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MULTIPLICATION OPERATORS ON THE BERGMAN SPACE VIA THE

HARDY SPACE OF THE BIDISK

KUNYU GUO, SHUNHUA SUN, DECHAO ZHENG AND CHANGYONG ZHONG

Abstract. In this paper, we develop a machinery to study multiplication operators on the

Bergman space via the Hardy space of the bidisk. Using the machinery we study the structure
of reducing subspaces of a multiplication operator on the Bergman space. As a consequence,
we completely classify reducing subspaces of the multiplication operator by a Blaschke product
φ with order three on the Bergman space to solve a conjecture of Zhu [40].

1. Introduction

Let D be the open unit disk in C. Let dA denote the Lebesgue area measure on the unit disk
D, normalized so that the measure of D equals 1. The Bergman space L2

a is the Hilbert space
consisting of the analytic functions on D that are also in the space L2(D, dA) of square integrable
functions on D.

Our main objective is to study multiplication operators on L2
a by bounded analytic functions

on the unit disk D via the Hardy space of bidisk. The theme is to use the theory of multivariable
operators to study a single operator. Our main idea is to lift the Bergman shift up as the
compression of a commuting pair of isometries on a nice subspace of the Hardy space of bidisk.
This idea was used in studying the Hilbert modules by R. Douglas and V. Paulsen [12], operator
theory in the Hardy space over the bidisk by R. Dougals and R. Yang [13], [37], [38] and [39];
the higher-order Hankel forms by S. Ferguson and R. Rochberg [10] and [11] and the lattice of
the invariant subspaces of the Bergman shift by S. Richter [22].

For a bounded analytic function φ on the unit disk, the multiplication operator Mφ is defined

on the Bergman space L2
a given by Mφh = φh for h ∈ L2

a. Let en =
√
n+ 1zn. Then {en}∞0 form

an orthonormal basis of the Bergman space L2
a. On the basis {en}, the multiplication operator

Mz by z is a weighted shift operator, called the Bergman shift: Mzen =
√

n+1
n+2en+1.

The multiplication operators on the Bergman space possess a very rich structure theory. Even
the lattice of the invariant subspaces of the Bergman shift Mz is huge [4]. The Bergman shift Mz

has a universal property [4]: for any strict contraction S on a Hilbert space H, there always exist
a pair of invariant subspaces of Mz, say M and N in LatMz ( the invariant subspace lattice of
Mz is the set of subspaces M of L2

a with MzM ⊂ M), such that S ∼= PM⊖N{Mz|M⊖N},
where PM⊖N denotes the orthogonal projection of L2

a(D) onto M ⊖ N. This indicates that
existence of the invariant subspace problem for Hilbert space operator is equivalent to whether
LatMz is saturated, i.e., for any M,N ∈ LatMz, with M ⊃ N and dim(M ⊖ N)=∞, whether
there always exists some Ω ∈ LatMz such that

N ⊂
6= Ω ⊂

6= M.

Let T denote the unit circle. The torus T2 is the Cartesian product T × T. The Hardy space
H2(T2) over the bidisk is H2(T) ⊗ H2(T). Let P be the orthogonal projection from the space
L2(T2) of the Lebesgue square integrable functions on the torus T2 onto H2(T2). The Toeplitz
operator on H2(T2) with symbol f in L∞(T2) is defined by Tf (h) = P (fh), for h ∈ H2(T2).

The first author and the second author were supported in part by the National Natural Science Foundation of

China. The third author was partially supported by the National Science Foundation.
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Clearly, Tz and Tw are a pair of doubly commuting pure isometries on H2(T2). For each integer
n ≥ 0, let

pn(z, w) =

n∑

i=0

ziwn−i =
zn+1 − wn+1

z − w
.

Let H be the subspace of H2(T2) spanned by functions {pn}∞n=0. The orthogonal complement of
H in H2(T2) is

[z − w] = closureH2(T2){(z − w)H2(T2)}.
Then [z−w] is an invariant subspace of analytic Toeplitz operators Tf for f ∈ H∞(T2). Let PH
be the orthogonal projection from L2(T2) onto H. It is easy to check that

PHTz|H = PHTw|H.

Let B denote the operator above. It was shown explicitly in [29] and implicitly in [12] that B is
unitarily equivalent to the Bergman shift Mz on the Bergman space L2

a via the following unitary
operator U : L2

a(D) → H,

Uzn =
pn(z, w)

n+ 1
.

Clearly, for each f(z, w) ∈ H,

(U∗f)(z) = f(z, z),

for z ∈ D. The simple observation that pn(z, w) = zn+1−wn+1

z−w gives that for each f(z, w) ∈ H,

there is a function f̃(z) in the Dirichlet space D such that

f(z, w) =
f̃(z) − f̃(w)

z − w
.

Thus, for each Blaschke product φ(z) with finite order, the multiplication operator Mφ on the
Bergman space is unitarily equivalent to φ(B) on H.

In this paper we will study the operator φ(B) on the Hardy space of the bidisk to shed light
on properties of the multiplication operator Mφ. This method seems to be effective in dealing
with the multiplication operators on the Bergman space because functions in the Hardy space of
the bidisk behave slightly better than the functions in the Bergman space.

The difficulty to study B on H is to get better understanding the projection PH. The price
that we pay is that we will get a lot of mileage from developing a “heavy” machinery on the
Hardy space of the bidisk how to get rid of PH in the expression

φ(B)nf =
1

n+ 1
PH(pn(φ(z), φ(w))f),

for f ∈ H. To do this, letting L0 denote the space kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩H, for each e ∈ L0 , we

construct functions {dk
e} in Section 3.1 and d0

e in Section 3.2 such that for each l ≥ 1,

pl(φ(z), φ(w))e+

l−1∑

k=0

pk(φ(z), φ(w))dl−k
e ∈ H

and

pl(φ(z), φ(w))e+ pl−1(φ(z), φ(w))d0
e ∈ H.

On one hand, we have a precise formula of d0
e. On the other hand, dk

e is orthogonal to L0. These
constructions are useful in studying the reducing subspaces of φ(B). A reducing subspace M for
an operator T on a Hilbert space H is a subspace M of H such that TM ⊂ M and T ∗M ⊂ M.
A reducing subspace M of T is called minimal if only reducing subspaces contained in M are
M and {0}. As in [16], a subspace N of H is a wandering subspace of T if N is orthogonal to
TnN for each n = 1, 2, · · · . If M is an invariant subspace of T , it is clear that M ⊖ TM is a
wandering subspace of T , and we will refer this subspace as the wandering subspace of M.
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In fact, for a reducing subspace M of φ(B), and e in the wandering subspace of M

pl(φ(z), φ(w))e+

l−1∑

k=0

pk(φ(z), φ(w))dl−k
e ∈ M.

Although for a Blaschke product φ of finite order, Mφ is not an isometry, using the machinery
on the Hardy space of bidisk we will show that there exists a unique reducing subspace M0, the
so called distinguished subspace, on which the restriction of Mφ is unitarily equivalent to the
Bergman shift, which will play an important role in classifying reducing subspaces of Mφ. The
functions d1

e and d0
e have the following relation.

Theorem 1. If M is a reducing subspace of φ(B) orthogonal to the distinguished reducing

subspace M0, for each e in the wandering subspace for M, then there is an element ẽ in the

wandering subspace for M and a number λ such that

d1
e = d0

e + ẽ+ λe0. (1)

To understand the structure of minimal reducing subspaces of φ(B) we lift a reducing subspace
of φ(B) as a reducing subspace of the pair of doubly commuting isometries Tφ(z) and Tφ(w). For

a given reducing subspace M of φ(B), define the lifting M̃ of M

M̃ = span{φ(z)lφ(w)kM, l, k ≥ 0}.

Since M is a reducing subspace of φ(B) and M̃ is a reducing subspace of the pair of doubly
commuting isometries Tφ(z) and Tφ(w), by the Wold decomposition of the pair of isometries on
M, we have

M̃ = ⊕l,k≥0φ(z)lφ(w)kL
M̃

,

where L
M̃

is the wandering subspace

L
M̃

= kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ M̃.

The following theorem gives a complete description of the wandering subspace L
M̃

.

Theorem 2. Suppose that M is a reducing subspace of φ(B) orthogonal to M0. If {e(M)
1 , · · · , e(M)

qM }
is a basis of the wandering subspace of M, then

L
M̃

= span{e(M)
1 , · · · , e(M)

qM
; d1

e
(M)
1

, · · · , d1

e
(M)
qM

},

and

dimL
M̃

= 2qM .

To prove Theorem 2, first we use the Wold decomposition of the pair of doubly commuting

isometries Tφ(z) and Tφ(w) on the lifting Kφ(= H̃) of H to get the dimension of the wandering
subspace Lφ(= L

H̃
). By means of the Fredholm theory in [8], we are able to show that the

dimension of Lφ equals 2N − 1, where N is the order of the Blaschke product φ.
Then by means of the finite dimension of the wandering subspace of these isometries on the

reducing subspace we will be able to obtain some structure theorems on reducing subspaces of
the multiplication operators by finite Blaschke products on the Bergman space.

Theorem 3. Suppose that Ω, M and N are three distinct nontrivial minimal reducing subspaces

contained in M⊥
0 for φ(B). If

Ω ⊂ M ⊕ N,

then there is a unitary operator U : M → N such that U commutes with φ(B) and φ(B)∗.
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The machinery on the Hardy space of the bidisk is not only useful in classifying the reducing
subspaces of multiplication operators on the Bergman space, but also it is helpful in understanding
the lattice of invariant subspaces of the Bergman shift as in [1] and hence the invariant subspace
problem. One of our goals is to develop the Bergman function theory [15], [17] via the Hardy
space of the bidisk.

The multiplication operators on the Bergman space is completely different from that in the
Hardy space. By the famous Beurling Theorem [9], the lattice of the invariant subspaces of the
multiplication operator by z on the Hardy space is completely determined by inner functions.
A Beurling’s theorem was recently obtained for the Bergman space [1]. On one hand, on the
Hardy space, for an inner function φ, the multiplication operator by φ is a pure isometry and
hence unilateral shift (with arbitrary multiplicity). So its reducing subspaces are in one-to-one
correspondence with the closed subspaces of H2⊖φH2 [5], [16]. Therefore, it has infinitely many
reducing subspaces provided that φ is any inner function other than a Möbius function. Many
people have studied the problem of determining reducing subspaces of a multiplication operator
on the Hardy space of the unit circle [2], [3] and [20]. For an inner function φ, the multiplication
operator by φ on the Bergman space is a contraction but not an isometry. On the other hand,
surprisingly, on the Bergman space, it was shown in [28] and [40] that for a Blaschke product φ
with two zeros, the multiplication operator Mφ has only two nontrivial reducing subspaces. Zhu
[40] conjectured that for a Blaschke product φ with N zeros, the lattice of reducing subspaces
of the operator Mφ is generated by N elements. In other words, Mφ has exactly N nontrivial
minimal reducing subspaces.

