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MULTIPLICATIVE η-QUOTIENTS

YVES MARTIN

Abstract. Let η(z) be the Dedekind η-function. In this work we exhibit
all modular forms of integral weight f(z) = η(t1z)r1η(t2z)r2 . . . η(tsz)rs , for
positive integers s and tj and arbitrary integers rj , such that both f(z) and
its image under the Fricke involution are eigenforms of all Hecke operators.
We also relate most of these modular forms with the Conway group 2Co1 via
a generalized McKay-Thompson series.

1. Introduction

The Dedekind η-function is given by the infinite product

η(z) = q
1
24

∞∏
n=1

(1− qn)

where q = exp (2πiz) and z lies in the complex upper half plane H. We define an
η-quotient to be a function f(z) of the form

f(z) =
s∏
j=1

η(tjz)rj(1)

where {t1, t2, . . . , ts} is a finite set of positive integers and r1, r2, . . . , rs are arbitrary
integers. In general this is a meromorphic modular form of weight k = 1

2

∑
j rj and

multiplier system for some congruence subgroup Γ0(N) of SL2(Z). In this paper we
consider only η-quotients which are holomorphic modular forms of integral weight.

We denote the collection of integers t1, r1, t2, r2, . . . , ts, rs defining (1) by the
formal product g =

∏
trt = tr11 t

r2
2 . . . trss , and write ηg(z) for the corresponding

η-quotient (1). If every integer in r1, r2, . . . , rs is non-negative, we refer to ηg(z) as
an η-product.

In [5] Dummit, Kisilevsky and McKay found the complete set of 30 η-products
which are eigenforms for all Hecke operators (two of these have half-integral weight).
Every element in this set is also a cusp form and an eigenform for the corresponding
Fricke involution. By Theorem 9 in [14] this means that [5] exhibit all η-products
which are primitive cusp forms (i.e. new forms which are eigenforms for all Hecke
operators).

A second proof of the same classification is given in [10] by Koike. In [17] G.
Mason gave yet another proof under the extra condition k ≡ 0 (mod 2). Mason also
showed that 21 of these η-products are part of a McKay-Thompson series associated
to the Mathieu group M24, i.e. they are traces of elements in M24 when this group
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4826 YVES MARTIN

is represented as an endomorphism group of certain graded, infinite dimensional,
complex vector space. In fact, we know that every η-product in [5] appears in a
particular McKay-Thompson series for the group 224M24.

In this work we study the more general η-quotients. We produce an explicit
collection of modular forms of this type in Table I at the end of this paper, and
prove the following

Theorem 1. Let g = tr11 t
r2
2 . . . trss where tj , rj , s are integers and tj , s > 0. Assume

that ηg(z) =
∏s
j=1 η(tjz)rj is a modular form of level Ng, weight kg and character

χg for some positive integers Ng and kg. Denote by η̃g(z) the image of ηg(z) under

the Fricke involution

(
0 −1
Ng 0

)
.

Then, both ηg(z) and η̃g(z) are eigenforms for all Hecke operators if, and only
if, g is one of the formal products listed in the second column of Table I.

In particular this proves the existence of only a finite number of such η-quotients.
Of these, not all are cusp forms or are invariant under the corresponding Fricke
involution, but by inspection and the theorem in [14] quoted above, it is easy to
deduce the following

Corollary 2. The formal product g = tr11 t
r2
2 . . . trss determines a primitive cusp

form ηg(z) if, and only if, g is in the second column of Table I and ηg(z) is a cusp
form. This last property is indicated in the third column of the same table.

The basic argument in the proof of Theorem 1 is the following: The Dedekind η-
function, and therefore every η-quotient ηg(z), is non-zero on the upper half plane.
Hence ηg(z) is completely determined by the order of its zeros at the cusps. We
compare ηg(z) with its image under the p-th Hecke operator Tpηg(z) at every cusp
and every prime p (sections 3 and 4). If ηg(z) and η̃g(z) are eigenforms for all Tp
then the order of zero of ηg(z) at any cusp is bounded (section 5, in particular
Theorem 30). This puts a number of conditions on g = tr11 t

r2
2 . . . trss and therefore

limits the possible values for Ng and kg. There are only a finite number of such
pairs (Ng, kg), and they can be computed (section 6). Each such pair (Ng, kg)
determines a finite number of systems of linear equations, whose solutions define
explicit η-quotients (section 6). In this way we produce a list of formal products
g which contains all of those such that both ηg(z) and η̃g(z) are eigenforms of the
Hecke algebra. In order to complete the proof of our main result we need only
take every modular form ηg(z) from the collection above and verify that it is an
eigenform for all Tp. We show how to do this when p and Ng are relatively prime
(Proposition 33). For the other cases we compute Tpηg(z) directly and compare it
with ηg(z).

In the last section of this paper (section 7), we indicate a connection between
these multiplicative η-quotients and the Conway group (i.e. the automorphism
group of the Leech lattice). Namely, we show that at least 72 of the 74 η-quotients
characterized in Theorem 1 are elements of a generalized McKay-Thompson series
defined by Mason for the Conway group.

This paper is a revised version of the author’s doctoral thesis [15].
I would like to take this opportunity to thank Professor Geoffrey Mason for all

his encouragement and support.
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2. Preliminaries

If N and k are positive integers and χ is a Dirichlet character modulo N , we
denote by Mk(N,χ) the space of modular forms of weight k and character χ on
the group Γ0(N). If g =

∏
trt defines an element ηg(z) in Mk(N,χ) then χ is

a real character. Hence, from now on we always assume χ(n) = ±1 for n ∈ Z,
gcd(n,N) = 1.

