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Abstract

For a Banach space X, we show how the existence of a norm-
one element u in X and a norm-one continuous bilinear mapping
f: X x X — X satisfying f{z,u) = f(u,z2) =z for all z in X,
together with some more intrinsic conditions, can be utilized to
characterize X as a member of some relevant subclass of the class
of Banach spaces.

0 Introduction

Some Banach spaces arise naturally enjoying the following property:
they are endowed with a norm-one (continuous bilinear) product to-
gether with a distinguished norm-one element which acts as a unit for
that product. This is the case for example for the Banach space L{X)
of all bounded linear operators on any Banach space X, or the Banach
space C(£2) of all continuous complex-valued functions on any Hausdorff
compact topological space 2. In the first case the product is nothing
but the composition of elements of L(X) as mappings on X, and the
distinguished element is the identity operator on X. In the second

case the product is the one defined point-wise and, consequently,
the distinguished element is the constant function equal to one on §2.
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In this paper we deal with partial sides of the next two questions:

Question 1. How abundant are the Banach spaces satisfying the prop-
erty commented above?

Question 2. If a Banach space X enjoys the property we are con-
sidering, can this property (together with some more intrinsic ones) be
utilized to characterize X as a member of some relevant subclass of the
class of Banach spaces?

We are aware of the ambiguity of both questions, and we must rec-
ognize that there is not a well-organized theory relative to them. How-
ever, in some particular directions, there are interesting answers to the
questions that will be either reviewed (if they are previously known) or
presented with a proof (if they are new). Most of these results arise in
the setting of Hilbert spaces and Banach spaces of the form C((2).

1 The case of Hilbert spaces: known results

By a product on a Banach space X we mean a continuous bilinear map-
ping from X x X into X. A product f on the Banach space X will be
called unit-admissible if there exists a (unique) norm-one element (say u)
in X satisfying f(u,z) = f(z,u) = z for all z in X. When the element
u above should be emphasized (for instance, if « is previously prefixed)
we will say that the product f is u-admissible. Now, Question 1 can be
rephrased in the following terms: how abundant are the Banach spaces
admitting a norm-one unit-admissible product?. If we restrict the ques-
tion to complex Hilbert spaces, the following partial answer becomes
really disappointing,

Proposition 1.1 Let H be a compler Hilbert space, and assume there
erists a norm-one unit-admissible Associative product on H. Then H
i3 one-dimensional.

For the case of real Hilbert spaces the situation is not much more
promising.

Proposition 1.2 Let H be a real Hilbert space, and assume there ezxists
¢ norm-one unit-admissible Associative product on H. Then H has
dimension 1, £, or 4.
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Propositions 1.1 and 1.2 are due to L. Ingelstam (see [I; Corollary
2] and [I2], respectively). Because of the simplicity of their assertions,
they are quite famous and, consequently, they are known in the literature
as “the (complex and real, respectively) Ingelstam theorems”. In fact
the original formulation of Ingelstam’s real theorem precisely determines
up to algebraic isomorphisms the norm-one unit-admissible associative
product whose existence is assumed (depending of course of the dimen-
sion, cf. Theorem 1.8 below) in such a way that Proposition 1.1 can be
regarded as a consequence of Proposition 1.2.

Thinking again about the restriction of Question 1 to Hilbert spaces
we could expect that, if in Ingelstam’s theorems we drop the assumption
of associativity for the product, then less obstructive results can be
obtained. In the real case this idea becomes completely successful, as
the following observation shows.

Observation 1.3 Every non-zero real Hilbert space has norm-one unit-
admissible products. More precisely, for every non-zero real Hilbert space
H and for every norm-one element w in H, the mapping f from H x H
inte H defined by

flzy)=(=|vyt(yle)e—(z]|yu
is a norm-one u-admissible product on H.

Proof. (a particular easy case of the proof of [R2; Proposition 24]). Let
H,u, and f be as in the statement. Clearly f is an u-admissible product
on H and therefore, as for every unit-admissible product on any Banach
space, we have || f ||> 1. To prove the converse inequality, let =,y be in
H, and decompose z and y in the form z = Au + z and y = pu + ¢ with
A, 4 in R and z,t in the orthogonal complement of Ru in H. Then we
have f(z,y) = [Ap — (2 | t)]u + At + pz, hence

7 G y) 1P Do — (2 | )7+ A+ pz ||P=
e R AR Bl B2 R Tl (PR
<SAZEH 2 PN 2 X2 e 112+l 2 1P=
=%+ 2 It 1D =M= Py 2.
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To study what happens if in Ingelstam’s complex theorem we drop
the assumption of associativity of the product we need a celebrated
result of H. F. Bohnenblust and S. Karlin [BK]. The statement of the
Bohnenblust-Karlin theorem involves the concept of a vertex of (the
closed unit ball of) a given Banach space. By definition a vertez of a
Banach space X is a norm-one element of X which is not a smooth
point in any two-dimensional subspace of X containing it. Thanks to
the Hahn-Banach theorem, this can be equivalently reformulated in the
following more familiar (but also more technical) way. For a Banach
space X and a norm-one element u in X denote by D(X,u) the set of
all states of X relative to u, namely

D(X,u) = {p € X* : ¢(u) = 1= ¢ |}.

Then u is a vertex of X if and only if the conditions z € X and ¢(z) = 0
for all ¢ in D(X, u) imply z = 0.

Proposition 1.4 (Bohnenblust-Karlin theorem). Let X be a complex
Benach space, and u be a norm-one element in X. If there erxists a
norm-one u-admissible Associative product on X, then u is a vertex
of X.

Since vertices cannot be smooth points except for the case of one-
dimensional spaces, and Hilbert spaces are smooth at any point of their
unit spheres, it follows that Ingelstam’s complex theorem (Proposition
1.1) is a direct consequence of the Bohnenblust-Karlin theorem (Propo-
sition 1,4). This is really curious because the second result is seven
years older than the former. The above comment does not mean any
criticism to L. Inglestam, who in [I] not only knows and enlarges in
several directions the Bohnenblust-Karlin theorem, but also reproves it,
and obtains his complex therem as an almost immediate corollary. The
Bohnenblust-Karlin theorem is not only stronger than Ingelstam’s com-
plex one, but also conceptually easier to “unassociativize”, as we show
in the next result.-

Theorem 1.5 (“non-associative Bohnenblust-Karlin theorem”). Let X
be a compler Banach space, and u be a norm-one element in X. If there
exists a norm-one u-admissible product on X, then u is a vertezx of X.

Proof. [MMPR). Let f denote the norm-one u-admissible product on X
whose existence has been assumed, and for = in X consider the bounded
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linear operator L on X defined by L{(y) := f(z,y) for all y in X. Easily
we see that the mapping ® : z — L from X into L(X) is a linear
isometry sending u to the identity mapping (say Ix) on X. Therefore
u is a vertex of X if and only if Iy is a vertex of ®(X). But, by the
(associative) Bohnenblust-Karlin theorem, I'x is a vertex of L(X), and
the vertex property is clearly hereditary.

From the incompatibility of the vertex property with the smoothness
we obtain:

Corollary 1.6 (multiplicative characterization of the complex field).
Let X be a compler Banach space admitting a norm-one u-admissible
product for some (norm-one) smooth point v in X. Then X = €.

As a consequence, we see that, contrarily to what happens in the
real case, Ingelstam’s complex theorem remains true if the assumption
of associativity of the product is dropped.

Corollary 1.7 (“non-associative Ingelstam’s complex theorem”). Let
H be a complex Hilbert space, and assume there ezists ¢ norm-one unit-
admissible product on H. Then H = (.

In removing the associativity in Ingelstam’s complex theorem we
have been obliged to pass through more general results replacing Hilbert
spaces by Banach spaces possessing a point of smoothness. Ingelstam’s
real theorem has been also extended in this direction:

Theorem 1.8 Let X be a real Banach space admitling a norm-one u-
admissible Associative product for some smooth point v in X. Then X
has dimension 1, 2 or 4. More precisely, every norm-one u-admissible
associative product on X conwverts X into an algebraic and isemelric
copy of either R, € or H (the algebra of Hamilton quaternions).

It seems rather difficult to settle the paternity of the above theorem.
A proof is given in {St2] (1963) under the additional assumption that X
is finite-dimensional. Without any restriction on the dimension of X,
the theorem is a direct consequence of [I3; Remark in p. 234] (1964) and
[I; Example 3(c)] (1962). However, concerning the proof, the remark in
{I3] sounds rather imprecise. According to our news, the first complete
proof and explicit formulation of Theorem 1.8 arise in [St3] (1966) and,
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since then, it has been rediscovered several {imes (see for example [BD]
and [Sp]).