Applying the machinery developed in the paper, we will be able to disproves Zhu’s conjecture
in the following theorem. For a holomorphic function φ on the unit disk and a point c in the unit
disk, we say that c is a critical point of φ if its derivative vanishes at c.

Theorem 4. Let φ be a Blaschke product with three zeros. If φ(z) has a multiple critical point

in the unit disk, then Mφ has three nontrivial minimal reducing subspaces. If φ does not have

any multiple critical point in the unit disk, then Mφ has only two nontrivial minimal reducing

subspaces.

Bochner’s theorem [35], [36] says that every Blaschke product with N zeros has exactly N − 1
critical points in the unit disk D. Theorem 4 gives a classifcation of reducing subspaces for Mφ

for a Blaschke product φ with three zeros.
Critical points of φ have important geometric meaning about the self-mapping of the unit

disk. The work of Stephonson [24], [25], [26] suggests that the geometric version of the above
theorem should be in terms of the Riemann surfaces. A finite Blaschke product φ with N zeros
is an N to 1 conformal map of D onto D. Bochner’s theorem [35], [36] says that φ has exactly
N − 1 critical points in the unit disk D and none on the unit circle. Let C denote the set of the
critical points of φ in D and F = φ−1 ◦φ(C). Then F is a finite set, and φ−1 ◦φ is an N -branched
analytic function defined and arbitrarily continuable in D/F. Not all of the branches of φ−1 ◦ φ
can be continued to a different branch, for example z is a single valued branch of φ−1 ◦ φ. The
Riemann surface for φ−1 ◦φ over D is an N -sheeted cover of D at most N(N − 1) branch points,
and it is not connected. The geometric version of Theorem 4 is the following theorem.

Theorem 5. Let φ be a Blaschke product with three zeros. Then the number of nontrivial

minimal reducing subspaces of Mφ equals the number of connected components of the Riemann

surface of φ−1 ◦ φ over D.

We would like to point out that there are many essential differences in analysis and geometry
between Blaschke products with order three and Blaschke products with order two. On one hand,
for Blaschke products φ with order two, φ−1 ◦ φ contains two analytic functions on the unit disk
and hence the Riemann surface for φ−1 ◦φ over D is just two copies of the unit disk. On the other
hand, for the most Blaschke products with order three, φ−1 ◦ φ has three multivalue functions
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on the unit disk and the Riemann surface for φ−1 ◦ φ over D has two connected components.
This phenomenon makes it difficult for us to classify the reducing subspaces of a multiplication
operator with the Blaschke product of order highter than two. It seems that the machinery
developed in the paper is inevitable in classifying the reducing subspaces of the multiplication
operator by a Blaschke product of higher order.

The problem of determining reducing subspaces of a multiplication operator is equivalent to
finding projections in the commutant of the operator which is the set of operators commuting
with the multiplication operators. Every von Nuemann algebra is generated by its projections.
Theorem 4 says that every von Nuemann algebra contained in the commutant of mulitplication
operator by the Blaschke product with third order is commutative. A lot of nice and deep work
on the commutant of a multiplication operator has been done on the Hardy space [6], [33], [34]
while Blaschke products with finite zeros play an important role. Indeed Cowen proved that
for f ∈ H∞, if the inner factor of f − f(α) is a Blaschke product φ with finite order for some
α ∈ D, then the commutant of the multiplication operator by f equals the commutant of the
multiplication operator by the finite Blaschke product φ [6]. Thus the structure of lattice of
reducing subspaces of the multiplication operator by a Blaschke product with finite order is
useful in studying the general multiplication operators on the Bergman space.

One of applications of the machinery on the Hardy space of the bidsk is that it was proved in
[32] that the multiplication operator on the Bergman space is unitarily equivalent to a weighted
unilateral shift operator of finite multiplicity if and only if its symbol is a constant multiple of the
N-th power of a Mobius transform. Another one is that we have obtained a complete description
of nontrivial minimal reducing subspaces of the multiplication operator by φ on the Bergman
space of the unit disk for the fourth order Blaschke product φ [31].

Using Theorems 1 and 3, for a finite Blaschke product φ, we are able to show that for two
distinct nontrivial minimal reducing subspaces of φ(B), either they are orthogonal or φ(B) has two
distinct unitarily equivalent reducing subspaces and has also infinitely many minimal reducing
subspaces (Theorem 31). Thus either φ(B) has infinitely many minimal reducing subspaces or
the number of nontrivial minimal reducing subspaces of φ(B) is less than or equal to the order of
φ (Theorem 32). We say that two reducing subspaces M and N of φ(B) are unitarily equivalent
if there is a unitary operator U : M → N such that U commutes with φ(B) and φ(B)∗.

The adjoint of the multiplication operator by a finite Blaschke product is in a Cowen-Douglas
class [7]. The theory of Cowen-Douglas classes will be useful in studying the multiplication
operators on the Bergman space. On the other hand, we would like to see some applications of
the results obtained in the paper to the study of the Cowen-Dougals classes.

We thank R. Douglas for his insightful comments on the relations between multiplication
operators and Cowen-Dougals classes, R. Rochberg for his drawing our attention to his papers
[10] and [11] with S. Ferguson, K. Stephenson for his drawing our attention to his papers [24],
[25], [26] and K. Zhu for his useful comments on his conjecture.

2. The wandering subspace of the lifting of the Bergman space

As pointed out before, we can identify the Bergman space with H. First we introduce notations
and show some properties of functions in H. Then we compute the dimension of the wandering
space for the lifting H̃ of H. The dimension is useful for us to find the wandering space for the
lifting M of a reducing subspace M of φ(B).

For α ∈ D, let kα be the reproducing kernel of the Hardy space H2(T) at α. That is, for each
function f in H2(T),

f(α) = 〈f, kα〉.
In fact, kα = 1

(1−ᾱz) . For φ in H∞(T), let T̂φ denote the analytic Toeplitz operator with symbol

φ on H2(T), given by

T̂φh = φh.
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Thus it is easy to check that

T̂ ∗
φkα = φ(α)kα. (2)

For an integer s ≥ 0, let

ks
α(z) =

s!zs

(1 − ᾱz)s+1
.

Lemma 6. For each f ∈ H∞(T),

T̂ ∗
f k

s
α =

s∑

l=0

s!

l!(s− l)!
f (l)(α)ks−l

α .

The proof of the above lemma is left for readers. Lemma 6 gives that the kernel of the Toeplitz
operator T̂ ∗

φ on the Hardy space of the unit circle is spanned by {{ksk
αk

}sk=0,··· ,nk
}k=0,··· ,K .

Recall that H is the subspace of H2(T2) spanned by functions {pn}∞n=0. The following two

lemmas give some properties for functions in H or H⊥.

Lemma 7. If f is in H2(T2) and continuous on the closed bidisk and e is in H, then

〈f(z, w), e(z, w)〉 = 〈f(z, z), e(z, 0)〉 = 〈f(w,w), e(0, w)〉.
The proof of Lemma 7 is left for readers.

Lemma 8. For h(z, w) ∈ H2(T2), h is in H⊥ iff h(z, z) = 0, for z ∈ D.

Proof. As pointed out before,

H⊥ = cl{(z − w)H2(T2)}.
Let z be in D. For each function f(z, w) ∈ (z−w)H2(T2), f(z, z) = 0. Thus h(z, z) = 0 for each

h ∈ H⊥.
Conversely, assume that for a function h ∈ H2(T2), h(z, z) = 0, for z ∈ D. For 0 < r < 1,

define

hr(z, w) = h(rz, rw).

Then for each fixed 0 < r < 1, hr(z, z) = 0, and hr(z, w) is continuous on the closed bidisk
and in H2(T2).

By Lemma 7, for each e(z, w) in H,

〈hr(z, w), e(z, w)〉 = 〈hr(z, z), e(z, 0)〉 = 0.

On the other hand, by Theorem 3.4.3 in [23],

〈h(z, w), e(z, w)〉 = lim
r→1−

〈hr(z, w), e(z, w)〉 = 0.

Hence we conclude that h is in H⊥.
The Dirichlet space D consists of analytic functions on the unit disk whose derivative is in the

Bergman space L2
a.

Theorem 9. For each f(z, w) in H2(T 2), f is in H if and only if there is a function f̃(z) in D

such that

f(z, w) =
f̃(z) − f̃(w)

z − w
,

for two distinct points z w in the unit disk.

This immediately gives the following three lemmas, which proofs are left for readers.

Lemma 10. Suppose that e(z, w) is in H. If e(z, z) = 0 for each z in the unit disk, then

e(z, w) = 0 for (z, w) on the torus.
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Lemma 11. If e(z, w) is in H, then

e(z, w) = e(w, z).

Lemma 12. Suppose f(z, w) is in H. Let F (z) = f(z, 0). Then

f(λ, λ) = λF ′(λ) + F (λ),

for each λ ∈ D.

For an operator T on a Hilbert space, let kerT denote the kernel of T . Then

kerT ∗ = H ⊖ TH.

Given a pure isometry U on a Hilbert space H, the classical Wold decomposition theorem [19]
states that

H = ⊕n≥0U
nE,

where E = H ⊖ UH is the wandering subspace for U and equals kerT ∗.
For a function φ in H∞(D), we can view φ(z) and φ(w) as functions on the torus T2. While

Mφ is not an isometry on the Bergman space of the unit disk, the analytic Toeplitz operators
Tφ(z) and Tφ(w) are a pair of doubly commuting pure isometries on the Hardy space H2(T2) of
torus. Since

T ∗
z pn = T ∗

wpn = pn−1

for n ≥ 1 and

T ∗
z p0 = T ∗

wp0 = 0,

H is an invariant subspace for both T ∗
z and T ∗

w. So H is also an invariant subspace for both
T ∗

φ(z) and T ∗
φ(w). Recall the lifting Kφ of H:

Kφ = span{φl(z)φk(w)H; l, k ≥ 0}.
Then Kφ is a reducing subspace for both Tφ(z) and Tφ(w), and so Tφ(z) and Tφ(w) are also a pair
of doubly commuting isometries on Kφ.

We consider the Wold decompositions for the pair on both Kφ and K⊥
φ (H2(T2) ⊖ Kφ).

