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Abstract

We present an auction algorithm using multiplicative instead of constant weight updates to
compute a (1− ε)-approximate maximum weight matching (MWM) in a bipartite graph with n
vertices and m edges in time O(mε−1 log(ε−1)), matching the running time of the linear-time
approximation algorithm of Duan and Pettie [JACM ’14]. Our algorithm is very simple and it
can be extended to give a dynamic data structure that maintains a (1−ε)-approximate maximum
weight matching under (1) one-sided vertex deletions (with incident edges) and (2) one-sided
vertex insertions (with incident edges sorted by weight) to the other side. The total time time
used is O(mε−1 log(ε−1)), where m is the sum of the number of initially existing and inserted
edges.

1 Introduction

Let G = (U ∪ V,E) be an edge-weighted bipartite graph with n = |U ∪ V | vertices and m = |E|
edges where each edge uv ∈ E with u ∈ U and v ∈ V has a non-negative weight w(uv).

The maximum weight matching (MWM) problem asks for a matching M ⊆ E that attains the
largest possible weight w(M) =

∑
uv∈M w(uv). This paper will focus on approximate solutions to

the MWM problem. More specifically, if we let M∗ denote a maximum weight matching of G, our
goal is to find a matching M such that w(M) ≥ (1− ε)w(M∗) for any small constant ε > 0.

Matchings are a very well studied problem in combinatorial optimization. Kuhn [13] in 1955
published a paper that started algorithmic work in matchings, and presented what he called the
“Hungarian algorithm” which he attributed the work to Kőnig and Egerváry. Munkres [15] showed
that this algorithm runs in O(n4) time. The running time for computing the exact MWM has been
improved many times since then. Recently this year, Chen et al. [6] showed that it was possible to
solve the more general problem of max flow in O(m1+o(1)) time.

For (1− ε)-approximation algorithms for MWM in bipartite graphs, Gabow and Tarjan in 1989
showed an O(m

√
n log(n/ε)) algorithm. Since then there were a number of results for different

running times and different approximation ratios. The current best approximate algorithm is by Duan
and Pettie [8] which computes a (1−ε)-approximate maximum weight matching in O(mε−1 log(ε−1))
time with a scaling algorithm. We defer to their work for a more thorough survey of the history on
the MWM problem.

We show in our work that the auction algorithm for matchings using multiplicative weights can
give a (1− ε)-approximate maximum weight matching with a running time of O(mε−1 log(ε−1)) for
bipartite graphs. This matches the best known running time of Duan and Pettie [8]. However, in
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comparison to their rather involved algorithm, our algorithm is simple and only uses elementary
data structures. Furthermore, we are able to use properties of the algorithm to support two dynamic
operations, namely one where vertices are deleted from one side and one where vertices of the other
side of the bipartite graph are inserted together with their incident edges.

1.1 Dynamic matching algorithms.

Dynamic weighted matching. There has been a large body of work on dynamic matching
and many variants of the problem have been studied, e.g, the maximum, maximal, as well as
α-approximate setting for a variety of values of α, both in the weighted as well as in the unweighted
setting. See [10] for a survey of the current state of the art for the fully dynamic setting. We just
mention here a few of the most relevant prior works. For any constant δ > 0 there is a conditional
lower bound based on the OMv conjecture that shows that any dynamic algorithm that returns the
exact value of a maximum cardinality matching in a bipartite graph with polynomial preprocessing
time cannot take time O(m1−δ) per query and O(m1/2−δ) per edge update operation [11]. For
general weighted graphs Gupta and Peng [9] gave the first algorithm in the fully dynamic setting with
edge insertions and deletions to maintain a (1− ε)-approximate matching in O(ε−1

√
m logwmax)

time, where the edges fall into the range [1, wmax].

