MULTIPLICATIONS IN POSTNIKOV SYSTEMS AND THEIR APPLICATIONS

Haruo Suzuki

(Received April 12, 1960)

Introduction. The present work concerns the theory of obstructions for Postnikov complexes of one-connected $C W$-complex to have multiplications and its application to Thom complexes. Multiplications are introduced stepwisely for dimensions of Postnikov complexes and the obstruction is a set of cohomology classes (See sections 1 and 2). The theory is applicable for $M(O(n))$ and results for a sum of a realizable classes with coefficients in Z_{2} are obtained. We compute actually the obstructions for Postnikov complexes of $M(O(2))$ to be an H space (See section 4). Parallel considerations are made for $M(S O(n))$ and sum of realizable classes with coefficients in Z or Z_{p} where p is an odd prime number (See section 5).

1. H-spaces. Let A be a topological space. Suppose that a continuous map

$$
\begin{equation*}
\mu: A \times A \longrightarrow A \tag{1}
\end{equation*}
$$

is defined and there is the base point $e \in A$ such that

$$
\begin{equation*}
\mu(x, e)=x, \mu(e, y)=y \tag{2}
\end{equation*}
$$

for any $x, y \in A$. Then A is called an H-space and the correspondence $\mu(x, y)$ is called a multiplication, which is occasionally denoted by $x \cdot y$. A homotopy commutativity and homotopy associativity are defined in usual ways. One can easily prove

PROPOSITION 1. A product space of two H-spaces is again an H-space. If given H-spaces are homotopy commutative or homotopy associative, then the product space has the corresponding properties.

PROOF. Let A_{1} and A_{2} be H-spaces with multiplication maps μ_{1} and μ_{2}. Define a multiplication μ of $A_{1} \times A_{2}$ by

$$
\begin{equation*}
\mu\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\}=\left\{\mu_{1}\left(a_{1}, b_{1}\right), \mu_{2}\left(a_{2}, b_{2}\right)\right\} \tag{3}
\end{equation*}
$$

for any $a_{1}, b_{1} \in A_{1}$ and $a_{2}, b_{2} \in A_{2}$. Denoting by $e_{1} \in A_{1}$ and $e_{2} \in A_{2}$ respective
identities, $\left(e_{1}, e_{2}\right)$ is the identity for μ. The latter part of the proposition follows immediately from the definition of μ.

As usual we denote the subspace $A \times e \cup e \times A \subset A \times A$ by $A \vee A$. Let p_{1} and p_{2} be projections of $A \times A$ onto the first and the second factor. A cohomology class $\gamma \in H^{m+1}\left(A \times A, A \vee A ; \pi_{m}(A)\right)$ is said to be primitive with respect to μ, if we have

$$
\begin{equation*}
\left(\mu^{*}-p_{1}{ }^{*}-p_{2}{ }^{*}\right) \gamma=0 .{ }^{1)} \tag{4}
\end{equation*}
$$

Let A^{\prime} be another one-connected H-space with the multiplication map μ^{\prime} : $A^{\prime} \times A^{\prime} \rightarrow A^{\prime}$. Given a homotopy multiplicative map $f: A \rightarrow A^{\prime}$, we say f is strictly homotopy multiplicative ${ }^{2}$, if there exists a homotopy $F(x, y, t)(0 \leqq t$ $\leqq 1$) such that

$$
\begin{align*}
& F(x, y, 0)=\mu^{\prime}(f(x), f(y)) \tag{5}\\
& F(x y, 1)=f(\mu(x, y))
\end{align*}
$$

and

$$
\begin{equation*}
F(x, e, t)=F(e, x, t)=f(x) \tag{6}
\end{equation*}
$$

for all t. If f is exactly multiplicative, then we say f is a homomorphism.
PROPOSITION 2. If f is strictly homotopy multiplicative, then the fiber space (E, p, A) induced by means of from the fiber space of paths starting from the unity e^{\prime} over A^{\prime} admits an H-structure $\nu: E \times E \rightarrow E$.