Introduce wandering subspaces

Lφ = kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ Kφ,

and

L̂φ = kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ K⊥
φ .

To get the dimension of the wandering subspaces Lφ and L̂φ, we will identify the wandering

subspace L̂φ for the Blaschke product φ with distinct zeros. The following lemma follows from

the remark after Lemma 6 about kerT̂ ∗
φ .

Lemma 13. If φ(z) is a Blaschke product with distinct zeros {αi}N
i=1, then intersection of the

kernel of T ∗
φ(z) and T ∗

φ(w) is spanned by {kαi
(z)kαj

(w)}N
i,j=1.

The following lemma is implicit in the proof of Theorem 3 [29]. But we give a complete proof
of the lemma.

Lemma 14. Suppose that φ(z) is a Blaschke product with distinct zeros {αi}N
i=1. Then the

wandering space L̂φ is equal to the space spanned by {kαi
(z)kαj

(w)− kαj
(z)kαi

(w) : 1 ≤ i < j ≤
N} and {(T ∗

z−w[kαl
(z)kαl+1

(w)+kαl+1
(z)kαq

(w)+kαq
(z)kαl

(w)] : 2 ≤ l+1 < q ≤ N}. Moreover,

the dimension of L̂φ equals (N − 1)2.
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Proof. First we show

L̂φ = kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ H⊥.

Since H ⊂ Kφ,

L̂φ ⊂ kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ H⊥.

Conversely, if f is in kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩H⊥, then f is in kerT ∗
φ(z) ∩ kerT ∗

φ(w) and orthogonal

to H. Thus for each g(z, w) =
∑

l,k≥0 φ(z)lφ(w)khkl ∈ Kφ where hkl ∈ H, we have

〈f, g〉 =
∑

k,l≥0

〈f, φ(z)lφ(w)khkl〉

=
∑

k,l≥0

〈[T ∗
φ(z)]

l[T ∗
φ(w)]

kf, hlk〉 = 0.

So f is also in L̂φ. Hence we have

L̂φ = kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ H⊥.

We are to prove that the dimension of L̂φ is (N − 1)2. Without loss of generality, we assume
that α1 = 0. By Lemma 13, the N2 dimensional space kerT ∗

φ(z) ∩ kerT ∗
φ(w) is spanned by

{kαi
(z)kαj

(w)}N
i,j=1. So it follows from Lemma 8 that L̂φ consists of the elements h in kerT ∗

φ(z)∩
kerT ∗

φ(w) which satisfy h(z, z) = 0. That is,

L̂φ = {h =

N∑

i=1

N∑

j=1

cijkαi
(z)kαj

(w) : h(z, z) =

N∑

i=1

N∑

j=1

cijkαi
(z)kαj

(z) = 0}.

For any h ∈ L̂φ, taking the limit at infinity and testing the multiplicity at its poles 1/ᾱj of
the function h(z, z), we immediately have that h(z, z) = 0 implies cjj = 0, j = 1, 2..., N. That is,

L̂φ = {h =

N∑

i 6=j,i=1

N∑

j=1

cijkαi
(z)kαj

(w) : h(z, z) =

N∑

i 6=j,i=1

N∑

j=1

cijkαi
(z)kαj

(z) = 0}.

Observe that kαi
(z)kαj

(z) = aijkαi
(z) + bijkαj

(z) where aij = āi

āi−āj
and bij =

−āj

āi−āj
, and

kα2
(z), ..., kαN

(z) are linearly independent. Write h(z, z) as linear combination of kαj
(z), j =

2, ..., N , then all the coefficients of kαj
(z) must be zero. So we have a system of another N − 1

linear equations governing cij , i 6= j, i, j = 1, ..., N . It is easy to check that the rank of the

coefficient matrix of the system is N − 1. Hence the dimension of L̂φ (as the solution space of
N2 −N unknown variables governed by N − 1 linearly independent equations) equals N2 −N −
(N − 1). The proof is finished.

We are ready to prove our main result in the section.

Theorem 15. Let φ be a Blaschke product with N zeros in the unit disk. Then

Kφ = ⊕l,k≥0φ
l(z)φk(w)Lφ,

and

H2(T2) ⊖ Kφ = ⊕l,k≥0φ
l(z)φk(w)L̂φ.

The dimension of L̂φ equals (N − 1)2 and the dimension of Lφ equals 2N − 1.

Proof. As pointed out early in this section, Tφ(z) and Tφ(w) are a pair of doubly commuting

isometries on both Kφ and H2(T2) ⊖ Kφ. Consider the Wold decomposition of Tφ(z) on Kφ to
get

Kφ = ⊕l≥φ(z)lE
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where E is the wandering subspace for Tφ(z) given by

E = Kφ ⊖ [Tφ(z)Kφ]

= ker[T ∗
φ(z)|Kφ

] = kerT ∗
φ(z) ∩ Kφ.

Since Tφ(z) and Tφ(w) are doubly commuting, E is a reducing subspace of Tφ(w). Thus Tφ(w)|E
is still an isometry. The Wold decomposition theorem again gives

E = ⊕k≥0φ(w)kE1

where E1 is the wandering subspace for Tφ(w)|E given by

E1 = E ⊖ Tφ(w)E

= kerT ∗
φ(w) ∩ E = kerT ∗

φ(z) ∩ T ∗
φ(w) ∩ Kφ.

This gives

Kφ = ⊕l,k≥0φ
l(z)φk(w)Lφ.

Considering the Wold decompositions of Tφ(z) and Tφ(w) on H2(T2)⊖Kφ, similarly we obtain

H2(T2) ⊖ Kφ = ⊕l,k≥0φ
l(z)φk(w)L̂φ.

Noting

kerT ∗
φ(z) ∩ kerT ∗

φ(w) = Lφ ⊕ L̂φ

we have

dim[kerT ∗
φ(z) ∩ kerT ∗

φ(w)] = dim[Lφ] + dim[L̂φ].

By Lemma 13, the dimension of kerT ∗
φ(z) ∩ kerT ∗

φ(w) equals N2. Hence

dim[Lφ] = N2 − dim[L̂φ].

To finish the proof, it suffices to show that the dimension of L̂φ equals (N − 1)2. By Lemma 14,

for a Blaschke product φ(z) with distinct zeros, the dimension of L̂φ equals (N − 1)2. We need
to show that this is still true for a Blaschke product B with N zeros which perhaps contains
some repeated zeros. To do so, for a given λ ∈ D, let φλ(z) be the Möbius transform z−λ

1−λ̄z
. Then

φλ ◦ φ(z) is a Blaschke product with N zeros in the unit disk and

Tφλ◦φ(z) = (Tφ(z) − λI)(I − λTφ(z))
−1.

Thus Kφ = Kφλ◦φ, and so

L̂φλ◦φ = kerT ∗
φλ◦φ(z) ∩ kerT ∗

φλ◦φ(w) ∩ [H2(T 2) ⊖ Kφλ◦φ]

= kerT ∗
φ(z)−λ ∩ kerT ∗

φ(w)−λ ∩ [H2(T 2) ⊖ Kφ].

The last equality follows from that

kerT ∗
φ(z)−λ = kerT ∗

φλ◦φ(z),

and

kerT ∗
φ(w)−λ = kerT ∗

φλ◦φ(w).

We have the fact that

dimL̂φλ◦φ = −index(T ∗
φ(z)−λ, T

∗
φ(w)−λ),

where index(T ∗
φ(z)−λ, T

∗
φ(w)−λ) is the Fredholm index of the pair (T ∗

φ(z)−λ, T
∗
φ(w)−λ), which was

first introduced in [8]. The proof of the fact is left for readers. It was shown [8] that the Fredholm
index of the pair (T ∗

φ(z)−λ, T
∗
φ(w)−λ) is a continuous mapping from the set of the Fredholm tuples

to the set of integers. Thus for a sufficiently small λ,

index(T ∗
φ(z)−λ, T

∗
φ(w)−λ) = index(T ∗

φ(z), T
∗
φ(w)).
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If λ is not in the critical values set C = {µ ∈ D : µ = φ(z) and φ′(z) = 0 for some z ∈ D} of
φ, then φλ ◦ φ(z) is a Blaschke product with N distinct zeros in D. In fact, Bochner’s theorem
implies that there are at most N − 1 points in C. In this case, by Lemma 14,

dimL̂φλ◦φ = (N − 1)2.

Since the set C has zero area, we conclude that the dimension of L̂φ equals (N − 1)2.

3. Basic constructions

In this section we will construct a family {dk
e} of functions and a function d0

e in Lφ for each
e ∈ kerT ∗

φ(z) ∩ kerT ∗
φ(w) ∩ H, which have properties in Theorem 1 in Section 1 to present the

proof of Theorem 1 that gives a relation between d1
e and d0

e. The relation is very useful for us to
understand the structure of the minimal reducing subspaces in the rest of the paper.

3.1. First Construction. Let L0 be kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ H. It is easy to check that the

dimension of L0 equals the order of the Blaschke product.
First we will show that for a given reducing subspace M for φ(B), for each e ∈ M ∩ L0 and

each integer l ≥ 1, there are a family of functions {dk
e}l

k=1 such that

pl(φ(z), φ(w))e+
l−1∑

k=0

pk(φ(z), φ(w))dl−k
e ∈ M.

These functions are useful in studying the structure of the multiplication operator Mφ on the
Bergman space.

The following lemma shows that for each reducing subspace M of φ(B), the intersection of
M and L0 is nontrivial.

Lemma 16. If M is a nontrivial reducing subspace for φ(B), then the wandering subspace of

M is contained in L0.

Proof. Let M be a nontrivial reducing subspace for φ(B). For each f in H, PMf is in M.
Thus for each e in the wandering subspace M ⊖ φ(B)M of M,

0 = 〈e, φ(B)PMf〉 = 〈e,PMφ(B)f〉
= 〈e, φ(B)f〉 = 〈T ∗

φ(z)e, f〉.
The second equality follows from that M is a reducing subspace and the last equality follows
from the fact that for each f ∈ H,

φ(B)∗f = T ∗
φ(z)f = T ∗

φ(w)f.

So T ∗
φ(z)e = 0. Similarily, we also have that T ∗

φ(w)e = 0. This gives that e is in L0 to complete

the proof.

Lemma 17. If M is a reducing subspace for φ(B), then φ(B)∗M = M.

Proof. First note that for a Blaschke product φ(z) with finite order, φ(B) is Fredholm and the
kernel of φ(B) contains only zero. Thus

φ(B)∗H = H.

Suppose that M is a reducing subspace for φ(B). Let N = M⊥. Then

φ(B)∗ = φ(B)∗|M ⊕ φ(B)∗|N
under the decomposition H = M ⊕ N. Since φ(B)∗ is subjective,

φ(B)∗|MM = M.