Vertex updates. By vertex update we refer to updates that are vertex insertion (resp. deletion)
that also inserts (resp. deletes) all edges incident to the vertex. There is no prior work on maintaining
matchings in weighted graphs under vertex updates. However, vertex updates in the unweighted
bipartite setting has been studied. Bosek et al. [4] gave an algorithm that maintains the (1 − ε)-
approximate matching when vertices of one side are deleted in O(ε−1) amortized time per changed
edge. The algorithm can be adjusted to the setting where vertices of one side are inserted in the
same running time, but it cannot handle both vertex insertions and deletions. Le et al. [14] gave an
algorithm for maintaining a maximal matching under vertex updates in constant amortized time
per changed edge. They also presented an e/(e− 1) ≈ 1.58 approximate algorithm for maximum
matchings in an unweighted graph when vertex updates are only allowed on one side of a bipartite
graph.

We give the first algorithm to maintain a (1− ε)-approximate maximum weight matching where
vertices can undergo vertex deletions on one side and vertex insertions on the other side in total
time O(mε−1 log(ε−1)), where m is the sum of the number of initially existing, inserted, and deleted
edges. It assumes that the edges incident to an inserted vertex are given in sorted order by weight,
otherwise, the running time increases by O(log n) per inserted edge.

1.2 Linear Program for MWM

The MWM problem can be expressed as the following linear program (LP) where the variable xuv
denotes whether the edge uv is in the matching. It is well known [17] that the below LP is integral,
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that is the optimal solution has all variables xuv ∈ {0, 1}.

max
∑
uv∈E

w(uv)xuv

s.t.
∑

v∈N(u)

xuv ≤ 1 ∀u ∈ U

∑
u∈N(v)

xuv ≤ 1 ∀v ∈ V

xuv ≥ 0 ∀uv ∈ E

We can also consider the dual problem that aims to find dual weights yu and yv for every vertex
u ∈ U and v ∈ V respectively.

min
∑
u∈U

yu +
∑
v∈V

yv

s.t. yu + yv ≥ w(uv) ∀uv ∈ E
yu ≥ 0 ∀u ∈ U
yv ≥ 0 ∀v ∈ V

1.3 Multiplicative weight updates for packing LPs

Packing LPs are LPs of the form max{cTx | Ax ≤ b} for c ∈ Rn≥0, b ∈ Rm≥0 and A ∈ Rn×m≥0 . The LP
for MWM is a classical example of a packing LP. The multiplicative weight update method (MWU)
has been investigated extensively to provide faster algorithms for finding approximate solutions1 to
packing LPs [1,5,12,16,18,19]. Typically the running times for solving these LPs have a dependence
on ε of ε−2, e.g. the algorithm of Koufogiannakis and Young [12] would obtain a running time of
O(mε−2 log n) when applied to the matching LP.

The fastest multiplicative weight update algorithm for solving packing LPs by Allen-Zhu and
Orecchia [1] would obtain an O(mε−1 log n) running time for MWM. Very recently, work by Bat-
tacharya, Kiss, and Saranurak [3] extended the MWU for packing LPs to the partially dynamic
setting. When restricted to the MWM problem means the weight of edges either only increase or only
decrease. However as packing LPs are more general than MWM, these algorithms are significantly
more complicated and are slower by log n factors (and worse dependence on ε for [3]) when compared
to our static and dynamic algorithms.

We remark that our algorithm, while it uses multiplicative weight updates, is unlike typical
MWU algorithms as it has an additional monotonicity property. We only increase dual variables on
one side of the matching.

1.4 Auction Algorithms

Auction algorithms are a class of primal dual algorithms for solving the MWM problem that view
U as a set of goods to be sold, V as a set of buyers. The goal of the auction algorithm is to

1By approximate solution we mean a possibly fractional assignments of variables that obtains an approximately
good LP objective. If we find such an approximate solution to MWM, fractional solutions need to be rounded to
obtain an actual matching.
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find a welfare-maximizing allocation of goods to buyers. The algorithm is commonly attributed
Bertsekas [2], as well as to Demange, Gale, and Sotomayor [7].