PROOF. Let ($E^{\prime}, p^{\prime}, A^{\prime}$) be the fiber space of paths over A^{\prime}. An element of E^{\prime} is a path $u:[0, r] \rightarrow A^{\prime}$ for a real number r, such that $u(0)=e^{\prime}$. Define a multiplication $\nu^{\prime}(u, v)$ for $u(0 \leqq t \leqq r), v(0 \leqq t \leqq s) E^{\prime}$ by

$$
\begin{align*}
\nu^{\prime}(u, v)(t) & =\mu^{\prime}(u(t), v(s t / r)) 0 \leqq t \leqq s, \quad \text { if } \quad r \leqq s, \\
& =\mu^{\prime}(u(r t / s), v(t)) 0 \leqq t \leqq r, \quad \text { if } \quad r \leqq s . \tag{7}
\end{align*}
$$

One obtains an H-structure of E^{\prime}. The unity is the constant path $u(t)=e^{\prime}(0 \leqq$ $t \leqq 1$).
E is a subspace of $A \times E^{\prime}$ consisting of points (x, u) such that $f(x)=p^{\prime}(u)$ $=u(r)$. We denote by $l_{x, y}$ a path from $\mu^{\prime}(f(x), f(y))$ to $f(\mu(x, y))$ in A^{\prime}, given

[^0]by $F(x, y, t), 0 \leqq t \leqq 1$, for fixed points $x, y \in A$. Define a multiplication ν for two points (x, u) and (y, v) of E by
\[

$$
\begin{equation*}
\nu\{(x, u),(y, v)\}=\left\{\mu(x, y), \nu^{\prime}(u, v) \cdot l_{x, y}\right\} \tag{8}
\end{equation*}
$$

\]

where the dot is the usual composition of paths.
From the choice of $l_{x, y}$, we have

$$
p^{\prime}\left(\nu^{\prime}(u, v) \cdot l_{x, y}\right)=f(\mu(x, y)),
$$

which means that $\nu\{(x, u),(y, v)\}$ is again a point of E. The continuity of ν follows immediately. The unity of E is (e, e^{\prime}).

From (8), one obtains

$$
\begin{aligned}
p \cdot \nu\{(x, u),(y, v)\} & =p\left\{\mu(x, y), \nu^{\prime}(u, v) \cdot l_{x, y}\right\} \\
& =\mu(x, y) \\
& =\mu\{p(x, u), p(y, v)\}
\end{aligned}
$$

that is the diagram

is exactly commutative and hence p is a homomorphism.
2. Multiplications in the Postnikov system. Let $K=\bigcup_{q \in Z+} K_{q}$ be a semi-simplicial complex, wher Z^{+}denotes the set of non-negative integers. K is called a monoid if K_{q} has an associative multiplication

$$
\begin{equation*}
K_{q} \times K_{q} \longrightarrow K_{q} \tag{10}
\end{equation*}
$$

with a unit element for each q. If e_{0} denotes the unit element of K_{0} and s_{0} denotes a degeneracy operator, then $\left(s_{0}\right)^{q} e_{0}$ gives that of K_{q} for each q. Now we shall prove the following,

Lemma 1. If A is an H-space, then the minimal subcomplex $M(A)$ of the singular complex $S(A)$ of A is a monoid.

PROOF. Let $S_{q}(\mu): S_{q}(A) \times S_{q}(A) \rightarrow S_{q}(A)$ be the monoid structure of $S(A)$ induced by the multiplication μ of A. Let λ be the natural chain map $S(A) \rightarrow$ $M(A)$ and let i be the inclusion map $M(A) \subset S(A)$. Then we get the diagram

The composition map $\lambda \cdot S_{q}(\mu) \cdot(i \times i)$ is obviously a chain map and makes $M(A)$ a monoid complex. Let X be a one-connected $C W$-complex and suppose that its homotopy groups are countable in each demensions. Let the Postnikov system of X be

$$
\begin{equation*}
\cdots \cdots \longrightarrow X^{(m)} \xrightarrow{p^{(m)}} X^{(m-1)} \xrightarrow{p^{(m-1)}} X^{(m-2)} \longrightarrow \cdots \cdots \xrightarrow{p^{(3)}} X^{(2)}, \tag{12}
\end{equation*}
$$

with k-invariants k_{m}, and let $p_{(m)}$ be the projection of X to $X^{(m)} . X^{(2)}$ is a $C W$-complex $K\left(\pi_{2}(X), 2\right)$ which is a group complex. $X^{(m)}$ is a $C W$-complex of the same weak homotopy type with the fiber space $E^{(m)}$ induced from the fiber space of paths over $K\left(\pi_{m}(X), m+1\right)$ by means of the map $\boldsymbol{\varphi}_{m}: X^{(m-1)} \rightarrow$ $K\left(\pi_{m}(X), m+1\right)$, such that

$$
\begin{equation*}
\varphi_{m}^{*}(b)=k_{m+1}, \tag{13}
\end{equation*}
$$

where b is the basic cohomology class of $K\left(\pi_{m}(X), m+1\right)$. From now on, we put $X^{(m)}=\left|M\left(E^{(m)}\right)\right|$.

