give

[(∂z + ∂w)n0−se0](0, 0) = 〈e0(z, w), en0−s
0 (z, w)〉 = 〈e0(z, w), en0−s

0 (z, z)〉

= 〈e0(z, 0), en0−s
0 (z, z)〉 = 〈φ0(z), (n0 − s + 1)!zn0−s〉 = 0

for 0 < s 6 n0. The second equality follows from PH[en0−s
0 (z, w)e0(z, w)] =

PH[en0−s
0 (z, z)e0(z, w)]. Thus

n0

∑
s=0

n0!
s!(n0 − s)!

(wei(0, w))(s)(0)[(∂z + ∂w)n0−se0](0, 0) = 0,

and so
〈wei(0, w)e0(z, w), en0

0 (z, w)〉 = 0.

Hence we have that the constant λi = 0. Therefore d0
ei

is orthogonal to L0 for each
i. Noting that {ei} form a basis for L0 we see that d0

e is orthogonal to L0 for each
e ∈ L0. By Theorem 2.2, we conclude that φ = φN

λ , to complete the proof.

3. DECOMPOSITION OF H

The proof of Theorem 0.1 in the previous section suggests a more general
result stating that if φ has more than two distinct roots and at least one root is
repeated, thenH can not be decomposed as a direct sum of N reducing subspaces
of Mφ. In this section we will prove the result.
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THEOREM 3.1. Suppose that φ is a Blaschke product of order N. If 0 is a zero and
a critical point of φ and the zero set of φ contains at least one nonzero point in the unit

disk, then H cannot be decomposed as a direct sum
N−1⊕
i=0

Mi of N mutually orthogonal

nontrivial reducing subspaces {Mi}N−1
i=0 of φ(B).

Proof. By the assumption, we may write

φ = zφ0 = zn0+1φ1,

where
φ0 = zn0 φn1+1

α1 · · · φnK+1
αK and φ1 = φn1+1

α1 · · · φnK+1
αK

for some nonzero points α1, . . . , αK in the unit disk and nonegative integers
n0, . . . , nK.

Recall that L0 is equal to kerT∗φ(z) ∩ kerT∗φ(w) ∩H. Then

L0 = span{1, p1, . . . , pn0 , e0
α1

, . . . , en1
α1 , . . . , e0

αK
, . . . , enK

αK }.

Assume that φ(B) has N mutually orthogonal nontrivial reducing subspaces
{Mi}N−1

i=0 such that

H =
N−1⊕
i=0

Mi

where M0 is the distinguished reducing subspace M0 in Theorem 1.2.
By Lemma 1.10, for each i, there is an ei 6= 0 such that ei ∈ Mi ∩ L0, and

L0 = span{e0, e1, . . . , eN−1}.

By Theorems 19 in [7], there are functions {d1
ei
} ⊂ Lφ 	 L0 such that

p1(φ(z), φ(w))ei + d1
ei
∈ Mi.

Since Mi is orthognal to Mj for distinct i and j, we have

〈p1(φ(z), φ(w))ei + d1
ei

, p1(φ(z), φ(w))ej + d1
ej
〉 = 0.

On the other hand, a simple calculation gives

〈p1(φ(z), φ(w))ei + d1
ei

, p1(φ(z), φ(w))ej + d1
ej
〉

= 〈p1(φ(z), φ(w))ei + d1
ei

, p1(φ(z), φ(w))ej〉+ 〈p1(φ(z), φ(w))ei + d1
ei

, d1
ej
〉

= 〈p1(φ(z), φ(w))ei, p1(φ(z), φ(w))ej〉+ 〈d1
ei

, d1
ej
〉 = 〈d1

ei
, d1

ej
〉.

The second equality follows from the fact that dei and dej are in Lφ 	 L0. The
equality follows since ei and ej are in L0. Thus,

〈d1
ei

, d1
ej
〉 = 0.

By Theorems 19 in [7], each d1
ei
6= 0 for i > 0 and

{d1
ei
}N−1

i=1 ⊂ Lφ 	 L0
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are linearly independent.
By Theorem 1.1, there are numbers βi, λi such that

(3.1) d1
ei

= d0
ei

+ βiei + λie0 i = 1, . . . , N − 1.

We will show that d0
ei

and e0 are in

{1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK }⊥.

To do this, observe that for 0 6 k 6 n0,

−〈d0
ei

, pk〉
=〈φ(w)ei − wei(0, w)e0, pk〉
=〈φ(w)ei(w, w), pk(0, w)〉 − 〈wei(0, w)e0(w, w), pk(0, w)〉

=〈φ(w)ei(w, w), wk〉 − 〈wei(0, w)(wφ′0(w) + φ0(w)), wk〉

=〈wn0+1−kφ1(w)ei(w, w), 1〉−〈wn0+1−k[wφ′1(w)+(n0+1)φ1(w)]ei(0, w), 1〉=0.