An auction algorithm initializes the prices of all the goods u ∈ U with a price yu = 0 (our choice of
yu is intentional, as prices correspond directly to dual variables), and has buyers initially unallocated.
For each buyer v ∈ V , the utility of that buyer upon being allocated u ∈ U is util(uv) = w(uv)− yu.
The auction algorithm proceeds by asking an unallocated buyer v ∈ V for the good they desire that
maximizes their utility, i.e. for uv = arg maxu∈N(v) util(uv). If util(uvv) < 0, the buyer remains
unallocated. Otherwise the algorithm allocates uv to v, then increases the price yu to yu + ε. The
algorithm terminates when all buyers are either allocated or for every unallocated buyer v, it holds
that util(uvv) < 0. If the maximum weight among all the edges is wmax, then the auction algorithm
terminates after O(nε−1wmax) rounds and outputs a matching that differs from the optimal by an
additive factor of at most nε.

1.5 Our contribution

We present the following modification of the auction algorithm:

When v is allocated u, increase yu to yu + ε · util(uv) instead of yu + ε.

Note that this decreases util(v) by a factor of (1− ε) and, thus, we will call algorithms with this
modification multiplicative auction algorithms. Surprisingly, we were not able to find any literature
on this simple modification. Changing the constant additive weight update to a multiplicative weight
update has the effect of taking much larger steps when the weights are large, and so we are able to
show that the algorithm can have no dependence on the size of the weights. In fact, we are able to
improve the running time to O(mε−1 log(ε−1)), the same as the fastest known matching algorithm
of Duan and Pettie [8]. While the algorithm of [8] has the advantage that it works for general graphs
and ours is limited to bipartite graphs, our algorithm is simpler as it avoids the scaling algorithm
framework and is easier to implement.

Theorem 1.1. Let G = (U ∪ V,E) be a weighted biparitite graph. There is a multiplicative auction
algorithm running in time O(mε−1 log(ε−1)) that finds a (1 − ε)-approximate maximum weight
matching of G.

Furthermore, it is straightforward to extend our algorithm to a setting where vertices on one
side are deleted and vertices on the other side are added with all incident edges given in sorted order
of weight. When the inserted edges are not sorted by weight, the running time per inserted edge
increases by an additive term of O(log n) to sort all incident inserted edges.

Theorem 1.2. Let G = (U ∪ V,E) be a weighted bipartite graph. There exists a dynamic data
structure that maintains a (1− ε)-approximate maximum weight matching of G and supports any
arbitrary sequence of the following operations

(1) Deleting a vertex in U

(2) Adding a new vertex into V along with all its incident edges sorted by weight

in total time O(mε−1 log(ε−1)), where m is sum of the number of initially existing, and inserted
edges.
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2 The static algorithm

We assume that the algorithm is given as input some fixed 0 < ε′ < 1.

Notation For sake of notation let N(u) = {v ∈ V | uv ∈ E} be the set of neighbors of u ∈ U in
G, and similarly for N(v) for v ∈ V .

Preprocessing of the weights. Let wmax > 0 be the maximum weight edge of E. For our static
auction algorithm we may ignore any edge uv ∈ E of weight less than ε′ ·wmax/n as w(M∗) ≥ wmax
as taking n of these small weight edges would not even contribute ε′ ·w(M∗) to the matching. Thus,
we only consider edges of weight at least ε′ · wmax/n, which allows us to rescale all edge weights by
dividing them by ε′ ·wmax/n. As a result we can assume (by slight abuse of notation) in the following
that the minimum edge weight is 1 and the largest edge weight wmax equals n/ε′. Furthermore, since
we only care about approximations, we will also round down all edge weights to the nearest power of
(1 + ε) for some ε < ε′/2 and, again by slight abuse of notation, we will use w to denote these edge
weights. Formally to round, we define iLog(x) = blog1+ε(x)c and Round(x) = (1 + ε)iLog(x).

Let kmax = iLog(wmax) = iLog(n/ε′) = O(ε−1 log(n/ε)). Let kmin be the smallest integer such
that (1 + ε)−kmin ≤ ε. Observe that as log(1 + ε) ≤ ε for 0 ≤ ε ≤ 1 it holds that

kmin ≥
log(ε−1)

log(1 + ε)
≥ ε−1 log(ε−1).

Thus we see that kmin = Θ(ε−1 log(ε−1)).