From Observation 1.3 we know that associativity cannot be removed
in the first assertion of Theorem 1.8. This [act is really fortunate because
it grants the life to the next theorem first proved in [R2] and reproved
later, with relevant simplifications, in [R4].

Theorem 1.9 (multiplicative characterization of real Hilbert spaces).
A non-zero real Banach space X is a Hilbert space if (and only if), for
some (equivalently, every) norm-one element u in X, X i3 smooth at u
and there exists a norm-one u-admissible product on X. Moreover, if I
i8 a non-zero real Hilbert space, and if u 15 a norm-one element in H,
then the mapping f from H X H into H defined by

flzy)i= (2 |w)y + (| vz — (= | y)u

18 the unique norm-one u-admissible commutative product on H.

Note that, if X is a Banach space, if z is a norm-one element in X,
and if X has a norm-one u-admissible product (say f), then X also has
a norm-one u-admissible commutative product, namely the mapping

(@) = 5 7@y + 7, 2)

from X x X into X. Taking this into account, Theorem 1.8 can be
deduced from the above theorem by applying Frobenius’ theorem (see
[EHHKMNPR]). It is easy to verify that, if H is a real Hilbert space, if
u is a morm-one element in #, and if f denotes the unique nerm-one u-
admissible commutative product on H, then, except for Dim({H) = 2, the
centre of the algebra (H, f) reduces to the real multiples of u. Therefore
Corollary 1.6 is also a consequence of Theorem 1.9.

The characterization of real Hilbert spaces given by Theorem 1.9 has
been improved later in [R6], by replacing the assumption of existence
of norm-cne u-admissible products by a simple “numerical” condition.
Let X be a Banach space and v be a norm-one element of X. We define
the multiplicative index m(X,u) of the couple {X,u) as the infimum
of the set of numbers of the form || f || when f runs over the set of
all v-admissible products on X. Note that we can always construct
u-admissible products on X with relatively small norm. For instance,
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choosing a state of X relative to u (say ¢), the mapping f from X x X
into X defined by

f(z,y) = ¢(z)y + o(v)x — ¢(z)o(v)u

is an u-admissible (associative and commutative) product on X satisfy-
ing || f |I< 3. According to this we have 1 < m(X,u) <3.

Theorem 1.10 |[R6] (approximately multiplicative characterization of
real Hilbert spaces). A non-zero real Banach space X is a Hilbert space
if (and only if), for some (equivalently, every) norm-one element v in
X, X is smooth at u and m(X,u) = 1.

We conclude this section by referring the reader to some works not
previously quoted but that are closely related to the material reviewed
above. These are [B], [BD?2], [CZ], [F|, [L], [N}, [S], [St], and [Z}. Con-
cerning the Bonsall-Duncan monograph [BD2], the reader can find in it
rather stronger versions of Proposition 1.4 and Theorem 1.8 (see [BD2;
Theorem 4.1] and [BD2; Theorem 5.16}, respectively).

2 The case of Hilbert spaces: new results

The proof given in [R6] of the approximately multiplicative characteriza-
tion of real Hilbert spaces provided by Theorem 1.10 consists essentially
of techniques of duality theory: it is shown that all conditions assumed
for X in that theorem are also satisfied by its bidual X** with the ad-
vantage that the “approximate” requirement m(X,u) = 1 converts into
the “exact” fact that X** has a norm-one u-admissible product. In this
way the proof is concluded by applying Theorem 1.9. Very recently we
observed that an alternative reduction of the “approximate” case to the
“exact” one can be made replacing the duality theory by the methods
of Banach ultraproducts. We happily realized that the new techiques
are more appropriate than the old ones, allowing to improve the result
itself. Such an improvement will be proved in this section.

First of all we briefly summarize those aspects of the theory of ultra-
products needed for our purpose, referring the reader to the paper of S.
Heinrich [H} for deeper information about the topic. Given an ultrafilter
U on a non-empty set I and a family {X;},;.; of Banach spaces, we may

£
consider the Banach space GBI X £oo -sum of this family and the closed
i<
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subspace Ny ofEXi given by Ny := < {z:} € EXT; 2 limy || 25 1= 0}.
The (Banach) ultraproduct of the family {X;},.; (with respect to the ul-
trafilter ) is defined as the quotient Banach space (X;)y = (%éo X))/ Nuy.
If we denote by (z;) the element in (X;);; containing a g;\fén family
{zi} € EX,:, then it is easy to verify that | (zs) [|= by || 24 ||. I, for

all ¢ in I, X; is equal to a given Banach space X, then the ultraproduct
(Xi)u is called the ultrapower of X (with respect to &) and is denoted by

£
Xy In this case EBI X, is nothing but the familiar Banach space B(I, X)
i€ - '

of all bounded mappings from I to X, and the mapping ¢ — & from X
into Xy, where £ = (z;) with z; = z for all i in I, becomes an isometric
linear embedding.

Let X be a Banach space and u be a norm-one element of X. For z
in X, the numerical range V (X, u, z) of z relative to u is defined by

V(X,u,z) == {¢(z) : ¢ € D(X,u)},

-1
the number lim M

(which always exists because the map-
a—0t (4]

ping o —|| ¥4+ oz || from R to R is convex) is usually denoted by
7(u, ), and it is well-known that the equality

r{u,z) = Maz{Re{)\) : A € V(X,u,z)}

holds (see for example [DS; Theorem V.9.5]). We say that the norm
, -1
of X is strongly subdifferentiable at u if lim Tutoc)-1
o o
uniformly for z in the closed unit ball of X. The reader is referred to
the paper of C. Franchetti and R. Paya [FP] for a comprehensive view of
the usefulness of the strong subdifferentiability of the norm in the theory
of Banach spaces. Concerning our purpose, we only need the “only if
part” of the next proposition that, by the way, is not collected in the
Franchetti-Paya paper.

= 7(u,x)

Proposition 2.1 [AOPR]. Let X be a Banach space, and u be a norm-
one element in. X . Then the norm of X is strongly subdifferentiable at v
if and only if, for every non-emply set I and for every bounded mapping
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® from I to X, the equality

V(B(I,X),u¥,8) = W@ U V(X,u,2(i))

holds (where €O denotes closed convez hull and u¥ stands for the constant
mapping equal tou on I).

Let X,Y be Banach spaces, u,v norm-one elements in X and Y,
respectively, and F be a linear contraction from X to Y satisfying
F(u) = v. Then it is easy to show that, for all z in X, the inclu-
sion V(Y,v, F(z)) C V(X,u,z) is true. Since quotient mappings are
linear contractions, this applies successfully to directly derive the next
corollary from Proposition 2.1.

Corollary 2.2 Let U be an ultrafilter on a non-empty set I, X a Banach
space, and u be a norm-one element in X. If the norm of X is strongly
subdifferentiable at u, then, for every (x;) in the ultrapower Xy, we have

V(X @, (21)) €& U V(X u,24).
T

Corollary 2.3 Let U be an ultrafilter on ¢ non-empty set I, X a Banach
space, and u be a norm-one element in X. If X i3 smooth at u, and if
the norm of X strongly subdifferenciable at u, then Xy is smooth at i

Proof. Let (z;) be an arbitrary element in Xz. Denoting by ¢ the
unique state of X relative to u, for each ¢ in I we can decompose z; in
the form z; = Aju + y; with A; in the base field K (= R or €) and y; in
Ker(¢), so that {A\;};.; and {;},-; are bounded families of elements of
K and X, respectively. Since V(X,u,y;) = {0} for all i in I, Corollary
2.2 gives V(Xy, 4, (v:)) = {0}. Writing A := limy A, we have (z;) =
At + (y:), hence

V{(Xy, &, (24)) = 2+ V(Xy, 4, (1)) = A+ {0} = {A}.

In this way we have proved that the numerical range of every element
of Xy relative to 4 is a singleton. In other words, Xy is smooth at .

Again let X be a Banach space and u be a norm-ome
element of X. We define the small multiplicative indez sm(X,u) of the
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couple (X,u) as the infimum of the set of numbers of the form
Max{ﬂ FIAHN L —Ix 1+ | RE — Ix ||} when f runs over the set

of all products on X. Here, for a given product f on X, L and R,{
denote the operators on X given by z ~— f(u,z} and z — f(z,u),
respectively, and Ix stands for the identity on X. We clearly have
1 < sm(X,u) £ m(X,u), so that the improvement of Theorem 1.10
we are obtaining will consist in replacing in that theorem the condition
m(X,u) = 1 by the formally weaker one sm(X,u) = 1. Note that
m(X,u) = 1 means that for every ¢ > O there exists an u-admissible
product f on X with || f ||< 1+ ¢, whereas sm({X,u) = 1 means that
for every ¢ > 0 there exists a product f on X with || f ||< 14 ¢ which
need not be u-admissible but only “nearly” u-admissible in the sense
that Mez{|| f(u,z) — = ||, || fz.u)~z [} <e| f| for all z in X.

