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polynomials of degree n over a g-element field by means of bilinear algorithms. It is shown that Mq(n)=3n —o(n).

In particular, if %< n<qg+1, we establish the tight bound Mq(n)=3n +1-|q/2]. The technique we use can be

applied to analysis of algorithms for multiplication of polynomials modulo a polynomial aswell.
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1. Introduction

Ininfinitefieldsit is possible to compute the coefficients of the product of two polynomials of degree
n in 2n +1 non-scalar multiplications. It is known from [18] that each agorithm for computing the above
product in 2n +1 non-scalar multiplications must evaluate the multiplicands at a minimum of 2n distinct
points, multiply the samples, and interpolate the result. However in finite fields this method fails, if 2n

exceeds the number of field elements. Thus, in general, the above bound cannot be achieved in finite fields.

Let Fy denote the g-element field and let Mq(n) denote the number of multiplications required to
compute the coefficients of the product of two polynomials of degree n over Fy by means of bilinear algo-
rithms. In this paper we prove that for any g we have Mq(n)=3n —o(n). The best lower bound on Mq(n)

known from the literature, cf. [2], [3], [9], [11], and [12], states that M (n) is bounded from below by the

* A preliminary version of this paper was presented at 28th annual |EEE symposium on Foundations of Computer
Science.



minimum length of alinear code over Fy of dimension n +1 and minimal distance n +1,%2 which implies

1
q-1

the following linear lower bounds on Mq(n). Mq(n)=(2+ )n—o(n), if q=3, and, for large values

of n, My(n)=3.52n. However an easy calculation based on the Gilbert-Varshamov upper bound on the
length of linear codes, cf. [14, Theorem 4.7, p. 87] shows that for g =7 there exist linear codes of dimen-

sion n +1, minimal distance n +1 and length 2.9n, say. (Actualy, it is not hard to show that there exists a
linear code of dimension n + 1, minimal distance n +1 and length (2+ O(1nLq))n' Hence the constant fac-

tor of the linear lower bound established in [2], [3], [9], [11] and [12] tendsto 2, when g tends to infinity.)
Thus, if q=7, the 3n —o(n) lower bound cannot be achieved by the previously known technique. For
g =3,4,5 it is unknown whether or not there exist linear codes of dimension n +1, minimal distance n +1,
and length less than 3n; but the best known lower bound on the length of such codes is

1

(2+q_1

)n —o(n). Therefore in these cases the 3n —o(n) lower bound on Mg (n) can be considered as

an improvement of the known one as well. The only case where the 3n —o(n) lower bound is worse than
the bound given by the code length is that of g =2. However, in this case, our technique also alows to

obtain an alternative proof of the known lower bound.
If % <n<q +1, the method we use provides the tight bound of Mq(n)=3n +1-|q/2]. (Asit has

been mentioned earlier, if n s%, then Mg(n)=2n+1.) All these tight bounds are new and cannot be

achieved by the technique based on coding theory.

Although we consider only bilinear algorithms and the lower bound we present is linear, the result
seems to be of interest, since the constant factor of that bound is independent on q, and in view of quasi-
linear upper bound of fq(n)-n, established in [11]. Here f4(n) is a very slowly growing function of n

defined recursively as follows

1 The definitions of alinear code can be found in the end of Section 7.

2 Actualy, the bound established in [9] and [11] concerns the number of multiplications required to compute the
product of two polynomials of degree n modulo an irreducible polynomial of degree n +1. It is unknown whether this
bound follows from the same bound on M, (n), since, unlike in the case of infinite fields, it is unknown whether computing
the product modulo an irreducible polynomial requires less multiplications than computing the product itself, cf. [11]. In
any case the above bound on the number of multiplications required to compute the product of two polynomials modulo an
irreducible polynomial, and even a more general result, can be easily obtained by our method, cf. Corollary 5to Lemma 7
in the end Section 7.



1) fq()=1and fq(2)= 3.
2) f23)=f5(3)=2and (3= 3,if q>3.
3)If n 24, then fq(n)=2f4(lgq2(q - 1)n]).

In fact, the asymptotic behavior of fq(n) is similar to the behavior of the function 2'951, where Iggh isthe

inverse of the function G, (n) defined recursively by G4(0)=q and Gq(n +1)=q%,

It is known from [16] that if a set of bilinear forms over an infinite field can be computed in t
multiplications/divisions, then it can be computed in t multiplications by a bilinear algorithm whose total
number of operations differs from that of the original one by a factor of a small constant. But it is
unknown whether a similar result holds for finite fields. However one can easily prove that bilinear algo-
rithms for computing a set of bilinear forms are optimal within the algorithms without divisions. Also we
would like to note that al the agorithms for polynomia multiplication over finite fields known from the

literature are bilinear, cf. [11] and [15].

The proofs are based on the theory of linear recurring sequences and an analysis of Hankel matrices®
representing bilinear forms defined by linear combinations of the coefficients of the product of two polyno-
mials. This technique can be also applied to analysis of algorithms for multiplication of polynomials

modulo a polynomial.

The paper is organized as follows. In the next section we give the statements of the main results. In
Section 3 we introduce some notation and definitions, and prove the major auxiliary technical lemmas. The
proofs of the main results are presented in Sections 4,5 and 6. In Section 7 we consider some applications
of our method to analysis of algorithms for multiplication of polynomials modulo a polynomial. Finaly in
Appendix 1 we present an upper bound on the number of distinct irreducible factors of a polynomial over a
finitefield, and in Appendix 2 we present an optimal agorithm for computing the product of two polynomi-

als of degree not exceeding g + 1 over Fy.

3 The definition of Hankel matricesis given in Section 3.



2. Statements of main results
In this paper we restrict ourselves to bilinear algorithms which are defined below.

Let x and y be column vectors of indeterminates. A bilinear algorithm for computing a set of bilinear
forms of x and y is a straight-line algorithm whose non-scalar multiplications are of the form L (x)CL'(y),
where L (x) and L'(y) are linear forms of x and y, respectively, and each bilinear form is obtained by com-

puting alinear combination of these products.

We remind the reader that F denotes the q-element field and Mg (n) denotes the number of multipli-
cations reguired to compute the coefficients of the product of two polynomials of degree n over Fy by

means of bilinear algorithms.

The main results of the paper are given by Theorems 1 and 2 below.
_._n
Theorem 1. For any g =3 we have My (n)> 3n Tggn =3
Werecall that it is known from [3] that for sufficiently large n we have M,(n) > 3.52n.

Theorem 2. For any q and % <n<q+1wehaveMq(n)=3n+1-|q/2|.

3. Notation and auxiliary lemmas

In this section we introduce some notation and prove the major auxiliary lemmas needed for the

proofs of Theorems 1 and 2.

Let k be a positive integer and let ag, ..., ak-1 be given elements of a field F. A sequence
0=Sq,S1,..., S Of elements of F satisfying the relation
Sn+k = B-1Sn+k-1F Qk—2Sn+k—2F * - +agS,, n=0,1,...,1-k
iscalled a ( finite k-th-order homogeneous) linear recurring sequencein F. Thetermssg, S1, ..., -1 &€

referred as initial values. The polynomial

f (o) =ak —ajok T —a0k2- -+ —agOF[a]
is called a characteristic polynomial of o. Proposition 1 below shows that if a finite linear recurring
sequence is ‘‘sufficiently long'’, then it possesses an important property of infinite linear recurring

sequences.