Algorithm. The algorithm first builds for every v ∈ V a list Qv of pairs (i, uv) for each edge uv
and each value i with −kmin ≤ i ≤ juv = iLog(wuv) and then sorts Qv by decreasing value of i.
After, it calls the function MatchR(v) on every v ∈ V . The function MatchR(v) matches v to
the item that maximizes its utility and updates the price yu according to our multiplicative update
rule. While matching v, another vertex v′ originally matched to v may become unmatched. If this
happens, MatchR(v′) is called immediately after MatchR(v).
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Algorithm 2.1: MultiplicativeAuction(G = (U ∪ V,E))

M ← ∅.
yu ← 0 for all u ∈ U .
jv ← kmax for all v ∈ V # This is only used in the analysis
Qv ← ∅ for all v ∈ V .
For v ∈ V :

1. For u ∈ N(v):

(a) juv ← iLog(w(uv))

(b) For i from juv to −kmin:
i. Insert the pair (i, uv) into Qv.

2. Sort all (i, uv) ∈ Qv so elements are in non-increasing order of i.

For v ∈ V :

1. MatchR(v).

Return M .

MatchR(v)

While Qv is not empty:

1. (j, uv)← the first element of Qv, and remove it from Qv.

2. jv ← j # This is only used in the analysis

3. util(uv)← w(uv)− yu

4. If util(uv) ≥ (1 + ε)j :

(a) yu ← yu + ε · (util(uv)) # util(uv)← (1− ε) · util(uv)

(b) If u was matched to v′ in M :

• Remove (u, v′) from M

• Add (u, v) to M
• MatchR(v′)

(c) Else:

• Add (u, v) to M
• Return

Data structure. We store for each vertex v ∈ V the list Qv as well as its currently matched edge
if it exists. In the pseudocode below we keep for each vertex v a value jv corresponding to the
highest weight threshold (1 + ε)jv that we will consider. This value is only needed in the analysis.
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Running time. The creation and sorting of the lists Qv takes time O(|N(v)|(kmax + kmin))
if we use bucket sort as there are only kmax + kmin distinct weights. The running time of all
calls to MatchR(v) is dominated by the size of Qv, as each iteration in MatchR(v) removes
an element of Qv and takes O(1) time. Thus, the total time is O

(∑
v∈V |N(v)|(kmax + kmin)

)
=

O(m(kmax + kmin)) = O(mε−1 log(n/ε)).

Invariants maintained by the algorithm. Consider the following invariants maintained through-
out by the algorithm:

Invariant 2.1. For all v ∈ V , and all u ∈ N(v), util(uv) = w(uv)− yu ≤ (1 + ε)jv+1.

Proof. This clearly is true at the beginning, since jv is initialized to kmax, and

util(uv) = w(uv) < (1 + ε)juv+1.

As the algorithm proceeds, util(uv) which equals w(uv) − yu only decreases as yu only increases.
Thus, we only have to make sure that the condition holds whenever jv decreases. The value jv only
decreases from some value, say j + 1, to a new value j, in MatchR(v) and when this happens Qv
does not contain any pairs (j′, uv) with j′ > j anymore. Thus, there does not exist a neighbor u of
v with util(uv) ≥ (1 + ε)j+1. It follows that when jv decreases to j for all u ∈ N(v) it holds that
util(uv) < (1 + ε)jv+1.

Invariant 2.2. If uv ∈M , then for all other u′ ∈ N(v), util(uv) ≥ (1− 2ε) · util(u′v).

Proof. When v was matched to u, right before we updated yu, we had that (1 + ε)jv ≤ util(uv)
and, by Invariant 2.1, util(u′v) ≤ (1 + ε)jv+1. Thus, (1 + ε)util(uv) ≥ util(u′v). The update of
yu decreases yu by ε · util(uv), which decreases util(uv) by a factor of (1− ε), but does not affect
util(u′v). Thus we have now that:

util(uv) ≥ (1− ε)(1 + ε)−1 · util(u′v) ≥ (1− 2ε) · util(u′v).

Invariant 2.3. If u ∈ U is not matched, then yu = 0. If uv ∈M , then yu > 0.