It is known that, if there exists a norm-one u-admissible product on
X, then the norm of X is strongly subdifferentiable at u (see [MMPR;
Proposition 4.5] together with [AOPR; Theorem 5.1}). Our next propo-
sition improves this result and even the generalization obtained in [RS;
Corollary 2.5] where the assumption of existence of norm-one u-admis-
sible products on X is replaced by m(X,u) = 1.

Proposition 2.4 Let X be a Banach space, and u be ¢ norm-one element
in X. If sm(X,u) =1, then the norm of X is strongly subdifferentiable
at u. If in addition X is complez, then u is a vertez of X.

Proof. For each natural number n, choose a product f,, on X satisfying
| fo IS 1+ % and Mez{|| fa(u,z) —z .| folz.u)—z [} < & |z for
all z in X, and choose also an ultrafilter ¢/ on the set IV of all natural
numbers refining the Fréchet filter (off all cofinite subset of V). Then
it is easy to see that

((zn); (yn)) — (fr(zn, yn))

becomes a {well-defined) norm-one 1#admissible product on the ultra-
power Xy Therefore the norm of Xy is strongly subdifferentiable at %"
and, if X is complex, then ¢ is a vertex of Xy (Theorem 1.5). Since
the vertex property and the strong subdifferentiability of the norm are
hereditary conditions, also the norm of X is strongly subdifferentiable
at 4 and, in the complex case, 4" is a vertex of X. Finally recall that
X is an isometric copy of X.
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Now we state and conclude the proof of the main result in this sec-
tion.

Theorem 2.5 A non-zero real Banach space X is a Hilbert space if (and
only if), for some (equivalently, every) norm-one element v in X, X is
smooth at u and sm(X, u) = 1.

Proof. Let X be a real Banach space containing a smooth point u
which satisfies sm(X,u) = 1. By Proposition 2.4 and its proof we know
that the assumption sm(X,u) = 1 implies the existence of some ultrafil-
ter U such that the corresponding ultrapower Xy, possesses a norm-one
i—admissible product, and therefore the norm of X is strongly subdif-
ferentiable at u. Since X is smooth at u, it follows from Corollary 2.3
that Xy, is smooth at . Now Theorem 1.9 gives us that X, is a Hilbert
space. In view of the natural embedding X — Xz, X is also a Hilbert
space.

We conclude this section by applying the methods of ultraproducts
to improve the last assertion in Theorem 1.9. This improvement implies
that, if H is a non-zero real Hilbert space and if u is a norm-one ele-
ment in H, then the product f in Observation 1.3 is not only the unique
norm-one u—admissible commutative product on H (cf. Theorem 1.9)
but also a (clearly unique) product on H with the property that se-
quences {fn} of commutative products on H satisfying {|| fn |} — 1
and {|| L{» — Ix [|} — 0 are norm-convergent to f (as a consequence,

sequences {fn} of u—admissible commutative products on H satisfying
{ll fa I} — 1 are also non-convergent to f). For the proof we must
take into account that the class of Hilbert spaces is closed under ultra-
products. Indeed, if { X;},.; is a family of Banach spaces, and if for each
i in I the norm of X; derives from a inner product (- | -);, then the norm
of the ultraproduct (X;)ys derives from the inner product (- | -) given by

(i) | () = limpe(zs | vi)s-

Theorem 2.6 For each £ > 0 there exists § > 0 such that, for every
non-zero real Hilbert space H, for every norm-one element u in H, and
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for every commutative product g on H satisfying | ¢ ||[< 1+ 6 and
| L ~ Iy ||< 6, we have | g — f |< &, where [ denotes the (norm-one
u—admissible commutative) product on H given by

f(zy) = (z|w)y+ (y|u)z — (= |y)u

Proof. First of éll, we recall the result we are extending, namely: given
a non-zero real Hilbert space H and a norm-one element u in H, there
exists a unique norm-one u—admissible commutative product f on H,
and this is given by the equality at the end of the statement of the theo-
rem. Now assume the theorem is not true. Then there exists € > 0 such
that, for each n in IN we can find a Hilbert space Hy, together with
norm-one elements un,vn,wnin H, and a commutative product
gn on Hy, satisfying | gn | < 1 + %, | L —Ix | < 2, and
| gn(vn, wn) — fn(va, wn) ||> €, where f,, denotes the unique norm-one
n—admissible commutative product on H,,. If we choose an ultrafilter i
on the set IV of all natural numbers refining the Fréchet filter, then we re-
alize that ((zn); (yn)) — (gn(2n, yn)) and ((zn), (¥n)) — (fn(Zn, ¥n))
are (well-defined} norm-one (u,)—admissible commutative products on
the ultraproduct {Hy)y. Since (Hyp)y is a Hilbert space, the uniqueness
of such products gives us that, for all (zy), (¥n) in (Hn)u, the equality
(grn(Zn; yn)) = (fa(Zn,¥n)) is true. As a consequence, we have

timss | (s ) ~ Ja(oms wn) = 0.
But this is incompatible with the condition

[| gn(vn, wn) — frlvn, wn) |2 € for all n in IV.
in the choice of the sequences {v,} and {wn}.

Corollary 2.7 For each € > 0 there exists & > 0 such that, for every
non-zero real Hilbert space H, for every nom-one element u in H, and
for every u—admissible commutative product g on H satisfying || g || <
1+ 6, we have || g— f ||< &, where f denotes the product on H given by

fzy)=(|uy+ @lu)z -~ (z|yu.
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Theorem 2.6 can be rephrased in the following terms.

Theorem 2.6 (bis) There exists an increassing function p, from the
set of all non-negative real numbers into itself, continuous at zero, with
p(0) = 0, and such that, for every non-zero real Hilbert space H, for
every norm-one element u in H, and for every commutative product g
on H, we have

lg—fI<o(Maz{llgll -1, L — In |}),

where f denoles the product on H given by
Flay) = (z |u)y +(y | vz — (x| y)u

Of course, we could state a “Corollary 2.7 bis”, replacing in Theorem
2.6 bis commutative product by u—admissible commutative product and,
consequently, the inequality || g — f ||< p(Maz{] g || -1, || L& — Ix ||})
by the one | g — f || < o(lf ¢ || -1).

3 The case of spaces C({2): known results

The natural examples of Banach spaces possessing norm-one unit-admis-
sible products that we provided in the introduction, namely L(X) (X,
any Banach space) and C(?) (©?, any Hausdorff compact topological
space), are not totally independent. Actually, up to isometric unit-
preserving algebra isomorphisms, the Banach algebras C(f2) are nothing
- but the norm-closed self-adjoint commutative subalgebras of L({H) con-
taining 7y, when H runs in the class of all complex Hilbert spaces. In
one direction this is straightforward: given the Hausdorff compact space
2, we can build the complex Hilbert space H := £2(f) (of all families
of complex numbers {)\:},. satisfying tgn | A+ 1< oo0) and identify

each element z in C(Q) with the (bounded linear) operator ¥ on H
given by z#({A:}) := {z(¢)A:}, obtaining in this way that the mapping
z — z# from C(Q) to L(H) is an isometric unit-preserving algebraic
homomorphism. In the converse direction our assertion above is the
famous “commutative Gelfand-Naimark theorem”.

Norm-closed selfadjoint subalgebras of L{H'}, for some complex Hil-
bert space H, are usually known in the literature with the name of
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C*—algebras. In view of the fact commented in the above paragraph,
characterizations and properties of spaces C(f2) are often obtained as
specializations of more general results for unital C*—algebras. Let us
therefore briefly review the nice geometric characterization of unital
C*—algebras obtained by T. W. Palmer [P] and known in the litera-
ture as “the Vidav-Palmer theorem”.

Let X be a complex Banach space, and u be a norm-one element
in X. We denote by H(X,u) the closed real subspace of X consisting
of all elements h in X satisfying V (X, u,h} C R. The Vidav-Palmer
theorem asserts that X is the Banach space of a C*—algebra with unit
u if and only if X = H(X,u) + itH(X,u) and there exists a norm-one
u—admissible associative product on X. If this is the case, then each
norm-one u—admissible associative product on X converts X' into a
C*—algebra. The Vidav-Palmer theorem, together with a famous result
of M. H. Stone on unit-preserving isometries of the spaces C(f2}, implies
the next proposition.