A complete set of representatives for the cusps of Γ0(N) is

CN = {ac
c
∈ Q; c divides N, 1 ≤ ac ≤ N, gcd(ac, N) = 1

and ac ≡ a′c (mod gcd(c,
N

c
)) iff ac = a′c}.

(2)

If f(z) is in Mk(N,χ), the Fourier series of f(z) at the cusp a
c ∈ CN is

f(z)|k
(
a b
c d

)
=
∞∑
n=0

cnq
n+µ
h(3)

where qh = q
1
h , b and d are integers such that ad− bc = 1, h = h a

c
is the width of

the cusp a
c of Γ0(N), and µ = µ a

c
is either 0 or 1

2 depending upon a
c being a regular

or irregular cusp of Γ0(N) respectively.
The values for h = h a

c
and µ = µ a

c
are given by

h =
N

gcd(c2, N)
, χ(1 + ach) = exp (2πiµ).(4)

We denote by ν a
c

the smallest integer n such that cn 6= 0 in (3).
If g = tr11 t

r2
2 . . . trss defines ηg(z) ∈ Mk(N,χ) and a

c ∈ CN , the Fourier series of
ηg(z) at a

c is of the form

ηg(z)|k
(
a b
c d

)
= C exp (

2πiz

24

s∑
j=1

gcd(tj , c)
2

tj
rj)Ga

c
(z)(5)

where C is a complex-valued constant depending on

(
a b
c d

)
and Ga

c
(z) is a

holomorphic function on some neighborhood of infinity with limz→∞ g a
c
(z) 6= 0

([7], p. 49). In particular

ν a
c

+ µ a
c

h a
c

=
1

24

s∑
j=1

gcd(tj , c)
2

tj
rj .(6)

Equations (4) and (6) show that h a
c
, ν a

c
and µ a

c
are independent of a if the

modular form is an η-quotient. For the rest of this paper we assume that every
modular form f(z) that we consider has this property. Consequently, there is no
ambiguity if for any divisor c of N we denote the previous values by hc, νc and µc
respectively.

Let p be a rational prime. If f(z) ∈ Mk(N,χ), its image under the p-th Hecke
operator Tp is another element of Mk(N,χ). Most proofs in this paper are based
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on the study of Fourier series of Tpf(z) at the cusps 1
c of Γ0(N), i.e.

Tpf(z)|k
(

1 0
c 1

)
=p

k
2−1(

p−1∑
b=0

f(z)|k
(

1 b
0 p

)(
1 0
c 1

)
+ χ(p)f(z)|k

(
p 0
0 1

)(
1 0
c 1

)
)

(7)

From now on, and unless we say otherwise, we adopt the following notation;
f(z) ∈ Mk(N,χ), p is a rational prime, χp is the p-part of χ, Tp is the p-th
Hecke operator and λp denotes the eigenvalue of f(z) under Tp whenever f(z)
is an eigenform of this operator. Moreover we assume that c is a factor of N , we
write a‖b if a is a divisor of b with gcd(a, ba ) = 1, and let hc, νc and µc be the real
numbers defined by equation (3).

3. Some Fourier expansions of Tpf and some consequences for

eigenforms of the Hecke algebra

First we relate the Fourier expansion of Tpf at the cusp 1
c with some Fourier

series of f(z). Basically there are three different situations, depending on the p-part
of N being 1, p, or pM with M ≥ 2.

Lemma 3. (i) If gcd (p,N) = 1 then

Tpf(z)|k
(

1 0
c 1

)
= p

k
2−1

{
p−1∑
l=0

f(z)|k
(

1 0
pc 1

)(
1 l(1− pp∗)
0 p

)

+ χ(p)f(z)|k
(

1 0
p∗c 1

)(
p −m
0 1

)}
(8)

where p∗ satisfies pp∗ ≡ 1 (mod N) and m = N
c .

(ii) If p‖N and gcd (c, p) = 1 then

Tpf(z)|k
(

1 0
c 1

)
= p

k
2−1


p−1∑
l=0
lc 6≡1

χp(1− cl)f(z)|k
(

1 0
pc 1

)(
1 l − pnl
0 p

)

+ f(z)|k
(
x′ l′

c p

)(
p 0
0 1

)

(9)

where the congruence lc 6≡ 1 is modulo p, l′ and x′ are integers such that l′c+ 1 =
x′p, and for each l in {0, 1, . . . , p− 1} with lc 6≡ 1 (mod p) the integer nl is chosen
such that l − pnl ≡ 0 (mod N

pc ).
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(iii) If pM‖N with M ≥ 2 and gcd (c, p) = 1 then

Tpf(z)|k
(

1 0
pα−1c 1

)
= p

k
2−1

p−1∑
l=0

χp(1− pα−1c(l − pnl))f(z)|k
(

1 0
pαc 1

)(
1 l − pnl
0 p

)
(10)

for all α in Z with M+1
2 ≤ α ≤M . The integers nl are chosen such that l−pnl ≡ 0

(mod N
pM ) for each l = 0, 1, . . . , p− 1.