Proof. If u is never matched, we never increment yu, so it stays 0. The algorithm increments yu by
ε · util(uv) > 0 when we add uv into the matching M .

Invariant 2.4. For all v ∈ V for which MatchR(v) was called at least once, either v is matched,
or Qv is empty.

Proof. MatchR(v) terminates (i) after it matches v and recurses or (ii) if Qv is empty. It is possible
that for some other v′ ∈ V with v′ 6= v, that v becomes temporarily unmatched during MatchR(v′),
but we would immediately call MatchR(v) to rematch v.

7



Approximation factor. We will show the approximation factor of the matching M found by
the algorithm by primal dual analysis. We remark that it is possible to show this result purely
combinatorially as well which we include in Appendix A, as it may be of independent interest. We
will show that this M and a vector y satisfy the complementary slackness condition up to a 1± ε
factor, which implies the approximation guarantee. This was proved by Duan and Pettie [8] (the
original lemma was for general matchings, we have specialized it here to bipartite matchings).

Lemma 2.1 (Lemma 2.3 of [8]). Let M be a matching and let y be an assignment of the dual
variables. Suppose y is a valid solution to the LP in the following approximate sense: For all
uv ∈ E, yu + yv ≥ (1 − ε0) · w(uv) and for all e ∈ M , yu + yv ≤ (1 + ε1) · w(uv). If the y-values
of all unmatched vertices are zero, then M is a

(
(1 + ε1)

−1(1− ε0)
)
-approximate maximum weight

matching.

This lemma is enough for us to prove the approximation factor of our algorithm.

Lemma 2.2. MultiplicativeAuction(G = (U ∪ V,E)) outputs a (1− ε′)-approximate maximum
weight matching of the bipartite graph G.

Proof. Let ε > 0 be a parameter depending on ε′ that we will choose later. We begin by choosing an
assignment of the dual variables yu for u ∈ U and yv for v ∈ V . Let all yu’s be those obtained by the
algorithm for u ∈ U . For v ∈ V , let yv = 0 if v is not matched in M and yv = util(uv) = w(uv)− yu
if v is matched to u in M . By Invariant 2.3 all unmatched vertices u ∈ U have yu = 0.

Observe that for uv ∈M we have yu+yv = util(uv). It remains to show that for uv 6∈M we have
that yu + yv ≥ (1− ε0)w(uv) for some ε0 > 0. First we consider if v is unmatched, so yv = 0. Since
v is unmatched, by Invariant 2.4 then for all u ∈ N(v), we must have util(uv) < (1 + ε)−kmin ≤ ε.
Since we rescaled weights so that w(uv) ≥ 1, we know that util(uv) < ε ≤ ε · w(uv). Furthermore,
observe that as yu = w(uv)− util(uv) by definition of utility, it follows that:

yu + yv = yu = w(uv)− util(uv) > (1− ε)w(uv). (1)

Now we need to consider if v was matched to some vertex u′ 6= u. To do so we use Invariant 2.2:

yu + yv = yu + util(u′v) By definition of y
≥ yu + (1− 2ε) · util(uv) By Invariant 2.2
= yu + (1− 2ε) · (w(uv)− yu) By definition of util
≥ (1− 2ε)w(uv) + 2ε · yu
≥ (1− 2ε)w(uv) Since yu ≥ 0

Thus we have satisfied Lemma 2.1 with ε0 = 2ε and ε1 = 0. Setting ε = ε′/2 gives us a (1 − ε′)-
approximate maximum weight matching.

Thus we have shown the following result that is weaker than what we have set out to prove by a
factor of log(nε−1) that we will show how to get rid of in the next section.

Theorem 2.3. Let G = (U ∪ V,E) be a weighted biparitite graph. There exists a multiplicative
auction algorithm running in time O(mε−1 log(nε−1)) that finds a (1− ε)-approximate maximum
weight matching of G.
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2.1 Improving the running time

To improve the running time to O(mε−1 log(ε−1)), we observe that all we actually need for Lemma 2.2
in Equation (1) is that util(uv) ≤ ε · w(uv). Recall that juv = iLog(w(uv)). Thus it suffices if we
change line (b) in MultiplicativeAuction to range from juv to juv − kmin, since:

(1 + ε)juv−kmin = (1 + ε)−kmin · (1 + ε)juv ≤ ε · w(uv).