Proposition 3.1 Let X be a complez Banach space, and u be a norm-
one element in X. Then X = C(Q) and u is the constant function
equal to one on 2 (for some Heusdorff compact space ) if and only
if X = H(X,u) + iH(X,u) and there ezists a norm-one u—odmissible
associative and commutative product on X. Moreover, if this is the
case, then there is a unique norm-one u—admissible associative and
commutative product on X.

Now the questior is if in the above proposition the associativity
and/or. the commutativity can be either altogether dropped or at least
replaced by more intrinsic conditions. It is clear that both require-
ments cannot be simultaneously dropped (take X equal to the Banach
space of a not commutative unital C*—algebra). In presence of asso-
ciativily, commutativity can be in fact “numerically” settled. This is
a consequence of a result of T. Huruya [Hu| on “numerical indices” of
C*—algebras.

Let X be a Banach space, and « be a norm-one element in X. For
z in X, the numerical radius of = relative to u, v(X,u,x), is defined by

v(X,u,z) = Maz{| A |: » € V(X,u,z}},

and the numerical indez of X relative to u, n(X, u), is the number given
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by
n(X,u) = Maz{r>0: r |z ||<v(X,u,z), forallz in X}.

Now, if X is a Banach space (no norm-one element in X is distin-
guished), then we define the Banach space numerical indez of X, N(X),
by the equality

N(X) :=n(L(X), Ix).

Huruya’s theorem asserts that the Banach space numerical index of a.
C*—algebra Ais 1 or % depending on whether or not A is commutative.
Therefore we have:

Proposition 3.2 Let X be a complez Banach space, and u be a norm-
one element in X. Then X = C(Q?) and u is the constant function
equal to one on Q (for some Hausdorff compact space Q) if and only
if X = H(X,u) + iH(X,u), N(X) = 1, and there exrists ¢ norm-one
u—admissible associative product on X. Moreover, if this is the case,
then there i3 a unique norm-one u—admissible associative product on
X.

Since the date of Huruya's paper |Hu|, much work has been done in
the field of non-associative Banach algebras, showing in particular that
the associativity in the above proposition is completely superfluous [R].
Even, according to [R; Corollary 32], the condition N(X:) = 1 above can
be alternatively replaced by the one n(X,u) = 1 that, in our context,
is conceptually weaker (note that all numerical indices are less than
or equal to 1, and that, if X is a Banach space, if u is a norm-one
element in X, and if there exists a norm-one u—admissible product on
X (say f), then, in view of the isometric embedding  — L£, we
have N(X) = n{L(X), Ix) € n(X,u)). Therefore we have the following
“multiplicative characterization of the spaces C((1)”.

Theorem 3.3 Let X be a complex Banach space, and u be a norm-
one element in X. Then X = C(S}} and u is the constant function
equal to one on  (for some Hausdorff compact space Q) if and only if
X = H(X,u)+iH(X,u), there exists a norm-one u—admissible product
on X, and either N(X) = 1 or n(X,u) = 1. Moreover, if this is the
case, then there is a unigue norm-one u—admissible product on X

Very recently, the above theorem has been improved in the spirit of
Theorem 1.10,
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Theorem 3.4 [R8] (approximately multiplicative characterization of
spaces C(Q2)) Let X be a complex Banach space, and u be ¢ norm-one
element in X. Then X = C(Q) and u is the constant function equal
to one on Q) (for some Hausdorff compact space Q) if and only if X =
H(X,u)-+iH(X,u), m(X,u) = 1, and either N(X) =1 orn(X,u) = L.

From the material reviewed until now in this section, the reader can
have felt that neither Theorem 3.4 non even Theorem 3.3 would have
seen the light if a general non-associative Vidad-Palmer type theorem
would not have been obtained. Such a feeling is completely right. But,
what can be expected about the assertions in such a theorem.
In other words, which are the pon-associative counterparts of unital
C*—algebras ?.

In trying to answer this question it could be interesting to notice that,
from the point of view of the theory of Banach spaces, the associative
product of a unital C*—algebra is not much interesting: unit-preserving
surjective linear isometries between unital C'*—algebras need not be al-
gebra isomorphism. However, a celebrated theorem of R. V. Kadison
{K] (extending the one of Stone quoted above) asserts on the contrary
that the symmetrization z - y := §(zy + yz) of the associative product
zy of a C*—algebra is “unit-spacially” determined. If the C*—algebra
is not commutative, then the new product is not associative: it is of
course commutative, but satisfies only the “nearly associative” condi-
tion z2- (y-z) = (z2-y)-z. It turns out that every C*—algebra endowed
with this new product is a Jordan algebra. Moreover, the characteristic
property || z*z ||=|| = || of C*—algebras (“non-commutative Gelfand-
Naimark theorem” [DF]) is equivalent to the one || zz*z ||=| = I® and,
fortunately, this last equality can be “jordanized”. Indeed, for elements
z,y in any associative algebra, the equality

syr=2z-(y-z) -2’y

holds. With some effort, even the remaining conditions involving the
associative product in the intrinsic Gelfand-Naimark characterization
of C*—algebras, namely (zy)* = y*z* and || zy |<|| = |} v ||, also
“jordanize” [R3]: they are equivalent to the ones (x - y)* = y* - 2* and
fz-yli<h=zllyl

Following a suggestion of I. Kaplansky [Ka2], it is therefore rea-
sonable to consider, as geometric objects extending C*—algebras, the
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so called JB*—algebras. JB*—algebras are defined as those complete
normed complex Jordan algebras J with a conjugate-linear algebra in-
volution * satisfying || Uz(z*) |=|| = ||2 for all z in J, where U, means
the operator on J defined by

Um(y):=2:c-(y-a:)—952-y

for all y in J. Replacing the associative product by the “Jordan” prod-
uct, every C*-algebra becomes a JB*—algebra. More examples of
J B*—algebras (called JC*—algebras) can be obtained from C*—algebras
by taking *-invariant norm-closed subspaces which are closed under the
Jordan product. The space of all symmetric 2 x 2 complex matrices (re-
garded as operators on the 2-dimensional complex Hilbert space) is the
easiest example of a JC*—algebra which is not a C*—algebra endowed
with its Jordan product. However, there exist JB*—algebras which are
not JC*—algebras [W].

Spesking about JB*—algebras, it is worth to mention their close re-
lation to the question of the classification of bounded symmetric domains
in complex Banach spaces. We will not enter this side of the theory of
JB*—algebras, but we refer the interested reader to the fundamental
work of W. Kaup [Kau], the crucial Corollary 2 in [FR], [BKU} and [U].

Rougly speaking, the structure theory for JB*—algebras (see
(W], [FGR] and {R7]) shows that the enlargement obtained replac-
ing C*-algebras by JB*—algebras is not too big. Therefore, it would
seem rather surprising that, replacing C*—algebras by JB*—algebras,
the condition of associativity in the Vidav-Palmer theorem could be
completely removed. However, this is true, as the next theorem shows.

Theorem 3.5 Let X be a complex Banach space, and u be e norm-one
element in X. Then X is the Banach space of a JB*— algebra with unit
u if and only if X = H(X,u) + iH(X,u) and there exists a norm-one
u—admissible product on X. Moreover, if this is the case, then there is
a unique norm-one u—admissible commautative product on X.

It follows that, if X is a complex Banach space, if © a norm-one
element in X, if f is a norm-one u—admissible commutative product on
X, and if X = H(X,u) + tH(X, u), then X, endowed with the product
f, becomes a JB*—algebra. This is “the non-associative Vidav-Palmer
theorem” [R2|. Now, the uniqueness of such a product f is one of the
main results in [WY] (see also [KMR; Lemma 6]). The non-associative
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Vidav-Palmer theorem obtained in {R2] is the culmination of a relatively
wide collection of papers, namely [Bo}, [Y], [Y2], [M], [R] and [KMR].

Since associative JB*—algebras and commutative C*—algebras are
the same, Theorem 3.3 is a direct consequence of Theorem 3.5 and the
fact proved in [R] that the numerical index of a unital JB*—algebra J
relative to its unit is 1 or % depending on whether or not J is associative.
In the same way, Theorem 3.4 follows from the next result.

Theorem 3.6 [R8] Let X be a complez Banach space, and u be a norm-
one element in X. Then X is the Banach space of a JB*—algebra with
unit u if and only if X = H(X,u) +iH(X,u) and m(X,u) = 1.