This completes the proof.
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Theorem 18. Suppose that M is a reducing subspace for φ(B). For a given e in the wandering

subspace of M, there are a unique family of functions {dk
e} ⊂ Lφ ⊖ L0 such that

(1) pl(φ(z), φ(w))e+
∑l−1

k=0 pk(φ(z), φ(w))dl−k
e is in M, for each l ≥ 1.

(2) PH[pl(φ(z), φ(w))dk
e ] is in M for each k ≥ 1, and l ≥ 0.

Proof. For a given e in the wandering subspace of M, first we will use mathematical induction
to construct a family of functions {dk

e}.
By Lemma 16, e is in L0. A simple calculation gives T ∗

φ(z)[(φ(z)+φ(w))e] = e, and T ∗
φ(w)[(φ(z)+

φ(w))e] = e. By Lemma 17, there is a unique function ẽ ∈ M ⊖ L0 such that

T ∗
φ(z)ẽ = T ∗

φ(w)ẽ = e.

This gives

T ∗
φ(z)[ẽ− (φ(z) + φ(w))e] = e− e = 0,

and

T ∗
φ(w)[ẽ− (φ(z) + φ(w))e] = e− e = 0,

to get that letting d1
e = ẽ− (φ(z) + φ(w))e, d1

e is in kerT ∗
φ(z) ∩ kerT ∗

φ(w), and

p1(φ(z), φ(w))e+ d1
e = (φ(z) + φ(w))e+ d1

e ∈ M.

Because both ẽ and e are in M, we have that d1
e is in Kφ, and hence d1

e is in Lφ.
Next we show that d1

e is orthogonal to L0. To do so, let f ∈ L0. A simple calculation gives

〈d1
e, f〉 = 〈ẽ− (φ(z) + φ(w))e, f〉

= 〈ẽ, f〉 − 〈(φ(z) + φ(w))e, f〉
= 0 − 〈e, T ∗

φ(z)f + T ∗
φ(w)f〉 = 0.

The third equality follows from that ẽ is in M ⊖ L0. This gives that d1
e is in Lφ ⊖ L0.

Assume that for n < l there are a family of functions {dk
e}n

k=1 ⊂ Lφ ⊖ L0 such that

pn(φ(z), φ(w))e+
n−1∑

k=0

pk(φ(z), φ(w))dn−k
e ∈ M.

Let E = pn(φ(z), φ(w))e +
∑n−1

k=0 pk(φ(z), φ(w))dn−k
e . By Lemma 17 again, there is a unique

function Ẽ in M ⊖ L0 such that

T ∗
φ(z)Ẽ = T ∗

φ(w)Ẽ = E.

Let F = pn+1(φ(z), φ(w))e+
∑n

k=1 pk(φ(z), φ(w))dn+1−k
e . Since

T ∗
φ(z)[pk(φ(z), φ(w))f ] = T ∗

φ(w)[pk(φ(z), φ(w))f ] = pk−1(φ(z), φ(w))f,

for each f in Lφ and k ≥ 1, simple calculations give

T ∗
φ(z)F = T ∗

φ(w)F = E.

Thus

T ∗
φ(z)(Ẽ − F ) = T ∗

φ(w)(Ẽ − F )

= E − E = 0.
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So letting dn+1
e = Ẽ − F , dn+1

e is in kerT ∗
φ(z) ∩ kerT ∗

φ(w). Noting Ẽ is orthogonal to L0, we have

that for each f ∈ L0,

〈dn+1
e , f〉 = 〈Ẽ, f〉 − 〈F, f〉

= −[〈pn+1(φ(z), φ(w))e, f〉 +

n∑

k=1

〈pk(φ(z), φ(w))dn+1−k
e , f〉]

= 0,

to get that dn+1
e is in Lφ ⊖ L0. Hence

pn+1(φ(z), φ(w))e+

n∑

k=1

pk(φ(z), φ(w))dn+1−k
e + dn+1

e ∈ M.

This gives a family of functions {dk
e} ⊂ Lφ ⊖ L0 satifying Property (1).

To finish the proof we need only to show that Property (2) holds. A simple calculation gives

2φ(B)e = PH(p1(φ(z), φ(w))e)

= PH(p1(φ(z), φ(w))e+ d1
e) − PH(d1

e)

= p1(φ(z), φ(w))e+ d1
e − PH(d1

e).

This implies

PH(d1
e) = [p1(φ(z), φ(w))e+ d1

e] − 2φ(B)e ∈ M.

Noting that (d1
e − PHd1

e) is in H⊥ = [z − w] and [z − w] is an invariant subspace for analytic
Toeplitz operators, we have that

[pl−1(φ(z), φ(w))(d1
e − PHd1

e)] ∈ H⊥,

and so

PH[pl−1(φ(z), φ(w))(d1
e − PHd1

e)] = 0,

to get

PH[pl−1(φ(z), φ(w))(d1
e)] = PH{pl−1(φ(z), φ(w))[PHd1

e]} ∈ M.

Assume that PH[pl(φ(z), φ(w))dk
e ] ∈ M for k ≤ n and any l ≥ 0. To finish the proof by

induction we need only to show that

PH[pl(φ(z), φ(w))dn+1
e )] ∈ M

for any l ≥ 0.
A simple calculation gives

(n+ 2)φ(B)n+1e = PH[pn+1(φ(z), φ(w))e+
n∑

k=0

pk(φ(z), φ(w))dn+1−k
e ]

−{PH[dn+1
e ] + PH[

n∑

k=1

pk(φ(z), φ(w))dn+1−k
e ]}.

Thus

PH[dn+1
e ] = PH[pn+1(φ(z), φ(w))e+

n∑

k=0

pk(φ(z), φ(w))dn+1−k
e ] −

{(n+ 2)φ(B)n+1e+ PH[
n∑

k=1

pk(φ(z), φ(w))dn+1−k
e ]}.
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Property (1) gives that the first term in the last equality is M, the induction hypothesis gives
that the last term is in M and the second term belongs to M since e ∈ M and M is a reducing
subspace for φ(B). So PH[dn+1

e ] is in M. Therefore we conclude

PH[pl(φ(z), φ(w))dn+1
e ] = PH[(pl(φ(z), φ(w))(PHdn+1

e )] ∈ M,

to complete the proof.
In the special case for H, as H is a reducing subspace for φ(B), Theorem 18 immediately

gives the following theorem.

Theorem 19. For a given e ∈ L0 there are a unique family of functions {dk
e} ⊂ Lφ ⊖ L0 such

that

pl(φ(z), φ(w))e+
l−1∑

k=0

pk(φ(z), φ(w))dl−k
e ∈ H,

for each l ≥ 1.

3.2. Second Construction. Next for a given e ∈ L0, we will show that the function d0
e(z, w)

given by
d0

e(z, w) = we(0, w)e0(z, w) − wφ0(w)e(z, w)

is in Lφ and satisfies

pl(φ(z), φ(w))e+ pl−1(φ(z), φ(w))d0
e ∈ H

for each l ≥ 1.
Recall that φ is a Blaschke product with zeros {αk}K

0 and αk repeats nk + 1 times, and

φ(z) = zφ0(z) where φ0 is a Blaschke product with N − 1 zeros. Let e0 = φ(z)−φ(w)
z−w . Theorem

9 gives that e0 is in H since φ is a Blaschke product with finite order. This also gives that
e0(z, 0) = φ0(z).

Theorem 20. Let f be a nonzero function f in H. pl(φ(z), φ(w))f ∈ H, for some l ≥ 1 if and

only if f = λe0 for some constant λ

The proof of Theorem 20 is left for readers.
Theorem 20 gives that

M0 = spanl≥0{pl(φ(z), φ(w))e0}
is a reducing subspace of φ(B). We will study the space in next section.

For each e(z, w) in L0, let

d0
e(z, w) = we(0, w)e0(z, w) − wφ0(w)e(z, w).

Theorem 21. For each e(z, w) in L0, d
0
e(z, w) is a function in Lφ such that

pl(φ(z), φ(w))e+ pl−1(φ(z), φ(w))d0
e ∈ H, (3)

for l ≥ 1.

Proof. First we show that the function d0
e(z, w) is in kerT ∗

φ(z)∩kerT ∗
φ(w). To do this, by Theorem

9, write

e(z, w) =
φe(z) − φe(w)

z − w
(4)

for some function φe in the Dirichlet space D with φe(0) = 0. Letting w = 0 in the above equality
gives that e(z, 0) = e(0, z) = z̄φe(z).

d0
e(z, w) = we(0, w)e0(z, w) − wφ0(w)e(z, w)

= φe(w)[
φ(z) − φ(w)

z − w
] − φ(w)[

φe(z) − φe(w)

z − w
]

=
φe(w)φ(z) − φ(w)φe(z)

z − w
.
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This gives that d0
e(z, w) is a symmetric function of z and w. Since e0(z, w) and e(z, w) are

symmetric functions of z and w in L0, we have

T ∗
φ(z)[d

0
e(z, w)] = T ∗

φ(z)[we(0, w)e0(z, w) − wφ0(w)e(z, w)]

= we(0, w)T ∗
φ(z)[e0(z, w)] − wφ0(w)T ∗

φ(z)e(z, w) = 0,

T ∗
φ(w)[d

0
e(z, w)] = T ∗

φ(w)[d
0
e(w, z)]

= T ∗
φ(w)[ze(0, z)e0(w, z) − zφ0(z)e(w, z)]

= ze(0, z)T ∗
φ(w)[e0(z, w)] − zφ0(z)T

∗
φ(w)e(z, w) = 0,

to get that d0
e(z, w) is in kerT ∗

φ(z) ∩ kerT ∗
φ(w).

Next we show that d0
e(z, w) satisfies (3). To do this, let

El = pl(φ(z), φ(w))e+ pl−1(φ(z), φ(w))d0
e.

We show that

El =
φe(z)φ

l(z) − φe(w)φl(w)

z − w
.

By Theorem 9, this gives that El is in H. Simple calculations give

pl(φ(z), φ(w))e = [
φl+1(z) − φl+1(w)

φ(z) − φ(w)
][
φe(z) − φe(w)

z − w
]

=
φl+1(z)φe(z) − φl+1(z)φe(w) − φl+1(w)φe(z) + φl+1(z)φe(w)

(φ(z) − φ(w))(z − w)

and

pl−1(φ(z), φ(w))d0
e = [

φl(z) − φl(w)

φ(z) − φ(w)
][
φe(w)φ(z) − φ(w)φe(z)

z − w
]

=
φl+1(z)φe(w) − φl(z)φ(w)φe(z) − φl(w)φ(z)φe(w) + φl+1(w)φe(z)

(φ(z) − φ(w))(z − w)
.

