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Abstract. Let Mq (n ) denote the number of multiplications required to compute the coefficients of the product of two
polynomials of degree n over a q -element field by means of bilinear algorithms. It is shown that Mq (n ) ≥ 3n − o (n ).

In particular, if 2
q��� < n ≤ q + 1, we establish the tight bound Mq (n ) = 3n + 1 −

�
q /2� . The technique we use can be

applied to analysis of algorithms for multiplication of polynomials modulo a polynomial as well.
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and Problems - computation in finite fields, computation on polynomials.
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1. Introduction

In infinite fields it is possible to compute the coefficients of the product of two polynomials of degree

n in 2n + 1 non-scalar multiplications. It is known from [18] that each algorithm for computing the above

product in 2n + 1 non-scalar multiplications must evaluate the multiplicands at a minimum of 2n distinct

points, multiply the samples, and interpolate the result. However in finite fields this method fails, if 2n

exceeds the number of field elements. Thus, in general, the above bound cannot be achieved in finite fields.

Let Fq denote the q -element field and let Mq (n ) denote the number of multiplications required to

compute the coefficients of the product of two polynomials of degree n over Fq by means of bilinear algo-

rithms. In this paper we prove that for any q we have Mq (n ) ≥ 3n − o (n ). The best lower bound on Mq (n )

known from the literature, cf. [2], [3], [9], [11], and [12], states that Mq (n ) is bounded from below by the
�����������������������������������

* A preliminary version of this paper was presented at 28th annual IEEE symposium on Foundations of Computer
Science.
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minimum length of a linear code over Fq of dimension n + 1 and minimal distance n + 1,1,2 which implies

the following linear lower bounds on Mq (n ). Mq (n ) ≥ (2 + q − 1
1��������� )n − o (n ), if q ≥ 3, and, for large values

of n , M 2(n ) ≥ 3.52n . However an easy calculation based on the Gilbert-Varshamov upper bound on the

length of linear codes, cf. [14, Theorem 4.7, p. 87] shows that for q ≥ 7 there exist linear codes of dimen-

sion n + 1, minimal distance n + 1 and length 2.9n , say. (Actually, it is not hard to show that there exists a

linear code of dimension n + 1, minimal distance n + 1 and length (2 + O ( lnq
1� ����� ))n . Hence the constant fac-

tor of the linear lower bound established in [2], [3], [9], [11] and [12] tends to 2, when q tends to infinity.)

Thus, if q ≥ 7, the 3n − o (n ) lower bound cannot be achieved by the previously known technique. For

q = 3,4,5 it is unknown whether or not there exist linear codes of dimension n + 1, minimal distance n + 1,

and length less than 3n ; but the best known lower bound on the length of such codes is

(2 + q − 1
1��������� )n − o (n ). Therefore in these cases the 3n − o (n ) lower bound on Mq (n ) can be considered as

an improvement of the known one as well. The only case where the 3n − o (n ) lower bound is worse than

the bound given by the code length is that of q = 2. However, in this case, our technique also allows to

obtain an alternative proof of the known lower bound.

If 2
q��� < n ≤ q + 1, the method we use provides the tight bound of Mq (n ) = 3n + 1 −

�
q /2� . (As it has

been mentioned earlier, if n ≤ 2
q��� , then Mq (n ) = 2n + 1.) All these tight bounds are new and cannot be

achieved by the technique based on coding theory.

Although we consider only bilinear algorithms and the lower bound we present is linear, the result

seems to be of interest, since the constant factor of that bound is independent on q , and in view of quasi-

linear upper bound of f q (n ).n , established in [11]. Here f q (n ) is a very slowly growing function of n

defined recursively as follows

� ���������������������������������������
1 The definitions of a linear code can be found in the end of Section 7.
2 Actually, the bound established in [9] and [11] concerns the number of multiplications required to compute the

product of two polynomials of degree n modulo an irreducible polynomial of degree n + 1. It is unknown whether this
bound follows from the same bound on Mq (n ), since, unlike in the case of infinite fields, it is unknown whether computing
the product modulo an irreducible polynomial requires less multiplications than computing the product itself, cf. [11]. In
any case the above bound on the number of multiplications required to compute the product of two polynomials modulo an
irreducible polynomial, and even a more general result, can be easily obtained by our method, cf. Corollary 5 to Lemma 7
in the end Section 7.
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1) f q (1) = 1 and f q (2) = 2
3��� .

2) f 2(3) = f 3(3) = 2 and f q (3) = 3
5��� , if q > 3.

3) If n ≥ 4, then f q (n ) = 2f q (
�
lgq 2(q − 1)n � ).

In fact, the asymptotic behavior of f q (n ) is similar to the behavior of the function 2lgq
∗n , where lgq

∗n is the

inverse of the function Gq (n ) defined recursively by Gq (0) = q and Gq (n + 1) = q Gq (n ).

It is known from [16] that if a set of bilinear forms over an infinite field can be computed in t

multiplications/divisions, then it can be computed in t multiplications by a bilinear algorithm whose total

number of operations differs from that of the original one by a factor of a small constant. But it is

unknown whether a similar result holds for finite fields. However one can easily prove that bilinear algo-

rithms for computing a set of bilinear forms are optimal within the algorithms without divisions. Also we

would like to note that all the algorithms for polynomial multiplication over finite fields known from the

literature are bilinear, cf. [11] and [15].

The proofs are based on the theory of linear recurring sequences and an analysis of Hankel matrices3

representing bilinear forms defined by linear combinations of the coefficients of the product of two polyno-

mials. This technique can be also applied to analysis of algorithms for multiplication of polynomials

modulo a polynomial.

The paper is organized as follows. In the next section we give the statements of the main results. In

Section 3 we introduce some notation and definitions, and prove the major auxiliary technical lemmas. The

proofs of the main results are presented in Sections 4,5 and 6. In Section 7 we consider some applications

of our method to analysis of algorithms for multiplication of polynomials modulo a polynomial. Finally in

Appendix 1 we present an upper bound on the number of distinct irreducible factors of a polynomial over a

finite field, and in Appendix 2 we present an optimal algorithm for computing the product of two polynomi-

als of degree not exceeding q + 1 over Fq .

� ���������������������������
3 The definition of Hankel matrices is given in Section 3.
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2. Statements of main results

In this paper we restrict ourselves to bilinear algorithms which are defined below.

Let x and y be column vectors of indeterminates. A bilinear algorithm for computing a set of bilinear

forms of x and y is a straight-line algorithm whose non-scalar multiplications are of the form L (x)∗L ′(y),

where L (x) and L ′(y) are linear forms of x and y, respectively, and each bilinear form is obtained by com-

puting a linear combination of these products.

We remind the reader that Fq denotes the q -element field and Mq (n ) denotes the number of multipli-

cations required to compute the coefficients of the product of two polynomials of degree n over Fq by

means of bilinear algorithms.

The main results of the paper are given by Theorems 1 and 2 below.

Theorem 1. For any q ≥ 3 we have Mq (n ) > 3n − lgq n − 3
n� ������������� .

We recall that it is known from [3] that for sufficiently large n we have M 2(n ) > 3.52n .

Theorem 2. For any q and 2
q��� < n ≤ q + 1 we have Mq (n ) = 3n + 1 −

�
q /2� .

3. Notation and auxiliary lemmas

In this section we introduce some notation and prove the major auxiliary lemmas needed for the

proofs of Theorems 1 and 2.

Let k be a positive integer and let a 0 , . . . , ak −1 be given elements of a field F . A sequence

σ = s 0, s 1 , . . . , sl of elements of F satisfying the relation

sn +k = ak −1sn +k −1 + ak −2sn +k −2 + . . . + a 0sn , n = 0, 1 , . . . , l − k

is called a ( finite k -th-order homogeneous) linear recurring sequence in F . The terms s 0, s 1 , . . . , sk −1 are

referred as initial values. The polynomial

f (α) = αk − ak −1αk −1 − ak −2αk −2 − . . . − a 0 ∈ F [α]

is called a characteristic polynomial of σ. Proposition 1 below shows that if a finite linear recurring

sequence is ‘‘sufficiently long’’, then it possesses an important property of infinite linear recurring

sequences.
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Proposition 1. Let σ and f (α) be as above, and let f σ(α) be a characteristic polynomial of σ of the

minimal degree. If deg f σ(α) + deg f (α) ≤ l + 1, then f σ(α) divides f (α).

Proof. Let deg f (α) = m . Consider the system of linear equations in w 0, w 1 , . . . , wm −1��������
� sl −m

.