4 The case of spaces C({2): new results

In a similar way as Theorem 1.10 was proved in [R6] from Theorem 1.9
(see the comment at the beginning of Section 2), Theorem 3.6 has been
derived in [R8] from Theorem 3.5 by reducing the approximate case to
the exact one by means of rather more involved techniques of duality
theory. After the success shown by ultraproduct methods in improving
Theorem 1.10 (see Theorem 2.5), we retake here these methods in order
to obtain a similar improvement of Theorem 3.6. As a consequence, we
will réfine the approximately multiplicative characterization of spaces
C(Q) given by Theorem 3.4. ‘

Theorem 2.6, which in the context of Section 2 is merely anec-
dotic, in our present situation has a parallel that is crucial for our
purpose. We state it in the next theorem, which improves [R8; The-
orem 1.2] in several directions. Taking into account the uniqueness of
the norm-one u--admissible commutative product on any J B*—algebra
with unit u (Theorem 3.5) and the almost obvious fact that the class
of JB*—algebras is closed under ultraproducts, the proof is the same as
that of Theorem 2.6, and therefore we omit it.

Theorem 4.1 For each € > 0 there exists § > 0 such taht, for every
JB*—algebra J with unit u, and for every commutative product g on J
satisfying | g |<1+6 and || L — I ||< 6, we have || g— f ||< €, where
f denotes the JB*—product of J.

As happened with Theorem 2.6, the above theorem admits a “bis”
version, as well as direct suggestive corollaries, whose statements are left
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to the reader. To obtain a new (equally direct) corollary, we introduce
the adequate notation.

Let X be a Banach space, u a norm-one element in X, and S be a
non-empty subset of X. We denote by sm(X, u, §) the infimum of the set
of numbers of the form Ma:r.{” FUA VB —Ix |, 1+ | RE— Ix |
when f runs over the set of all products on X satisfying £(S5,9) C S.
A simple argument of symmetrization gives us that, in computing the
above infimum, it is enough to move the variable f into the set of all
commutative products on X satisfying f{S,5) C S.

Corollary 4.2 Let J be a JB*—algebra with unit u, and S be a non-
empty norm-closed subset of J satisfying sm(X,u,S) = 1. Then S is
closed under the JB*—product of J.

Proposition 4.3 Let U be an ultrafiller on a non-empty set I, X a
complez Banach space, and u be a norm-one element in X . If the norm
of X is strongly subdifferentiable at u, if u is a vertex, and if X =
H(X,u)+iH(X,u), then Xyy = H(Xy,4) +iH (Xy, ).

Proof. First note that the vertex property for u implies H{(X,u) N
iH(X,u) = {0}, hence, since H(X,u) isclosed in X and X = H(X,u)+
iH(X,u), we actually have X = H(X,u) ® iH(X,u) in a topological
meaning. Let (z;) be an arbitrary element in X For each i in I we
can decompose z; in the form z; = y; + i2; with y; and z; in H(X, u),
so that, by the above, the families {yi},.; and {zi},c; are bounded and
satisfy (x;) = (yi) + i(2:). Finally, since the norm of X is strongly
subdifferntiable at u, a direct application of Corollary 2.2 gives us that
(y:) and (z;) belong to H(Xy ,4).

Now we are ready to state and conlude the proof of the main result
in this section.

Theorem 4.4 Let X be a complex Banach space, and u be_a norm-one
element in X. Then X is the Banach space of J B*—algebra with unit u
if and only if X = H(X,u) + iH(X,v) and sm(X,u) = 1.

Proof. Assume X = H(X,u)+iH(X,u) and sm(X,u) = 1. By Propo-
sition 2.4 and its proof, there exists an ultrafilter I such that the ultra-
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power Xy, has a norm-one 1 —~admissible product, u is a vertex of X, and
the norm of X is strongly subdifferentiable at u. Then, by Proposition
4.3, we have

Xy = H(Xy,u)+iH(Xyw),

and hence Theorem 3.5 gives us that Xy endowed with a suitable prod-
uct becomes a JB*—algebra with unit . Retakig the assumption
sm{X,u) = 1, for each ¢ > 0 we can find a product f on X satisfying

Maz{|l £ I, 1+ | 1L — Ix I, 1+ RE - Ix I} < 1+,

and, by “ultraproducing” such an f in the familiar way

((ze), () — (f(zi,93))»

we obtain a product f~on Xy satisfying
Maz (|| £l 14 ) Do I 1 1 | RS T, < 1 e

and f1X,X) C X. Of course we are viewing X as closed subspace
of Xy via the canonical embedding. It follows that sm(Xyd, X ) =1,
hencé, by Corollary 4.2, X is a subalgebra of the J B*—algebra Xy.
In other words, the restriction of the JB*—product of Xy to X is a
norm-one u—admissible commutative product on X, so that, since X =
H(X,u) + iH(X,u), again by Theorem 3.5, X is a JB"—algebra with
unit u for this product.

Remark 4.5 In the above proof, the last application of Theorem 3.5 can
be avoided. Indeed, once we know that X is a norm-closed subalgebra
of the JB*—algebra Xy, to see that X is a JB*—algebra with unit
it is enough to show that X is *—invariant in Xz But this is almost
straightforward from the well-known geometric characterization of the
J B*—involution on any JB*—algebra J with unit 1: for = in J, written
in the form z = h + ik for suitable k, k in H(J,1), we have z* = h — ik.
The particularizatioﬁ of this fact for C'*—algebras was the inspiration in
the search of the Vidav-Palmer theorem [V].
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In the same way as Theorem 3.3 can be derived from Theorem 3.5
(see the comment before Theorem 3.6), we can apply Theorem 4.4 to
obtain the announced refinement of Theorem 3.4.

Corollary 4.8 Let X be a complexr Banach space, and u be a norm-
one element in X. Then X = C(2) and u is the constant function
equal to one on  (for some Hausdorff compact space ) if and only
if X = H(X,u) +iH(X,u), sm(X,u) = 1, and either N(X) = 1 or
n(X,u)=1.

We conclude this section with a not difficult consequence of Theorem
4.1. The proof is left to the reader, who can take as a hint that, if X
and Y are Banach spaces, if F' is a bounded linear bijection from X to
Y, and if f is a product on Y, then (z1,z0) — F[f(F(z1), F(x2))}]
becomes a product on X.

Corollary 4.7 For each € > 0 there exists § > 0 such that, for all
JB*—algebras J and K with units u and v, respectively, and for every
bounded linear bijection F' from J to K satisfying | F ||| F~L||<1+6
and || F(u) —v ||< 6, e have

| F(z1-=2) = F(z1) - Flza) |[< ez ||| z2 |

for all 1,20 in X.

The above “approximate” version of the “unit-spacial” determina-
tion of the JB*—product on every JB*—algebra [WY]| can be applied
to C*~algebras (endowed with their Jordan products) and in particular
to the algebras C(f2), providing “approximate” versions of the results of
Kadison and Stone already quoted.

5 Some complements

This section will be a miscellany. It is devoted to obtain new results
related to the material early developed in the paper.

We begin by improving Ingelstam’s complex theorem (Proposition
1.1) in a direction different from the multiplicative characterization of
the complex field obtained in Corollary 1.6. Precisely, our result is the
following.

Theorem 5.1 Let H be a complex Hilbert space with Dim(H) > 2, and
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u be @ norm-one element in H. Then, for every u—admissible product
f on H, we have

I £ 11> e(e? - 1)

Equivalently, m(H v) > e(e? — 1)~1/2,

The tools for the proof of Theorem 5.1 will be the actual non-
associative Bohnenblust-Karlin theorem (a well-known improved version
of Theorem 1.5) and the next lemma.

Lemma 5.2 Let X be a Banach space over the field IK of real or complex
numbers, v a norm-one element in X, and M be a real number with
M > 1. Then the equeality

Im|:=Inf{|)\|+M fz—Au|: e K}

defines an eguivalent norm ll on X satisfying Iul =1 and

Ma.:r{Re()\) A€ VI'I(X,u,:c)} =Inf{Re(up)+ M ||z —pu|: p € K}

to the new norm 8-U. Moreover, if f is any u—admissible product on X
with | f € M, then|f|= 1.

for all x in X, where the symbol V''" means numerical range relative

Proof. That Il is an equivalent norm on X satisfying lul =11is of
straightforward verification. Let z be in X. Since the function

8 — 8+8z— ﬁul from R to R is increasing, we have

Inf{ﬁ+|x—ﬁul : BE R}-— Efg’ (,@+|x—6ul).