Proposition 1. Let o and f (o) be as above, and let f s(a) be a characteristic polynomial of o of the

minimal degree. If degf s(a)+degf (a)<! +1, then f 5(a) divides f (a).

Proof. Letdegf (a)=m. Consider the system of linear equationsinwg, Wy, ..., Wmn-1
s 1 I 3 s
So S1 *t Sm-1| | Wo Sm
S1 S2 ' Sm W1 Sm+1
= | D
S-mS-m+1 """ S-1 || Wm-1 S
Since, by definition, f 5(a) is the minimal polynomial J01‘ the infinite sequence extending o and satisfying

the recurrence defined by f 5(a), the rank of the (I —m +1) xm matrix in (1) is equal to deg f 5(a), cf. [13,

Theorem 8.51, p. 422].# (Here we use the condition deg f ;(a) +deg f (a) <1 +1.)

It follows that the dimension of the affine space of the solutions of (1) is equal to m —degf 5(a). On
the other hand, for each monic polynomia Q(a)=am —ringbi ol divisble by fga), the vector
(bo,b1, ..., bm-1)T isasolution for (1), cf. [13, Theorem 8.42, p. 418]. Since the dimension of the affine
space over F consisting of such polynomias is equal to m —degf 5(a), this space contains f (o). Hence
f (o) isdivisible by f 5(a). O

A uniquely determined monic polynomial f 5(a) O F[a] given by Proposition 1 is called the minimal

polynomial of o.

For asequence 0 ={sg, . . ., Son} We define the (n +1) x (n +1) Hankel matrix H (o) by
SO Sl PR S'I
S1S2 "t S
St S+l " Son
Let H' denotethe (i +1)-st row of Hji =0,1,...,n. IfrankH <n +1, let k be the minimal posi-
tive integer such that there exist ag, . . ., ax-1 0 F satisfying
k_laiHi _Hk
i; '

4 The proofsin [13] do not use the finiteness of the underlying field.



We definec}:{éo, §1,..., 8Sxn} by therecurrence

Sk = 1S w1t a5 k-2t - +acs,

withinitial values§ =s,i =0, ..., k-1

Let 0=0-0. We shal denote H(0) and H(0)=H -H (o) by H and H, respectively. Let
fH(a):ak—:zai al, i.e. fy(a) is a characteristic polynomial of o. (In fact, fy(a)=f;(a), since, by
definition, f () isa characteristic polynomial of the minimal degree.)

It follows from the above definition that rank H <deg f () +rank H. Proposition 2 below shows
that, actually, rank H =deg f (o) +rank H .

Proposition 2. Let H (o) be an (n +1) x(n +1) Hankel matrix of rank not exceeding n. Then the set of

vectors consisting of the first deg f (0) and the last rank H rows of H islinearly independent.

Proof. By the definition of H and H it suffices to prove that the set of vectors consisting of the first
deg fy (a) rows of H and the last rank H rows of H is linearly independent. Let degfy(a)=k. Since
degfy(a)=degf ;(a) (=k), therank of the k xk upper left submatrix of H isequal to k, cf. [13, Theorem
8.51, p. 422]. Since H isaHankel matrix whose first row is the zero vector, the last rank H rows of H are

linearly independent. Now the result follows from the fact that the first k components of the rows of H are

equal to zero. I

Let S={Hq,H1,..., Hs} bean (s +1)-element set of (n +1) x(n +1) Hankel matrices of rank not
exceeding n. Define fga)=lem{ fy(a)|i =0,1,...,s}° ds=degf s(a) and
rs=max{rankH; [i =0,1,...,s}.

The proofs of Theorems 1 and 2 are based on Lemmas 1,2 and 3 below.

Let V be a vector space over F, vy,Va, ...,V OV. [Vy,V2,..., Vy] denotes the linear subspace

of V spanned by vi,Vvso, ..., V.

Lemmal. Let S={Hg,Hy, ..., Hs} beaset of (n +1) x(n +1) Hankel matrices of rank not exceeding n.

Thendim[S] <ds+rs.

5 Icmisan abbreviation for *‘the least common multiple’”.



Let X=(Xg,X1,...,%)T andy=(Yo,Y1,...,Yn)T becolumn vectors of indeterminates.

Lemma?2. Let S={Hg,Hy, ..., Hs} beaset of (n +1) x(n +1) Hankel matrices of rank not exceeding n.

If ds+rs=n+1, then computing the set of bilinear forms of x and y defined by

XTHay,XTHyy, ..., XTHsy requires at least n +1 multiplications.
Lemma3. Let S={Hg,Hy, ..., Hs} beaset of (n +1) x(n +1) Hankel matrices of rank not exceeding n.
If ds+rs<n, then computing the set of bilinear forms of x and y defined by x"Hoy,xTHy, ..., xTHgy

requires at least ds+r s multiplications.

At this point we advise the reader to postpone reading the proofs of Lemmas 1-3 and directly move

to the next sections which contain the proofs of the main results.

Proof of Lemma 1. Let H; =H(0;), i =0,1,...,s. Obviously, [Ho,H1, ..., Hs] is isomorphic to
[00,01, ..., 0s]. Sinceo; =0; +0;i,i =0,1, ..., s, it suffices to show that dim[0y, 01, . . ., 0s] <ds, and

dim[C_)'(),a']_, Ceay C_)'S]Srs.

To prove dim[0q, 01, . . . , Os] <ds, we observe that, by Proposition 1, f g(x) is a characteristic poly-
nomia of Gi ,i=0,1,...,s. Hence each of those sequences is determined by the ds-dimensional vector

of itsfirst ds elements. This proves the inequality concerning ds.

To prove dim[0p, 01, . . ., Os] <r's, We observe that the first (2n +1-rg) elements of o; are zero,
i =0,1,...,s. Hence each of the above sequences is determined by an r s-dimensional vector of its last

r s elements. This provesthe inequality concerning r s. [
Proof of Lemma 2. Let z=(zo,21, ..., Z)7 be a column vector of new indeterminates. Consider the

dual set of hilinear forms of y and z defined by the components of the vector fozj H;y. Computing the
J =\

above set of bilinear forms requires the same number of multiplications as computing the original set

XTHay,XTHyy, ..., XTHgy, cf. [5]. Hence for the proof of the lemmait suffices to show that the rows of

the matrix fozj H; arelinearly independent over F, cf. [17]. Assume, by contradiction, that the first k rows
J =l

of > zH; arelinearly independent, but thefirst (k + 1) rows are linearly dependent:
]:

_foaa (zoHb +zHY + -+ - +ZHL) =0,
1=



whereay =1. Sincezg, 71, . . ., Z areindeterminates, the above identity is equivalent to
k .
iH{ =0, j=0,1,...,s 2
izoa ] J 2
Hence, by Proposition 2, k <n +1-rankHj, j =0,1, ..., s, whichimplies
k<n+l-max{rankH;|j=0,1,...,s}=n+1-rs. ©)
kK
Since degf g <n, it follows from (2) and Proposition 1 that fy (a)=f; (x) divides Zoai X',
i 1 l =
j=0,1,...,s. Thusfg(x) dividesf'oa; xi. Hence ds<k, which together with (3) impliesds+rs<n +1.
1=
This contradiction completes the proof of Lemma 2. J

Proof of Lemma 3. By the argument at the beginning of the proof of Lemma 2, in the same notation, it

suffices to show that the first ds and the last r s rows of fozj H; are linearly independent over F. We shall
J =

break the proof of linear independence of the above set of rows into two stages. First we shall prove that

the first ds rows of 'fozj H; are linearly independent. Then we shall prove that no non-zero linear combina-
J =
tion over F of thelast r s rows of fozj H; can be be equal to alinear combination of itsfirst ds rows.
J ={
To show that the first ds rows of fozj H; are linearly independent over F we proceed exactly as in
J =|

the proof of Lemma 2. Assume, by contradiction, that for some k < ds we have

i)a' (zoHb +2z4HY + - - +2zH{) =0,
I =
whereag =1. Sincezg, 21, ..., Z areindeterminates, the above identity is equivalent to
foa*-HJi:o, i=01,...,s @
1=
kK
By Proposition 1, it follows from (4) that f (o) =f 5 (x) divides%a; x'i=0,1,...,s. Thusfg(x)
1 =

divides _iai xi. Hence ds<k, which contradicts our assumption and proves that the first ds rows of
1 =

izj H; arelinearly independent over F.
J:

To show that no non-zero linear combination over F of the last rs rows of > z H; can be equal to a
] =



linear combination of itsfirst ds rows, assume, by contradiction, that

ds1 . . . . . .
SalHb+zHi+ - +zHY+ 3 bi(zoHbtzHL+ - 2 =0,
i= i=n-Tgrl

where not al by, i=n-rs+1,...,n, ae zero. Without loss of generality we may assume that
rs=rank Ho. Sincezo,z1, ..., Z areindeterminates, in particular, we have
dgo1 . n .
_Za—Hb# > biHp=0. (5)
1= i=n+l-rank H,

Since deg fy (a) <ds, and ds+rank Ho< n +1, it follows from the definition of I:IO and H that thefirst dg

rows of Ho are linear combinations of itsfirst deg f (a) rows. Hence, by (5), we have

degf, (a)-1 n
> G Hp+ biHb =0,
i; I i:n+1§ank H, I
for some constants Co,C1, . . ., Cdegf, (o)-1- SiNCe not al bj, i =n+1-rs,..., n+1, are zero, the last

equality contradicts Proposition 2. This completes the proof of Lemma 3, because each linear combination

of the above rows either includes or does not include last rows. [

4. Proof of Theorem 1

Actually, Theorem 1 is a corollary of another genera result given by Lemma 4 below. First we
introduce one more notation that will be frequently used in this section. We shall denote the maximal pos-

sible number of distinct factors of a polynomial of degree n over Fq by ig(n). Itisshown in Appendix 1
; n

that for g =3 we haveiq(n) < Tn=3"

Lemma 4. Let S={Hg,Hq1,..., Hy} be a set of (n+1)x(n+1) Hankel matrices which are linearly

independent over Fy. Then there exists a subset S of S containing iq(n)+1 or fewer elements such that

computing the set of bilinear forms defined by { X" H y} 1 og requires at least n + 1 multiplications.

Proof. If some H OSisof rank n +1, the lemma, is, triviadly, true, since we can take S ={H}. Other-
wise, by Lemma 1, we have ds+rs>n +1, which impliesdegf s(a)=n+1-rs. Let fs(or):jl'lzllpjd'(a) be
the decomposition of fg(a) into irreducible factors pi(a),p2(a), ..., p(a) such that

degpi(a)=degps(a)= - - 2degp(a). Let m<l be such tha degjlﬂjlpjdl((x)zn+l—rs, and
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m-1 d
deg [1pf(@)<n+1-rs
We construct asubset S of S, inductively, asfollows.

So={Hi}, whererank H; =rsg, if rs>0, and S=0, otherwise.

Assume §j, j <m, has been constructed. Choose an H;  such that fi (a) isdivisible by p,-ds;i (a) and

put Sj+1=S; O{ Hi1+1}'

Let S =S;,. By the construction above, f g(a) is divisible by Jlﬂjlpjdi (a), henceds=n+1-rs. This
together with rank I-_hO:rsz rgimpliesds +rg=>n +1. It followsfrom Lemma 2 that computing the set of
bilinear forms defined by {xTH y} 1 os requires at least n + 1 multiplications.

In order to complete the proof of Lemma 4, it remains to show that the number of the elements of S
does not exceed iq(n) + 1. We contend that m<ig(n+1-rg). If dngILI:lpde (a)=n +1-rg, thereisnothing

to prove. If degpm(a)=1, then, by the definition of m, there exists a 1<dp<d, such that

fms o
deg {ﬁlpjd,(a)J pw(a)=n+1-rg, and the result follows. Otherwise, i.e, degpj(a)>1,j=1,2,..., m,

. . (m_l d 1 d’ (m—l d 1 d’
consider the polynomial U'zllpj J(C()J par(a) such that 0<dy<dy, and degU':Ilpj J(G)J par(@)<n+1-rs.

m-1 '
+1-r9-deg| I1 p } (o) | m=1 - . : .
(n*imrd engpJ @jp (a){ll':llpjdl (a)} prﬂm ! has at least m irreducible factors and is

Then the polynomia o
of degreen +1-rs. Hencem <ig(n +1-rg), which proves our contention.

Obviousdly, the number of the elements of S’ is bounded by m +1. Hence the number of the elements
of S does not exceed iq(n +1), if rs=0, and does not exceed iq(n +1-rg)+1, otherwise. In both cases,

the number of the elements of S' isbounded by m<iq(n)+1. 0O

Now Theorem 1 isimplied by Lemma 4 in a standard manner, cf. [11] and [18], asfollows.
Proof of Theorem 1. We have to compute z =Zk(X,y)=i+JZ:kxi y;, k=0,...,2n. Let
z=(20,21, ..., Zon)". Assume that Mq(n)=t, i.e. al the bilinear forms defined by the components of z

can be computed in t multiplications, namely there exist t linear forms L4(x),, ..., L;(X) of x and t linear

forms Li(y),...,L{(y) of y such that each z is a linear combination of the products
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Li(X)Li(Y), ..., Li(X)L{(y). Itisknown from [4] thatt =2n +1. Let p=(Ly(X)Li(Y),..., Li(X)L{(Y))T.
By the definition of bilinear algorithms there exists a (2n +1) xt matrix U whose entries are constants

from Fq suchthat z=Up.

We contend first that rankU =2n +1. Obviously, z(x,y)=x"Acy, where A =(a jk) is an

(n +1) x(n +1) Hankel matrix defined by

)1, if i +j=k+2
4,k =10, otherwise
Since the matrices Ag, A1, . . ., Aoy are linearly independent, the rows of U are independent aswell. This

proves our contention.