.

.
s 1

s 0

sl −m +1

.

.

.
s 2

s 1

. . . sl −1

.

.

.

. . . sm

. . . sm −1

� �������
�

��������
� wm −1

.

.

.
w 1

w 0

� �������
�

=

��������
� sl

.

.

.
sm +1

sm

� �������
�

. (1)

Since, by definition, f σ(α) is the minimal polynomial of the infinite sequence extending σ and satisfying

the recurrence defined by f σ(α), the rank of the (l − m + 1) × m matrix in (1) is equal to deg f σ(α), cf. [13,

Theorem 8.51, p. 422].4 (Here we use the condition deg f σ(α) + deg f (α) ≤ l + 1.)

It follows that the dimension of the affine space of the solutions of (1) is equal to m − deg f σ(α). On

the other hand, for each monic polynomial Q (α) = αm −
i =0
Σ

m −1
bi αi divisible by f σ(α), the vector

(b 0, b 1 , . . . , bm −1)T is a solution for (1), cf. [13, Theorem 8.42, p. 418]. Since the dimension of the affine

space over F consisting of such polynomials is equal to m − deg f σ(α), this space contains f (α). Hence

f (α) is divisible by f σ(α). �
A uniquely determined monic polynomial f σ(α) ∈ F [α] given by Proposition 1 is called the minimal

polynomial of σ.

For a sequence σ = {s 0 , . . . , s 2n } we define the (n + 1) × (n + 1) Hankel matrix H (σ) by��������
� sn

.

.

.
s 1

s 0

sn +1

.

.

.
s 2

s 1

. . . s 2n

.

.

.

. . . sn +1

. . . sn

� �������
�

.

Let H i denote the (i + 1)-st row of H , i = 0, 1 , . . . , n . If rank H < n + 1, let k be the minimal posi-

tive integer such that there exist a 0 , . . . , ak −1 ∈ F satisfying

i =0
Σ
k −1

ai H i = H k .

� ���������������������������
4 The proofs in [13] do not use the finiteness of the underlying field.
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We define σ̃ = {s̃ 0, s̃ 1 , . . . , s̃ 2n } by the recurrence

s̃i +k = ak −1s̃i +k −1 + ak −2s̃i +k −2 + . . . + a 0s̃i ,

with initial values s̃i = si , i = 0 , . . . , k − 1.

Let σ
�

= σ − σ̃. We shall denote H (σ̃) and H (σ
�

) = H − H (σ̃) by H̃ and H
� �

, respectively. Let

f H (α) = αk −
i =0
Σ
k −1

ai αi , i.e. f H (α) is a characteristic polynomial of σ̃. (In fact, f H (α) = f σ̃(α), since, by

definition, f H (α) is a characteristic polynomial of the minimal degree.)

It follows from the above definition that rank H ≤ deg f H (α) + rank H
� �

. Proposition 2 below shows

that, actually, rank H = deg f H (α) + rank H
� �

.

Proposition 2. Let H (σ) be an (n + 1) × (n + 1) Hankel matrix of rank not exceeding n . Then the set of

vectors consisting of the first deg f H (α) and the last rank H
� �

rows of H is linearly independent.

Proof. By the definition of H̃ and H
� �

it suffices to prove that the set of vectors consisting of the first

deg f H (α) rows of H and the last rank H
� �

rows of H
� �

is linearly independent. Let deg f H (α) =k . Since

deg f H (α) = deg f σ̃(α) (= k ), the rank of the k × k upper left submatrix of H is equal to k , cf. [13, Theorem

8.51, p. 422]. Since H
� �

is a Hankel matrix whose first row is the zero vector, the last rank H
� �

rows of H
� �

are

linearly independent. Now the result follows from the fact that the first k components of the rows of H
� �

are

equal to zero. �
Let S = {H 0, H 1 , . . . , Hs } be an (s + 1)-element set of (n + 1) × (n + 1) Hankel matrices of rank not

exceeding n . Define f S(α) = lcm { f Hi
(α) | i = 0, 1 , . . . , s },5 d S = deg f S(α) and

r S = max{ rank H
� �

i | i = 0, 1 , . . . , s }.

The proofs of Theorems 1 and 2 are based on Lemmas 1,2 and 3 below.

Let V be a vector space over F , v 1, v 2 , . . . , vm ∈ V . [v 1, v 2 , . . . , vm ] denotes the linear subspace

of V spanned by v 1, v 2 , . . . , vm .

Lemma 1. Let S = {H 0, H 1 , . . . , Hs } be a set of (n + 1) × (n + 1) Hankel matrices of rank not exceeding n .

Then dim[S] ≤ d S + r S.

� ���������������������������
5 lcm is an abbreviation for ‘‘the least common multiple’’.
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Let x = (x 0, x 1 , . . . , xn )T and y = (y 0, y 1 , . . . , yn )T be column vectors of indeterminates.

Lemma 2. Let S = {H 0, H 1 , . . . , Hs } be a set of (n + 1) × (n + 1) Hankel matrices of rank not exceeding n .

If d S + r S ≥ n + 1, then computing the set of bilinear forms of x and y defined by

xT H 0y, xT H 1y , . . . , xT Hs y requires at least n + 1 multiplications.

Lemma 3. Let S = {H 0, H 1 , . . . , Hs } be a set of (n + 1) × (n + 1) Hankel matrices of rank not exceeding n .

If d S + r S ≤ n , then computing the set of bilinear forms of x and y defined by xT H 0y, xT H 1y , . . . , xT Hs y

requires at least d S + r S multiplications.

At this point we advise the reader to postpone reading the proofs of Lemmas 1-3 and directly move

to the next sections which contain the proofs of the main results.

Proof of Lemma 1. Let Hi = H (σi ), i = 0, 1 , . . . , s . Obviously, [H 0, H 1 , . . . , Hs ] is isomorphic to

[σ0, σ1 , . . . , σs ]. Since σi = σ̃i + σ
�

i , i = 0, 1 , . . . , s , it suffices to show that dim[σ̃0, σ̃1 , . . . , σ̃s ] ≤ d S, and

dim[σ
�

0, σ
�

1 , . . . , σ
�

s ] ≤ r S.

To prove dim[σ̃0, σ̃1 , . . . , σ̃s ] ≤ d S, we observe that, by Proposition 1, f S(x ) is a characteristic poly-

nomial of σ̃i , i = 0, 1 , . . . , s . Hence each of those sequences is determined by the d S-dimensional vector

of its first d S elements. This proves the inequality concerning d S.

To prove dim[σ
�

0, σ
�

1 , . . . , σ
�

s ] ≤ r S, we observe that the first (2n + 1 − r S) elements of σ
�

i are zero,

i = 0, 1 , . . . , s . Hence each of the above sequences is determined by an r S-dimensional vector of its last

r S elements. This proves the inequality concerning r S. �
Proof of Lemma 2. Let z = (z 0, z 1 , . . . , zs )T be a column vector of new indeterminates. Consider the

dual set of bilinear forms of y and z defined by the components of the vector
j =0
Σ
s

zj Hj y. Computing the

above set of bilinear forms requires the same number of multiplications as computing the original set

xT H 0y, xT H 1y , . . . , xT Hs y, cf. [5]. Hence for the proof of the lemma it suffices to show that the rows of

the matrix
j =0
Σ
s

zj Hj are linearly independent over F , cf. [17]. Assume, by contradiction, that the first k rows

of
j =0
Σ
s

zj Hj are linearly independent, but the first (k + 1) rows are linearly dependent:

i =0
Σ
k

ai (z 0H 0
i + z 1H 1

i + . . . + zs Hs
i) = 0 ,
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where ak = 1. Since z 0, z 1 , . . . , zs are indeterminates, the above identity is equivalent to

i =0
Σ
k

ai Hj
i = 0, j = 0, 1 , . . . , s. (2)

Hence, by Proposition 2, k < n + 1 − rank H
� �

j , j = 0, 1 , . . . , s , which implies

k < n + 1 − max{ rank H
� �

j | j = 0, 1 , . . . , s } = n + 1 − r S . (3)

Since deg f σ̃i
≤ n , it follows from (2) and Proposition 1 that f Hj

(α) = f σ̃j
(x ) divides

i =0
Σ
k

ai x i ,

j = 0, 1 , . . . , s . Thus f S(x ) divides
i =0
Σ
k

ai x i . Hence d S ≤ k , which together with (3) implies d S + r S < n + 1.