If $E^{(m)}$ is an H-space, then $M\left(E^{(m)}\right)$ is a monoid complex, by Lemma 1. By the assumption for X, the geometric realization $\left|M\left(E^{(m)}\right)\right|$ is a countable complex and hence it is an H-space by a theorem of J. Milnor ${ }^{3}$. The natural map $\left|M\left(E^{(m)}\right)\right| \rightarrow E^{(m)}$ is a homomorphism.

Now we claim
LEMMA 2. Suppose $X^{(m-1)}$ has an H-structure $\mu^{(m-1)}$. $\boldsymbol{\varphi}_{m}$ is strictly homotopy multiplicative if and only if k_{m+1} is primitive with respect to $\mu^{(m-1)}$.

PROOF. Suppose $\boldsymbol{\varphi}_{m}$ is strictly homotopy multiplicative. $K\left(\pi_{m}(X), m+1\right)$ has a standard multiplication σ. The commutativity upto homotopy holds in the diagram

[^1]Let $p_{1}{ }^{(m-1)}$ and $p_{2}{ }^{(m-1)}$ be projections of $X^{(m-1)} \times X^{(m-1)}$ onto the first and the second factor. Let p_{1} and p_{2} be projections of $K\left(\pi_{m}(X), m+1\right) \times K\left(\pi_{m}(X)\right.$, $m+1$) onto the first and the second factor. One obiains, from the commutativity of (14),

$$
\begin{aligned}
\mu^{(m-1) *} k_{m+1} & =\mu^{(m-1) *} \cdot \boldsymbol{\varphi}_{m}^{*}(b) \\
& =\left(\boldsymbol{\phi}_{m} \times \boldsymbol{\varphi}_{m}\right)^{*} \cdot \sigma^{*}(b) \\
& =\left(\boldsymbol{\phi}_{m} \times \boldsymbol{\varphi}_{m}\right)^{*}\left(p_{1}^{*}(b)+p_{2}^{*}(b)\right) \\
& =p_{1}^{(m-1) *} \boldsymbol{\varphi}_{m}^{*}(b)+p_{2}^{\left({ }^{(m-1) *} \cdot\right.} \cdot \boldsymbol{\varphi}_{m}^{*}(b) \\
& =p_{1}^{(m-1) *} k_{m+1}+p_{2}{ }^{(m-1) *} k_{m+1},
\end{aligned}
$$

and hence we have

$$
\left(\mu^{(m-1) *}-p_{1}^{(m-1) *}-p_{2}^{(m-1) *}\right) k_{m+1}=0
$$

which shows k_{m+1} is primitive with respect to $\mu^{(m-1)}$.
Conversely, suppose k_{m+1} is primitive with respect to $\mu^{(m-1)}$. We have to prove the existence of a homotopy $F(x, y, t)$ of maps from $X^{(m-1)} \times X^{(m-1)}$ to $K\left(\pi_{m}(X), m+1\right)$, for $0 \leqq t \leqq 1$ and for any $x, y \in X^{(m-1)}$, such that

$$
\left\{\begin{array}{l}
F(x, y, 0)=\sigma\left(\boldsymbol{\phi}_{m}(x), \boldsymbol{\phi}_{m}(y)\right) \tag{15}\\
F(x, y, 1)=\boldsymbol{\phi}_{m} \cdot \mu^{(m-1)}(x, y) \\
F(x, e, t)=F(e, x, t)=\boldsymbol{\phi}_{m}(x)
\end{array}\right.
$$

The obstruction to construct the homotopy is obviously given by

$$
\begin{aligned}
\left(\boldsymbol{\varphi}_{m} \cdot \mu^{(m-1)}\right)^{*}(b) & -\left(\boldsymbol{\varphi} \times \boldsymbol{\varphi}_{m}\right)^{*} \sigma^{*}(b) \\
& =\mu^{(m-1) *} \cdot \boldsymbol{\varphi}_{m}^{*}(b)-\left(\boldsymbol{\varphi}_{m} \times \boldsymbol{\varphi}_{m}\right)^{*} \sigma^{*}(b) \\
& =\mu^{(m-1) *} k_{m+1}-p_{1}^{*} k_{m+1}-p_{2}^{*} k_{m+1},
\end{aligned}
$$

which is zero by the assumption. Thus the map of $X^{(m-1)} \times X^{(m-1)} \times \dot{I} U$ $\left(X^{(m-1)} \vee X^{(m-1)}\right) \times I(I=[0,1])$ to $K\left(\pi_{m}(X), m+1\right)$ defined by (15) can be extended to the map $F(x, y, t)$ over the whole complex $X^{(m-1)} \times X^{(m-1)} \times I$. $\boldsymbol{\varphi}_{m}$ is, therefore, strictly homotopy multiplicative. Lemma 2 is proved.