Permuting the components of p, if necessary, we may assume that the first (2n +1) columnsof U are
linearly independent. Hence there exist a non-singular (2n +1)x(2n+1) matrix W and
(2n +1) x(t —2n — 1) matrix V such that

Wz =(l2n+1,V)p,
where | 5,41 denotes the (2n +1) x (2n +1) identity matrix. |.e. the first (2n +1) columns of the product

WU arethose of | 5 +1.

By Lemma 4, there exist iq(n)+1 components of Wz which define bilinear forms whose multiplica-
tive complexity is at least n +1. Without loss of generality we may assume that the above bilinear forms
are defined by the last components of Wz. Since the first 2n —ig(n) components of the last ig(n) + 1 rows

of (lon+1,V) are zero, we have t —(2n —ig(n))=n+1. This implies t 23n +1-ig(n). Using the

ngn¢—3 upper bound on iq(n), cf. Appendix 1, we obtain Mq(n)=t > 3n - ngn%' O

Remark. Applying the argument used in the proof of Lemma 3 to 2n +1 linearly independent Hankel
matricesHo,H1, ..., Ho,, and assuming that deg p?l (a)=deg p%(a) > - 2deg p.d' (a), one can improve
the lower bound given by Theorem 1 by O(n/Igén). The proof requires a more involved counting argu-

ment than that in Appendix 1 and will be omitted.

5. Proof of Theorem 2

Let x(a) :ig'bxi ol and y(a) :é'oyi ai. Similarly to [18], computing the coefficients of the product
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x(a)y(a) in 3n +1-[g/2| multiplications can be easily done by computing x(a)y(a) modulo linear and
quadratic polynomials, cf. Appendix 2. In order to prove the lower bound we proceed as follows.

Let Fq={esez,..., &}. Without loss of generality we may assume that L; (X)L{(y) =x(e )y(&),
i=12,...,0,and Lg+1(X)Lg+1(Y) =Xn¥n, cf. [1, Exercise 12.9, p. 445]. Using the same notation as in the

proof of Theorem 1 we have Wz=(1,,+1,V )p, where the first g +1 rows of V are zero. Let H; be the

Hankel matrix representing the bilinear forms defined by the i -th component of Wz, i =1,2,...,2n +1.
Let S={Hq+2, Hg+3, - . ., Honsa}. The proof of the 3n +1-|q/2] lower bound is based on the following
lemma.

Lemma 5. Either there exists a subset S' of S containing |(2n—q)/2| or fewer elements such that comput-
ing the set of bilinear forms defined by {x"THy}os requires at least (2n —q) multiplications, or there
existsa subset S of S containing[(2n—q)/2] elements such that computing the set of bilinear forms defined

by {x"Hy}nos requires at least 2n —q +1 multiplications.

The proof of Lemma 5 is rather long and technical, and, for the sake of continuity, is postponed to

the next section.

Proof of Theorem 2. The proof is similar to the proof of Theorem 1. By Lemma 5, either there exist
[(2n —=q)/2| components of Wz which define bilinear forms whose multiplicative complexity is at least
2n —q, or there exist [(2n —q)/2] components of Wz which define bilinear forms whose multiplicative
complexity is at least 2n —q +1. Without loss of generality in both cases we may restrict ourselves to the

last components of Wz.

In the former case, since the first 2n +1—|(2n —q)/2| components of the last [(2n —q)/2] rows of
(12041, V) are zero, we have
Mg(n)-(2n +1-[(2n-q)/2])=22n —q.
(Recall that (12n+1, V) isa(2n +1) xMq(n) matrix.) Therefore
Mg(n)24n+1-q-[(2n -q)/2| =3n +1-(q +|-q/2|) =3n +1-[q/2| .
In the latter case, since the first 2n +1-[(2n —q)/2] components of the last [(2n —q)/2] rows of

(1on+1, V) are zero, we have
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Mg(n)-(2n +1-[(2n-q)/2]) = 2n —q +1.
Therefore

Mq(n) = 4n+2-q-[(2n -q)/2] =3n +1-(q +[-q/2] 1) =3n +1-|q/2] . O
6. Proof of Lemma5

In order to prove Lemma 5 we need some preliminary facts. First we observe that rank Hj <n,
i=q+2,...,2n+1. Were there an H; of rank n +1, similarly to the proof of Theorem 1, we would have

Mg (n)> 3n, which contradicts the upper bound at the beginning of this section.

|
By Lemma 1, we have ds+rs>2n —q, which impliesdegf s(a)=>2n —q -rs. Let fs(a):il'zllpid‘(a)
be the decomposition of fg(a) into irreducible factors pi(a),p2(a),...,p(a) such that

degp$: () > degp$: ()= - - 2degp' (). Write

| d k d |
f (o) =1 p’ (@) = | pt (|| [ p@)

where px+1(a), pc+2(Q), . . ., p (a) are dl the linear factors of f g(a) of multiplicity 1.
k
Proposition 3. We have deg il':llpid‘ ()=2n-q -rs
k
Proof. Assume, by contradiction, that deg il'zllpid‘ (a)<2n —qg —rgsand consider the set of Hankel matrices

k
S'=SO{Hi}i=12,...q- Obvioudly, rg=rg and degf s (a)<q +deg II':Ilpid'(O(). Hence

dg+rer<q+2n-q-rs+rs=2n. The last inequality contradicts Lemma 1, because

dim[S"]=dim[H1, ..., Hq,Hgs2, . .., Hanwa] =2n. O
m-1 d m d
Let m be such that deg Dlpi (a)<2n-q-rg and degll'zllpi (@)=2n-q-rs.

Proposition 4. If q iseven, or rs=3, or degp‘fl(cx)ZS, then we have

(@n-ay2l, it degfip(@=2n-q
m< m '
[2n -q)/2| -1, if degllp’(a)<2n-q-1

m
Proof. Assumethat deg il'zllpid‘ (a0)=2n —q. If deg pclil (a) =3, then
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m<[(2n-q-3)/2| +1=[(2n —q -1)/2] =[(2n -q)/2],
and if q iseven, then
m<(@2n-q)2=|(2n -q)/2] .
If degll'jlpid'(a)<2n—q, then rs=>1. We shall consider the cases of rs=1, rs=2, and rg=3
Separately.
Caseofrg=1: Inthiscasedegllil]lpid‘(a)=2n -q -1 Assumethat q isodd and degp(ljl(a)z?,. Sinceq is

odd, 2n —q -1 is even. Hence either deg pi’l(a)24 or deg ng(cx)=3. In the case of degp‘fl(a)24 we

have

m<1+[((2n-q-1)-4)/2]) =|(2n -q)/2] -1,

and in the case of deg pgz (a) =3 we have

m<2+[((2n-q-1)-6)/2]) =[(2n —q)/2| -1.
If q iseven, then2n —gq —1isodd. Hence deg p‘fl(a)23, which implies

m < 1+M2‘_1ﬂ =|(2n -q)/2] -1.
Caseof rg=2: If degp‘fl(a)z’s, then

m<@A+[((2n-g-2)-3)/2))=[(2n—-q-1)/2] -1=|(2n —q)/2] - 1,

and if q iseven, then

m< 2n_—2q—_2 3(2n-q)/2] -1.
Caseof rs=3: We have

m<[(2n—-q-rg)/2] <[(2n-q-3)/2] =[(2n —q -1)/2] -1=[(2n -q)/2] - 1.
This compl etes the proof of Proposition 4. [
Proposition 5. If q is even, or rs=3, or degp‘fl(a)23, then there exists a subset S' of S containing
[(2n—q)/2] or fewer elements such that computing the set of bilinear forms defined by {X"Hy}nog

requires at least 2n — g multiplications.