This contradiction completes the proof of Lemma 2. �
Proof of Lemma 3. By the argument at the beginning of the proof of Lemma 2, in the same notation, it

suffices to show that the first d S and the last r S rows of
j =0
Σ
s

zj Hj are linearly independent over F . We shall

break the proof of linear independence of the above set of rows into two stages. First we shall prove that

the first d S rows of
j =0
Σ
s

zj Hj are linearly independent. Then we shall prove that no non-zero linear combina-

tion over F of the last r S rows of
j =0
Σ
s

zj Hj can be be equal to a linear combination of its first d S rows.

To show that the first d S rows of
j =0
Σ
s

zj Hj are linearly independent over F we proceed exactly as in

the proof of Lemma 2. Assume, by contradiction, that for some k < d S we have

i =0
Σ
k

ai (z 0H 0
i + z 1H 1

i + . . . + zs Hs
i) = 0 ,

where ak = 1. Since z 0, z 1 , . . . , zs are indeterminates, the above identity is equivalent to

i =0
Σ
k

ai Hj
i = 0, j = 0, 1 , . . . , s. (4)

By Proposition 1, it follows from (4) that f Hi
(α) = f σ̃i

(x ) divides
i =0
Σ
k

ai x i , i = 0, 1 , . . . , s . Thus f S(x )

divides
i =0
Σ
k

ai x i . Hence d S ≤ k , which contradicts our assumption and proves that the first d S rows of

j =0
Σ
s

zj Hj are linearly independent over F .

To show that no non-zero linear combination over F of the last r S rows of
j =0
Σ
s

zj Hj can be equal to a



- 9 -

linear combination of its first d S rows, assume, by contradiction, that

i =0
Σ

dS−1
ai (z 0H 0

i + z 1H 1
i + . . . + zs Hs

i) +
i =n −rS+1

Σ
n

bi (z 0H 0
i + z 1H 1

i + . . . + zs Hs
i) = 0 ,

where not all bi , i = n − r S + 1 , . . . , n , are zero. Without loss of generality we may assume that

r S = rank H
� �

0. Since z 0, z 1 , . . . , zs are indeterminates, in particular, we have

i =0
Σ

dS−1
ai H 0

i +
i =n +1−rank H

� �

0

Σ
n

bi H 0
i = 0 . (5)

Since deg f H0
(α) ≤ d S, and d S + rank H

� �

0 < n + 1, it follows from the definition of H̃ 0 and H
� �

0 that the first d S

rows of H 0 are linear combinations of its first deg f H0
(α) rows. Hence, by (5), we have

i =0
Σ

deg f H
0

(α)−1

ci H 0
i +

i =n +1−rank H
� �

0

Σ
n

bi H 0
i = 0 ,

for some constants c 0, c 1 , . . . , c deg f H
0

(α)−1. Since not all bi , i = n + 1 − r S , . . . , n + 1, are zero, the last

equality contradicts Proposition 2. This completes the proof of Lemma 3, because each linear combination

of the above rows either includes or does not include last rows. �

4. Proof of Theorem 1

Actually, Theorem 1 is a corollary of another general result given by Lemma 4 below. First we

introduce one more notation that will be frequently used in this section. We shall denote the maximal pos-

sible number of distinct factors of a polynomial of degree n over Fq by iq (n ). It is shown in Appendix 1

that for q ≥ 3 we have iq (n ) < lgq n − 3
n� ������������� .

Lemma 4. Let S = {H 0, H 1 , . . . , Hn } be a set of (n + 1) × (n + 1) Hankel matrices which are linearly

independent over Fq . Then there exists a subset S′ of S containing iq (n ) + 1 or fewer elements such that

computing the set of bilinear forms defined by {xT H y}H ∈S′ requires at least n + 1 multiplications.

Proof. If some H ∈ S is of rank n + 1, the lemma, is, trivially, true, since we can take S′ = {H }. Other-

wise, by Lemma 1, we have d S + r S ≥ n + 1, which implies deg f S(α) ≥ n + 1 − r S. Let f S(α) =
j =1
ΠΠ

l
pj

d
j (α) be

the decomposition of f S(α) into irreducible factors p 1(α), p 2(α) , . . . , pl (α) such that

deg p 1(α) ≥ deg p 2(α) ≥ . . . ≥ deg pl (α). Let m ≤l be such that deg
j =1
ΠΠ
m

pj
d

j (α) ≥ n + 1 − r S, and
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deg
j =1
ΠΠ
m −1

pj
d

j (α) < n + 1 − r S.

We construct a subset S′ of S, inductively, as follows.

S0 = {Hi 0
}, where rank H

� �

i 0
= r S, if r S > 0, and S0 = ∅, otherwise.

Assume Sj , j <m , has been constructed. Choose an Hij +1
such that f Hi

j+1

(α) is divisible by pj +1
d

j +1 (α) and

put Sj +1 = Sj ∪ {Hij +1
}.

Let S′ = Sm . By the construction above, f S′(α) is divisible by
j =1
ΠΠ
m

pj
d

j (α), hence d S′ ≥ n + 1 − r S. This

together with rank H
� �

i 0
= r S = r S′ implies d S′ + r S′ ≥ n + 1. It follows from Lemma 2 that computing the set of

bilinear forms defined by {xT H y}H ∈S′ requires at least n + 1 multiplications.

In order to complete the proof of Lemma 4, it remains to show that the number of the elements of S′

does not exceed iq (n ) + 1. We contend that m ≤ iq (n + 1 − r S). If deg
j =1
ΠΠ
m

pj
d

j (α) = n + 1 − r S, there is nothing

to prove. If deg pm (α) = 1, then, by the definition of m , there exists a 1 ≤ dm′ ≤ dm such that

deg

��
�

j =1
ΠΠ
m −1

pj
d

j (α)

� �
� pm

d
m
′(α) = n + 1 − r S, and the result follows. Otherwise, i.e., deg pj (α) > 1, j = 1, 2 , . . . , m ,

consider the polynomial

��
�

j =1
ΠΠ
m −1

pj
d

j (α)

� �
� pm

d
m
′(α) such that 0 ≤ dm′ ≤ dm , and deg

��
�

j =1
ΠΠ
m −1

pj
d

j (α)

� �
� pm

d
m
′(α) ≤ n + 1 − r S.

Then the polynomial α
(n + 1 − rS) − deg

��
�

j =1
ΠΠ

m −1
pj

d
j (α)

� �
� pm

d
m
′
(α)

��
�

j =1
ΠΠ
m −1

pj
d

j (α)

� �
� pm

d
m
′−1 has at least m irreducible factors and is

of degree n + 1 − r S. Hence m ≤ iq (n + 1 − r S), which proves our contention.

Obviously, the number of the elements of S′ is bounded by m + 1. Hence the number of the elements

of S′ does not exceed iq (n + 1), if r S = 0, and does not exceed iq (n + 1 − r S) + 1, otherwise. In both cases,

the number of the elements of S′ is bounded by m ≤ iq (n ) + 1. �
Now Theorem 1 is implied by Lemma 4 in a standard manner, cf. [11] and [18], as follows.

Proof of Theorem 1. We have to compute zk = zk (x, y) =
i +j =k
Σ xi yj , k = 0 , . . . , 2n . Let

z = (z 0, z 1 , . . . , z 2n )T . Assume that Mq (n ) = t , i.e. all the bilinear forms defined by the components of z

can be computed in t multiplications, namely there exist t linear forms L 1(x), , . . . , Lt (x) of x and t linear

forms L 1′(y) , . . . , Lt′(y) of y such that each zk is a linear combination of the products
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L 1(x)L 1′(y) , . . . , Lt (x)Lt′(y). It is known from [4] that t ≥ 2n + 1. Let p = (L 1(x)L 1′(y) , . . . , Lt (x)Lt′(y))T .

By the definition of bilinear algorithms there exists a (2n + 1) × t matrix U whose entries are constants

from Fq such that z = U p.

We contend first that rank U = 2n + 1. Obviously, zk (x, y) = xT Ak y, where Ak = (ai ,j ,k ) is an

(n + 1) × (n + 1) Hankel matrix defined by

ai ,j ,k =

�
� � 0, otherwise
1, if i + j = k +2

Since the matrices A 0, A 1 , . . . , A 2n are linearly independent, the rows of U are independent as well. This

proves our contention.

Permuting the components of p, if necessary, we may assume that the first (2n + 1) columns of U are

linearly independent. Hence there exist a non-singular (2n + 1) × (2n + 1) matrix W and

(2n + 1) ×(t − 2n − 1) matrix V such that

W z = ( I 2n +1, V )p ,

where I 2n +1 denotes the (2n + 1) × (2n + 1) identity matrix. I.e. the first (2n + 1) columns of the product

WU are those of I 2n +1.