Thus

El = pl(φ(z), φ(w))e+ pl−1(φ(z), φ(w))d0
e

=
φl(z)φe(z)(φ(z) − φ(w)) − φl(w)φe(w)(φ(z) − φ(w))

(φ(z) − φ(w))(z − w)

=
φe(z)φ

l(z) − φe(w)φl(w)

z − w
.

Since p1(φ(z), φ(w))e+ d0
e is in H and p1(φ(z), φ(w))e is in Kφ, we conclude that d0

e is in Kφ.
Hence d0

e is in Lφ. This completes the proof.
Now we are ready to prove Theorem 1.
Proof of Theorem 1. Since M is orthogonal to M0, we have

H = M0 ⊕ M⊥
0

= M0 ⊕ M ⊕ [M⊥
0 ∩ M⊥].

Thus
L0 = Ce0 ⊕ [M ∩ L0] ⊕ [M⊥

0 ∩ M⊥ ∩ L0].

So e is orthogonal to e0, and

L0 ⊖ e0 = [M ∩ (L0 ⊖ e0)] ⊕ [M⊥
0 ∩ M⊥ ∩ (L0 ⊖ e0)].

Let P0 denote the orthogonal projection from H2(T2) onto the space Ce0. Let de = d0
e − P0d

0
e.

Then de is orthogonal to e0. Theorems 20 and 21 give

pl(φ(z), φ(w))e+ pl−1(φ(z), φ(w))de ∈ H, (5)



OPERATORS ON THE BERGMAN SPACE 15

for l ≥ 1. By Theorem 19, there is a function dk
e ∈ Lφ ⊖ L0 such that

pl(φ(z), φ(w))e+

l−1∑

k=0

pk(φ(z), φ(w))dl−k
e ∈ M,

for each l ≥ 1. Thus

de − d1
e = p1(φ(z), φ(w))e+ de − (p1(φ(z), φ(w))e+ d1

e) ∈ H.

So de − d1
e is in L0 ⊖ e0. Write

de − d1
e = e′ + e′′

for e′ ∈ M ∩ (L0 ⊖ e0) and e′′ ∈ M⊥ ∩ (L0 ⊖ e0). Thus (5) gives that the following function is
in H:

p2(φ(z), φ(w))e+ p1(φ(z), φ(w))de

= [p2(φ(z), φ(w))e+ p1(φ(z), φ(w))d1
e + d2

e] + [p1(φ(z), φ(w))e′ + d1
e′ ]

+[p1(φ(z), φ(w))e′′ + d1
e′′ ] − (d2

e + d1
e′ + d1

e′′).

Theorem 18 gives that the first term and the second term in the right hand side are in M and
the third term is in M⊥. Thus the last term must be in H and hence

d2
e + d1

e′ + d1
e′′ ∈ H ∩ kerT ∗

φ(z) ∩ T ∗
φ(w) = L0.

By Theorem 18 again, we have

d2
e + d1

e′ + d1
e′′ ∈ Lφ ⊖ L0,

to get

d2
e + d1

e′ + d1
e′′ = 0.

This gives

PHd1
e′′ = −(PHd1

e′ + PHd2
e).

On the other hand, Theorem 18 gives PHd1
e′ + PHd2

e is in M and PHd1
e′′ is in M⊥. Thus

PHd1
e′′ = 0, and so simple calculations give

‖d1
e′′‖2 = 〈d1

e′′ , d1
e′′〉

= 〈d1
e′′ , p1(φ(z), φ(w))e′′ + d1

e′′〉
= 〈d1

e′′ , PH[p1(φ(z), φ(w))e′′ + d1
e′′ ]〉

= 〈PH(d1
e′′), p1(φ(z), φ(w))e′′ + d1

e′′〉 = 0.

Hence we have that d1
e′′ = 0, to get

p1(φ(z), φ(w))e′′ ∈ H.

Theorem 20 gives that e′′ = λe0, for some constant λ. Since e′′ ∈ M⊥ ∩ (L0 ⊖ e0) we conclude
that e′′ = 0 to get de = d1

e + e′. Letting ẽ = −e′ ∈ M, we obtain

d1
e = de + ẽ

= d0
e − P0d

0
e + ẽ

= d0
e + ẽ+ λe0,

as desired. The last equality follows from that P0d
0
e = −λe0 for some constant. This completes

the proof.
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4. The distinguished reducing subspace

Theorems 1 and 19 are useful in studying reducing subspaces of φ(B). In this section we will
use them to show that there always exists a unique reducing subspace M0 for φ(B) such that
the restriction of φ(B) on M0 is unitarily equivalent to the Bergman shift. The existence of
such reducing subspace is the main result in [18]. Moreover, we will show that such reducing
space is unique. We call M0 to be the distinguished reducing subspace for φ(B). In fact, M0

is unitarily equivalent the subspace span{φ′φm : m = 0, · · · , n, · · · } of the Bergman space [27] if
φ(0) = 0. Furthermore we will show that only the multiplication operator by a finite Blashcke
product has such nice property.

Assume that φ be a Blaschke product of order N with φ(0) = 0. Recall e0(z, w) = φ(z)−φ(w)
z−w .

The following lemmas will be used in the proofs of Theorems 25 and 26. The proofs of those
lemmas are left for readers.

Lemma 22. Let f be a function in H2(T2). Then

PH[φ(z)pn(φ(z), φ(w))f ] =
n+ 1

n+ 2
PH[pn+1(φ(z), φ(w))f ].

Lemma 23. Let φ(z) be an inner function satisfying
φ(z)−φ(w)

z−w ∈ H2(T2), then

φ(z) − φ(w)

z − w
⊥ φ(z)H2(T2).

Lemma 24. For an inner function φ(z), φ(z)−φ(w)
z−w is in H2(T2) iff φ(z) is a finite Blaschke

product. Moreover, for a Blaschke product φ of order N ,

‖e0‖2 = N.

Now we are ready to prove the first main result in this section.

Theorem 25. Let φ be a Blaschke product of order N . There is a unique reducing subspace M0

for φ(B) such that φ(B)|M0 is unitarily equivalent to the Bergman shift. In fact,

M0 = spanl≥0{pl(φ(z), φ(w))e0},
and {pl(φ(z),φ(w))e0√

l+1
√

N
}∞0 form an orthonormal basis of M0.

Proof. First we show that there exists a reducing subspace M0 of φ(B) such that φ(B)|M0 is
unitarily equivalent to the Bergman shift.

Let
M0 = spanl≥0{pl(φ(z), φ(w))e0}.

As pointed out before, Theorem 20 gives that M0 is a reducing subspace of φ(B). Here e0(z, w) =
φ(z)−φ(w)

z−w .
A simple calculation gives

‖pl(φ(z), φ(w))e0‖2
2 = (l + 1)‖e0‖2

2,

and
〈pl(φ(z), φ(w))e0, pn(φ(z), φ(w))e0〉 = 0,

for n 6= l. Let En = pn(φ(z),φ(w))e0√
(n+1)‖e0‖2

. Thus {En} are an orthonormal basis of M0. By Lemma 22

we have

φ(B)[pn(φ(z), φ(w))e0] = PH[φ(z)pn(φ(z), φ(w))e0]

= PH[
n+ 1

n+ 2
pn+1(φ(z), φ(w))e0]

=
n+ 1

n+ 2
pn+1(φ(z), φ(w))e0,
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to obtain

φ(B)En =
φ(B)[pn(φ(z), φ(w))e0]√

(n+ 1)‖e0‖2

=
n+ 1

n+ 2

pn+1(φ(z), φ(w))e0√
(n+ 1)‖e0‖2

=

√
n+ 1

n+ 2
En+1.

Clearly, φ(B)∗E0 = 0. This implies that φ(B)|M0
is unitarily equivalent to the Bergman shift.

Suppose that M1 is a reducing subspace of φ(B) and φ(M)|M1
is unitarily equivalent to the

Bergman shift, i.e., there is an orthonormal basis {Fn} of M1 such that

φ(B)Fn =

√
n+ 1

n+ 2
Fn+1.

Next we will show that M1 = M0. Observe

PH[(φ(z) + φ(w))F0] = 2φ(B)F0 =
2√
2
F1.

Thus

‖PH[(φ(z) + φ(w))F0]‖2 = 2.

Since

T ∗
φ(z)F0 = φ(B)∗F0 = 0,

a simple calculation gives

‖(φ(z) + φ(w))F0‖2 = 〈(φ(z) + φ(w))F0, (φ(z) + φ(w))F0〉
= 〈φ(z)F0, φ(z)F0〉 + 〈φ(w)F0, φ(w)F0〉

+〈φ(z)F0, φ(w)F0〉 + 〈φ(w)F0, φ(z)F0〉
= 2〈F0, F0〉 = 2.

Thus we obtain

PH⊥ [(φ(z) + φ(w))F0] = 0

because

‖(φ(z) + φ(w))F0‖2 = ‖PH[(φ(z) + φ(w))F0]‖2 + ‖PH⊥ [(φ(z) + φ(w))F0]‖2.

So p1(φ(z), φ(w))F0 = (φ(z) + φ(w))F0 is in H. Theorem 20 gives that F0 = λe0 for some
constant λ. Thus M0 is a subspace of M1 but M0 is a reducing subspace of φ(B)|M1

, which is
unitarily equivalent to the Bergman shift. But the Bergman shift is irreducible. So we conclude
that M1 = M0, to complete the proof.

For φ(z) ∈ H∞(D), let Sφ denote PHMφ|H. Then

U∗SφU = Mφ,

where Mφ is the multiplication operator on L2
a(D). Indeed, for each g ∈ H and anyz ∈ D, we

have

(U∗Sφg)(z) = (Sφg)(z, z)

= (PHφg)(z, z)

= (φg − PH⊥φg)(z, z)

= φ(z)g(z, z) = (MφU
∗g)(z).

The last equality follows from Lemma 8. This gives that U∗Sφ = MφU
∗. Thus U∗SφU = Mφ.

Theorem 25 tells us that for each finite Blaschke product φ, Mφ has a unique the distinguished
reducing subspace. The following theorem shows that only a multiplication operator by a finite
Blaschke product has such property.
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Theorem 26. Let φ ∈ H∞(D). Then Mφ acting on L2
a(D) has the distinguished reducing

subspace iff φ is a finite Blaschke product.