Proof. Sinceq=n -1, we have 2n —g <n +1. Therefore, by Lemmas 2 and 3, it suffices to show that

there exists a subset S’ of Scontaining [(2n—q)/2] or fewer elements such that ds +rg=2n —q. Similarly
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to the proof of Lemma 4 we shall construct S’ inductively as follows.

If degIILI:lpid'(a)EZn—q, then S=0; and if degﬁlpid'(a)SZn—q—l, then So={H;}, where
rank Hj =rs.

Assume S, j <m, has been constructed. If there existsan H O'S; such that fy () is divisible by
pjdri(a), then Sj.1=Sj. Otherwise, choose an H;  such that fHIM(or) is divisible by pjdﬁ(cx) and put

Sj+1=Sj D{Hi”}

Let S =S,,. By the construction above, f 5(a) isdivisible by Il_:ilpidi (a), hencedg=2n-q -rs. This

together withrank H; =rgimpliesds +rg=2n-q.

m
Obviously, the number of the elements of S does not exceed m, if deg Elpid' (a)=2n —q; and does

not exceed m + 1, otherwise. Thus the bound on the number of the elements of S follows form Proposition

4.0

Proposition 6. If rs=1, and deg p‘fl(a) =2, then there exists a subset S of S containing |(2n—q)/2] or
fewer elements such that computing the set of bilinear forms defined by {XTHy}nos requires at least
2n —q multiplications.

Proof. Like in the proof of Proposition 5, it suffices to show there exists a subset S' of S containing
[(2n—q)/2] or fewer elements such that dg+rg>2n—-q. PickansJ{q+2,q+3, ..., 2n +1} such that

rank Hs =1. We contend that there exists an i, 1<i <k such that fy (a) is divisible by pid‘ (a). Since any

_ |
(n+1)x(n+1) Hankel matrix H with rankH =1 such that fy(a) divides igﬂpi (a) belongs to
[HuH2, ..., Hgul, cf. [13, Theorem 855, p. 425], for some i, 1<i <k, fy (a) is divisible by pi(a),

where t <d; and degpi!=2. Since deg p'fl =2, we have deg pid‘ =2, which impliest =d;. This completes
the proof of our contention. Without loss of generality we may assume that fy (a) is divisible by p‘fl(a).
Then S’ can be constructed as follows.

Let S;={Hs}. Assume S;, j <m, has been constructed. If there existsan H 0 S; such that fy (a) is

divisible by pjdri (), then Sj41=Sj. Otherwise, choose an H;  such that f () isdivisible by p,-ds;i (a) and
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put Sj +1:Sj D{Him}.

m
Let S =S,,. By the construction above, f g(a) isdivisible by il'zllpid' (a). SinceHs OS, it follows that

ds+rg=dg+1=2n -q. Obvioudly, the number of the elements of S does not exceed m. Therefore, by

the definition of m, we have

m <[(2n -q-1)/2] =|(2n -q)/2| . O
Proposition 7. Let g be odd, rs=2, and deg pi’l(cx):z. If there is an Hg 0 S such that rank Hs =2 and

deg fy (a) 21, then there exists a subset S of S containing |(2n—q)/2| or fewer elements such that comput-
ing the set of bilinear forms defined by {X"H y}4s requires at least 2n —q multiplications.
Proof. It suffices to show there exists a subset S' of S containing |(2n—q)/2| or fewer elements such that
dg+rg=2n-q. Let rank Hs =2 and degfy (a)=1. If fornoi, k<i<l, fy (a) isdivisible by p; (a),
then, without loss of generality, we may assume that fi () is divisible by ps(a). We construct S’ as fol-
lows.

Let S;={Hs}. AssumeS;, j <m, has been constructed. If there existsanH OS; such that i () is
divisible by pjdri (), then S, =S;. Otherwise, choose an H; , such that fH_(G) isdivisible by p,-dyi (o) and

put Sj+1=S; O{ Him}'

m
Let S =S,;. By the construction above, f g(a) is divisible by p; (cx)il'zlzpid' (a), where j =1, or j > k.

Since

m
deggzpid'(G)ZZH—q—rs—1:2n—q—3,
we have dg=2n —q —-2. Therefore dg+rg=dg+22=2n —q. Obviously, the number of the elements of

S does not exceed m. Sinceq isodd, we have
m <[(2n -q-2)/2] =|(2n -q)/2| . O
Proposition 8. Let q beodd, rs=0, and deg p‘fl (a)=2. If thereisan Hs 00 Ssuch that deg f (o) 23, then

there exists a subset S' of S containing|(2n—q)/2] or fewer elements such that computing the set of bilinear

forms defined by {Xx"Hy}xos requires at least 2n —q multiplications.
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Proof. It suffices to show there exists a subset S' of S containing |(2n—q)/2| or fewer elements such that

ds+rg=2n-q. Let degfy (a)=3. Exactly as in the proof of Proposition 7, one can show that there
existsan i, 1<i <k, such that fy (a) is divisible by pidi(a). It will be convenient to assume that fy (a) is
divisible by pgz(u). If fornoi, k<ic<l, fy (o) isdivisible by pi (a), then we may assume that fi () is
divisible by pi(a). We construct S’ as follows.

Let S,={Hs}. Assume S;, j <m, has been constructed. If there existsan H O S; such that f () is
divisible by pjdri (), then S, =S;. Otherwise, choose an H;  such that fy “(0() isdivisible by p,-dxi (o) and

put Sj+1=5; O{ Him} .
m
Let S =S,. By the construction above, f g(a) is divisible by p (a)i|'=|2pid' (a), where j =1, or j > k.

Since degllipid‘ (0)=2n —-q -1, wehaveds =2n —q. Obviously, the number of the elements of S' does not
exceed m —1. Sinceq isodd, we have
m-1<[(2n-q)/2] -1=[(2n -q-2)/2] =[(2n -q)/2] . O

In view of Propositions 5-8, we may assume that q is odd, deg p‘il(a)=2, and rs=0; or q is odd,
degpl:(a)=2, rs=2, and for any H OS, if rank H =2, then H =H. The above two cases are treated by
Propositions 9 and 10 below.
Proposition 9. If q is odd, degp‘ljl(a):z, and rs=0, then there exists a subset S of S containing
[(2n—q)/2] elements such that computing the set of bilinear forms defined by {x™Hy} g requires at least
2n —q +1 multiplications.
Proof. Since q is odd, we have m=[(2n-q)/2]. We may assume that fu__(a)=p°(a),
i=12,...,m.