By Lemma 4, there exist iq (n )+1 components of W z which define bilinear forms whose multiplica-

tive complexity is at least n + 1. Without loss of generality we may assume that the above bilinear forms

are defined by the last components of W z. Since the first 2n − iq (n ) components of the last iq (n ) + 1 rows

of ( I 2n +1, V ) are zero, we have t − (2n − iq (n )) ≥ n + 1. This implies t ≥ 3n + 1 − iq (n ). Using the

lgq n − 3
n� ������������� upper bound on iq (n ), cf. Appendix 1, we obtain Mq (n ) = t > 3n − lgq n − 3

n� ������������� . �

Remark. Applying the argument used in the proof of Lemma 3 to 2n + 1 linearly independent Hankel

matrices H 0, H 1 , . . . , H 2n , and assuming that deg p 1
d

1 (α) ≥ deg p 2
d

2 (α) ≥ . . . ≥deg pl
d

l (α), one can improve

the lower bound given by Theorem 1 by O (n /lgq
2n ). The proof requires a more involved counting argu-

ment than that in Appendix 1 and will be omitted.

5. Proof of Theorem 2

Let x(α) =
i =0
Σ
n

xi αi and y(α) =
i =0
Σ
n

yi αi . Similarly to [18], computing the coefficients of the product
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x(α)y(α) in 3n + 1 −
�
q /2� multiplications can be easily done by computing x(α)y(α) modulo linear and

quadratic polynomials, cf. Appendix 2. In order to prove the lower bound we proceed as follows.

Let Fq = {e 1, e 2 , . . . , eq }. Without loss of generality we may assume that Li (x)Li′(y) = x(ei )y(ei ),

i = 1, 2 , . . . , q , and Lq +1(x)Lq +1′ (y) = xn yn , cf. [1, Exercise 12.9, p. 445]. Using the same notation as in the

proof of Theorem 1 we have W z = ( I 2n +1, V )p, where the first q + 1 rows of V are zero. Let Hi be the

Hankel matrix representing the bilinear forms defined by the i -th component of W z, i = 1, 2 , . . . , 2n + 1.

Let S = {Hq +2, Hq +3 , . . . , H 2n +1}. The proof of the 3n + 1 −
�
q /2� lower bound is based on the following

lemma.

Lemma 5. Either there exists a subset S′ of S containing
�
(2n −q )/2� or fewer elements such that comput-

ing the set of bilinear forms defined by {xT H y}H ∈S′ requires at least (2n − q ) multiplications, or there

exists a subset S′ of S containing
�
(2n −q )/2� elements such that computing the set of bilinear forms defined

by {xT H y}H ∈S′ requires at least 2n − q + 1 multiplications.

The proof of Lemma 5 is rather long and technical, and, for the sake of continuity, is postponed to

the next section.

Proof of Theorem 2. The proof is similar to the proof of Theorem 1. By Lemma 5, either there exist

�
(2n − q )/2� components of W z which define bilinear forms whose multiplicative complexity is at least

2n − q , or there exist
�
(2n − q )/2� components of W z which define bilinear forms whose multiplicative

complexity is at least 2n − q + 1. Without loss of generality in both cases we may restrict ourselves to the

last components of W z.

In the former case, since the first 2n + 1 −
�
(2n − q )/2� components of the last

�
(2n − q )/2� rows of

( I 2n +1, V ) are zero, we have

Mq (n ) − (2n + 1 −
�
(2n −q )/2� ) ≥ 2n − q .

(Recall that ( I 2n +1, V ) is a (2n + 1) × Mq (n ) matrix.) Therefore

Mq (n ) ≥ 4n + 1 − q −
�
(2n − q )/2� = 3n + 1 − (q +

�
−q /2� ) = 3n + 1 −

�
q /2� .

In the latter case, since the first 2n + 1 −
�
(2n − q )/2� components of the last

�
(2n − q )/2� rows of

( I 2n +1, V ) are zero, we have
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Mq (n ) − (2n + 1 −
�
(2n −q )/2� ) ≥ 2n − q + 1 .

Therefore

Mq (n ) ≥ 4n + 2 − q −
�
(2n − q )/2� = 3n + 1 − (q +

�
−q /2� − 1) ≥ 3n + 1 −

�
q /2� . �

6. Proof of Lemma 5

In order to prove Lemma 5 we need some preliminary facts. First we observe that rank Hi ≤ n ,

i = q + 2 , . . . , 2n +1. Were there an Hi of rank n + 1, similarly to the proof of Theorem 1, we would have

Mq (n ) > 3n , which contradicts the upper bound at the beginning of this section.

By Lemma 1, we have d S + r S ≥ 2n − q , which implies deg f S(α) ≥ 2n − q − r S. Let f S(α) =
i =1
ΠΠ

l
pi

d
i (α)

be the decomposition of f S(α) into irreducible factors p 1(α), p 2(α) , . . . , pl (α) such that

deg p 1
d

1 (α) ≥ deg p 2
d

2 (α) ≥ . . . ≥ deg pl
d

l (α). Write

f S(α) =
i =1
ΠΠ

l
pi

d
i (α) =

��
�
i =1
ΠΠ

k
pi

d
i (α)

� �
�

��
�
i =k +1
ΠΠ

l
pi (α)

� �
� ,

where pk +1(α), pk +2(α) , . . . , pl (α) are all the linear factors of f S(α) of multiplicity 1.

Proposition 3. We have deg
i =1
ΠΠ

k
pi

d
i (α) ≥ 2n − q − r S.

Proof. Assume, by contradiction, that deg
i =1
ΠΠ

k
pi

d
i (α) < 2n − q − r S and consider the set of Hankel matrices

S′′ = S ∪{Hi }i =1,2, . . . , q . Obviously, r S′′ = r S and deg f S′′(α) ≤ q + deg
i =1
ΠΠ

k
pi

d
i (α). Hence

d S′′ + r S′′ < q + 2n − q − r S + r S = 2n . The last inequality contradicts Lemma 1, because

dim[S′′] = dim[H 1 , . . . , Hq , Hq +2 , . . . , H 2n +1] = 2n . �

Let m be such that deg
i =1
ΠΠ
m −1

pi
d

i (α) < 2n − q − r S, and deg
i =1
ΠΠ
m

pi
d

i (α) ≥ 2n − q − r S.

Proposition 4. If q is even, or r S ≥ 3, or deg p 1
d

1 (α) ≥ 3, then we have

m ≤

���
� ��

�
�
(2n − q )/2� − 1 , if deg

i =1
ΠΠ
m

pi
d

i (α) ≤ 2n − q − 1

�
(2n − q )/2� , if deg

i =1
ΠΠ
m

pi
d

i (α) ≥ 2n − q
.

Proof. Assume that deg
i =1
ΠΠ
m

pi
d

i (α) ≥ 2n − q . If deg p 1
d

1 (α) ≥ 3, then
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m ≤
�
(2n − q − 3)/2� + 1 =

�
(2n − q − 1)/2� =

�
(2n − q )/2� ,

and if q is even, then

m ≤ (2n − q )/2 =
�
(2n − q )/2� .

If deg
i =1
ΠΠ
m

pi
d

i (α) < 2n − q , then r S ≥ 1. We shall consider the cases of r S = 1, r S = 2, and r S ≥ 3

separately.

Case of r S = 1: In this case deg
i =1
ΠΠ
m

pi
d

i (α) = 2n − q − 1. Assume that q is odd and deg p 1
d

1 (α) ≥ 3. Since q is

odd, 2n − q − 1 is even. Hence either deg p 1
d

1 (α) ≥ 4 or deg p 2
d

2 (α) = 3. In the case of deg p 1
d

1 (α) ≥ 4 we

have

m ≤ 1 +
�
((2n − q − 1) − 4)/2� ) =

�
(2n − q )/2� − 1 ,

and in the case of deg p 2
d

2 (α) = 3 we have

m ≤ 2 +
�
((2n − q − 1) − 6)/2� ) =

�
(2n − q )/2� − 1 .

If q is even, then 2n − q − 1 is odd. Hence deg p 1
d

1 (α) ≥ 3, which implies

m ≤ 1 + 2
(2n − q − 1) − 3� ����������������������� =

�
(2n − q )/2� − 1 .