Proof. (i) Let c∗ be in {0, 1, . . . , p − 1} such that cc∗ ≡ 1 (mod p). For any l ∈
{0, 1, . . . , p − 1} − {−c∗} there is a unique l′ in {0, 1, . . . , p − 1} − {c∗} such that
(1 + lc)l′ ≡ l (mod p), say (1 + lc)l′ + xl′p = l. Then(

1 l
0 p

)(
1 0
c 1

)
=

(
1 + lc xl′
pc 1− cl′

)(
1 l′

0 p

)
.(11)

Let p∗ be in {0, 1, . . . , N − 1} such that pp∗ ≡ 1 (mod N), and set nl′ = p∗l′ for
all l′ = 0, 1, . . . , N − 1. Then(

1 + lc xl′
pc 1− cl′

)(
1 nl′
0 1

)(
1 0
pc 1

)−1

∈ Γ1(N).(12)

Consequently,

f(z)|k
(

1 l
0 p

)(
1 0
c 1

)
= f(z)|k

(
1 0
pc 1

)(
1 l′(1− pp∗)
0 p

)
.

(13)

For l = −c∗ we have(
p 0
0 1

)(
1 0
c 1

)
=

(
p l

c 1−cc∗
p

)(
1 c∗

0 p

)
.

Moreover (
p −c∗
c 1−cc∗

p

)(
1 p∗c∗

0 1

)(
1 0
pc 1

)−1

∈ Γ0(N).

Thus

χ(p)f(z)|k
(
p 0
0 1

)(
1 0
c 1

)
= f(z)|k

(
1 0
pc 1

)(
1 c∗(1− pp∗)
0 p

)
.

(14)

Now we observe that(
1 −c∗
0 p

)(
1 0
c 1

)(
p −m
0 1

)−1(
1 0
p∗c 1

)−1

∈ Γ0(N).(15)

Using equations (13), (14) and (15) in (7), we get the first identity of this lemma.
(ii) For any l in {0, 1, . . . , p− 1} with 1 + lc 6≡ 0 (mod p) we take integers l′ and

xl′ as above, so equation (11) holds. Since p2 does not divide N there are integers
nl′ such that l′ − pnl′ ≡ 0 (mod N

pc ). Hence the matrix (12) is in Γ0(N) and its

lower right entry is 1 + c(pnl′ − l′). Consequently

f(z)|k
(

1 l
0 p

)(
1 0
c 1

)
= χp(1− cl′)f(z)|k

(
1 0
pc 1

)(
1 l′ − pnl′
0 p

)
.
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If l = −c∗ we have(
1 −c∗
0 p

)(
1 0
c 1

)
=

(
x′ −c∗
c p

)(
p 0
0 1

)
for some integer x′. Now we use these last two equalities in the left hand side of
(7) and recall that χ(p) = 0 in order to obtain (9).

(iii) If α ≥ M+1
2 and M ≥ 2 then (1 + lpα−1c)l + xlp = l for some integer xl.

Hence (
1 l
0 p

)(
1 0

pα−1c 1

)
=

(
1 + lpα−1c xl

pαc 1− lpα−1c

)(
1 l
0 p

)
.

Moreover, α ≥ M+1
2 implies that pM divides p2α−1. Thus, if we choose an integer

nl for each l in {0, 1, . . . , p− 1} such that l − pnl ≡ 0 (mod N
pM

), then(
1 + lpα−1c xl

pαc 1− lpα−1c

)(
1 nl
0 1

)(
1 0
pαc 1

)−1

∈ Γ0(N)

and its lower right entry is congruent to 1 modulo N
pM . Next we use equation (7)

together with χ(p) = 0 and we get (10).

Proposition 4. Let gcd(p,N) = 1 and p∗ ∈ Z such that pp∗ ≡ 1 (mod N). If

f(z)|k
(

1 0
pc 1

)
=
∞∑
n=0

anq
n
hc and f(z)|k

(
1 0
p∗c 1

)
=
∞∑
n=0

bnq
n
hc ,

then

Tpf(z)|k
(

1 0
c 1

)
=
∞∑
n=0

(anp + χ(p)pk−1bn
p

)qnhc(16)

As usual, bn
p

= 0 whenever p does not divide n.

Proof. From equation (8)

Tpf(z)|k
(

1 0
c 1

)
= p−1

∞∑
n=0

p−1∑
l=0

exp

(
2πi

n

hc

l(1− pp∗)
p

)
anq

n
p

hc

+ pk−1χ(p)
∞∑
n=0

exp

(
−2πi

n

hc
m

)
bnq

np
hc
.

Since m = N
c , m

hc
is an integer. Furthermore gcd(1−pp∗

hc
, p) = 1. Hence the

equation above yields (16).

Proposition 5. Let p‖N and gcd(c, p) = 1. Assume that

f(z)|k
(

1 0
pc 1

)
=
∞∑
n=0

anq
n+µpc
hpc

and f(z)|k
(
x′ l
c p

)
=
∞∑
n=0

bnq
n
hc
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where l is in {0, 1, . . . , p− 1} with lc+ 1 = x′p for some integer x′. Then

Tpf(z)|k
(

1 0
c 1

)
= p−1

∞∑
n=0

p−1∑
l′′=1

χp(l
′′) exp

(
2πina′c∗

1− l′′
p

)
anq

n
hc

+ pk−1
∞∑
n=0

bnq
pn
hc

(17)

for some a′, c∗ in Z with gcd(a′, p) = gcd(c∗, p) = 1.

Proof. From equation (4) we have hpc = hc
p . Hence exp (2πiµpc) = exp (2πiµc) = 1

and therefore µpc = µc = 0. Now, from (9) we get

Tpf(z)|k
(

1 0
c 1

)
= p−1

∞∑
n=0

 p−1∑
l=0

lc 6≡1 (mod p)

χp(1− cl) exp (2πin
l− pnl
phpc

)

anq
n
p

hpc

+ pk−1
∞∑
n=0

bnq
pn
hc
.