Proof. We only need to prove that if Mφ has the distinguished reducing subspace, then φ is a
finite Blaschke product. Now, assume Mφ has the distinguished reducing subspace M such that
Mφ|M is unitarily equivalent to the Bergman shift Mz, that is, there exists a unitary operator

U : M → L2
a(D) such that U∗MzU = Mφ|M. Let KM

λ be the reproducing kernel of M for

λ ∈ D. Clearly, KM
λ 6= 0, except for at most a countable set. Thus we have

|〈MφK
M
λ ,KM

λ 〉 = |φ(λ)| ‖KM
λ ‖2

= |〈MzUK
M
λ , UKM

λ 〉|
≤ ‖Mz‖‖UKM

λ ‖2 ≤ ‖KM
λ ‖2,

to get that |φ(λ)| ≤ 1 except for at most a countable set. So ‖φ‖∞ ≤ 1. Since Sφ acting on
H = H2(T2)⊖[z−w] is unitarily equivalent toMφ acting on L2

a(D), this means that Sφ, restricted
on its corresponding reducing subspace N, is unitarily equivalent to Mz acting on L2

a(D), that
is, there exists a unitary operator V : N → L2

a(D) such that V ∗MzV = Sφ|N. Set en = V ∗e′n,

where e′n =
√
n+ 1zn for n = 0, 1, · · · . Then S∗

φe0 = 0, and hence M∗
φ(z)e0 = 0 and M∗

φ(w)e0 = 0,

where Mφ(z) and Mφ(w) are the operators acting on H2(T2). Noticing Sφ(z) = Sφ(w), we have

‖V S(φ(z)+φ(w))e0‖2 = ‖z + z‖2 = 2,

to obtain

〈φ(z)e0, φ(w)e0〉 = 〈M∗
φ(w)e0,M

∗
φ(z)e0〉 = 0.

Thus

‖(φ(z) + φ(w))e0‖2 = ‖φ(z)e0‖2 + ‖φ(w)e0‖2 ≤ 2.

Since

2 = ‖V S(φ(z)+φ(w))e0‖2 = ‖V PH(φ(z) + φ(w))e0‖2 = ‖PH(φ(z) + φ(w))e0‖2,

we have

(φ(z) + φ(w))e0 ∈ H,

to obtain

e0 = c
φ(z) − φ(w)

z − w
for some constant c. This follows from Theorem 20.

On the other hand,

‖(φ(z) + φ(w))e0‖2 = ‖φ(z)e0‖2 + ‖φ(w)e0‖2 = 2.

As showed above, ‖φ‖∞ ≤ 1. We have that ‖φ(z)e0‖2 = 1 to get
∫

T2

(|φ(z)|2 − 1)|e0|2dm2 = 0.

Thus |φ(z)| = 1 almost all on the unit circle and so φ is an inner function. Lemma 24 gives that
φ is a finite Blaschke product. This completes the proof.

5. Structure of minimal reducing subspaces

In this section we will first show that every nontrivial minimal reducing subspace of φ(B) is
orthogonal to the distinguished subspace M0 if it is other than M0. We will show the proof of
Theorem 3 in the section.

Theorem 27. Suppose that Ω is a nontrivial minimal reducing subspace for φ(B). If Ω does not

equal M0 then Ω is a subspace of M⊥
0 .
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Proof. By Lemma 16, there is a function e in Ω∩L0 such that e = λe0 + e1 for some constant λ
and a function e1 in M⊥

0 ∩ L0. By Theorem 18

p1(φ(z), φ(w))e+ d1
e ∈ Ω.

Here d1
e is the function constructed in Theorem 18. Let

E = φ(B)∗[φ(B)e] − 1

2
e.

Since p1(φ(z), φ(w))e0 is in H, we obtain

φ(B)e0 =
p1(φ(z), φ(w))e0

2
.

Simple calculations give

E = φ(B)∗{φ(B)[λe0 + e1]]} −
1

2
[λe0 + e1]

= −1

2
φ(B)∗PHd1

e1
.

The sixth equality holds because that p1(φ(z), φ(w))e1 + d1
e1

∈ H. The eighth equality follows

from that d1
e1

is in Lφ. We claim that E 6= 0. If this is not true, we would have

1

2
φ(B)∗PHd1

e1
= 0.

This gives that PHd1
e1

is in L0. And hence

0 = 〈PHd1
e1
, d1

e1
〉 = ‖d1

e1
‖2.

This gives that d1
e1

= 0. Thus we obtain that p1(φ(z), φ(w))e1 ∈ H. By Theorem 20, we get

that e1 is linearly dependent on e0. This contradicts that e1 ∈ M⊥
0 . By Theorem 18, PHd1

e1

is in M and so is E = − 1
2φ(B)∗PHd1

e1
. This implies that E is in Ω ∩ M⊥

0 . We conclude that

Ω ∩ M⊥
0 = Ω since Ω is minimal to complete the proof.

Lemma 28. If M and N are two mutually orthogonal reducing subspaces of φ(B), then M̃ is

orthogonal to Ñ.

Proof. Let f =
∑

l,k≥0 φ(z)lφ(w)kmlk and g =
∑

l,k≥0 φ(z)lφ(w)knlk for finite numbers of ele-
ments mlk ∈ M and nlk ∈ N. Then

〈f, g〉 = 〈
∑

l,k≥0

φ(z)lφ(w)kmlk,
∑

l,k≥0

φ(z)lφ(w)knlk〉

=
∑

l,k≥0

∑

l1,k1≥0

〈φ(z)l−l1φ(w)k−k1mlk, nl1k1
〉.

Since M is orthogonal to N and both M and N are invariant subspaces of T ∗
φ(z) and T ∗

φ(w),

the above inner product 〈f, g〉 must be zero. Thus we conclude that M̃ is orthogonal to Ñ to
complete the proof.

Proof of Theorem 2. Suppose that {e(M)
1 , · · · , e(M)

qM } form a basis of M∩L0. First we show

span{e(M)
1 , · · · , e(M)

qM
; d1

e
(M)
1

, · · · , d1

e
(M)
qM

} ⊂ L
M̃

.

Note that {e(M)
1 , · · · , e(M)

qM ; d1

e
(M)
1

, · · · , d1

e
(M)
qM

} are contained in Lφ. It suffices to show

{e(M)
1 , · · · , e(M)

qM
; d1

e
(M)
1

, · · · , d1

e
(M)
qM

} ⊂ M̃.
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Since M ∩ L0 contains {e(M)
1 , · · · , e(M)

qM }, for each l, k ≥ 0, φ(z)lφk(w)e
(M)
i is in M̃ for

1 ≤ i ≤ qM . Thus p1(φ(z), φ(w))e
(M)
i is in M̃. By Theorem 18, we have

p1(φ(z), φ(w))e
(M)
i + d1

e
(M)
i

∈ M.

So we have that d1

e
(M)
i

∈ M̃, to obtain

span{e(M)
1 , · · · , e(M)

qM
; d1

e
(M)
1

, · · · , d1

e
(M)
qM

} ⊂ L
M̃

.

Next we will show that {e(M)
1 , · · · , e(M)

qM ; d1

e
(M)
1

, · · · , d1

e
(M)
qM

} are linearly independent. Suppose

that for some constants λi and µi,
q∑

i=1

λie
(M)
i +

q∑

i=1

µid
1

e
(M)
i

= 0.

Thus
q∑

i=1

λie
(M)
i = −

q∑

i=1

µid
1

e
(M)
i

.

The right hand side of the above equality is in L0 but the left hand side of the equality is
orthogonal to L0. So we have

q∑

i=1

λie
(M)
i = 0,

and
q∑

i=1

µid
1

e
(M)
i

= 0.

The first equality gives that λi = 0 and the second equality gives

d1∑ q

i=1 µie
(M)
i

= 0.

Because M is orthogonal to M0, by Theorem 20, we have
q∑

i=1

µie
(M)
i = 0.

This gives that µi = 0. Hence {e(M)
1 , · · · , e(M)

qM ; d1

e
(M)
1

, · · · , d1

e
(M)
qM

} are linearly independent. So far,

we have obtained
dimL

M̃
≥ 2qM .

To finish the proof, we need only to show that

dimL
M̃

≤ 2qM .

To do so, we consider the decomposition of H,

H = M0 ⊕ M ⊕ [M⊥
0 ∩ M⊥],

and
L0 = [M0 ∩ L0] ⊕ [M ∩ L0] ⊕ {[M⊥

0 ∩ M⊥] ∩ L0}.
Then

dim{[M⊥
0 ∩ M⊥] ∩ L0} = dimL0 − dim[M0 ∩ L0] − dim[M ∩ L0]

= N − 1 − qM .

Letting N = [M⊥
0 ∩ M⊥], Lemma 28 gives

Kφ = M̃0 ⊕ M̃ ⊕ Ñ,
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and
Lφ = L

M̃0

⊕ L
M̃

⊕ L
Ñ
.

Replacing M by N in the above argument gives

dimL
Ñ

≥ 2(N − 1 − qM ).

By Theorem 15, so we have

2N − 1 = 1 + dim[L
M̃

] + dim[L
Ñ

].

Hence

dim[L
M̃

] = 2N − 2 − dim[L
Ñ

]

≤ 2N − 2 − 2(N − 1 − qM ) = 2qM .

This completes the proof.

Lemma 29. Suppose that M, N, and Ω are three distinct nontrivial minimal reducing subspaces

of φ(B) such that

Ω ⊂ M ⊕ N.

If M, N, and Ω are orthogonal to M0, then

M̃ ∩ Ω̃ = Ñ ∩ Ω̃ = {0}.

Proof. Since the intersection M̃ ∩ Ω̃ is also a reducing subspace of the pair of isometries Tφ(z)

and T ∗
φ(w), the Wold decomposition of the pair of isometries on M̃ ∩ Ω̃ gives

M̃ ∩ Ω̃ = ⊕l,k≥0φ(z)lφ(w)kL
M̃∩Ω̃

,

where L
M̃∩Ω̃

is the wandering space given by

L
M̃∩Ω̃

= kerT ∗
φ(z) ∩ T ∗

φ(w) ∩ M̃ ∩ Ω̃

= [kerT ∗
φ(z) ∩ T ∗

φ(w) ∩ M̃] ∩ [kerT ∗
φ(z) ∩ T ∗

φ(w) ∩ Ω̃]

= L
M̃

∩ LΩ̃.

To prove that M̃ ∩ Ω̃ = {0}, it suffices to show

L
M̃

∩ LΩ̃ = {0}.
To do this, let q ∈ L

M̃
∩ LΩ̃. By Theorem 2, there are functions eM , ẽM ∈ M ∩ L0 and

eΩ, ẽΩ ∈ Ω ∩ L0 such that

q = eM + d1
ẽM

= eΩ + d1
ẽΩ
.