This change implies that we insert O(kmin|N(v)|) items into Qv for every v ∈ V . However, sorting
Qv for every vertex individually, even with bucket sort, would be too slow. We will instead perform one
bucket sort on all the edges, then go through the weight classes in decreasing order to insert the pairs
into the corresponding Qv. We explicitly give the pseudocode below as MultiplicativeAuction+.

Algorithm 2.2: MultiplicativeAuction+(G = (U ∪ V,E))

M ← ∅.
yu ← 0 for all u ∈ U .
Qv ← ∅ for all v ∈ V .
Li ← ∅ for all i from −kmin to kmax.
For uv ∈ E:

1. juv ← iLog(w(uv))

2. For i from juv to juv − kmin:

(a) Insert the pair (i, uv) into Li.

For i from kmax to −kmin:

1. For all (i, uv) ∈ Li:

(a) Insert the pair (i, uv) to the back of Qv.

For v ∈ V :

1. MatchR(v).

Return M .

New runtime. Bucket sorting all mkmin pairs and initializing the sorted Qv for all v ∈ V takes
total time O(mkmin + (kmax + kmin)) = O(mε−1 log(ε−1)). The total amount of work done in
MatchR(v) for a vertex v ∈ V is O(|N(v)|kmin) which also sums to O(mε−1 log(ε−1)). Thus we
get our desired running time and have proven our main theorem that we restate here.

Theorem 1.1. Let G = (U ∪ V,E) be a weighted biparitite graph. There is a multiplicative auction
algorithm running in time O(mε−1 log(ε−1)) that finds a (1 − ε)-approximate maximum weight
matching of G.
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3 Dynamic algorithm

There are many monotonic properties of our static algorithm. For instance, for all u ∈ U the yu
values strictly increase. As another example, for all v ∈ V the value of jv strictly decreases. These
monotonic properties allow us to extend MultiplicativeAuction+ to a dynamic setting with the
following operations.

Theorem 1.2. Let G = (U ∪ V,E) be a weighted bipartite graph. There exists a dynamic data
structure that maintains a (1− ε)-approximate maximum weight matching of G and supports any
arbitrary sequence of the following operations

(1) Deleting a vertex in U

(2) Adding a new vertex into V along with all its incident edges sorted by weight

in total time O(mε−1 log(ε−1)), where m is sum of the number of initially existing, and inserted
edges.

Type (1) operations: Deleting a vertex in U . To delete a vertex u ∈ U , we can mark u as
deleted and skip all edges uv in Qv for any v ∈ V in all further computation. If u were matched to
some vertex v ∈ V , that is if there exists an edge uv ∈ M , we need to unmatch v and remove uv
from M . All our invariants hold except Invariant 2.4 for the unmatched v. To restore this invariant
we simply call MatchR(v).

Type (2) operations: Adding a new vertex to V along with all incident edges. To add
a new vertex v to V with ` incident edges to u1v, ..., u`v with w(u1v) > · · · > w(u`v), we can create
the queue Qv by inserting the O(ε−1 log(ε−1)) pairs such that it is non-increasing in the first element
of the pair. Afterwards we call MatchR(v). All invariants hold after doing so.

If the edges are not given in sorted order, we can sort the ` edges in O(` log `) time, or in
O(`+ ε−1 log(w(u1v)/w(u`v))) time by bucket sort.
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A Combinatorial proof of Lemma 2.2

We start with a simple lemma.