B— —oo
The chage of variable 8 = —--}; in the above limit, together with the
equality
bt oel-1
Max{Re()\) A€ VI'I(X,u,x)} = lim u—+——c—¥i——,
a—0t o —
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quoted in Section 2, gives us
Max{Re(A) T AE Vl'I(X,u,:c)} = qu{ﬁ+|w - ﬁul : g€ R}-
Now, the definition of the norm Il, allows us to write
Mam{Re()\) TAE VI'I(X,u, a:)} =

Inf{B+ |v|+M lz—(B+v)u|: BER, vEK}=
Inf{+|u—B|+M|z—pul: PER, p€ K}.

Since, for p in ¥, the equality Inf{8+ |pu—f8|: 8 € R} = Re(u) is
true, we finally have

Ma;r:{Re(,\) A€ VI'I(X, u,:.-:)} = Inf{Re(u) + M ||z —pu ||: p € K}.

Let =,y be in X. Then, for arbitrary A, u in K, we have

If(;':? y)l Sl Ap ‘ +M " f(:l!,y) — Apu “:

A | +M || flo = Au,y — pu) + Ay — pu) + p(z — A [|<
IAN ]+ M2 z=du i fy—pu | +M | X [ y—pu | +M | p |l 22 =
rl+M |z =2u)(al+M lly—pul)

Now, taking infimum in A, u, we obtain If(m,y)l < Iz"yl
|

Let X be a Banach space, and « be a norm-one element in X. The
condition n(X,u) > 0 implies clearly the vertex property for u. As
commented in {[BD2; p.34], Bohnenblust and Karlin actually prove in
their paper [BK] that, if X is complex, and if there exists a norm-
one u—admissible asociative product on X, then n(X,u) > e™'. Then
the proof of Theorem 1.5 shows that this result remains true if the
assumption of associativity of the product is removed. This should we
taken into account in what follows.
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Proof of Theorem 5.1 Let f be an u—admissible product on H, and

consider the equivalent norm II on H given by

L L msgrivq7z=ral: e

forallz in H. B-y Lemma 5.2 we have If I = 1, and therefore n" I(X, u) >

~1. Now choose a norm-one element y in the orthogonal complement

of Cu in H. Then ly' = f || and hence vI'I(X,u, y) > el || £

Multiplying the chosen element y by a unimodular complex number, if
necessary, we may obtain such an y satisfying in addition

II(X u, y) Maa:{Re()\ )\EVI I(X,u,y)}.
Then we invoke Lemma 5.2 to obtain
Hix, o) - Inf{ Re()+ || £ | (14 [ 1 )2 2 p e 0} =

Inf{t+ | 1+ te R}

But a classical study of the function ¢ — ¢+ || f || (1+ t2)1/2 from R to
R shows that it actually attains its minimum at ¢ — —(|| f |2 —=1)~1/2
Therefore

”(X u,y) = (I £I* -1V
If follows (|| 7 |2 =1)Y/2 > e~ ||  ||. Equivalently, || f |> e(e?—1)~1/2.
|

Theorem 5.1 remains true with sm(H,u) instead of m(H,u) when-
ever the number-e(e? — 1)71/2 is replaced by a suitable (unfortunately
unknown) universal constant C > 1. As the reader can suspect, this will
be proved by ultraproduct techniques.

Theorem 5.3 There exists a real number C > 1 such that, for every
complez Hilbert space H with Dim(H) > 2, and for every norm-one
element u in H, we have sm(H,u) > C.
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Proof. Assume the theorem is not true. Then, for each n in IV, we
can find a complex Hilbert space Hy,, mutually orthogonal norm-one
elements g, vy, in Hy, and a product f, on Hy, satisfying || fn < 1+ %
and Maz{l| fu(tn,zn) — zn I, l| Fo(@n,tin) = zn |} < L | za | for all
z, in Hy,. Taking an ultrafilter 24 on the set IV of all natural numbers
which refines the Fréchet filter, ({zn), (yn}) — (fn(zn,yn)) is a norm-
one (uy,)—admissible product on the ultraproduct (Hp)y. Since (Hp)u
is a complex Hilbert space, Corollary 1.6 gives us that {Hyp)y is one-
dimensional. This is a contrdiction because (uy) and (v,) are mutually
orthogonal non-zero elements in (Hy)y.

Let X be a Banach space, and u be a norm-one element
in X. We denote by &(X,u) the diameter of D(X,u)
regarded as a subset of the metric space X*. Note that
8(X,u) = Sup{Diam|V(X,u,z}: z€ X, ||z [|=1}. G. Lummer [L|
proved the existence of a universal constant k£ > 0 such that, if X is real,
if 8(X, u) < &, and if there exists a norm-one u—admissible associative
product on X, then X has dimension 1, 2, or 4 and, more precisely, X
endowed with such a product is algebraically isomorphic to either R,
€ or H. This extension of Theorem 1.8 is reproved (with ultraproduct
techniques) and even improved in the next theorem.

Theorem 5.4 There exists a positive constant k such that, if X is
any real Banach space, if u i3 @ norm-one element in X satisfying
sm(X,u) = 1 and 6(X,u) < k and if f is eny associative product on
X with

Moz {|| § I 1+ | L = Ix I 1+ | RE = Ix I} < 14k,

then X endowed with the product f is algebraicelly isomorphic to R, T,
or IH.

Among other tools, the proof of this theorem needs to lightly improve
the “only if part” of Proposition 2.1 as well as its Corollary 2.2. Since the
proofs of these improvements only involve minor changes in the original
arguments, we omit then. If {X;},c; is a family of Banach spaces, and if,
for each i in I, u; is a norm-one element in X;, then we say that the couple
({Xi}, {u:}) satisfies the uniform property (for the subdifferentiability
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of the norm) whenever

lim | i + ax; ||

= 1{u, x) uniformly for i in 7 and z; in By,
a0t T —

(where, for every Banach space X, Bx denotes the closed unit ball of
X).

Proposition 5.5 Let { X;},.; be a family of Banach spaces, and for each
i I, let u; be a norm-one element in X;. If the couple ({X;}, {ui})

£
satisfies the uniform property, then, for every {z;} in é; X;, the equality
ic

loo _
V(iGE?I Xi, {ui}, {=i}) = <o ig[(Xz': g, Tf)

holds.

Corollary 5.6 Let U be an ultrafilter on o non-empty set I, {X;},c;
be a family Banach spaces, and, for each i in I, let u; be a norm-one
element in X;. If the couple ({X;}, {u:}) satisfies the uniform property,
then, for every (z;) in the ultraproduct (X;)y, we have

V({(Xiu, (ui), (z)) © @ Y V(X ui, ).

Corollary 2.3 has to be rather deeper improved.

Corollary 5.7 Let U be an ultrafilter on a non-empty set I, {X;},c; be
a family of Benach spaces, and, for each i in I, lei u; be a norm-one
element in X;. If the couple ({X;}, {ui}) satisfies the uniform property,
then

6((Xidu, (us)) < limyg 6(X, ui).

Proof. Let (z;) be an arbitrary norm-one element in {X;)i (so that we
may actually assume that || z; |[= 1 for all ¢ in I). For every U in U,
we have (z;) = (y¢), where (y;) denotes the element in {X;)y defined by
¥i = 4, if § € U, and y; = =4, for a fixed ig € U, otherwise. It follows
from Corollary 5.6 that

V{(Xs)u, (wi), (z4)) € @ U V(X5 u5,15) = €0 U V(Xy,u4,23).
iel [i=ts)
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Therefore
Diam[V ((X:)u, (ui), (4))] < Sup {Diam|[V (X ui,z:)} : i €U} <

Sup {6(Xi,ug) 1 i €U},

and, since U is an arbitrary element in I/, we obtain
Diam|V ((Xq)u, (us), (z3)] < Inf{Sup{6(Xs,us) : i €U} : U €U} =

limyy E(Xi, uz ).

Since (z;) is an arbitrary norm-one element in {X;)y, we finally have
5((X:Ju, (us)) < limy 8(Xs, us)-
|

Now, it is also crucial for the proof of Theorem 5.5 the following
Claim.

Claim 5.8 Let {X;};.; be a family of Banach spaces and, for each i in
I, let u; be a norm-one element in X;. If sm{X;,ui) =1 for alliin I,
then the couple ({Xi}, {ui}) satisfies the uniform property.