Immediately we obtain, from Proposition 2,
PROPOSITION 3. Let X be a one-connected $C W$-complex with countable homotopy groups in each dimensions. Suppose that the complex $X^{(m-1)}$ of the Postnikov system of X has an H-structure $\mu^{(n-1)}$. If k_{n+1} is primitive with respect to $\mu^{(m-1)}$, the complex $X^{(m)}$ has again an H-structure and the projection $p^{(m)}: X^{(m)} \rightarrow X^{(m-1)}$ is a homomorphism.

REMARK. Several multiplications $\mu_{\alpha}^{(m)}$ of $X^{(m)}$ in the above proposition may exist. The complex $X^{(m+1)}$ has an H-structure if k_{m+2} is primitive with respect to one of $\mu_{\alpha}^{(m)}$.

Now we consider to construct multiplications of $X^{(m)}$ stepwisely. $X^{(2)}=$ $K\left(\pi_{2}(X), 2\right)$ has a standard multiplication $\mu^{(2)}$. If k_{4} is primitive with respect to $\mu^{(2)}$, then $X^{(3)}$ has multiplications $\mu_{\alpha}^{(3)}$. The obstructions for $X^{(4)}$ to be an H space is given by a set of cohomology classes $\left(\mu_{a}^{(3) *}-p_{1}{ }^{(3) *}-p_{2}{ }^{(3) *}\right) k_{5}$, and so on. In general, assuming $X^{(m-1)}$ has H-structures $\mu_{\alpha}^{(m-1)}$, we put

$$
O_{\alpha}^{(m)}=\left(\mu_{\alpha}^{(m-1) *}-p_{1}^{(m-1) *}-p_{2}^{(m-1) *}\right) k_{m+1},
$$

which is an element of $H^{m+1}\left(X^{(m-1)} \times X^{(m-1)}, X^{(m-1)} \vee X^{(m-1)} ; \pi_{m}(X)\right)$. The obstruction for $X^{(m)}$ to be an H-space is a set of cohomology classes $\mathbf{O}^{(m)}=$ $\left\{O_{\alpha}^{(m)}\right\}$. Let $m_{0}+1$ be the least integer of m such that $\mathbf{O}^{(m)}$ does not contain the zero element. We call m_{0} an index of multiplicativity of X. Proposition 3 leads easily,

COROLLARY 4. Each complex $X^{(m)}\left(m \leqq m_{0}\right)$ has a multiplication and $p^{(m)}$ is a homomorphism.
3. Sums of realizable classes with coefficients in Z_{2}. Now we turn to the study of the Thom complex $M(O(n))$. Let the Postnikov system of the complex $M(O(n))$ be

$$
\cdots \cdots \longrightarrow X^{(m)} \xrightarrow{p^{(m)}} X^{(m-1)} \longrightarrow \cdots \cdots \longrightarrow X^{(n)}=K\left(Z_{2}, n\right)
$$

and $p_{(m)}$ be the projection of $M(O(n))$ to $X^{(m)}$. Let $m_{0}(n)$ denote the index of multiplicativity of $M(O(n))$. We obtain the

THEOREM. In a compact differentiable manifold M of dimension $\leqq m_{0}(n)$, a sum of two realizable classes of dimension n with coeffcients in the group Z_{2} of integers modulo 2 is again realizable.