Lemma A.1. Let G = (U ∪ V,E) be a weighted bipartite graph. Let M be the matching found by
MultiplicativeAuction+(G) for ε > 0, and M ′ be any other matching. Then for any alternating
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path, i.e. a set of edges of the form u1v1, u2v1, u2v2, ..., ukvk, uk+1vk with all edges of uivi ∈M ′
and ui+1vi ∈M , we have that:

(1− 2ε) ·
k∑
i=1

w(uivi) ≤
k∑
i=1

w(ui+1vi) + (1− 2ε) · yu1 − yuk+1

Proof. By Invariant 2.2, for all i from 1 to k, since M matched vi+1 to ui we have that:

(1− 2ε)util(uivi) ≤ util(uivi+1)

Adding all such equations together we get

(1− 2ε) ·
k∑
i=1

util(uivi) ≤
k∑
i=1

util(uivi+1)

(1− 2ε) ·
k∑
i=1

(w(uivi)− yui) ≤
k∑
i=1

(
w(ui+1vi)− yui+1

)
(1− 2ε) ·

(
k∑
i=1

w(uivi)−
k∑
i=1

yui

)
≤

k∑
i=1

w(ui+1vi)−
k∑
i=1

yui+1

(1− 2ε) ·
k∑
i=1

w(uivi) ≤
k∑
i=1

w(ui+1vi) + (1− 2ε) · yu1 − yuk+1

Theorem A.2. Let G = (U ∪ V,E) be a weighted bipartite graph and ε′ > 0 be an input parameter.
Let M be the matching found by MultiplicativeAuction+(G) with ε = ε′/2. M is a (1− ε′)-
approximate maximum weight matching of the bipartite graph G.

Proof. Let M∗ be a maximum weight matching of G. Consider the symmetric difference of M with
M∗. It consists of paths and and even cycles. It suffices to show that the weight obtained by M on
the path or even cycle is at least (1− ε) the weight of M∗. We consider the following cases:

1. Consider any even cycle u1v1, u2v1, u2v2, ..., ukvk, u1vk with uivi ∈M∗ for all i = 1, ..., k and
the other edges in M . Applying Lemma A.1 with uk+1 = u1, and by Invariant 2.3 yu1 > 0 as
u1 is matched gives:

(1− 2ε) ·
k∑
i=1

w(uivi) ≤
k∑
i=1

w(ui+1vi) + (1− 2ε)yu1 − yu1 <
k∑
i=1

w(ui+1vi).

2a. Consider any even length path u1v1, u2v1, u2v2, ..., ukvk, uk+1vk with uivi ∈ M∗ for all
i = 1, ..., k and the other edges in M . By Invariant 2.3 u1 is unmatched in M so yu1 = 0, and
uk+1 is matched so yuk+1

> 0. Applying Lemma A.1 gives:

(1− 2ε) ·
k∑
i=1

w(uivi) ≤
k∑
i=1

w(ui+1vi) + (1− 2ε) · 0− yuk+1
<

k∑
i=1

w(ui+1vi).
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2b. Consider any odd length path u1v1, u2v1, u2v2, ..., ukvk, uk+1vk, uk+1, vk+1 with uivi ∈M∗
for all i = 1, ..., k and the other edges in M . Since vk is unmatched in M , we have that
w(uk+1vk+1) − yuk+1

= util(uk+1vk+1) ≤ εw(uk+1vk+1). Rearranging, we get that yuk+1
≥

(1 − ε)w(uk+1vk+1) > (1 − 2ε)w(uk+1vk+1). Adding this equation to Lemma A.1, and by
Invariant 2.3 we have yu1 = 0, so:

(1− 2ε) ·
k+1∑
i=1

w(uivi) <
k∑
i=1

w(ui+1vi) + (1− 2ε) · yu1 =
k∑
i=1

w(ui+1vi).

2c. Consider any even length path u0v1, u1v1, u2v1, u2v2, ..., ukvk, uk+1vk with uivi ∈M∗ for all
i = 1, ..., k and the other edges inM . By Invariant 2.2, w(u1v0)−yu0 ≥ (1−2ε)(w(u1v1)−yu1),
Adding this inequality to what we get when we apply Lemma A.1 to the path starting at u1v1,
and remarking that u0 and uk+1 are matched so Invariant 2.3 applies gives:

(1− 2ε) ·
k+1∑
i=1

w(uivi) ≤
k∑
i=0

w(ui+1vi)− yu0 − yuk+1
<

k∑
i=1

w(ui+1vi).

In all cases we achieve (1− 2ε) the weight of M∗. We may choose ε such that ε = ε′/2, then the
theorem holds.
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