If 2n—q =1, let S={H2}. Since degfy, (a)=2, it follows that rank Hz, =2. Hence computing
XTHnYy requires two multiplications.

If 2n —q =3, let S ={H,y-1,H2}. The inequality q =3, impliesn +1>4. Hence, by Lemmas 2

and 3, computing {X"H -1y, X" H2n Y} requires at least four multiplications.
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Let 2n —q =5. The set of bilinear forms {xTH y} 4 os can be computed by
(XTHan-m+1y, X Han-msay s - - ., XTH20y)T = (Im, U )p,
where U consists of the last m rows of V. (Recall that Wz=(12,+1,V)p.) We have to prove that U has at

least m columns. Assume, by contradiction, that U has a most 2n—q-m=m-1 columns.® Let

Since computing each x"TH;y, i =2n-m+1,2n-m+2, ..., 2n, requires at least 2 multiplications
and the number of columns of U islessthan m, the matrix U has a column with two non-zero components.

Permuting the columns and rows of U, if necessary, we may assume that Uy-1 m-1 and Uy, ;-1 are not equal

to zero. Then there exist non-zero a,, as, . . ., am U Fq such that .ia; U m-1=0.
1=
Consider the matrix H defined by H :.ia; Hon-m+i. Sincefori=2n-q+1,,...,2n, H; isthe
1=

— m
zero matrix, H is the zero matrix as well. Then, in view of Proposition 1, we have fy (a) = i|'=|2pidi (a), cf.

[13, Theorem 8.57, p. 426]. It follows from Proposition 2 that rank H =2n —q —1. On the other hand, the
bilinear form xTH y can be computed in 2n —q — 2 multiplications by

xTHy=(0,az, ..., &n-1,am)(Im, U )p,
because the first and the last component of (0,az, . . ., &n-1,am)(Im,U ) are zero. This contradiction com-

pletes the proof of Proposition 9.

Proposition 10. Let g be odd, degp$:(a)=2, rs=2, and for any H OS, if rank H =2, then H =H. Then
there exists a subset S’ of S containing [(2n—q)/2] elements such that computing the set of bilinear forms

defined by {XxTH y} s requires at least 2n —q + 1 multiplications.

Proof. We may assume that 2n —q =5. The case of 2n —q < 3 can be treated exactly as in the proof of
Proposition 9. Since g is odd, we have m=[(2n -q)/2] -1. We may assume that for some j,
2n-m<j<2n, rank Hj =2, and that for each i =1,2, ..., m there exists an ji, 2n -m <j; <2n such

that f (a) = pid' (a). Thenwe have

(X"Han-mY,X"Hon-m+2y, . .., XTH2aY)T = (Im, U )p,

6 |t follows from Lemma2 that U has at least 2n —q —m columns.



-19-

where U consists of thelast m + 1 rows of V.
We have to prove that U has at least m+1 columns. Assume, by contradiction, that U has

2n-g-(Mm+1)=m columns. Let  U=(ui=1... m+1 Since computing each  XxTH;y,
i=1

i=2n-m,2n-m+1,...,2n, requires at least 2 multiplications and the number of columns of U is
equal to m, the matrix U has a column with two non-zero components. Permuting the columns and rows

U, if necessary, we may assume that Un m and Ums+1m are not equal to zero. If rank Han—m =2, then we

proceed exactly as in the proof of Proposition 9. Otherwise we may assume that sznfm(a):p‘fl(a) and

rank Hop-m+1=2. There exist non-zero as, as, . . ., an O Fq such that _ia,— U m-1=0. Consider the matrix
I =
H defined by H = fﬁ- H on-msi -
1=

Since for i=2n-q-m+1,,...,2n, rankH; <1, it follows that rankH <2 Then
m-1
fr(a)= Il'zllpid' (a), and, by Proposition 2, we have rank H =2n —q —1. On the other hand, exactly asin

the proof of Proposition 9, it can be shown that the bilinear form x™Hy can be computed in 2n —q —2 mul-

tiplications. This contradiction completes the proof of Proposition 10. [
Now the reader can easily convince himself that Lemma 5 follows from Propositions 5-10.

Notice that if n =g +1, then in the conditions of Propositions 9 or 10 we have the tight n +2 bound

on the number of multiplications required to compute {XTH;y}i=an/2 ... 2n. Thisbound exceeds the lower

bound given by Lemma 2.

7. Multiplication of polynomials modulo a polynomial

Here we consider an application of the technique developed in the previous sections to multiplication
of polynomials modulo a polynomial. All the results obtained in this section are easy corollaries of Lemma
6 below. To proceed we need one more notation. For polynomials z(a) and P(a) we denote by

res(z(a), P (a)) the minimal degree residue of z(a) modulo P (a).
Lemma 6. Let x(a) :i)xi ol and y(a):_iyi ol be polynomials with indeterminate coefficients, and let
1 = 1=

P(a)=am —r_fola; ol be a fixed polynomial over F of degree m>n. Let x"THy be a bilinear form defined
| =
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by a linear combination of the coefficients of res(x(a)y(a),P (a)). If rankH <2n +1-m, then fy(a)

divides P (a), and rank H =0.

Proof. Let xTHy be a hilinear form defined by a linear combination of the coefficients of
res(x(a)y(a), P (a)). First we contend that if H =H (g), then P (a) is a characteristic polynomia of o.

Since the set of all linear recurring sequences satisfying the same recurrence is a linear space over F, we
may assume that xTHYy is defined by a coefficient of res(x(a), y(a), P (a)). Let x(a)y(a)=z(a) :22; al,
and let res(z(a), P(O()):Euiori , where y; :203 iZ,1=0,1,..., m-1 Wehavetoprovethat P(a)isa
characteristic polynomial of 0; =S 0,S1,...,S 20,1 =0,1,..., m—-1

Let P(a)=am —Eai ai, and let Cp denote the companion matrix of P (), i.e.,
| =

( )
00 -+ 0ag
10 - 0ag
01 - 0a
Cp =
00 - 1amny
Let Oik=(Sk:Sk+lr--+» Skem-1) be the Kk-th Jrn—dimensional state vector of G,
i=0,1,...,m-1, k=0,1,...,2n—-m+1. In order to prove our contention it suffices to show that

i x = ;i oC§, or, since, trivialy, g o is equal to the i -th row of I, it suffices to show that oj x is equal to

the (i +1)-st row of C§.

Using the regular matrix representation of the algebra F [a]/(P (1)), cf. [6, p. 424], we obtain that the

column vector of the coefficients of res(z(a), P (a)) isequal to

(20,21, -+, Zn2sZm-1)" + 2 2CE™1(0,0, ..., 0,1)T .
K=n
Therefore, if k >m, then s  isthe i -th component of the last row of C5~™*1. Now the contention follows
from the fact that the vector of the first m — 1 components of the i -th row of C§ isequal to the vector of the

last m — 1 components of thei -th row of C8+*1.