(18)

Let c∗ and l′′ be in {0, 1, . . . , p− 1} such that c∗c ≡ 1 (mod p) and l′′ ≡ 1− lc
(mod p) for each l in {0, 1, . . . , p − 1} − {c∗}. Since p2 does not divide N there
is an integer a′ such that a′hpc ≡ 1 (mod p). Using these new variables in (18),
equation (17) follows.

Observe that χp(1 + lp) = 1 for any odd prime p and integer l since χ is a real
character. Similarly, χ2(1 + 23l) = 1. The following Dirichlet characters will play
a distinguished role in the arguments ahead, so we write

ψ0(x) = 1, ψ1(x) = (−1)
x2−1

8 ,

ψ2(x) = (−1)
x−1

2 , ψ3(x) = ψ1(x)ψ2(x)

for every odd integer x.
Notice that every p-factor χp of χ can be considered as a real Dirichlet character

modulo p whenever p is odd or χ2 = ψ0, ψ2.

Proposition 6. Let pM‖N for some M ≥ 2 and gcd(c, p) = 1. Assume

f(z)|k
(

1 0
pαc 1

)
=
∞∑
n=0

anq
n
hpαc

where α is any integer such that M+1
2 ≤ α ≤M . Then

Tpf(z)|k
(

1 0
pα−1c 1

)
=
∞∑
n=0

p|n

anq
n
p

hpαc
(19)

in any of the following cases:

(i) p is odd,
(ii) p = 2 and α ≥ 4,
(iii) (p, χp) = (2, ψ0),
(iv) (p, χp) = (2, ψ2) and α ≥ 3.
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Proof. For p and χp as in the proposition, χp(1− pα−1c(l− pnl)) = 1 (see previous
remark). Hence, from equation (10) we get

Tpf(z)|k
(

1 0
pα−1c 1

)
= p−1

∞∑
n=0

(
p−1∑
l=0

exp

(
2πi

n

p

l − pnl
hpαc

))
anq

n
p

hpαc
.

As hpαc divides N
pM the rational number l−pnl

hpαc
is an integer and the proposition

follows.

Now we apply the previous results to modular forms f(z) which are eigenforms
for some or all Hecke operators.

Proposition 7. Let f(z) be an eigenform of Tp for all p such that gcd(p, Nc ) = 1.

If µc = 0 then, either νcf ∈ {0, 1} or any prime divisor of νcf is a divisor of N
c .

Proof. Consider the Fourier expansion of f(z) at 1
c given by (3). If p is any prime

with gcd(p,N) = 1 we use (16) and get

λpcn = anp + χ(p)pk−1bn
p

for all n ≥ 0, where am and bm are defined as in Proposition 4.
Since p and p∗ do not divide N (p∗ as in Proposition 4), then p

c and 1
pc (resp.

p∗

c and 1
p∗c) represent the same cusp of Γ0(N). Therefore ν 1

pc
f = ν 1

p∗c
f = νcf , say

νcf = ν.
Suppose that p divides ν 6= 0. Then

λpc ν
p

= aν + χ(p)pk−1b ν
p2
.

Hence aν = 0, a contradiction.
Next, let p be a prime factor of N which is relatively prime to N

c .
Since p divides c, there is an integer xl for each l in {0, 1, . . . , p− 1} such that

(1 + cl)l+ xpp = l. Hence

Tpf(z)|k
(

1 0
c 1

)
= p

k
2−1

p−1∑
l=0

f(z)|k
(

1 + cl xl
pc 1− cl

)(
1 l
0 p

)
.

For each l = 0, 1, . . . , p− 1 there is an integer ml such that(
1 + cl xl
pc 1− cl

)(
1 ml

0 1

)(
1 0
pc 1

)−1

∈ Γ1(N).

Therefore

Tpf(z)|k
(

1 0
c 1

)
= p

k
2−1

p−1∑
l=0

f(z)|k
(

1 0
pc 1

)(
1 l − pml

0 p

)
.

(20)

One can show that 1
pc and t

c represent the same cusp of Γ0(N) for some integer

t with gcd(N, t) = 1. Hence

f(z)|k
(

1 0
pc 1

)
=
∞∑
n=0

dnq
n
hc .
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Now use that l−pml
hc

is an integer, and deduce from equation (20) the following

λpf(z)|k
(

1 0
c 1

)
=
∞∑
n=0

p|n

dnq
n
p

hc
.

If p divides ν then the coefficient of q
ν
p

hc
in the right hand side of the previous

equation is non-zero, thus ν must be zero.

Proposition 8. Let f(z) be an eigenform for all Hecke operators. Assume that
p‖N . Then

(i) λp 6= 0.
(ii) For any divisor c of N with gcd(p, c) = 1 and µc = 0, either νcf = 0 or

gcd(p, νcf) = 1. Moreover, νcf 6= 0 and νpcf 6= 0 imply νcf = νpcf .

Proof. Let c be a factor of N as in (ii). In Proposition 5 we showed hpc = hc
p and

µpc = µc = 0. Hence, from equations (3) and (17) we get

λpcn = p−1an exp

(
2πin

a′c∗

p

)( p−1∑
l′′=1

χp(l
′′) exp

(
−2πin

a′c∗l′′

p

))
+ pk−1bn

p

(21)

for all non-negative integers n (here we are using the notation introduced in Propo-
sition 5). If c = N

p then c satisfies the conditions in (ii) and a1 6= 0 (see [9], p. 163).