PROOF. Let u and v be two realizable cohomology classes with coefficients in Z_{2}. We have maps $f, g: M \rightarrow M(O(n))$ such that

$$
\begin{align*}
& u=f^{*} U_{n} \tag{16}\\
& v=g^{*} U_{n}
\end{align*}
$$

where U_{n} is the fundamental class of $M(O(n))$. The matter is to construct a map $h: M \rightarrow M(O(n))$ such that

$$
\begin{equation*}
u+v=h^{*} U_{n} \tag{17}
\end{equation*}
$$

Since $\operatorname{dim} M \leqq m_{0}(n)$ and $M(O(n))$ have the same $\left(m_{0}+1\right)$-type with $X^{\left(m_{0}\right)}$, the problem is reduced to construct maps of M to $X^{\left(m_{0}\right)}$. We put $p_{(m)} f=f_{m}$,
$p_{(m)} g=g_{m}$ and put $p_{(m)}^{*-1} U_{n}=U_{n,(m)}$. We obtain easily

$$
\begin{gather*}
u=f_{m}^{*} U_{n,(m)}, \tag{18}\\
v=g_{m}^{*} U_{n,(m)} .
\end{gather*}
$$

By the assumption for $m_{0}, X^{\left(m_{0}\right)}$ has a multiplcation $\mu^{\left(m_{0}\right)}: X^{\left(m_{0}\right)} \times X^{\left(m_{0}\right)} \rightarrow X^{\left(m_{0}\right)}$. Now define a map $f_{m} \circ g_{m}: M \rightarrow X^{\left(m_{0}\right)} \times X^{\left(m_{0}\right)}$ by the equation

$$
\begin{gathered}
\begin{array}{l}
f_{m_{0}} \circ g_{m_{0}}(x)=\left(f_{m_{0}}(x), g_{m_{0}}(x)\right) \\
M \xrightarrow{f_{m_{0}} \circ g_{m_{0}}} X^{\left(m_{0}\right)} \times X^{\left(m_{0}\right)} \xrightarrow{\mu^{\left(m_{0}\right)}} X^{\left(m_{0}\right)} .
\end{array} .
\end{gathered}
$$

It induces a homomorphisim $h_{m_{0}}^{*}: H^{*}\left(X^{\left(m_{0}\right)} ; Z_{2}\right) \rightarrow H^{*}\left(M ; Z_{2}\right)$ satisfying the relation,

$$
\begin{aligned}
h_{m_{0}}^{*} U_{n,\left(m_{0}\right)} & =\left(f_{m_{0}} \circ g_{m_{0}}\right)^{*} \mu^{\left(m_{0}\right) *}\left(U_{n,\left(m_{0}\right)}\right) \\
& =\left(f_{m_{0}} \circ g_{m_{0}}\right)^{*}\left(U_{n,\left(m_{0}\right)} \otimes \omega+\omega \otimes U_{n_{1},\left(m_{0}\right)}\right)
\end{aligned}
$$

(where ω is the unit class of $H^{*}\left(X^{\left(m_{0}\right)} ; Z_{2}\right)$,)

$$
\left.=\left(f_{m_{0}} \circ g_{m_{0}}\right)^{*}\left(U_{n,\left(m_{0}\right)}\right) \otimes \omega\right)+\left(f_{m_{0}} \circ g_{m_{0}}\right)^{*}\left(\omega \otimes U_{n,\left(m_{0}\right)}\right)
$$

$$
=f_{m_{0}}\left(U_{n_{1}\left(m_{0}\right)}\right) \cdot \omega+\omega \cdot g_{m_{0}}\left(U_{\boldsymbol{n},\left(m_{0}\right)}\right)
$$

(where ω is the unit class of $H^{*}\left(M ; Z_{2}\right)$,)

$$
=u+v .
$$

The last formula follows from (15). Let $q_{m}: X^{(m)} \rightarrow M(O(n))$ be a homotopy inverse of $p_{(m)}$ for the m-skeleton, which induces an isomorphism of cohomology rings $H^{*}\left(X^{(m)} ; Z_{2}\right)$ and $H^{*}\left(M(O(n)) ; Z_{2}\right)$ upto the dimension m. Let h be the composed map $q_{m_{0}} \cdot h_{m_{0}}$. One can easily see from (17) that

$$
\begin{aligned}
h^{*} U_{n} & =h_{m_{0}}^{*} \cdot q_{m_{0}} U_{n} \\
& =h_{m_{0}}^{*} U_{n,\left(m_{0}\right)} \\
& =u+v,
\end{aligned}
$$

which is the required relation (14). Thus our theorem is proved.
We know the following ${ }^{4}$. One takes an integer j and let $d(j)$ be the number of non-dyadique subdivisions,

$$
\lambda=\left\{a_{1}, a_{2}, \ldots \ldots, a_{r} \mid a_{i} \text { integers } \neq 2^{m}-1, \sum a_{i}=j\right\} .
$$