Since, rank H <2n -m+1, by Proposition 2, we have degfy(a)+rank H <2n +1-m, which

implies deg fy (0)<2n +1-rankH —-m =1 —m+1. Now the divisibility of P (a) by fy (o) follows from
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Proposition 1.

It remains to show that rank H =0. f (a) divides P (a), which implies that P (0) is a characteristic
polynomial of o= o-0 cf. [13, Theorem 8.55, p. 425]. Since ¢ and o have the same first m elements, o is

the zero sequence. Hence H isthe zero matrix. O

Next we present some corollaries to Lemma 6. Whereas Corollaries 1 and 2 were established in [18]

in amore general form, Corollaries 3 and 4 are new and cannot be obtained by the technique used in [18].

k
Corollary 1. Let the field of constants be infinite, and let P (o) = Dlpid' (a) be a fixed polynomial of degree

n +1 with its factorization into irreducible factors p1(a), p2(a), .. ., pk(a). Let x(a) and y(a) be polyno-
mials of degree n with indeterminate coefficients. Then computing res(x(a)y(a), P (a)) requires exactly

(2n +2-k) multiplications.

Proof. Computing res(x(a)y(a), P (a)) can be performed in 2n +2-k multiplications by means of
Chinese Remainder Theorem, cf. [18]. To prove the lower bound stated in the corollary we proceed as fol-

lows. Assume that computing res(x(a)y(a),P(a)) can be performed in t multiplications. Let
res(x(a)y(a), P(a))=_§0ui al, u=(Ug,uUz, ..., uy)T, and let p be a t-dimensional vector of products of
1 =

linear forms of x and y such that u=U p, where U isan (n +1) xt constant matrix. We have to prove that
t =2n +2-k. Exactly asin the proof of Theorem 1, it can be shown that there exists a non-singular matrix

W such that Wu = (141, V )p.

Let S={Ho,H1, ..., Hn-1} bethe set of Hankel matrices representing the bilinear forms defined by
the components of Wz. If there existsan H [0 S such that rank H =n +1, then V must have at least n +1
columns, which impliest =2n +1>2n +2-k. If rankH; <n, i =1,2,..., m—1, then it follows from
Lemmas 1 and 6 that f (o) =P (a) and rs=0. Exactly asin the proof of Lemma 4, we can find asubset S
of S containing at most k elements such that ds =n +1. Then, exactly as in the proof of Theorem 1, we

havet -(n+1-k)=n+1,0ort=2n+2-k.O
The following corollary isapartial case of the direct sum conjecture conjectured by Strassen in [16].

Let B=B(X,y) be afinite set of bilinear forms of x and y over afield F. pg(B) denotes the minimal

number of multiplications required to compute al the forms of B by means of bilinear algorithms over F.
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Corollary 2. Let the field of constants F be infinite, and let x; (o) and y; (o), i =1,2, .. ., k, be polynomi-
als of degree n; with digoint set of indeterminate coefficients. Let Py(a), Px(a), . .., Px(a) be powers of
distinct irreducible polynomials, degP; (o) =n;,i =1,2, ..., k. Then

k
e (2] rest; (@) (@0, Py (@) = 3 (res (@) (@), Py (@) = 320y +1).

Proof. The proof immediately follows from Corollary 1, because, by means of Chinese Remainder

K
Theorem, each algorithm for computing iI;Ilres(xi (a)yi (a), P; (a)) can be transformed to an algorithm for

multiplying polynomials of degree _2ni -1 modulo the product of the moduli. O
I =

The above two proofs differ from those of Winograd in [18] in the following. In [18] the result con-
cerning multiplication of polynomials modulo a polynomials implied by an instance of the direct sum con-

jecture, which was proved first.

k
Corollary 3. Let the field of constants F be infinite, and let P(a):lllpid‘ (a) be a fixed polynomial of

degree m with its factorization into irreducible factors pi(a),p2(a), ..., pk(a). Let x(a) and y(a) be
polynomials of degree n<m with indeterminate coefficients. If m-k=n, then computing
res(x(a)y(a), P (a)) requires 2n + 1 multiplications.

Proof. Obviously, computing res(x(a)y(a), P (a)) can be performed in 2n +1 multiplications by first com-
puting the product x(a)y(a), and then reducing it modulo P (a). To prove the lower bound stated in the

corollary we proceed as follows. Assume that computing res(x(a)y(a), P (a)) can be performed int multi-
plications. Let res(f x(a)y(a), P (a)) =r_nz_:ui o, andlet u=(ug, Uy, ..., Un-1)". Let p beat-dimensiona
1=

vector of products of linear forms of x and y such that u=U p, where U isan m xt constant matrix. We
have to prove that t =2n +1. Like in the previous proofs, it can be shown that there exists a non-singular

matrix W such that Wu = (I, V )p.

Let S={Hg,Hy, ..., Hm-1} be the set of Hankel matrices representing the bilinear form defined by
the components of Wz. If there exists an H; 0 S such that rank H; > 2n +1-m, then V must have at least
2n —m columns, which impliest >2n +1. Otherwise, by Lemmas 1 and 6, we have ds=m. Then, likein

the proof of Lemma 4, one can show that there exists a subset S’ of S containing at most k elements such
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that dg=n +1. By Lemma2, we have g ({X"Hy})huos =n +1. Then, exactly asin the proof of Theorem

1, wehavet —(m—k)=n +1. Since m —k =n the above ineguality impliest 2(m -k)+(n +1)=2n +1. O

1+n/2
Corollary 4. Let the field of constants be infinite. Let n be even and let P (a) = II:I1 pid' (a) be a fixed poly-

nomial of degree n +2 with its factorization into irreducible factors pi(a), p2(a), . . ., P1+n/2(0) such that
deg pid'(a)=2, i=1,2,...,1+n/2. Let x(a) and y(a) be polynomials of degree n with indeterminate

coefficients. Then computing res(x(a)y(a), P (a)) requires exactly 3+3n/2 multiplications.

The proof of Corollary 4 is similar to the proof of Proposition 9 and will be omitted. Notice that in

Corollaries 3 and 4 the degree of the moduli is greater than n + 1.
In order to state one more corollary to Lemma 6 we need the following definition.
Definition. Let FX be the k-dimensional vector space over a field F, and let Ibrey, ..., &} be a fixed

K
basis of Fk. Letv = Zl aje OFk. Define w(v), the weight of v, as the number of non-zero components
I =

a of v. If L isasubspace of Fk of dimension |, we shall say that L is alinear code of dimension | and

length k. Define w(L ), the minimal distance of L, by w(L) =min Ibromega(v) | 0#v OL}.

Corollary 5. Let x(a) and y(a) be polynomials with indeter minate coefficients of degree n over a field F,
and let P (a) be a fixed polynomial of degree m > n. If P (a) has no factors of degree lessthan 2n +2-m,
then the number of multiplications required to compute res(x(a)y(a), P (a)) by means of a bilinear algo-
rithm over F is not smaller than the minimum code length of linear codes over F of minimal distance
2n +2-m and dimension m. In particular, if F isinfinite, then computing res(x(a), y(a), P (a)) requires

exactly 2n + 1 multiplications.