Case of r S = 2: If deg p 1
d

1 (α) ≥ 3, then

m ≤ (1 +
�
((2n − q − 2) − 3)/2� ) =

�
(2n − q − 1)/2� − 1 =

�
(2n − q )/2� − 1 ,

and if q is even, then

m ≤ 2
2n − q − 2� ��������������� =

�
(2n − q )/2� − 1 .

Case of r S ≥ 3: We have

m ≤
�
(2n − q − r S)/2� ≤

�
(2n − q − 3)/2� =

�
(2n − q − 1)/2� − 1 =

�
(2n − q )/2� − 1 .

This completes the proof of Proposition 4. �
Proposition 5. If q is even, or r S ≥ 3, or deg p 1

d
1 (α) ≥ 3, then there exists a subset S′ of S containing

�
(2n −q )/2� or fewer elements such that computing the set of bilinear forms defined by {xT H y}H ∈S′

requires at least 2n − q multiplications.

Proof. Since q ≥ n − 1, we have 2n − q ≤ n + 1. Therefore, by Lemmas 2 and 3, it suffices to show that

there exists a subset S′ of S containing
�
(2n −q )/2� or fewer elements such that d S′ + r S′ ≥ 2n − q . Similarly
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to the proof of Lemma 4 we shall construct S′ inductively as follows.

If deg
i =1
ΠΠ
m

pi
d

i (α) ≥ 2n − q , then S0 = ∅; and if deg
i =1
ΠΠ
m

pi
d

i (α) ≤ 2n − q − 1, then S0 = {Hi 0
}, where

rank H
� �

i 0
= r S.

Assume Sj , j < m , has been constructed. If there exists an H ∈ Sj such that f H (α) is divisible by

pj +1
d

j +1 (α), then Sj +1 = Sj . Otherwise, choose an Hij +1
such that f Hi

j+1

(α) is divisible by pj +1
d

j +1 (α) and put

Sj +1 = Sj ∪ {Hij +1
}.

Let S′ = Sm . By the construction above, f S′(α) is divisible by
i =1
ΠΠ
m

pi
d

i (α), hence d S′ ≥ 2n − q − r S. This

together with rank H
� �

i 0
= r S implies d S′ + r S′ ≥ 2n − q .

Obviously, the number of the elements of S′ does not exceed m , if deg
i =1
ΠΠ
m

pi
d

i (α) ≥ 2n − q ; and does

not exceed m + 1, otherwise. Thus the bound on the number of the elements of S′ follows form Proposition

4. �
Proposition 6. If r S = 1, and deg p 1

d
1 (α) = 2, then there exists a subset S′ of S containing

�
(2n −q )/2� or

fewer elements such that computing the set of bilinear forms defined by {xT H y}H ∈S′ requires at least

2n − q multiplications.

Proof. Like in the proof of Proposition 5, it suffices to show there exists a subset S′ of S containing

�
(2n −q )/2� or fewer elements such that d S′ + r S′ ≥ 2n − q . Pick an s ∈ {q + 2, q + 3 , . . . , 2n + 1} such that

rank H
� �

s = 1. We contend that there exists an i , 1 ≤ i ≤ k such that f Hs
(α) is divisible by pi

d
i (α). Since any

(n + 1) × (n + 1) Hankel matrix H with rank H
� �

= 1 such that f H (α) divides
i =k +1
ΠΠ

l
pi (α) belongs to

[H 1, H 2 , . . . , Hq +1], cf. [13, Theorem 8.55, p. 425], for some i , 1 ≤ i ≤ k , f Hs
(α) is divisible by pi

t(α),

where t ≤ di and deg pi
t ≥ 2. Since deg p 1

d
1 = 2, we have deg pi

d
i = 2, which implies t = di . This completes

the proof of our contention. Without loss of generality we may assume that f Hs
(α) is divisible by p 1

d
1 (α).

Then S′ can be constructed as follows.

Let S1 = {Hs }. Assume Sj , j < m , has been constructed. If there exists an H ∈ Sj such that f H (α) is

divisible by pj +1
d

j +1 (α), then Sj +1 = Sj . Otherwise, choose an Hij +1
such that f Hi

j+1

(α) is divisible by pj +1
d

j +1 (α) and
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put Sj +1 = Sj ∪ {Hij +1
}.

Let S′ = Sm . By the construction above, f S′(α) is divisible by
i =1
ΠΠ
m

pi
d

i (α). Since Hs ∈ S′, it follows that

d S′ + r S′ = d S′ + 1 = 2n − q . Obviously, the number of the elements of S′ does not exceed m . Therefore, by

the definition of m , we have

m ≤
�
(2n − q − 1)/2� =

�
(2n − q )/2� . �

Proposition 7. Let q be odd, r S = 2, and deg p 1
d

1 (α) = 2. If there is an Hs ∈ S such that rank H
� �

s = 2 and

deg f Hs
(α) ≥ 1, then there exists a subset S′ of S containing

�
(2n −q )/2� or fewer elements such that comput-

ing the set of bilinear forms defined by {xT H y}H ∈S′ requires at least 2n − q multiplications.

Proof. It suffices to show there exists a subset S′ of S containing
�
(2n −q )/2� or fewer elements such that

d S′ + r S′ ≥ 2n − q . Let rank H
� �

s = 2 and deg f Hs
(α) ≥ 1. If for no i , k < i ≤ l , f Hs

(α) is divisible by pi (α),

then, without loss of generality, we may assume that f Hs
(α) is divisible by p 1(α). We construct S′ as fol-

lows.

Let S1 = {Hs }. Assume Sj , j < m , has been constructed. If there exists an H ∈ Sj such that f H (α) is

divisible by pj +1
d

j +1 (α), then Sj +1 = Sj . Otherwise, choose an Hij +1
such that f Hi

j+1

(α) is divisible by pj +1
d

j +1 (α) and

put Sj +1 = Sj ∪ {Hij +1
}.

Let S′ = Sm . By the construction above, f S′(α) is divisible by pj (α)
i =2
ΠΠ
m

pi
d

i (α), where j = 1, or j > k .

Since

deg
i =2
ΠΠ
m

pi
d

i (α) = 2n − q − r S − 1 = 2n − q − 3 ,

we have d S′ ≥ 2n − q − 2. Therefore d S′ + r S′ = d S′ + 2 ≥ 2n − q . Obviously, the number of the elements of

S′ does not exceed m . Since q is odd, we have

m ≤
�
(2n − q − 2)/2� =

�
(2n − q )/2� . �

Proposition 8. Let q be odd, r S = 0, and deg p 1
d

1 (α) = 2. If there is an Hs ∈ S such that deg f Hs
(α) ≥ 3, then

there exists a subset S′ of S containing
�
(2n −q )/2� or fewer elements such that computing the set of bilinear

forms defined by {xT H y}H ∈S′ requires at least 2n − q multiplications.
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Proof. It suffices to show there exists a subset S′ of S containing
�
(2n −q )/2� or fewer elements such that

d S′ + r S′ ≥ 2n − q . Let deg f Hs
(α) ≥ 3. Exactly as in the proof of Proposition 7, one can show that there

exists an i , 1 ≤ i ≤ k , such that f Hs
(α) is divisible by pi

d
i (α). It will be convenient to assume that f Hs

(α) is

divisible by p 2
d

2 (α). If for no i , k < i ≤ l , f Hs
(α) is divisible by pi (α), then we may assume that f Hs

(α) is

divisible by p 1(α). We construct S′ as follows.

Let S2 = {Hs }. Assume Sj , j < m , has been constructed. If there exists an H ∈ Sj such that f H (α) is

divisible by pj +1
d

j +1 (α), then Sj +1 = Sj . Otherwise, choose an Hij +1
such that f Hi

j+1

(α) is divisible by pj +1
d

j +1 (α) and

put Sj +1 = Sj ∪ {Hij +1
}.

Let S′ = Sm . By the construction above, f S′(α) is divisible by pj (α)
i =2
ΠΠ
m

pi
d

i (α), where j = 1, or j > k .

Since deg
i =2
ΠΠ
m

pi
d

i (α) = 2n − q − 1, we have d S′ ≥ 2n − q . Obviously, the number of the elements of S′ does not

exceed m − 1. Since q is odd, we have

m − 1 ≤
�
(2n − q )/2� − 1 =

�
(2n − q − 2)/2� =

�
(2n − q )/2� . �

In view of Propositions 5-8, we may assume that q is odd, deg p 1
d

1 (α) = 2, and r S = 0; or q is odd,

deg p 1
d

1 (α) = 2, r S = 2, and for any H ∈ S, if rank H
� �

= 2, then H
� �

= H . The above two cases are treated by

Propositions 9 and 10 below.