Therefore n = 1 in (21) implies λpc1 6= 0, as the sum of p− 1 terms involving χp in
(21) is a Gauss sum. This proves (i).

For (ii) set νcf = ν and νpcf = ω. By Proposition 7, ω = 0 or gcd(p, ω) = 1.
If ω 6= 0 we put n = ω in (21) and conclude cω 6= 0. Hence ν ≤ ω. Suppose

ν < ω. Then λpcν = pk−1b ν
p

from (21), and b ν
p
6= 0. Consequently ν = ν x′

c
f ≤ ν

p ,

so we must have ν = 0.
Suppose next that ω = 0. If ν = 0 then there is nothing else to prove. Otherwise

ν 6= 0 and from (21) we get λpc0 = p−1a0

∑p−1
l′′=1 χp(l

′′) + pk−1b0. Since b0 = c0 = 0

and a0 6= 0 we conclude
∑p−1
l′′ χp(l

′′) = 0. Thus λpcn = pk−1bn
p

for all non-negative

integers n divisible by p. Hence, λp 6= 0 and cν 6= 0 imply that p does not divide
ν.

In the previous proposition we considered the case p‖N . For those cases in which
a higher power of p divides N we have to look at two distinct situations, namely
λp = 0 and λp 6= 0.

Proposition 9. Let gcd(c, p) = 1 and pM‖N with M ≥ 2. Assume that f(z) is an
eigenform of Tp with eigenvalue λp 6= 0. Let the Fourier expansion of f(z) at 1

pMc

be

f(z)|k
(

1 0
pMc 1

)
=
∞∑
n=0

anq
n
h

where h = hpMc.

Then, for any integer t with gcd(t,N) = 1 and t ≡ 1 (mod N
pMc)

f(z)|k
(

1 0
tpαc 1

)
= λα−Mp

∞∑
n=0

pM−α|n

anq
n

pM−α
h(22)
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for α = 3, 4, . . . ,M . This equation also holds for

(a) α = 2 if p is either odd or (p, χp) = (2, ψ0), (2, ψ2).
(b) α = 1 if p is either odd or (p, χp) = (2, ψ0).

Moreover, in all the other cases the corresponding Fourier expansions are the
following:

If p = 2 and χ2 = ψ2, then

f(z)|k
(

1 0
tpc 1

)
= λ1−M

p

∞∑
m=0

a(2m+1)pM−2q
m+ 1

2

h .(23)

If p = 2 and χ2 = ψ1, ψ3, then

f(z)|k
(

1 0
tp2c 1

)
= λ2−M

p

∞∑
m=0

a(2m+1)pM−3q
m+ 1

2

h(24)

and

f(z)|k
(

1 0
tpc 1

)
= λ1−M

p

∞∑
m=0

p−1a(2m+1)pM−3ξmq
(m+ 1

2
)pM−3

hpc
(25)

for some ξm 6= 0 in C.
The same identities hold if c is replaced by −c.

Proof. We prove (22) by induction on α. Since(
1 0

pMc 1

)(
1 N

pM c

0 1

)(
1 0

tpMc 1

)−1

∈ Γ1(N)

we have

f(z)|k
(

1 0
tpMc 1

)
=
∞∑
n=0

an exp (2πin
N/pMc

h
)qnh .

This establishes (22) for α = M .
For the general case we argue as in the proof of Lemma 3 (iii) and get the

following equation

Tpf(z)|k
(

1 0
tpαc 1

)
= p

k
2−1

p−1∑
l=0

χp(1− tpαc(l − pnl))f(z)|k
(

1 0
l′tpα+1c 1

)(
1 l − pnl
0 p

)
(26)

where nl and l′ are integers such that pnl− l ≡ 0 (mod N
pM ), l′ ≡ 1 (mod N

pM ) and

l′(1 + tpαc(pnl − l)) ≡ 1 (mod pM).
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Assuming that (22) holds for α+ 1 this equation becomes

f(z)|k
(

1 0
tpαc 1

)
= λα−Mp p−1

∞∑
n=0

pM−α−1|n

(
p−1∑
l=0

exp

(
2πi

n

pM−α−1

l − pnl
hp

))
anq

n
pM−α
h

= λα−Mp

∞∑
n=0

pM−α|n

anq
n

pM−α
h

whenever χp(1− tpαc(l − pnl)) = 1 for all l = 0, 1, . . . , p− 1.
Next, in order to show (23), we take n0 = 0 and l′0 = 1 in (26) and observe that

ψ2(1− tpc(1− pn1)) = −1. Thus

λpf(z)|k
(

1 0
tpc 1

)
= λ2−M

p p−1
∞∑
n=0

pM−2|n

(
1− exp

(
2πi

1− pn1

h

n

pM−1

))
anq

n
pM−1

h .

Since 1−pn1

h is an integer we obtain (23).
The identities (24) and (25) can be deduced similarly from equation (26).

Proposition 10. Let gcd(c, p) = 1 and pM‖N with M ≥ 2. Assume that f(z) is
an eigenform of Tp with eigenvalue λp = 0. Furthermore, assume any one of the
following cases;

(i) p is odd,
(ii) p = 2 and α ≥ 4,
(iii) (p, χp) = (2, ψ0),
(iv) (p, χp) = (2, ψ2) and α ≥ 3.

Then p does not divide νpαcf whenever α is an integer such that M+1
2 ≤ α ≤M

and µpαc = 0.