[^2]We put a $C W$-complex

$$
\begin{aligned}
Y= & K\left(Z_{2}, n\right) \times K\left(Z_{2}, n+2\right) \times \cdots \cdots \times\left(K\left(Z_{2}, n+2\right)\right)^{a(l)} \times \\
& \cdots \cdots \times\left(K\left(Z_{2}, 2 n\right)\right)^{a(n)} .
\end{aligned}
$$

There exists a natural map $F: M(O(n)) \rightarrow Y$, which induces isomorphisms of cohomology groups with coefficient group Z_{2} for dimension $<2 n$. Since we have $H^{m}\left(Y ; Z_{p}\right)=0$ and $H^{\prime \prime}\left(M(O(n)) ; Z_{p}\right)=0$ for an odd prime number p and for $m<2 n, Y$ and $M(O(n))$ are of the same $2 n$-type. And hence there is a map g of the $2 n$-skeleton of Y into $M(O(n))$ such that composed maps $g \cdot F$ and $F \cdot g$ are homotopic to the identity maps of ($2 n-1$)-skeletons in $M(O(n))$ and in Y respectively. g is a so-called homotopy inverse of F for the $2 n$-skeleton of Y. The sequence of complexes

$$
\begin{aligned}
& Y, \ldots \ldots, K\left(Z_{2}, n\right) \times K\left(Z_{2}, n+2\right) \times \cdots \cdots \times\left(K\left(Z_{2}, n+l\right)\right)^{a(l)}, \\
& K\left(Z_{2}, n\right) \times K\left(Z_{2}, n+2\right) \times \cdots \cdots \times\left(K\left(Z_{2}, n+l-1\right)\right)^{a(l-1)}, \\
& \ldots \cdots, K\left(Z_{2}, n\right) \times K\left(Z_{2}, n+2\right), K\left(Z_{2}, n\right)
\end{aligned}
$$

gives the Postnikov system of $M(O(n))$ for dimension $<2 n$. Its k-invariants

$$
k_{n+1}, k_{n+2}, \ldots \ldots, k_{2 n}
$$

are all zero.
Obviously, Y is an H-space from Proposition 1, Theorem leads immediately
COROLLARY 5. In a compact differentiable manifold of dimension $<2 n$, a sum of two realizable cohomology classes of dimension n with coefficients in Z_{2} is again realizable ${ }^{6}$.
$k_{2 n}$ is, however, not trivial in general and it should be computed in respective cases for n. We consider the case $n=2$ in the following section.
4. 2-dimensional realizable classes with coefficients in Z_{2}. As for the system of $M(O(n))$, following results are known ${ }^{4), 5)}$. Homotopy groups of $M(O(2))$ in lower dimensions are

$$
\begin{align*}
& \pi_{2}=Z_{2} \\
& \pi_{3}=0 \tag{19}\\
& \pi_{4}=Z \\
& \pi_{5}=Z_{2}
\end{align*}
$$

[^3]We recall that $p_{(m)}^{*-1} U_{2}=U_{2,(m)}$. The complex $X^{(2)}=K\left(Z_{2}, 2\right)$ has a standard multiplication $\mu^{(2)}$ and one can take $X^{(3)}=X^{(2)}$, because of $\pi_{3}=0$ in (18). The k-invariant of dimension 5 is

$$
k_{5}=(1 / 2) \delta \mathfrak{p}\left(U_{2,(3)}\right)
$$

where \mathfrak{p} denotes the Pontryagin square operation and (1/2) δ is the Bockstein operator for the coboundary homomorphism δ. The obstruction ${ }^{7)}$ for $X^{(4)}$ to be an H-space is

$$
\begin{equation*}
\left(\mu^{(3) *}-p_{1}^{(3) *}-p_{2}^{(3) *}\right) k_{5}=0 . \tag{20}
\end{equation*}
$$

The above relation is proved as follows:

$$
\begin{aligned}
\left(\mu^{(3) *}\right. & \left.-p_{1}^{(3) *}-p_{2}{ }^{(3) *}\right) k_{5} \\
& =\left(\mu^{(3) *}-p_{1}{ }^{(3) *}-p_{2}{ }^{(3) *}\right)(1 / 2) \delta \mathfrak{p}\left(U_{2,(3)}\right) \\
& =\mu^{(3) *}(1 / 2) \delta p\left(U_{2,(3)}\right)-(1 / 2) \delta\left(p_{1}{ }^{(3) *}+p_{2}{ }^{(3) *}\right) \mathfrak{p}\left(U_{2,(3)}\right) .
\end{aligned}
$$