The above two equalities give
eM − eΩ = d1

ẽM−ẽΩ
.

On the other hand, d1
ẽM−ẽΩ

is orthogonal to L0. Thus

d1
ẽM−ẽΩ

= eM − eΩ = 0.

This gives
eM = eΩ

But eM is in M and eΩ is in Ω and hence both eM and eΩ are zero. Since d1
ẽM−ẽΩ

= 0, Theorem
20 implies that ẽM − ẽΩ linearly depends on e0. Since both M and Ω are orthogonal to M0, we
have that ẽM = ẽΩ. Thus we obtain ẽM = 0 to conclude that q = 0, as desired. So

M̃ ∩ Ω̃ = {0}.
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Similarly we obtain

Ñ ∩ Ω̃ = {0}.
Lemma 30. Suppose that M, N, and Ω are three distinct nontrivial minimal reducing subspaces

of φ(B) such that

Ω ⊂ M ⊕ N.

If M, N, and Ω are orthogonal to M0, then

P
M̃

LΩ̃ = L
M̃
,

and

P
Ñ
LΩ̃ = LÑ ,

where P
M̃

denotes the orthogonal projection from H2(T2) onto M̃.

Proof. Since M is orthogonal to N, Lemma 28 gives that M̃ is orthogonal to Ñ and

Ω̃ ⊂ M̃ ⊕ Ñ.

We will show that P
M̃

LΩ̃ = L
M̃
.

Since Ω ⊂ M ⊕ N, we have

Ω ∩ L0 ⊂ [M ∩ L0] ⊕ [N ∩ L0].

For each e(Ω) ∈ Ω ∩ L0, there are two functions e(M) ∈ M ∩ L0 and e(N) ∈ N ∩ L0 such that

e(Ω) = e(M) + e(N)

d1
e(Ω) = d1

e(M) + d1
e(N) .

By Theorem 2, d1
e(M) is in M̃ and d1

e(N) is in Ñ. Since M, N, and Ω are orthogonal to M0, the
above decompositions are unique. Thus

P
M̃

e(Ω) = e(M),

and
P
M̃

d1
e(Ω) = d1

e(M) .

So for each f = e(Ω) + d1
ẽ(Ω) ∈ LΩ̃, where e(Ω) and ẽ(Ω), we have

P
M̃

f = e(M) + d1
ẽ(M)

is in L
M̃

to obtain

P
M̃

LΩ̃ ⊂ L
M̃

.

To prove that P
M̃

LΩ̃ = L
M̃

, it suffices to show that

P
M̃

: LΩ̃ → L
M̃

is subjective. If this is not so, by Theorem 2, there are two functions e, ẽ ∈ M ∩ L0 such that
0 6= e+ d1

ẽ is orthogonal to P
M̃

LΩ̃.

Assume that {e1, · · · , eqΩ
} are a basis of Ω ∩ L0. Then

P
M̃

LΩ̃ = span{e(M)
1 , · · · , e(M)

qΩ
; d1

e
(M)
1

, · · · , d1

e
(M)
qΩ

}.

If e 6= 0, then 〈e, e(M)
i 〉 = 0, for 1 ≤ i ≤ qΩ. Thus

0 = 〈e, e(M)
i 〉

= 〈e, e(M)
i + e

(N)
i 〉 = 〈e, ei〉,

and
〈e, d1

ei
〉 = 0,
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for each 1 ≤ i ≤ qΩ. So e is orthogonal to LΩ̃ = span{e1, · · · , eqΩ ; d1
e1
, · · · , d1

eqΩ
}. Noting e is

in L0, we see that e is orthogonal to φ(z)lφ(w)kLΩ̃, for each l > 0 or k > 0. This gives that e

is orthogonal to Ω̃ and hence orthogonal to Ω. Since e is in M, e must be orthogonal to the
closure of PMΩ ⊂ M, which is also a reducing subspace of φ(B). Therefore e is orthogonal to
M, which is a contradiction.

If e = 0, then d1
ẽ 6= 0 and

0 = 〈d1
ẽ, d

1

e
(M)
i

〉

= 〈d1
ẽ, PM̃

d1
ei
〉 = 〈d1

ẽ, d
1
ei
〉,

and

〈d1
ẽ, ei〉 = 0,

for each 1 ≤ i ≤ qΩ. This gives that d1
ẽ is orthogonal to LΩ̃. But d1

ẽ is also in Lφ. We have that
for any f ∈ LΩ̃,

〈d1
ẽ, φ(z)lφ(w)kf〉 = 0,

for l > 0 or k > 0. We have that d1
ẽ is orthogonal to Ω̃ and hence orthogonal to Ω to obtain

that PHd1
ẽ is orthogonal to Ω. On the other hand, by Theorem 18, PHd1

ẽ is in M. Thus PHd1
ẽ

is orthogonal to the closure of PMΩ and so PHd1
ẽ must be zero because the closure of PMΩ

equals M. Therefore,

0 = 〈PHd1
ẽ, p1(φ(z), φ(w))ẽ+ d1

ẽ〉
= 〈d1

ẽ, p1(φ(z), φ(w))ẽ+ d1
ẽ〉

= 〈d1
ẽ, d

1
ẽ〉 = ‖d1

ẽ‖2.

The second equality follows from that p1(φ(z), φ(w))ẽ+ d1
ẽ is in H and the third equality follows

that d1
ẽ is orthogonal to p1(φ(z), φ(w))ẽ. This gives that d1

ẽ = 0, which is a contradiction. We
have obtained that P

M̃
: LΩ̃ → L

M̃
is subjective and hence

P
M̃

LΩ̃ = L
M̃

.

Similarly we obtain

P
Ñ
LΩ̃ = L

Ñ
.

This completes the proof.
Now we are ready to prove Theorem 3.
Proof of Theorem 3. First we will show

PM = PHP
M̃

.

Let N1 denote the orthogonal complementary of M ⊕ N in H. Write

H = M ⊕ N ⊕ N1.

Lemma 28 gives

H̃ = M̃ ⊕ Ñ ⊕ Ñ1.

For each function f in H2(T2), write

f = f
H̃

⊕ f2

= f
M̃

⊕ f
Ñ

⊕ f
Ñ1

⊕ f2,

where f2 is orthogonal to H̃, f
H̃

∈ H̃, f
M̃

∈ M̃, f
Ñ

∈ Ñ, and f
Ñ1

∈ Ñ1. Since M̃ contains

M, we write

f
M̃

= fM ⊕ f3,
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for two functions fM ∈ M and f3 ∈ M̃ ⊖ M. Thus f3 is orthogonal to both Ñ and Ñ1 and
hence orthogonal to both N and N1. So f3 is orthogonal to

H = M ⊕ N ⊕ N1.

This gives that PHf3 = 0. We have

PHP
M̃

f = PHf
M̃

= PHfM + PHf3

= PHfM = fM,

and

PMf = fM,

to get

PM = PHP
M̃

.

Next we will show that PM is subjective from Ω onto M. For each q ∈ M, by Lemma 30,
there are functions qlk ∈ LΩ̃ such that

q =
∑

l,k≥0

φ(z)lφ(w)kmlk,

and

‖q‖2 =
∑

l,k≥0

‖mlk‖2 <∞,

where mlk = P
M̃

qlk. Since LΩ̃ and L
M̃

are finite dimension spaces, there are two positive

constants c1 and c2 such that

c1‖qlk‖ ≤ ‖mlk‖ ≤ c2‖qlk‖.
Define

q̃ =
∑

l,k≥0

φ(z)kφ(w)lqlk.

Thus

‖q̃‖2 =
∑

l,k≥0

‖qlk‖2

≤ c2
∑

l,k≥0

‖mlk‖2 <∞.

So we obtain that q̃ is in Ω̃, and

q̃ =
∑

l,k≥0

φ(z)lφ(w)kqlk

=
∑

l,k≥0

φ(z)lφ(w)k[P
M̃

qlk + P
Ñ
qlk]

=
∑

l,k≥0

φ(z)lφ(w)kmlk +
∑

l,k≥0

φ(z)lφ(w)k[P
Ñ
qlk]

= q + qN ,

where qN =
∑

l,k≥0 φ(z)kφ(w)l[P
Ñ
qlk] is in Ñ . Hence P

M̃
q̃ = q. We have

PHP
M̃

q̃ = PHq = q,

to obtain

PMq̃ = PHP
M̃

q̃ = q.
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Since M is a subspace of H, PM = PMPH. Thus

PMPHq̃ = PMq̃ = q.

Writing qlk = e
(Ω)
kl + d1

ẽ
(Ω)
kl

for functions e
(Ω)
kl , ẽ

(Ω)
kl ∈ Ω ∩ L0, we have

PHq̃ =
∑

l,k≥0

PH(φ(z)lφ(w)kqlk)

=
∑

l,k≥0

PHφ(z)lφ(w)k(e
(Ω)
kl + d1

ẽ
(Ω)
kl

)

=
∑

l,k≥0

(PHφ(z)lφ(w)ke
(Ω)
kl ) +

∑

l,k≥0

(PHφ(z)lφ(w)kd1

ẽ
(Ω)
kl

)

=
∑

l,k≥0

(PHφ(z)lφ(w)ke
(Ω)
kl ) +

∑

l,k≥0

[PHφ(z)lφ(w)k(PHd1

ẽ
(Ω)
kl

)]

The last equality follows from that φ(z)lφ(w)k(1 − PH)d1

ẽ
(Ω)
kl

is orthogonal to H. The the first

sum in the last equality is in Ω and Theorem 18 gives that the second sum in the equality is in
Ω also. Letting ω = PHq̃, we have proved that PMω = q to get that

PMΩ = M.

On the other hand, ker[PM|Ω] ⊂ Ω is a reducing subspace of φ(B). Since Ω is a nontrivial
minimal reducing spaces of φ(B), we see that ker[PM|Ω] = {0}. This implies that PM : Ω → M

is bijective and bounded. By the closed graph theorem we conclude that PM|Ω is invertible.
Similarly we can show that that PN|Ω is invertible. Define

S = [PN|Ω][PM|Ω]−1.

Then S is an invertible operator from M onto N. Both S and S∗ commute with φ(B) because
Ω, M and N are three distinct nontrivial minimal reducing subspaces for φ(B). Thus S∗S
commutes with φ(B). Making the polar decomposition of S, we write

S = U |S|,
for some unitary operator U from M onto N, where |S| = [S∗S]1/2. So U commutes with both
φ(B) and φ(B)∗. This completes the proof.