Proof. It follows from Proposition 6.

All previous results on eigenforms of Hecke operators are about νcf at regular
cusps of Γ0(N). In order to have information about these eigenforms at the others
cusps as well, we first determine for which levels N , characters χ and divisors c of
N we get irregular cusps 1

c .
Let N =

∏
i p
ei
i be the prime factorization ofN . Then exp (2πiµc) = χ(1+chc) =∏

i χpi(1− chc) where χpi denotes the pi-part of χ. From equation (4) and remark
previous to Proposition 6 is easy to conclude that 1

c is an irregular cusp of Γ0(N)
with respect to χ if, and only if, one of the following situations holds:

2-part of N 2-part of c χ2

22 2 Ψ2

23 2 Ψ1, Ψ3

23 22 Ψ1, Ψ3

24 22 Ψ1, Ψ3

(27)

Consider N ′ = 2σN in each one of the cases listed above, with σ = 2 for the
case in the third row and σ = 1 for the rest. Denote by χ′ the Dirichlet character
modulo N ′ induced from χ. Then, the irregular cusp 1

c of Γ0(N) is a regular cusp
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of Γ0(N ′). Let f ′(z) be the image of f(z) under the canonical injection of Mk(N,χ)
into Mk(N ′, χ′). If 1

c is a irregular cusp of Γ0(N), the Fourier series of f(z) at 1
c is

of the form

f(z)|k
(

1 0
c 1

)
=
∞∑
n=0

anq
n+ 1

2

hc
.

Consequently, the Fourier series of f ′(z) at 1
c is

f ′(z)|k
(

1 0
c 1

)
=
∞∑
n=0

anq
2n+1
h′c

where h′c denotes the width of 1
c as a cusp of Γ0(N ′).

If p is any prime, let T ′p be the p-th Hecke operator defined on Mk(N ′, χ′). The
restriction of T ′p to the subspace Mk(N,χ) coincide with p-th Hecke operator Tp
acting on Mk(N,χ) because N ′ = 2σN and 2 is a divisor of N . Therefore, if
f(z) ∈Mk(N,χ) is an eigenform of Tp with eigenvalue λp then T ′pf

′(z) = λpf
′(z).

Proposition 11. Let f(z) be an eigenform for all Hecke operators.

(i) If µc 6= 0 then any prime divisor of 2νcf + 1 is a divisor of N
c .

Furthermore, assume that pM‖N and gcd(c, p) = 1.
(ii) If µc 6= 0 and M = 1 then gcd(p, 2νcf + 1) = 1, µpc 6= 0 and νcf = νpcf .

(iii) If µpM c 6= 0 and λp 6= 0 then p 6= 2. Moreover, µpαc 6= 0 implies pM−min{2α,M}

divides 2νpαcf + 1, and µpαc = 0 implies pM−min{2α,M} divides νpαcf , for all
α = 1, 2, . . . ,M .

(iv) If M ≥ 2, λp = 0 and µpαc 6= 0, then p does not divide 2νpαcf + 1 for any α
with M+1

2 ≤ α ≤M .

Proof. Consider the modular form f ′(z) ∈ Mk(N ′, χ′) defined by f(z) as above.
Then use Propositions 7, 8, 9 and 10 in order to get (i), (ii), (iii) and (iv) respec-
tively.

4. The Fricke involution

In the previous section we deduced some properties of νcf when f(z) is an eigen-
form of the Hecke algebra at several cusps 1

c of Γ0(N). But clearly the argument

used in Proposition 6 does not give similar information for cusps of the form 1
pαc

when N
p2α is still divisible by p. In order to deal with this problem we restrict

ourselves to the study of modular forms satisfying an additional property involving
the Fricke involution. Namely, from now on we only consider modular forms f(z)
in Mk(N,χ) such that:

(A) The smallest power of q with a non-zero coefficient in the Fourier series of
f(z) at the cusp a

c (where gcd(a, c) = 1 and c is a divisor of N) is independent
of a.

(B) f(z) is an eigenform for all Hecke operators.

(C) f̃(z) = f(z)|k
(

0 −1
N 0

)
is an eigenform for all Hecke operators.

We denote by λ̃p the eigenvalue of f̃(z) under the Hecke operator Tp.
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Lemma 12. If f(z) satisfies (A), (B) and (C), then so it does f̃(z). Moreover

f̃(z)|k
(

1 0
N
c 1

)
= f(z)|k

(
−1 0
c −1

)(
N
c 1
0 c

)
(28)

and µN
c

= µc, νN
c
f̃ = νcf , for any divisor c of N .

Proof. Clearly f̃(z) satisfies (B) and (C).

Since χ is a real character f̃(z) is in Mk(N,χ). If c is any factor of N and a
is any integer such that gcd(Nc , a) = 1 then ad − bNc = 1 for some b and d in Z.
Therefore (

0 −1
N 0

)(
a b
N
c d

)
=

(
−1 0
ac −1

)(
N
c d
0 c

)
and so

f̃(z)|k
(

a b
N
c d

)
= f(z)|k

(
−1 0
ac −1

)(
N
c d
0 c

)
.(29)

If a = d = 1 and b = 0 in the equation above, we get (28).

As h a
N/c

= c
N/ch−1

ac
, equation (29) yields ν a

N/c
f̃ = ν−1

ac
f and µ a

N/c
= µ−1

ac
. Now

we use that both −1
ac and −ac represent the same cusp of Γ0(N) and conclude that

f̃(z) satisfies (A).