Computing the first term in the right side, we have

$$
\begin{aligned}
& \mu^{(3) *}(1 / 2) \delta p\left(U_{2,(3)}\right) \\
&=(1 / 2) \delta \mathfrak{p}\left(U_{2,(3)} \otimes \omega+\omega \otimes U_{2,(3)}\right) \\
&\left(\text { where } \omega \in H^{*}\left(Z_{2}, 2 ; Z_{2}\right) \text { is the unit element, }\right) \\
&=\left(U_{2,(3)} \otimes \omega+\omega \otimes U_{2,(3)}\right) \cup \delta\left(U_{2,(3)} \otimes \omega+\omega \otimes U_{2,(3)}\right) \\
&+(1 / 2)\left[\delta\left(U_{2,(3)} \otimes \omega+\omega \otimes U_{2,(3)}\right) \cup_{1} \delta\left(U_{2,(3)} \otimes \omega+\omega \otimes U_{2,(3)}\right)\right] \\
&= U_{2(3)} \delta U_{2,(3)} \otimes \omega+\omega \otimes U_{2,(3)} \delta U_{2,(3)} \\
&+U_{2,(3)} \otimes \delta U_{2,(3)}+\delta U_{2,(3)} \otimes U_{2,(3)} \\
&+(1 / 2)\left[\delta\left(U_{2,(3)} \otimes \omega\right) \cup_{1} \delta\left(U_{2,(3)} \otimes \omega\right)\right] \\
&+(1 / 2)\left[\delta\left(\omega \otimes U_{2,(3)}\right) \cup_{1} \delta\left(\omega \otimes U_{2,(3)}\right)\right] \\
&+(1 / 2)\left(\delta U_{2,(3)} \otimes \omega\right) \cup_{1}\left(\omega \otimes \delta U_{2,(3)}\right) \\
&+(1 / 2)\left(\omega \otimes \delta U_{2,(3)}\right) \cup_{1}\left(\delta U_{2,(3)} \otimes \omega\right) .
\end{aligned}
$$

The second term is given by the formula

$$
\begin{aligned}
& (1 / 2) \delta\left(p_{1}^{(3) *}+p_{2}{ }^{(3) *}\right) \mathfrak{p}\left(U_{2,(3)}\right) \\
& \quad=(1 / 2) \delta p\left(p_{1}{ }^{(3) *} U_{2,(3)}\right)+(1 / 2) \delta \mathfrak{p}\left(p_{2}^{(3) *} U_{2,(3)}\right) \\
& \quad=(1 / 2) \delta p\left(U_{2,(3)} \otimes \omega\right)+(1 / 2) \delta p\left(\omega \otimes U_{2,(3)}\right)
\end{aligned}
$$

[^4]\[

$$
\begin{aligned}
= & \left(U_{2,(3)} \otimes \omega\right) \cup \delta\left(U_{2,(3)} \otimes \omega\right) \\
& +(1 / 2)\left[\delta\left(U_{2,(3)} \otimes \omega\right) \cup_{1} \delta\left(U_{2,(3)} \otimes \omega\right)\right] \\
& +\left(\omega \otimes U_{2,(3)}\right) \cup \delta\left(\omega \otimes U_{2,(3)}\right) \\
& +(1 / 2)\left[\delta\left(\omega \otimes U_{2,(3)}\right) \cup_{1} \delta\left(\omega \otimes U_{2,(3)}\right)\right] \\
= & U_{2,(3)} \delta U_{2,(3)} \otimes \omega+\omega \otimes U_{2,(3)} \delta U_{2,(3)} \\
& +(1 / 2)\left(\delta U_{2,(3)} \otimes \omega\right) \cup_{1}\left(\delta U_{2,(3)} \otimes \omega\right) \\
& +(1 / 2)\left(\omega \otimes \delta U_{2,(3)}\right) \cup_{1}\left(\omega \otimes \delta U_{2,(3)}\right) .
\end{aligned}
$$
\]

Since we have $\frac{1}{2}\left(\delta U_{2,(3)} \otimes \omega\right) \cup_{1}\left(\omega \otimes \delta U_{2,(3)}\right) \sim 0, \frac{1}{2}\left(\omega \otimes \delta U_{2,(3)}\right) \cup_{1}\left(\delta U_{2,(3)}\right.$ $\otimes \omega) \sim 0$ and

$$
U_{2,(3)} \otimes \delta U_{2,(3)}+\delta U_{2,(3)} \otimes U_{2,(3)} \sim 0
$$

we obtain

$$
\left(\mu^{(3) *}-p_{1}^{(3) *}-p_{2}^{(3) *}\right) k_{5}=0 .
$$

Thus the $C W$-complex $X^{(4)}$ of the Postnikov system of $M(O(2))$ has an H structure.