Proposition 9. If q is odd, deg p 1
d

1 (α) = 2, and r S = 0, then there exists a subset S′ of S containing

�
(2n −q )/2� elements such that computing the set of bilinear forms defined by {xT H y}H ∈S′ requires at least

2n − q + 1 multiplications.

Proof. Since q is odd, we have m =
�
(2n − q )/2� . We may assume that f H2n −m +i

(α) = pi
d

i (α),

i = 1, 2 , . . . , m .

If 2n − q = 1, let S′ = {H 2n }. Since deg f H2n
(α) = 2, it follows that rank H 2n = 2. Hence computing

xT H 2n y requires two multiplications.

If 2n − q = 3, let S′ = {H 2n −1, H 2n }. The inequality q ≥ 3, implies n + 1 ≥ 4. Hence, by Lemmas 2

and 3, computing {xT H 2n −1y, xT H 2n y} requires at least four multiplications.
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Let 2n − q ≥ 5. The set of bilinear forms {xT H y}H ∈S can be computed by

(xT H 2n −m +1y, xT H 2n −m +2y , . . . , xT H 2n y)T = ( Im , U )p ,

where U consists of the last m rows of V . (Recall that W z = ( I 2n +1, V )p.) We have to prove that U has at

least m columns. Assume, by contradiction, that U has at most 2n − q − m = m − 1 columns.6 Let

U = (ui ,j )
j =1, . . . , m −1
i =1, . . . , m .

Since computing each xT Hi y, i = 2n − m + 1, 2n − m + 2 , . . . , 2n , requires at least 2 multiplications

and the number of columns of U is less than m , the matrix U has a column with two non-zero components.

Permuting the columns and rows of U , if necessary, we may assume that um −1,m −1 and um ,m −1 are not equal

to zero. Then there exist non-zero a 2, a 3 , . . . , am ∈ Fq such that
i =2
Σ
m

ai ui ,m −1 = 0.

Consider the matrix H defined by H =
i =2
Σ
m

ai H 2n −m +i . Since for i = 2n − q + 1, , . . . , 2n , H
� �

i is the

zero matrix, H
� �

is the zero matrix as well. Then, in view of Proposition 1, we have f H (α) =
i =2
ΠΠ
m

pi
d

i (α), cf.

[13, Theorem 8.57, p. 426]. It follows from Proposition 2 that rank H = 2n − q − 1. On the other hand, the

bilinear form xT H y can be computed in 2n − q − 2 multiplications by

xT H y = (0, a 2 , . . . , am −1, am )( Im , U )p ,

because the first and the last component of (0, a 2 , . . . , am −1, am )( Im , U ) are zero. This contradiction com-

pletes the proof of Proposition 9. �
Proposition 10. Let q be odd, deg p 1

d
1 (α) = 2, r S = 2, and for any H ∈ S, if rank H

� �

= 2, then H
� �

= H . Then

there exists a subset S′ of S containing
�
(2n −q )/2� elements such that computing the set of bilinear forms

defined by {xT H y}H ∈S′ requires at least 2n − q + 1 multiplications.

Proof. We may assume that 2n − q ≥ 5. The case of 2n − q ≤ 3 can be treated exactly as in the proof of

Proposition 9. Since q is odd, we have m =
�
(2n − q )/2� − 1. We may assume that for some j ,

2n − m ≤ j ≤ 2n , rank H
� �

j = 2, and that for each i = 1, 2 , . . . , m there exists an ji , 2n − m ≤ ji ≤ 2n such

that f Hj
i

(α) = pi
d

i (α). Then we have

(xT H 2n −m y, xT H 2n −m +2y , . . . , xT H 2n y)T = ( Im , U )p ,� ���������������������������
6 It follows from Lemma 2 that U has at least 2n − q − m columns.
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where U consists of the last m + 1 rows of V .

We have to prove that U has at least m + 1 columns. Assume, by contradiction, that U has

2n − q − (m + 1) = m columns. Let U = (ui ,j )
j =1, . . . , m
i =1, . . . , m +1. Since computing each xT Hi y,

i = 2n − m , 2n − m + 1 , . . . , 2n , requires at least 2 multiplications and the number of columns of U is

equal to m , the matrix U has a column with two non-zero components. Permuting the columns and rows

U , if necessary, we may assume that um ,m and um +1,m are not equal to zero. If rank H
� �

2n −m = 2, then we

proceed exactly as in the proof of Proposition 9. Otherwise we may assume that f H2n −m
(α) = p 1

d
1 (α) and

rank H
� �

2n −m +1 = 2. There exist non-zero a 2, a 3 , . . . , am ∈ Fq such that
i =2
Σ
m

ai ui ,m −1 = 0. Consider the matrix

H defined by H =
i =1
Σ
m

ai H 2n −m +i .

Since for i = 2n − q − m + 1, , . . . , 2n , rank H
� �

i ≤ 1, it follows that rank H
� �

≤ 2. Then

f H (α) =
i =1
ΠΠ
m −1

pi
d

i (α), and, by Proposition 2, we have rank H = 2n − q − 1. On the other hand, exactly as in

the proof of Proposition 9, it can be shown that the bilinear form xT H y can be computed in 2n − q − 2 mul-

tiplications. This contradiction completes the proof of Proposition 10. �
Now the reader can easily convince himself that Lemma 5 follows from Propositions 5-10.

Notice that if n = q + 1, then in the conditions of Propositions 9 or 10 we have the tight n + 2 bound

on the number of multiplications required to compute {xT Hi y}i =3n /2, . . . , 2n . This bound exceeds the lower

bound given by Lemma 2.

7. Multiplication of polynomials modulo a polynomial

Here we consider an application of the technique developed in the previous sections to multiplication

of polynomials modulo a polynomial. All the results obtained in this section are easy corollaries of Lemma

6 below. To proceed we need one more notation. For polynomials z(α) and P (α) we denote by

res(z(α), P (α)) the minimal degree residue of z(α) modulo P (α).

Lemma 6. Let x(α) =
i =0
Σ
n

xi αi and y(α) =
i =0
Σ
n

yi αi be polynomials with indeterminate coefficients, and let

P (α) = αm −
i =0
Σ

m −1
ai αi be a fixed polynomial over F of degree m > n . Let xT H y be a bilinear form defined
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by a linear combination of the coefficients of res(x(α)y(α), P (α)). If rank H ≤ 2n + 1 − m , then f H (α)

divides P (α), and rank H
� �

= 0.

Proof. Let xT H y be a bilinear form defined by a linear combination of the coefficients of

res(x(α)y(α), P (α)). First we contend that if H = H (σ), then P (α) is a characteristic polynomial of σ.

Since the set of all linear recurring sequences satisfying the same recurrence is a linear space over F , we

may assume that xT H y is defined by a coefficient of res(x(α), y(α), P (α)). Let x(α)y(α) = z(α) =
i =0
Σ
2n

zi αi ,

and let res(z(α), P (α)) =
i =0
Σ

m −1
ui αi , where ui =

j =0
Σ
2n

si ,j zj , i = 0, 1 , . . . , m − 1. We have to prove that P (α) is a

characteristic polynomial of σi = si ,0, si ,1 , . . . , si ,2n , i = 0, 1 , . . . , m − 1.

Let P (α) = αm −
i =0
Σ

m −1
ai αi , and let CP denote the companion matrix of P (α), i.e.,

CP =

����������
� 0 0 . . . 1 am −1

. . . .

. . . .

. . . .
0 1 . . . 0 a 2

1 0 . . . 0 a 1

0 0 . . . 0 a 0

� ���������
�

.

Let σi ,k = (si ,k , si ,k +1 , . . . , si ,k +m −1) be the k -th m -dimensional state vector of σi ,

i = 0, 1 , . . . , m − 1; k = 0, 1 , . . . , 2n − m + 1. In order to prove our contention it suffices to show that

σi ,k = σi ,0CP
k , or, since, trivially, σi ,0 is equal to the i -th row of Im , it suffices to show that σi ,k is equal to

the (i + 1)-st row of CP
k .

Using the regular matrix representation of the algebra F [α]/(P (α)), cf. [6, p. 424], we obtain that the

column vector of the coefficients of res(z(α), P (α)) is equal to

(z 0, z 1 , . . . , zm −2, zm −1)T +
k =n
Σ
m

zk CP
k −m +1(0, 0 , . . . , 0, 1)T .

Therefore, if k ≥m , then si ,k is the i -th component of the last row of CP
k −m +1. Now the contention follows

from the fact that the vector of the first m − 1 components of the i -th row of CP
d is equal to the vector of the

last m − 1 components of the i -th row of CP
d +1.