Proof. We must prove that, for arbitrary £ > 0, there exists § > 0 such
that, for every Banach space X, for every norm-one element u in X with
sm(X,u) = 1, and for every = in the closed unit ball of X, we have

lutozl =1 0 y<e

a

whenever 0 < a < 8. Let us therefore fix ¢ > 0. Then, according
ro the proof of [MMPR; Proposition 4.5}, for every Banach space X,
for every norm-one element u in X such that there exists a norm-one
u—admissible product on X, for every norm-one element y in X with
| ¥ — u < & and for every ¢ in D(X,y), there exists ¥ in D(X,u)
satisfying || ¢ — % ||< . Now, we follow the proof of (i) = (if) in
[AOPR; Theorem 5.1], so that the above fact implies that, for such X
and u, we have

| w+4eaz]—1

@

~7(u,x)<e
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whenever z is in the closed unit ball of X and 0 < « Min{3, %} With
the arguments in the proof of Proposition 2.4, the last assertion remains
true if the assumption of existence of norm-one u—admissible products
on X is replaced by sm(X,u) = 1.

Proof of Theorém 5.4 Again we argue by contradiction. If the the-
orem is not true, then, for each n in IV, we can choose a real Ba-
nach space Xp, a norm-one element u, in Xp with sm(Xp,un) = 1
and 6(Xp,un) < %, and an associative product f, on X, satisfying
| fnll< 14 % and

. 1
Maz{|| fo(un, zn) — x4 Il frlZn, un) —zn 1} < “T'_; | zn

for all z, in Xy, but not converting X, into an algebraic copy of R, €,
or IH. By a theorem of Kaplansky [Ka; Theorem 3.1] (see also [CR]),
this last pathology implies that, again for each n in IV, there exists
norm-one elements vy, wy in X, satisfying | fn{vn, wn) |< % Taking
an ultrafilter & on IV which refines the Fréchet filter, the mapping

[ ((zn), (yn)) B (fn(xm yn))

is a norm-one (u,)—admissible associative product on the ultraprod-
uct (Xp)y. On the other hand, since for all n in IV the conditions
sm(Xn,un) = 1 and 6(Xp,un) < i— are true, Claim 5.8 and Corollary
5.7 show that §({Xn)u, (un)) = 0, and therefore (X, )y is smooth at (uy).
It follows from Theorem 1.8 that (X )y, endowed with the product f, is
an algebraic copy of R, &, or H{. But this is a contradiction because (v,)
and (wp) are non-zero elements in (X, )y satisfying f((vn), (wn)) = 0.

Theorem 5.4, together with Observation 1.3, has the following im-
mediate consequence (compare Proposition 1.2).

Corollary 5.9 Let H be a real Hilbert space of dimension different from
1, 2 and {. Then, for every norm-one element u in H, and for every
associalive product f on H, we have

Moz {|| f I 1+ 1 L = Ix 1+ | RE - 1x |} 2 1+ 5,
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where k denotes the positive universal constant given by Theorem 5.4.
As a consequence, for every norm-one element u in H, and for every
u—admissible associative product on H, the inequality || f |> 1+ k s
true.

Tue associative ingredients in the proof of Theorem 5.4, namely Ka-
plansky’s result in [Ka] and Theorem 1.8, have been extended to the
case of alternative products (see [MM], [CR] and [St3], [N], respectively).
Therefore we have:

Theorem 5.10 There exists a positive constant k such that, if X is
any real Banach space, if v is a norm-one element in X satisfying
sm(X,u) = 1 and 6(X,u) < k, and if f is any alternative product on X
with

Maz {Il £ 1,14} 1L~ Ix 1+ | RE - Ix |} < 14,

then X endowed with the product f is algebraically isomorphism to R,
C, H, or O (the Cayley algebra of real octonions  EHHKMNPR]).

If in Theorem 5.4 (respectively, 5.10) we replace essociative
(respectively, alternative) product by Jordan product, then the finite-
dimensionality of X cannot be expected. Indeed, the norm-one unit-
admissible products constructed in Observation 1.3 on arbitrary non-
zero real Hilbert spaces actually are Jordan products. Therefore, the
result for Jordan products is more involved.

Theorem 5.11 There exisis a positive constant k such that, if X is
any real Banach space, if v is & norm-one element in X satisfying
sm(X,u) = 1 and §(X,u) < k, and if f i3 any Jordan product on X
with

Mas{|| 5 |1+ | L - Ix [} < 1+,
then there exists an inner product (- | -) on X with (u | u) = 1 and
satisfying

flzy) =@ |wy+ )z - (=]
and

Elel< (=122 < s =

forall z,y in X.

Let J be a real Jordan-Banach algebra with a unit 1 satisfying
| 1 |= 1, and let & be the universal positive constant given by the
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above theorem. It follows that, if either the Banach space of J is not
isomorphic to a Hilbert space or the Jordan algebra J is not a division
algebra (relative to the Jacobson notion of inverse [KS; Definition 1]),
then 6(J,1) > k.

Proof of Theorem 5.11 If we replace Kaplansky’s result in [Ka] by
[KS; Theorem 2 and Remark 2|, and Theorem 1.8 by Theorem 1.9, then
minor changes in the proof of Theorem 5.4 gives us the following

Claim There exists a positive constant k' such that, if X is any real
Banach space, if u is a norm-one element in X satisfying sm(X,u) =1
and §(X,u) < k', and if f is any Jordan product on X with

Maz{|l 7 1,14 || LE ~ Ix |} < 1+,
then there is an inner product (- | -) on X satisfying (u | u) =1 and

Fy) = (| vy + (¥ | vz - (z]|y)u

Jorall z,y in X.

We note the changes required in the proof of Theorem 5.4 to obtain
the claim. In the present situation, for n in IV, the product f, is not
associative but Jordan, and, according to [KS; Remark 2 and Theorem
2], the norm-one elements vy, wy, in X, can and must be chosen satisfying
| Ufn(wn) < L instead of || fa(vn, wn) ||< L, where U™ denotes the
familiar operator U,, on the Jordan algebra (X5, fn). Consequently,
the equality f{(vn), (wn)}) = 0 at the end of the proof has to be replaced
by U(fv)n((wn)) = 0. This leads to a contradiction that we explain in
what follows. By Theorem 1.9, (X)u is a Hilbert space and, since the
(un)}—admissible product f on (X,)y is commutative, we must have

F(zn): (vn)) = ((zn) | (ua)} + ((yn) | (wn))(2n) — ((za) | (4n))(un)

for all (xp), {yn) in (X,)y. With this determination of f, the equality
U(J;n)((wn)) = 0 implies either (u,) = 0 or {wy) = 0.

We note also that the condition (x | z)¥2 <|| f ||| = |l, in the
statement of our theorem, is an automatic consequence of the previous
ones (u | u) = 1 and f(z,y) := (z | )y + (v | u)z — (z | y)y (see Remark
5.12 below), and therefore, concerning the proof, can be forgotten.
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Now we formally attack the proof of the theorem. Assume the
theorem is not true. Then, for each n in IV, we may consider the
number kn = Min {k’, %} and apply the claim to obtain a Banach
space Xp, a norm-one element uy, in X, satisfying sm(X,,u,) = 1 and
8{Xn, un) < kn, and an inner product (- | -}, on Xp, with (uy | un)n = 1,
such that, if f,, denotes the product on X,, defined by

fn(zm yn) = (fcn i un)nun + (yn I t""n)'n-"tv'i. - (In | yn)num

then we have || fn [|< 1+ kp and

I falun, zn) — 2n [|< kn |l 25 |l

for all z, in X,, but there is a norm-one element v, in X, satisfying
kn > (vn | vn)/2 Once more, we take an ultrafilter 4 on IV which
refines the Fréchet filter, so that

[ {(zn), (yn)) — (fn(xnayn)')

is a norm-one (u,)—admissible commutative product on the ultraprod-.
uct (Xpn)y, and therefore, as in the proof of Theorem 5.4, (Xj)y is
smooth at (un). By Theorem 1.9, (X, )i is a Hilbert space and

F((@n), (yn)} = ((zn) | (un))yn) + ((¥n) | (wn))(@n) = ((@n) | (¥n))(un)

for all (zy), (yn) in (X5)u. As a consequence,
(2(un | vn)nvn — (vn | vn)ntin) = (falvn, va)) =

f((vn), (vn)) = 2{(un) | (vn))(vn) — ((vn) | (vn))(un)-

But, since kn, > (v | vn)'/? for all n in IV, we have limy(u, | v,) =
limy(vn | ve) = 0. It follows that 2((un) | (va))(vn) = ((vn) | (vn))(un),
that implies either (upn) = 0 or (vn) = 0, a contradiction.