Proposition 13. (i) If µc = 0 then either νcf ∈ {0, 1} or any prime divisor of νcf
is a divisor of gcd(c, Nc ).

(ii) If µc 6= 0 then any prime divisor of 2νcf + 1 divides gcd(c, Nc ).

Proof. It follows from the previous lemma, Proposition 7 and Proposition 11 (i).

Lemma 14. Let pM‖N with M ≥ 3. Assume that (pM , χp) is none of the follow-
ing: (23, ψ1), (23, ψ2), (23, ψ3), (24, ψ1) or (24, ψ3).

Then λp = 0 if, and only if, λ̃p = 0.

Proof. By Lemma 12 it suffices to show that λ̃p 6= 0 implies λp 6= 0.
First assume that p is odd or (p, χp) = (2, ψ0). If c0 = N

pM then µpMc0 = 0 and

νpMc0 f̃ ∈ {0, 1}. If νpMc0 f̃ = 0 then λ̃p 6= 0 implies µpc0 = 0 and νpc0 f̃ = 0, by
Proposition 9. Consequently, µpM−1 = 0 and νpM−1f = 0 by Lemma 12. Since
M ≥ 3, Proposition 10 yields λp 6= 0.

If νpM c0 f̃ = 1 we consider the Fourier series f̃(z) =
∑∞
n=1 anq

n. Since f̃(z) is an

eigenform of Tp we have apM−1 = λ̃M−1
p a1 6= 0. If we apply Proposition 9 to f̃(z)

then equation (22) with tpαc = pc0 shows that µpc0 = 0 and νpc0 f̃ = pM−2. Hence
µpM−1 = 0 and p divides νpM−1f . Then, as above, λp 6= 0.

In those cases where p = 2 and χ2 6= ψ0 we must have M ≥ 5 or (pM , χ2) =

(24, ψ2). As λ̃p 6= 0, we get from equations (23) and (25) that µpc0 = 0 and p is a

factor of νpc0 f̃ . Thus µpM−1 = 0 and p divides νpM−1f . Then λp 6= 0 follows from
Proposition 10.

Lemma 15. Let p2‖N , gcd(p, c) = 1 and µp2c = 0. If p = 2 assume also χ2 = ψ0.

Then λp = 0 if, and only if, λ̃p = 0.
Moreover, λp 6= 0 implies νcf = 0 and νp2cf = 0.
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Proof. It is enough to show that λp 6= 0 implies λ̃p 6= 0, νcf = 0 and νp2cf = 0.
Let

f(z)|k
(

1 0
p2c 1

)
=
∞∑
n=0

anq
n
h

where h = hp2c. If λp 6= 0 then

f(z)|k
(

1 0
tpc 1

)
= λ−1

p

∞∑
n=0

p|n

anq
n
p

h(30)

for any t with gcd(t,N) = 1 and t ≡ 1 (mod N
p2c ), by Proposition 9.

Let c∗ be in {0, 1, . . . , p−1} such that cc∗≡1 (mod p). For each l ∈ {0, 1, . . . , p−
1}−{−c∗} take the unique solution l′ ∈ {0, 1, . . . , p−1}−{c∗} of (1+lc)l′+xl′p = l
for some integer xl′ . Then

λpf(z)|k
(

1 0
c 1

)

= p
k
2−1

 p−1∑
l=0

l6=−c∗

f(z)|k
(

1 + lc xl′
pc 1− l′c

)(
1 l′

0 p

)

+ f(z)|k
(
x′ −c∗
c p

)(
p 0
0 1

)
where x′ ∈ Z is chosen in such a way that 1 − cc∗ = x′p. For each l′ consider
integers tl′ and nl′ satisfying l′ − pnl′ ≡ 0 (mod N

p2 ), tl′(1− cl′) ≡ 1 (mod p) and

tl′ ≡ 1 (mod N
p2 ). Then gcd(tl′ , N) = 1 and(

1 + lc xl′
pc 1− l′c

)(
1 nl′
0 1

)(
1 0

tl′pc 1

)−1

∈ Γ0(N).

As h divides l′−pnl′ , we get from (30) and the last equation the following identity

λpf(z)|k
(

1 0
c 1

)
− p k2−1f(z)|k

(
x′ −c∗
c p

)(
p 0
0 1

)
= p−1λ−1

p

∞∑
n=0

p|n

an exp

(
2πi

n

p

c∗h∗

p

)( p−1∑
l′′=1

χp(l
′′) exp

(
−2πi

n

p
c∗h∗

l′′

p

))
q
n
p

hp

(31)

where h∗ and l′′ are integers such that hh∗ ≡ 1 and l′′ = 1− c(l′ − pnl′) (mod p).
Since h = hp2c = 1

p2 hc, the series above is in integral powers of qphc .

Notice that µp2c = 0 implies µc = 0. As ν x′
c
f = νcf , the assumption νcf 6= 0

yields gcd(p, νcf) 6= 1 from equation (31). But this impossible by Proposition 13,
thus νcf = 0.
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Next we assume λ̃p = 0. Then

0 = Tpf̃(z)|k
(

1 0
N
pc 1

)
= p

k
2−1

p−1∑
l=0

f̃(z)|k

(
1 + lNpc xl

N
c 1− lNpc

)(
1 l
0 p

)(32)

where
(

1 + lNpc

)
l+ xlp = l. Let nl be an integer such that pnl ≡ l (mod c). Then

(32) becomes

0 = p
k
2−1

p−1∑
l=0

f̃(z)|k
(

1 0
N
c 1

)(
1 l − pnl
0 p

)
.