For an irreducible polynomial P (a) and m=n +1; and for an irreducible polynomial P (a) and any

m =n + 1 the above corollary was obtained in [11] and [9], respectively.

Proof. Let xTHy be a bhilinear form defined by a linear combination of the coefficients of
res(x(a)y(a), P (a)). It sufficesto show that rank H >2n +2-m. Wererank H <2n +1-m, by Proposi-
tion 2 and Lemma 6, P (a) would have afactor of degree less than 2n +2—m, which contradicts the condi-

tions of the corollary. [J
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Notice that the second part of Corollary 5 follows from Corollary 3 as well.

Appendix 1. The number of distinct factors of a polynomial over afinitefield
Let ig(n) denote the maximal possible number of distinct irreducible factors of a polynomial of
degree n over Fq. Inthisappendix we prove the following upper bound onig(n).

: n
Lemma?7. If g =3, then |q(n)sW.

Let Ny(j) denote the number of monic irreducible polynomials of degree j over Fq. It is well-

known that Ng (j) = %; u(d)gi’d, where pu(d) is Mobius function of d, cf. [13, Theorem 3.25, p. 93].
]

For the proof of Lemma 7 we need some preliminary.

Proposition 11. If j =5and g =3, then 2Ny (j — 1) < Ny (j).

Proof. We have

1._ 12 _ ive Liqi -
T4 5@ @~ D=Na() = (@ -q),

cf. [13, Exercises 3.26 and 3.27, p. 142]. Hence it suffices to show that

297t gl _ iz
-1 -7 J@D
Multiplying the above inequality by j/qi and performing simple manipulations, we obtain that it is

equivalent to

2(1+ 11)< q- q_lql—jIZ_

j —

Recalling the bounds on q and j we obtain

2(1+j%1)<2(1+%)ss—%3—WSq—ql—J/2. O

. . 1 . .
Proposition 12. If g =3 and k =2, then :N ()< i]N ().
p q & k-1T4

Proof. We have

1 k.N ()= K Lm'N ()- 1 m—1_N 0) +2'N 0
lejZlJ q(J —mz:3 m—ljzll q(J —m—ZJZlJ q(J J;J b()-

Since

3iNe()> SNo(1),
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it suffices to show that if m =3, then

Ng(m) < 2g 2 1Na() = 1t 2 Na ()
a m_ljéj qJ m_ZJZlJ qJ ’
Multiplying the last inequality by (m —1)(m —2) and performing simple manipulations, we obtain

that it is equivalent to

EJNq(J'K (M =2)Ng(m) :,2-;[(] ~2)Ng (1) =( =3)Ng(j =11 +2Ng(4) .

Since for g =3 we have

3 No(i) =0 +(@2-a) +(0°-0) < S50 = 2N (4,

it sufficesto provethat if j =5, then

(=DNg(G =D < (§ =2Ng ()= =3INg(j - D).
The last inequality is equivaent to

2Ng(j =1)<Ng (i),

and the result follows from Proposition 11. [J

|
Proof of Lemma7. Leth(a)= II':Ilpid‘ (o) be apolynomial of degree n over Fq with its prime factorization.

It suffices to prove that | < 1%27_2 Let k=min{ degp;i(a)|i =1,2,...,1}. Decreasing n, if neces-
sary, we may assumethatd, =1,i =1,2,..., |, and that each irreducible polynomial of degree less than k
dividesh(a).

Let m be the number of irreducible factors of h(a) of degree k. Then | :ENq(j)+m, and
J:

k_
n= Zij Ng(j)+km. By Proposition 12, we have
J:

The proof of Lemma 7 will be completed if we show that k + > Igyn, or, equivalently, if we show
that n <gk*l. Since n :&iqu (j)+km< iqu (j), the desired inequality follows from the estimation
i= i=

below.
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K k k+1
N (i = 9-qg _ gke1 0
2iNe() < 20 =41 <a

Appendix 2. An optimal algorithm for polynomial multiplication

In this appendix we show that for n <q +1 we have Mq(n)<3n +1-[q/2]. In order to present the
above bound uniformly we assume that n <2 for g =2. The inequality M,(3) <9 follows from recursive
application of the algorithm for computing the product of two linear polynomials in three multiplications,

which is similar to the method of Karatsuba and Ofman, cf. [1, p. 62].
Let x(a) :foxi ol and y(a) :_iyi al. Similarly to [18] computing the coefficients of the product in
1= i =

x(a)y(a) in 3n +1-|q/2| multiplications can be done by computing x(a)y(a) modulo linear and quadratic
polynomials as follows. Let ui(a),ux(a), ..., ug(a) be al the linear monic polynomials over Fq, and let
Ug+1(0), Ug+2(Q) , . . ., Urn+qyz) (@) be[(2n—q)/2] quadratic monic irreducible polynomials over Fq. Such

polynomials exist, because the number of quadratic monic irreducible polynomials over Fq is equal to

_C]%{ cf. [13, Theorem 3.25, p. 93], and for n <q +1, g =3 we have

-9 5 2q+1-9q . 2n-q
> > > > > .

We shall distinguish between the cases of odd and even q. If g isodd then

8" degui (o) =q +d(@n ~a)i2] =g +220 70 %L =20 41,

This allows to compute the coefficients of the product x(a)y(a) asfollows.

Fori=12,...,[(2n +q)/2] compute z (o) =x(a)y(a) mod u; (o) and reconstruct x(a)y(a) from

the residues {z (@)}i=12, ... [2n+q)2 By means of Chinese Remainder Theorem. Since reducing x(a) and

y(a) modulo a fixed polynomial and reconstructing the product requires no non-scalar multiplications, the

above computation can be performed in

q+320 0% -3 +1-|q/2)
multiplications: computing the product of zero degree polynomials can be performed in one multiplication,
and computing the product of linear polynomials can be performed in three multiplications over any field.

Notice that degz; (a) =0, if i £q, and degz; (a) =1, otherwise.
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If q iseven, then

feng )/z]deg ui (o) =g +22n_2—q =2n.

This allows to compute the coefficients of the product x(a)y(a) asfollows.

For i=1,2,...,(2n-q)/2 compute z (a)=x(a)y(a) mod u; (o). Then, by means of Chinese

Remainder Theorem, compute from the residues {z (a)}i=12,... 20 -q)2 the polynomial Z(a) such that

n+

(2ntg)/2
Z(a) =x(a)y(a) mod iI':|l U (a). Similarly to the case of an odd g one can show that the above compu-

(2n+q)/2
tation can be performed in 3n —|q/2| multiplications. Notice that the polynomial ]I':Il u;j (o) has no mul-
tipleroots. Finaly, compute x(a)y(a) by

(2n+q)/2
X(@Y(®) =2(@) +Xayn 1 U (@)

This computation requires one more multiplication. Thus the total number of multiplications involved is

(2n-=q)/2
equal to 3n +1-[q/2]. Since for any root a of [1" u;(a) we have x(a)y(a)=2z(a), the validity of the

1=1
above computation follows from [18, Eq. 11]. This completes the proof of the 3n +1-|q/2| upper bound

onMg(n). O
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