Now we proceed to a further step. The 6 -dimensional k-invariant of $M(O(2))$ is given by

$$
k_{6}=\left(S q^{1}\left(U_{2,(4)}\right)\right)^{2}+U_{2,(4)} \cdot V_{(4)},
$$

where V_{4} is the class of $H^{4}\left(X^{4)} ; Z_{2}\right)$ which goes to the basic class of $H^{4}(Z$, $4 ; Z_{2}$) under the homomorphism $i^{*}: H^{4}\left(X^{(4)} ; Z_{2}\right) \rightarrow H^{4}\left(Z, 4 ; Z_{2}\right)$ induced by the inclusion $i: K(Z, 4) \subset X^{(4)}$. More precisely, the projection $p_{(4)}: M(O(2)) \rightarrow$ $X^{(4)}$ which is the equivalence of 5 -type induces an isomorphism $H^{4}\left(X^{(4)} ; Z_{2}\right)$ $\approx H^{4}\left(M(O(2)) ; Z_{2}\right) . V_{4}$ is determined by

$$
p_{(4)}^{*}\left(V_{4}\right)=U_{2}\left(W_{1}\right)^{2}
$$

where W_{1} is the 1-dimensional Stiefel-Whitney class of the Grassmann manifold of non-oriented 2 -planes and $U_{2}\left(W_{1}\right)^{2}$ is the notation by Thom.

An obstruction for $X^{(5)}$ to be an H-space is

$$
\left(\mu^{(4) *}-p_{1}^{(4) *}-p_{2}^{(4) *}\right) k_{8},
$$

which is not zero. This fact does not lead the $C W$-complex $X^{(5)}$ of the Postnikov system of $M(O(2))$ has an H-structure.

Summarizing the above results, we see $m_{0}(M(O(2)))=5$ and obtain
COROLLARY 6. In a compact differentiable manifold of dimension $\leqq 5$,
a sum of two realizable classes of dimension 2 with coefficients in Z_{2} is again realizable.
5. Sum of realizable classes with coefficients in Z or Z_{p}. We briefly touch on the case of $M(S O(n))$. Let $m_{0}(M(S O(n)))$ be the multiplicative index fo the Postnikov system of $M(S O(n))$. By arguments being similar to section 3, we see formally that in a compact orientable differentiable manifold of dimension $\leqq m_{0}(M(S O(n)))$, a sum of realizable classes of dimension n with coefficients in Z or Z_{p} is again realizable.

TÔHOKU University
SENDAI, JApAN.

[^0]: 1) See A. H. Copeland Jr., On H-spaces with two non-trivial homotopy groups, Proc. Amer. Math. Soc., Vol. 8 (1957), pp.184-191.
 $2)$ If A is a sphere and if the suspension $E: \pi_{m}\left(A^{\prime}\right) \longrightarrow \pi_{m+1}\left(S A^{\prime}\right)$ is monomorph, then a homotopy multiplicative map $A \longrightarrow A^{\prime}$ is strictly homotopy multiplicative. (See I. M. James, On sphere with multiplication II, Trans. Amer. Math. Soc., Vol. 84 (1957), pp. 545-558, Cor. (5.5).
 According to one of correspondences from Professor E. H. Spanier, Professor P. J. Hilton uses a similar notion called primitive.
[^1]: 3) See J. Milnor, The geometric realization of a semi-simplicial complex, Lecture Note in Princeton Univeresity 1956.
[^2]: 4) R.Thom, Quelques propriétés globales des variétés différentiables, Comm. Math. Helv., Vol. 28 (1954), 17-86, Chap. II.
[^3]: 5) H. Suzuki, On the realization of the Stiefel-Whitney characteristic classes by submanifolds, Tôhoku Math. Journ., Vol. 10 (1958), pp. 91-115, Chap. II.
 6) Professor Thom wrote to the author that the result can be proved directly by a geometrical method.
[^4]: 7) This obstruction is unique, because if k_{5} is primitive, then the induced H-structure of $X^{(3)}$ by that of $X^{(4)}$ is the standard one. See A.H.Copeland Jr., On H-spaces with two non-trivial homotopy groups (Foot-note 1).