Theorem 31. Let M and N be two distinct nontrivial minimal reducing subspaces of φ(B).
Then either they are orthogonal or φ(B) has two distinct unitarily equivalent reducing subspaces

and has also infinitely many minimal reducing subspaces.

Proof. Let M and N be two distinct nontrivial minimal reducing subspaces of φ(B). Consider

W = [closure(M + N)] ⊖ M.

Then W is a reducing subspace of φ(B). For each y ∈ closure(M + N), we have

y = PMy + PM⊥y.

Thus

closure(M + N) = M ⊕ W.

If M and N are not orthogonal, by Theorem 27, M, N are orthogonal to the distigushied
minimal reducing subspace M0, and then N does not equal W and

N ⊂ M ⊕ W. (6)

Now we show that W is a minimal reducing subspace of φ(B). Since M and N are distinct
and they are minimal reducing subspaces, we have that the intersection of M and N equals 0.
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Noting that N ∩ M⊥ is a reducing subspace and contained in N, we see that N ∩ M⊥ equals
0 to get that

ker(PM|N) = {0}.
This gives that for each q ∈ N, PMq 6= 0. Since N is a minimal reducing subspace, for each
0 6= q0 in N, the closure of {q−PMq : q ∈ N} is the reducing subspace generated by q0−PMq0
which equals W. Thus W is a minimal reducing subspace. By (6), we observe that M, N and
W satisfy the conditions in Theorem 3. So M is unitarily equivalent to W.

Now for each α in [0, 1], define

Nα = closure{q − αPMq : q ∈ N}.

As N is a minimal reducing subspace, each Nα is a minimal reducing subspace. For α and β in
[0, 1], and q1 and q2 in N, if

q1 − αPMq1 = q2 − βPMq2,

then

q1 − q2 = αPMq1 − βPMq2.

The right hand side of the above equality is in N but the left hand side is in M. Thus q1 equals
q2 and α equals β. So Nα does not equal Nβ provided β does not equal α. Hence we get infinitely
many minimal reducing subspaces to complete the proof.

Theorem 32. Let φ be a Blaschke product of finite order N . Then either φ(B) has infinitely

many minimal reducing subspaces or the number of nontrivial reducing subspaces of φ(B) is less

than or equal to N .

Proof. If φ(B) does not have infinitely many nontrivial reducing subspaces, by Theorem 31, any

two distinct reducing subspaces must be orthogonal. Let {Mj}N1
j=1 be the set of distinct minimal

reducing subspaces of φ(B). Thus

⊕N1
j=1Mj ⊂ H.

Lemma 16 gives that the dimension of Mj ∩ L0 is at less one. So

dimL0 ≥ dim{[⊕N1
j=1Mj ] ∩ L0} ≥ N1.

On the other hand,

L0 = kerT ∗
φ(z) ∩ kerT ∗

φ(w) ∩ H.

As pointed out before, the dimension of L0 equals N . Thus

N ≥ N1.

So the number of nontrivial minimal reducing subspaces of φ(B) is less than or equal to the order
N of φ. The proof is completed.

6. Proofs of Theorems 4 and 5

In this section we will prove Theorems 4 and 5. For the Blaschke product φ(z) = z2 z−α
1−ᾱz with

a nonzero point α in D, for each e in the wandering subspace of a reducing subspace of φ(B) we
will be able to calculate d0

e in Theorem 21 and L0 precisely. By Theorem 1, the fact that d1
e is

orthogonal to L0 leads to some algebraic equations. By solving the algebraic equations, we will
show that φ(B) has only two nontrivial minimal reducing subspaces.

Theorem 33. For the Blaschke product φ(z) = z2 z−α
1−ᾱz with a nonzero point α in D, φ(B) has

only two minimal reducing subspaces {M0,M
⊥
0 }.
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Proof. For a given nonzero point α in the unit disk, let φ0(z) = z z−α
1−ᾱz . The Mittag-Leffler

expansion of the finite Blaschke product φ0 is

φ0(z) = −1 − |α|2
ᾱ2

− 1

ᾱ
z +

1 − |α|2
ᾱ2

kα(z).

So

φ(z) = zφ0(z) = −1 − |α|2
ᾱ2

z − 1

ᾱ
z2 +

1 − |α|2
ᾱ2

kα(z).

Hence

e0(z, w) = −1 − |α|2
ᾱ2

− 1

ᾱ
p1(z, w) +

1 − |α|2
ᾱ2

kα(z)kα(w).

It is easy to see that

L0 = span{1, p1(z, w), kα(z)kα(w)}.
Theorem 25 gives

M0 = spanl≥0{pl(φ(z), φ(w))e0}.
By Theorem 27, for each minimal reducing subspace Ω not equal to M0, Ω is a subspace of

M⊥
0 . So we need only to show that M⊥

0 is a minimal reducing subspace for φ(B).

Assume that M⊥
0 is not a minimal reducing subspace for φ(B). Then H is the direct sum of

three reducing subspaces of φ(B). We may assume

H = ⊕2
i=0Mi.

Now choose a nonzero vector ei in the wandering subspace for Mi, which is contained in L0.
Since {ei}2

i=0 are mutually orthogonal to each other, they form a basis for L0. On the other hand,
those functions 1, p1(z, w) and kα(z)kα(w) are a basis for L0. Thus there are some constants cij
such that

ei = ci0 + ci1p1(z, w) + ci2kα(z)kα(w).

First we show that neither c12 nor c22 equals zero. Since

〈e0, 1〉 = e0(0, 0) = φ0(0) = 0

and

〈e0, p1〉 = 〈e0, p1(z, z)〉 = 〈e0(z, 0), 2z〉
= 2〈φ0, z〉 = −2α

we have that 1 is in M⊥
0 but p1(z, w) is not in M⊥

0 , to get that ci2 6= 0 for i = 1, 2.
Next we show that ei(0, α) equals 0 for i = 0, 1, 2. To do this, note that the dimension of the

wandering subspace for each Mi equals 1. By Theorem 1, there are constants βi and λi such
that

d1
ei

= d0
ei

+ βiei + λie0.

Thus for i, j ≥ 1 and i 6= j,

〈d0
ei
, ej〉 = 〈d1

ei
− βiei − λie0, ej〉

= 〈d1
ei
, ej〉 − βi〈ei, ej〉 − λi〈e0, ej〉 = 0.

The last equality follows from the fact that d1
ei

is orthogonal to L0 and {ei} are an orthogonal
basis for L0.

By Theorem 21, we have

〈d0
ei
, ej〉 = 〈wei(0, w)e0(z, w) − φ(w)ei(z, w), ej〉

= 〈wei(0, w)e0(z, w), ej(z, w)〉
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Simple calculations give

〈wei(0, w)e0(z, w), p1(z, w)〉 = 〈wei(0, w)e0(w,w), p1(z, w)〉 (by Lemma 7)

= 〈wei(0, w)φ′(w), p1(0, w)〉 (by Theorem 9)

= 〈wei(0, w)φ′(w), w〉 = ei(0, 0)φ′(0) = 0.

It is easy to see
〈wei(0, w)e0(z, w), 1〉 = 0

These give

〈d0
ei
, ej〉 = cj2〈wei(0, w)e0(z, w), kα(z)kα(w)〉

= cj2〈wei(0, w)e0(w,w), kα(z)kα(w)〉
= cj2〈wei(0, w)e0(w,w), kα(w)〉
= cj2αei(0, α)e0(α, α).

Noting that e0(α, α) = φ′(α) 6= 0, we have cj2ei(0, α) = 0, to get that ei(0, α) = 0 for i = 1, 2.
Also we have e0(0, α) = φ0(α) = 0. Since {e0, e1, e2} forms a basis for L0 and p1(z, w) is in
L0, p1(z, w) is a linear combination of functions e0, e1 and e2. Thus p(0, α) must be zero. But

p1(0, α) = α 6= 0. This leads to a contradiction. So M⊥
0 is a minimal reducing subspace of φ(B)

to complete the proof
Now we are ready to prove Theorems 4 and 5.

Proof of Theorem 4. Suppose that φ is a Blaschke product with three zeros. As pointed
out in the first section Mφ is unitarily equivalent to φ(B), in the rest proof we will concern only
φ(B).

First observe that for λ ∈ D and a subspace M of H, M is a reducing subspace of φ(B) if
and only if M is a reducing subspace of φλ ◦ φ(B).

If φ(z) has a multiple critical point in the unit disk, then

φ = φλ ◦ z3 ◦ φµ

for two numbers λ, µ ∈ D. Thus every reducing subspace of φ(B) is also a reducing subspace of
φµ(B)3. But φµ(B)3 is unitarily equivalent to the direct sum of three weighted shifts and hence
it has only three minimal reducing subspaces.

If φ does not have any multiple critical point in the unit disk, by Bochner’s theorem [35], φ(z)
always has a critical point c in the unit disk. Let λ = φ(c). Then

φλ ◦ φ ◦ φc(z) = z2 z − a

z − āz
,

for some nonzero point a ∈ D. Let ψ(z) = φλ ◦φ ◦φc(z). By Theorem 33, we conclude that ψ(B)
has only two minimal reducing subspaces. Hence φ(B) has only two minimal reducing subspaces.
This completes the proof.

Proof of Theorem 5. Let φ be a Blaschke product with three zeros.
As in the proof of Theorem 4, If φ(z) has a multiple critical point in the unit disk, then

φ = φλ ◦ z3 ◦ φµ

for two numbers λ, µ ∈ D. In this case, the Riemann surface of φ−1 ◦ φ over D has the same
number of connected components as the one of z−3 ◦z3 over D does. But the latter one has three
connected components and Mφ has the only three nontrivial minimal reducing subspaces. Thus
the number of nontrivial minimal reducing subspaces of Mφ equals the number of connected
components of the Riemann surface of φ−1 ◦ φ over D.

If φ does not have any multiple critical point in the unit disk, as in the proof of of Theorem
4, φ(z) always has a critical point c in the unit disk. Let λ = φ(c). Then

φλ ◦ φ ◦ φc(z) = ψ(z),
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where ψ(z) = z2 z−a
z−āz for some nonzero point a ∈ D. By the example in [24], except for the trivial

branch z, nontrivial branches of ψ−1 ◦ψ are all continuations of one another. Thus the Riemann
surface of ψ−1 ◦ ψ over D has only two connected components. So does the Riemann surface of
φ−1 ◦ φ over D. By Theorem 33, the number of nontrivial minimal reducing subspaces of Mφ

equals the number of connected components of the Riemann surface of φ−1 ◦ φ over D. This
completes the proof.
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