Since, rank H ≤ 2n − m + 1, by Proposition 2, we have deg f H (α) + rank H
� �

≤ 2n + 1 − m , which

implies deg f H (α) ≤ 2n + 1 − rank H
� �

− m = l − m + 1. Now the divisibility of P (α) by f H (α) follows from
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Proposition 1.

It remains to show that rank H
� �

= 0. f H (α) divides P (α), which implies that P (α) is a characteristic

polynomial of σ
�

= σ − σ̃ cf. [13, Theorem 8.55, p. 425]. Since σ and σ̃ have the same first m elements, σ
�

is

the zero sequence. Hence H
� �

is the zero matrix. �
Next we present some corollaries to Lemma 6. Whereas Corollaries 1 and 2 were established in [18]

in a more general form, Corollaries 3 and 4 are new and cannot be obtained by the technique used in [18].

Corollary 1. Let the field of constants be infinite, and let P (α) =
i =1
ΠΠ

k
pi

d
i (α) be a fixed polynomial of degree

n + 1 with its factorization into irreducible factors p 1(α), p 2(α) , . . . , pk (α). Let x(α) and y(α) be polyno-

mials of degree n with indeterminate coefficients. Then computing res(x(α)y(α), P (α)) requires exactly

(2n + 2 − k ) multiplications.

Proof. Computing res(x(α)y(α), P (α)) can be performed in 2n + 2 − k multiplications by means of

Chinese Remainder Theorem, cf. [18]. To prove the lower bound stated in the corollary we proceed as fol-

lows. Assume that computing res(x(α)y(α), P (α)) can be performed in t multiplications. Let

res(x(α)y(α), P (α)) =
i =0
Σ
n

ui αi , u = (u 0, u 1 , . . . , un )T , and let p be a t -dimensional vector of products of

linear forms of x and y such that u = U p, where U is an (n + 1) × t constant matrix. We have to prove that

t ≥ 2n + 2 − k . Exactly as in the proof of Theorem 1, it can be shown that there exists a non-singular matrix

W such that W u = ( In +1, V )p.

Let S = {H 0, H 1 , . . . , Hm −1} be the set of Hankel matrices representing the bilinear forms defined by

the components of W z. If there exists an H ∈ S such that rank H = n + 1, then V must have at least n + 1

columns, which implies t = 2n + 1 ≥ 2n + 2 − k . If rank Hi ≤ n , i = 1, 2 , . . . , m − 1, then it follows from

Lemmas 1 and 6 that f S(α) = P (α) and r S = 0. Exactly as in the proof of Lemma 4, we can find a subset S′

of S containing at most k elements such that d S′ = n + 1. Then, exactly as in the proof of Theorem 1, we

have t − (n + 1 − k ) ≥ n + 1, or t ≥ 2n + 2 − k . �
The following corollary is a partial case of the direct sum conjecture conjectured by Strassen in [16].

Let B = B(x, y) be a finite set of bilinear forms of x and y over a field F . µF (B) denotes the minimal

number of multiplications required to compute all the forms of B by means of bilinear algorithms over F .
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Corollary 2. Let the field of constants F be infinite, and let xi (α) and yi (α), i = 1, 2 , . . . , k , be polynomi-

als of degree ni with disjoint set of indeterminate coefficients. Let P 1(α), P 2(α) , . . . , Pk (α) be powers of

distinct irreducible polynomials, deg Pi (α) = ni , i = 1, 2 , . . . , k . Then

µF (
i =1
∪∪
k

res(xi (α)yi (α), Pi (α))) =
i =1
Σ
k

µF (res(xi (α)yi (α), Pi (α))) =
i =1
Σ
k

(2ni + 1) .

Proof. The proof immediately follows from Corollary 1, because, by means of Chinese Remainder

Theorem, each algorithm for computing
i =1
∪∪
k

res(xi (α)yi (α), Pi (α)) can be transformed to an algorithm for

multiplying polynomials of degree
i =1
Σ
k

ni − 1 modulo the product of the moduli. �

The above two proofs differ from those of Winograd in [18] in the following. In [18] the result con-

cerning multiplication of polynomials modulo a polynomials implied by an instance of the direct sum con-

jecture, which was proved first.

Corollary 3. Let the field of constants F be infinite, and let P (α) =
i =1
ΠΠ

k
pi

d
i (α) be a fixed polynomial of

degree m with its factorization into irreducible factors p 1(α), p 2(α) , . . . , pk (α). Let x(α) and y(α) be

polynomials of degree n < m with indeterminate coefficients. If m − k ≥ n , then computing

res(x(α)y(α), P (α)) requires 2n + 1 multiplications.

Proof. Obviously, computing res(x(α)y(α), P (α)) can be performed in 2n + 1 multiplications by first com-

puting the product x(α)y(α), and then reducing it modulo P (α). To prove the lower bound stated in the

corollary we proceed as follows. Assume that computing res(x(α)y(α), P (α)) can be performed in t multi-

plications. Let res(f x(α)y(α), P (α)) =
i =0
Σ

m −1
ui αi , and let u = (u 0, u 1 , . . . , um −1)T . Let p be a t -dimensional

vector of products of linear forms of x and y such that u = U p, where U is an m × t constant matrix. We

have to prove that t ≥ 2n + 1. Like in the previous proofs, it can be shown that there exists a non-singular

matrix W such that W u = ( Im , V )p.

Let S = {H 0, H 1 , . . . , Hm −1} be the set of Hankel matrices representing the bilinear form defined by

the components of W z. If there exists an Hi ∈ S such that rank Hi > 2n + 1 − m , then V must have at least

2n − m columns, which implies t ≥ 2n + 1. Otherwise, by Lemmas 1 and 6, we have d S ≥ m . Then, like in

the proof of Lemma 4, one can show that there exists a subset S′ of S containing at most k elements such
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that d S′ ≥ n + 1. By Lemma 2, we have µF ({xT H y})H ∈S′ ≥ n + 1. Then, exactly as in the proof of Theorem

1, we have t − (m − k ) ≥ n + 1. Since m − k ≥ n the above inequality implies t ≥ (m − k ) + (n + 1) ≥ 2n + 1. �

Corollary 4. Let the field of constants be infinite. Let n be even and let P (α) =
i =1
ΠΠ

1+n /2
pi

d
i (α) be a fixed poly-

nomial of degree n + 2 with its factorization into irreducible factors p 1(α), p 2(α) , . . . , p 1+n /2(α) such that

deg pi
d

i (α) = 2, i = 1, 2 , . . . , 1 + n /2. Let x(α) and y(α) be polynomials of degree n with indeterminate

coefficients. Then computing res(x(α)y(α), P (α)) requires exactly 3 + 3n /2 multiplications.

The proof of Corollary 4 is similar to the proof of Proposition 9 and will be omitted. Notice that in

Corollaries 3 and 4 the degree of the moduli is greater than n + 1.

In order to state one more corollary to Lemma 6 we need the following definition.

Definition. Let F k be the k -dimensional vector space over a field F , and let lbre 1, . . . , ek } be a fixed

basis of F k . Let v =
i =1
Σ
k

ai ei ∈ F k . Define ω(v ), the weight of v , as the number of non-zero components

ai of v . If L is a subspace of F k of dimension l , we shall say that L is a linear code of dimension l and

length k . Define ω(L ), the minimal distance of L , by ω(L ) = min lbromega (v ) | 0
�

≠ v ∈ L }.

Corollary 5. Let x(α) and y(α) be polynomials with indeterminate coefficients of degree n over a field F ,

and let P (α) be a fixed polynomial of degree m > n . If P (α) has no factors of degree less than 2n + 2 − m ,

then the number of multiplications required to compute res(x(α)y(α), P (α)) by means of a bilinear algo-

rithm over F is not smaller than the minimum code length of linear codes over F of minimal distance

2n + 2 − m and dimension m . In particular, if F is infinite, then computing res(x(α), y(α), P (α)) requires

exactly 2n + 1 multiplications.

For an irreducible polynomial P (α) and m = n + 1; and for an irreducible polynomial P (α) and any

m ≥ n + 1 the above corollary was obtained in [11] and [9], respectively.

Proof. Let xT H y be a bilinear form defined by a linear combination of the coefficients of

res(x(α)y(α), P (α)). It suffices to show that rank H ≥ 2n + 2 − m . Were rank H ≤ 2n + 1 − m , by Proposi-

tion 2 and Lemma 6, P (α) would have a factor of degree less than 2n + 2 − m , which contradicts the condi-

tions of the corollary. �
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Notice that the second part of Corollary 5 follows from Corollary 3 as well.