Remark 5.12 It is well known that, if II is an algebra norm on &'

(regarded as a real algebra), then we have | A |< IAI for all A in @@
This is a straightforward consequence of the basic spectiral theory of
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Banach algebras, but can be also proved with elemental tolls (see for
instance [R5; p. 53]). Now let X be a real Banach space, u
a non-zero element in X, and (-|-) be an inner product on
X satisfying (v | u) = 1. Denote by f the mapping from X x X to X
given by f(z,y) := (z | u)y + (v | v)z — (z | y)u, and assume that f is
continuous. Then, for ¥ in X\ Ru, the subspace Y of X generated by
u and y is closed under the product f and, endowed with this product,
converts into a copy of @@ Moreover, in this identification, the mapping
z — {2z | 2)//? from Y to R converts into the usual absolute value on
Since || f |||l - || is an algebra norm on the algebra (Y, f), it follows that
(z | 2)Y2 <}| ||| = || for all z in Y. Therefore, (z | 2 <z
for all = in X.

Now we pass to drastically extend the multiplicative characterization
of the complex field (corollary 1.6) in the spirit of Theorem 5.4, 5.10 and
5.11.

Theorem 5.13 Let X be a complex Banach space with Dim(X) > 2,
and u be a norm-one element in X satisfying sm(X,u) = 1. Then
8(X,u) > 321,

This result will be an easy consequence of the (improved) nonasso-
ciative Bohnenblust-Karlin theorem and the next lemma. For the sake
of completeness, we state and prove the lemma covering also the case of
real spaces.

Lemma 5.14 Let X be a Banach space over the field I of real or
complex number with Dim(X) > 2, and u be a norm-one element in X.
If K = R, then 2n(X,v) < §(X,u). If K = €, then 3"/%n(X,u) <
(X, u).

Proof. it is enough to consider the case n(X,u) > 0. Also note that
numerical ranges of elements of X relative to u are non-empty closed
convex subsets of ). First assume K = R. Since Dim{X) > 2 and
n(X,u) > 0, we can find & norm-one element z in X satisfying that its
numerical range rtelative to u is equal to the closed real interval {—e¢, ¢
for some £ > 0. Then we have

2n(X,u) = 2n(X,v) || = ||£ 2v(X,u,z) =

2e = Diem[V (X, u,z)] < 8(X,u) || z |= 6(X, u).
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Now assume K = € Then there exists a norm-one element z in X
and a positive number £ such that the closed disk with center at zero
an radius ¢ is the smallest closed disk in € containing V(X,u). By [E;
Theorem 49], we have 31/2c < Diem[V (X,u, z)] hence, arguing as in the
real case, we obtain 3/2n(X,u) < §(X,u).

Proof of Theorem 5.13 If actually there exists a norm-one u—admissible
product on X, then, by the extended non-asseciative Bohnenblust-Karlin
theorem, we have n(X,u) > e”!. But the arguments in the proof
of Proposition 2.4 show that this remains true if the assumption of
the existence of norm-one u—admissible products is relaxed to the one
sm(X,u) = 1. Finally, apply Lemma 5.14,

We conclude the paper by determining, for any complex Hilbert space
H, the norm-one unit-admissible products on L{H). Let X be a complex
Banach space, and % be a norm-one element in X. We know that, if there
exists a norm-one u—admissible product on X, then u is a vertex of X
(Theorem 1.5). When X is (the Banach space of) a C'*—algebra, the
converse is also true. Indeed, a C*—algebra A possesses vertices if and
only if it has a unit (say 1) [Sa; Proposition 1.6.1], and, if this is the
case, then the vertices of A are nothing but the unitary elements in 4
(those elements u in A satisfying u*u = uu* = 1) [BK; Example 4.1].
Therefore, if A is a C'*—algebra, and if there exists a vertex u in A, then
A has a unit 1 and, from the obvicus existence of norm-one 1-admissible
products on A, and the fact that the mapping z — uz from A to 4
is a surjective linear isometry sending 1 to u, it follows that there also
exist norm-one u—admissible products on A. More precisely, there is a
natural one-to-one correspondence from the set of norm-one 1-admissible
products on A onto the set of norm-one u-admissible products on A. In
this way, the determination of norm-one unit-admissible products on
C*—algebras centers in the determination of 1-admissible products on
C*—algebras with a unit 1.

Lemma 5.15 Let A be a C*—algebre with a unit 1, and f be a norm-one
1—admissible product on A. Then, for every z,y in A, we have

flz,y)* = f(y*,=*).
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Moreover, for every x in A, the mapping

y — fla,y) - fy,z)
from A to A is a derivation of A.

Proof. Let z be in H(A,1), and y be in A. Then L{ — Rf belongs
to H(L(A),I4) and vanishes at 1. By [Si; Remark 3.5, LL — R{ is a
derivation of A satisfying [(L{ — RL)(w)]* = —(Z{ — R{)(y*). But, by
Theorem 3.5, we have

[f (@ u) + f(y,2)]* = f(z,y") + F¥", z).

Therefore
fzy) = f* )
Now take into account that A = H{A,1) + iH(e,1).

Lemma 5.16 Let A be a@ C*—algebra with a unit, and u, v be non central
unitary elements in A. Then there exists a unitary element w in A
satisfying vw — wu # 0 and vw — wv # 0.

Proof. For x,y in A, denote |z,y] := zy — yx. Since A is the linear

hull of the set of its unitary elements. we may choose unitary elements
t,z in A satisfying [u,t] # 0 and [v,z] # 0. If [v,t] # 0, take w = ¢. If
[u, z} # 0, take w = 2. In the remaining case, take w = ¢z.

Theorem 5.17 Let H be a complez Hilbert space. Then the norm-one
I'y—admissible products on L(H) are the mappings f of the form

flz,y) =azy + (1 ~ a)y=x
for a suitable real number o with 0 < o < L.

Proof. Let f be a norm-one Iy—admissible product on L(H). By
Theorem 3.5, we have

flz,y) + fly,z) = 2y + yx
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for all z,y in L(H). By Lemma 5.15 and [Sa; Theorem 4.1.6], for each
z in L{H), there exists some element 9(z) in L(H) satisfying

f(=,v) - fly,z) = ¥(z)y — y9(=)

for all y in L(H). (Note that, since the center of L(H) reduces to €Ty,
each z in L{H) determines ¥(z) up to a sum of a complex multiple of
Iy). It follows

flzy) = x+;(z)y+yz _;(x)

for all z,y in L(H). By [Sta; Theorem 8], for z in L{H), we have

X
I = 1= ££ fi= sl e+9(@) + Al | + |z~ 0(z) — Mu ||: A €6},
so that, taking a point Xp in € where the function

A —|l 2 +0(@) + Mg | + || 2 — 8(z) — M |

from € to R attains its minimum, and replacing ¥(z) by ¥(z) + Aoly if
necessary, we may assume that the equality

== %(!I z+3(z) [ + || z - 9(=) [))

holds for all x in L(H).

Now, let u be an arbitrary unitary element in L(H). Since u is a
vertex of L{H), and vertices of any Banach space are extreme points of
its closed unit ball, the last equality implies the existence of some real
number a(u) satisfying 0 < a(z) < 1 and u + 9(u) = 20(u)u (hence
u — ¥u) = 2(1 — a(u))u). It follows

flu,y) = a(u)uy + (1 - a(uv))yu

for all y in L(H).

Now since L{H) is the linear hull of the set of its unitary elements,
to conclude the proof it is encugh to show that the number a(u) above
can be chosen the same with independence of the unitary element u
in L(H). To see this, note first that, if such an element u belongs to
€Ty, then every number in the closed real interval [0,1] can be taken as
an admissible value of a{u), whereas, if u is not in €7y, then a(u) is
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uniquely determined by « (again apply that the center of L(H) reduces
to €1yg). Therefore it is enough to prove a{x) = a(v) whenever u and
v are unitary elements in L{H) not belonging to €Ty. Let v and v be
in such a sitnation. Assume {u,v] # 0. Then, by the definition of o, we
have

f(u,v*) = a(u)uv® + (1 — a(u))v'y,
and by Lemma 1.15,

flu,v*) = fv,u*)* = a(v)ur* + (1 — a(v})v*u.

Therefore (a(u) — a(v))[u,v*] = 0, hence a(u) = af(v). Now assume
[u,v] = 0. Then we invoke Lemma 5.16 to obtain a unitary element w
in A with [u,w] # 0 and [v, w] # 0. By the above, a(u) = a(w) = afv).
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