The second equality follows from Lemma 1.3 and the third equality follows from
Lemma 1.7.

Since et
αj

is in the kernel of T∗φ(w) and φ(s)(αj) = 0 for 0 6 s 6 nj, we have
that for 0 6 t 6 nj − 1 and j = 1, . . . , K,

〈d0
ei

, et
αj
〉 = 〈wei(0, w)e0(w, w)− φ(w)ei, et

αj
〉 = 〈wei(0, w)e0(w, w), et

αj
(0, w)〉

= 〈wei(0, w)[wφ′0(w) + φ0(w)], et
αj

(0, w)〉

= 〈wei(0, w)φ′, kt
αj
〉 = (wei(0, w)φ′)(t)|w=αj = 0;

〈d0
ei

, e
nj
αj 〉 = [wei(0, w)φ′(w)](nj)|αj = αjei(0, αj)φ(nj+1)(αj).

These give that

(3.2) d0
ei
⊥ {1, p1, . . . , pn0−1, e0

α1
, . . . , en1−1

α1 , . . . , e0
αK

, . . . , enK−1
αK }.

We also have that for 0 6 k 6 n0 − 1

〈e0, pk〉 = 〈e0(w, w), pk(0, w)〉 = 〈φ
′
(w), wk〉 = 0,

〈e0, pn0〉 =
1

n0!
φ(n0+1)(0) 6= 0.

A simple calculation shows that for j = 1, . . . , K, 0 6 t 6 nj − 1

〈e0, et
αj
〉 = [e0(w, w)](t)|αj = φ(t+1)(αj) = 0,

〈e0, e
nj
αj 〉 = φ(nj+1)(αj) 6= 0.

These give

(3.3) e0 ⊥ {1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK }.
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We claim that there are at most K nonzero βi’s. If βi0 does not equal 0 for
some i0, (3.1) yields

ei0 =
1

βi0
[d1

ei0
− d0

ei0
− λi0 e0].

Noting that d1
ei

is orthogonal to L0, by (3.2) and (3.3) we have

ei0 ⊥ {1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK }.

Thus

(3.4) ei0 ⊥ {1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK , e0}.

So there are at most K nonzero βi’s and hence our claim holds.
On the other hand if βi = 0, then (3.1) gives

d1
ei

= d0
ei

+ λie0.

Since pn0 is in L0 and d1
ei
⊥ L0, we have that d0

ei
⊥ pn0 , and

〈e0, pn0〉 6= 0,

to obtain that λi = 0 and d0
ei

= d1
ei

is orthogonal to L0. By Theorem 2.2, there is at
least one nonzero βi.

Without loss of generality, assume that for some m, βN−j 6= 0 for 1 6 j 6 m
and β j = 0 for 1 6 j 6 N −m− 1, (3.4) gives

eN−j ⊥ {1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK , e0}

for 1 6 j 6 m. Now we extend

{1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK , e0, eN−1, . . . , eN−m}

to a basis of L0

{1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK , e0, eN−1, . . . , eN−m, f1, . . . , fK−m}

by adding some elements f1, . . . , fK−m in L0. Let {gj}N−m−1
j=1 denote

{1, p1, . . . , pn0−1, e0
α1

, . . . , en1−1
α1 , . . . , e0

αK
, . . . , enK−1

αK , f1, . . . , fK−m}.

Since for 1 6 j 6 N −m− 1, ej is in L0 and

ej ⊥ {e0, eN−1, . . . , eN−m}

we have that ej is in the subspace span{1, g2, . . . , gN−m−1} of L0. This implies that
there are numbers {cjl}N−m−1

j,l=1 such that for 1 6 j 6 N −m− 1

(3.5) ej = cj1 + cj2g2 + · · ·+ cjN−m−1gN−m−1.

On the other hand, because β j = 0 for 1 6 j 6 N − m − 1, we have that
d0

ej
= d1

ej
is orthogonal to L0, and

〈d0
ej

, en1
α1 〉 = α1ej(0, α1)φ(n1+1)(α1) = 0.
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This implies that ej(0, α1) = 0. Hence (3.5) gives

ej(0, α1) = cj11 + cj2g2(0, α1) + · · ·+ cjN−m−1gN−m−1(0, α1) = 0

for 1 6 j 6 N − m − 1. Thus the determinant det[cjk] of the coefficient matrix
of the above system must be zero. So there is a nonzero vector (x1, . . . , xN−m−1)
such that

c1l x1 + c2l x2 + · · ·+ cN−m−1l xN−m−1 = 0

for 1 6 l 6 N −m− 1. This implies

x1e1 + x2e2 + · · ·+ xN−m−1eN−m−1 = 0.

We obtain a contradiction that e1, . . . , eN−m−1 are linearly independent to com-
plete the proof.
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