Appendix 1. The number of distinct factors of a polynomial over a finite field

Let iq (n ) denote the maximal possible number of distinct irreducible factors of a polynomial of

degree n over Fq . In this appendix we prove the following upper bound on iq (n ).

Lemma 7. If q ≥ 3, then iq (n ) ≤ lgq n − 3
n� ������������� .

Let Nq (j ) denote the number of monic irreducible polynomials of degree j over Fq . It is well-

known that Nq (j ) = j
1���

d |jΣ µ(d )q j /d , where µ(d ) is Mo
..
bius function of d , cf. [13, Theorem 3.25, p. 93].

For the proof of Lemma 7 we need some preliminary.

Proposition 11. If j ≥ 5 and q ≥ 3, then 2Nq (j − 1) < Nq (j ).

Proof. We have

j
1��� q j − j (q − 1)

q� ������������� (q j /2 − 1) ≤ Nq (j ) ≤ j
1��� (q j − q ) ,

cf. [13, Exercises 3.26 and 3.27, p. 142]. Hence it suffices to show that

j − 1
2q j −1� ��������� < j

q j� ��� − j (q −1)
q� ����������� q j /2 .

Multiplying the above inequality by j /q j and performing simple manipulations, we obtain that it is

equivalent to

2(1 + j − 1
1� ������� ) < q − q − 1

q��������� q 1−j /2 .

Recalling the bounds on q and j we obtain

2(1 + j − 1
1� ������� ) < 2(1 + 4

1��� ) ≤ 3 − 2
3��� 3−3/2 ≤ q − q 1−j /2 . �

Proposition 12. If q ≥ 3 and k ≥ 2, then
j =1
Σ
k

Nq (j ) < k − 1
1� �������

j =1
Σ
k

jNq (j ).

Proof. We have

k − 1
1� �������

j =1
Σ
k

jNq (j ) =
m =3
Σ
k

��
� m − 1

1� ���������
j =1
Σ
m

jNq (j ) − m − 2
1� ���������

j =1
Σ

m −1
jNq (j )

� �
� +

j =1
Σ
2

jNq (j ) .

Since

j =1
Σ
2

jNq (j ) >
j =1
Σ
2

Nq (j ) ,
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it suffices to show that if m ≥ 3, then

Nq (m ) < m − 1
1� ���������

j =1
Σ
m

jNq (j ) − m − 2
1� ���������

j =1
Σ

m −1
jNq (j ) .

Multiplying the last inequality by (m − 1)(m − 2) and performing simple manipulations, we obtain

that it is equivalent to

j =1
Σ

m −1
jNq (j ) < (m − 2)Nq (m ) =

j =5
Σ
m

[( j − 2)Nq (j ) − (j − 3)Nq (j − 1)] + 2Nq (4) .

Since for q ≥ 3 we have

j =1
Σ
3

jNq (j ) = q + (q 2 − q ) + (q 3 − q ) < 2
q 4 − q 2� ����������� = 2Nq (4) ,

it suffices to prove that if j ≥ 5, then

(j − 1)Nq (j − 1) < (j − 2)Nq (j ) − (j − 3)Nq (j − 1) .

The last inequality is equivalent to

2Nq (j − 1) < Nq (j ) ,

and the result follows from Proposition 11. �

Proof of Lemma 7. Let h (α) =
i =1
ΠΠ

l
pi

d
i (α) be a polynomial of degree n over Fq with its prime factorization.

It suffices to prove that l < lgq n − 2
n� ������������� . Let k = min{ deg pi (α) | i = 1, 2 , . . . , l }. Decreasing n , if neces-

sary, we may assume that di = 1, i = 1, 2 , . . . , l , and that each irreducible polynomial of degree less than k

divides h (α).

Let m be the number of irreducible factors of h (α) of degree k . Then l =
j =1
Σ
k −1

Nq (j ) + m , and

n =
j =1
Σ
k −1

jNq (j ) + km . By Proposition 12, we have

l =
j =1
Σ
k −1

Nq (j ) + m < k − 2
j =1
Σ
k −1

jNq (j ) + km
� ����������������������� = k − 2

n� ������� .

The proof of Lemma 7 will be completed if we show that k + > lgq n , or, equivalently, if we show

that n < q k +1. Since n =
j =1
Σ
k −1

jNq (j ) + km ≤
j =1
Σ
k

jNq (j ), the desired inequality follows from the estimation

below.
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j =1
Σ
k

jNq (j ) <
j =1
Σ
k

q j = q − 1
q k +1 − q� ��� � � � � < q k +1 . �

Appendix 2. An optimal algorithm for polynomial multiplication

In this appendix we show that for n ≤ q + 1 we have Mq (n ) ≤ 3n + 1 −
�
q /2� . In order to present the

above bound uniformly we assume that n ≤ 2 for q = 2. The inequality M 2(3) ≤ 9 follows from recursive

application of the algorithm for computing the product of two linear polynomials in three multiplications,

which is similar to the method of Karatsuba and Ofman, cf. [1, p. 62].

Let x(α) =
i =0
Σ
n

xi αi and y(α) =
i =0
Σ
n

yi αi . Similarly to [18] computing the coefficients of the product in

x(α)y(α) in 3n + 1 −
�
q /2� multiplications can be done by computing x(α)y(α) modulo linear and quadratic

polynomials as follows. Let u 1(α), u 2(α) , . . . , uq (α) be all the linear monic polynomials over Fq , and let

uq +1(α), uq +2(α) , . . . , u �
(2n +q )/2� (α) be

�
(2n −q )/2� quadratic monic irreducible polynomials over Fq . Such

polynomials exist, because the number of quadratic monic irreducible polynomials over Fq is equal to

2
q 2 − q� ��������� cf. [13, Theorem 3.25, p. 93], and for n ≤ q + 1, q ≥ 3 we have

2
q 2 − q� ��������� > 2

2(q + 1) − q� ����������������� ≥ 2
2n − q����������� .

We shall distinguish between the cases of odd and even q . If q is odd then

i =1
Σ

�
(2n +q )/2�

deg ui (α) = q + 2
�
(2n − q )/2� = q + 2 2

2n − q + 1� ��������������� = 2n + 1 .

This allows to compute the coefficients of the product x(α)y(α) as follows.

For i = 1, 2 , . . . ,
�
(2n + q )/2� compute zi (α) ≡ x(α)y(α) mod ui (α) and reconstruct x(α)y(α) from

the residues {zi (α)}i =1,2, . . . ,
�
(2n + q )/2� by means of Chinese Remainder Theorem. Since reducing x(α) and

y(α) modulo a fixed polynomial and reconstructing the product requires no non-scalar multiplications, the

above computation can be performed in

q + 3 2
2n − q + 1� ��������������� = 3n + 1 −

�
q /2�

multiplications: computing the product of zero degree polynomials can be performed in one multiplication,

and computing the product of linear polynomials can be performed in three multiplications over any field.

Notice that deg zi (α) = 0, if i ≤ q , and deg zi (α) = 1, otherwise.



- 27 -

If q is even, then

i =1
Σ

�
(2n +q )/2�

deg ui (α) = q + 2 2
2n − q����������� = 2n .

This allows to compute the coefficients of the product x(α)y(α) as follows.

For i = 1, 2 , . . . , (2n − q )/2 compute zi (α) ≡ x(α)y(α) mod ui (α). Then, by means of Chinese

Remainder Theorem, compute from the residues {zi (α)}i =1,2, . . . , (2n − q )/2 the polynomial z
�

(α) such that

z
�

(α) ≡ x(α)y(α) mod
i =1
ΠΠ

(2n +q )/2
ui (α). Similarly to the case of an odd q one can show that the above compu-

tation can be performed in 3n −
�
q /2� multiplications. Notice that the polynomial

j =1
ΠΠ

(2n +q )/2
uj (α) has no mul-

tiple roots. Finally, compute x(α)y(α) by

x(α)y(α) = z
�

(α) + xn yn j =1
ΠΠ

(2n +q )/2
uj (α) .

This computation requires one more multiplication. Thus the total number of multiplications involved is

equal to 3n + 1 −
�
q /2� . Since for any root a of

j =1
ΠΠ

(2n −q )/2
uj (α) we have x(a )y(a ) = z

�

(a ), the validity of the

above computation follows from [18, Eq. 11]. This completes the proof of the 3n + 1 −
�
q /2� upper bound

on Mq (n ). �
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