If we use Lemma 12 we get

0 = p
k
2−1

p−1∑
l=0

f(z)|k
(
−1 0
c −1

)(
N
c

N
c (l − pnl) + p

0 pc

)
.

Therefore the constant term of f(z)|k
(
−1 0
c −1

)
must be zero, i.e. ν−1

c
f > 0,

a contradiction. Thus λ̃p 6= 0.

Finally, the argument after equation (31) applied to f̃ shows that ν N
p2c
f̃ = 0.

Hence νp2cf = 0 by Lemma 12.

Proposition 16. Let pM‖N with M ≥ 3. Assume that (pM , χp) is none of the
following; (23, ψ1), (23, ψ2), (23, ψ3), (24, ψ1) or (24, ψ3).

Then λp = 0.

Proof. Suppose λp 6= 0. Then λ̃p 6= 0 by Lemma 14. From (27) µpM = 0, thus

f(z)|k
(

1 0
−pM 1

)
=
∞∑
n=0

anq
n
h

where h = hpM . By Lemma 12 and Proposition 9 we may write the following
identities;

f̃(z)|k
(

1 0
N
p 1

)
= χ(−1)N

k
2 p−kλ1−M

p

∞∑
n=0

pM−1|n

an exp

(
2πi

n

pM−1

1

ph

)
q

n
pM−1

N
p2

h

(33)

if p is odd or if (p, χp) = (2, ψ0).

f̃(z)|k
(

1 0
N
p 1

)
= χ(−1)N

k
2 p−kλ1−M

p

∞∑
m=0

a(2m+1)pM−2 exp

(
2πi

m+ 1
2

ph

)
q

(m+ 1
2 ) N
p2

h

(34)

if (p, χp) = (2, ψ2).
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f̃(z)|k
(

1 0
N
p 1

)
= χ(−1)N

k
2 p−k−1λ1−M

p

∞∑
m=0

a(2m+1)pM−3ξm

× exp

(
2πi

(m+ 1
2 )pM−3

php

)
q

(m+ 1
2 )pM−3 N

p2

hp

(35)

if (p, χp) = (2, ψ1), (2, ψ3).
Observe that the right hand side of (33) (resp. (34), (35)) is a power series in

qp
M−2

(resp. qp
M−3

, qp
M−4

).

By Proposition 9 the coefficient of q in the Fourier series of f̃(z)|k
(

1 0
N
p 1

)
is

λ̃−1
p bp, where f̃(z) =

∑∞
n=0 bnq

n. As f̃(z) is an eigenform of Tp, we know λ̃−1
p bp =

b1 6= 0. Thus M − 2 = 0 (resp. M − 3 = 0, M − 4 = 0), a contradiction.

Proposition 17. Let gcd(c, p) = 1 and pM‖N with M ≥ 3. Assume that (pM , χp)
is none of the following: (23, ψ1), (23, ψ2), (23, ψ3), (24, ψ1), (24, ψ2), (24, ψ3),
(25, ψ1) or (25, ψ3). Then, for every α in {0, 1, . . . ,M} − {M2 },

(i) µpαc = 0 implies p is not a factor of νpαcf ,
(ii) µpαc 6= 0 implies p is not a factor of 2νpαcf + 1.

Proof. By Lemma 14 and the previous proposition, λp = λ̃p = 0. Then (i) and (ii)
above follow from Propositions 10, 11 (iv) and the identity in Lemma 12.

Remarks 1. (i) If (pM , χ2)=(25, ψ1), (25, ψ3) then µpαc=0 for all α = 0, 1, . . . , 5
(see table (27)). Moreover gcd(p, νpαcf) = 1 for α = 0, 1, 4, 5 by Propositions
10, 16 and Lemma 12.

(ii) If (pM , χp) = (24, ψ2) then µpαc = 0 for all α = 0, 1, . . . , 4 and gcd(p, νpαcf) =
1 for α = 0, 1, 3, 4 by the same argument.

Lemma 18. Let p be an odd prime with p2‖N . Then λp = 0.

Proof. Let c be a factor of N such that gcd(p, c) = 1. We argue as in the proof of
Lemma 15 and obtain (31).

Now, for every l′ 6= c∗ we choose nl′ ∈ Z such that pnl′ + l′ ≡ 0 (mod N
p2 ). Then

there exist an integer tl′ such that tl′(1 − l′c− pcnl′) ≡ 1 (mod N). In particular

gcd(tl′ , N) = 1. Moreover, f(z)|k
(

1 0
tl′pc 1

)
=
∑∞
n=0 a

(l′)
n q

n+µpc
hpc

implies that

the right hand side of the equation (31) is equal to

p−1
∞∑
n=0

 p−1∑
l′=0
l′ 6=c∗

χp(1− l′c)a(l′)
n exp

(
2πi

n+ µpc
hc

(l′ + pnl′)

) q
(n+µpc)p
hc

.

(36)

As µp = 0, the expression above for c = 1 is a series in integral powers of qph1
. If

f̃(z) =
∑∞
n=0 bnq

n, the identity in Lemma 12 yields

f(z)|k
(

1 0
1 1

)
= N−

k
2

∞∑
n=0

bn exp
(

2πi
n

N

)
qnN(37)
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and this shows that the coefficient of qh1 in (37) is non-zero (since f̃(z) is an
eigenform of the Hecke algebra).

In particular λp 6= 0 implies that the left hand side of (31) with c = 1 is a power
series where qh1 has a non-zero coefficient, a contradiction.

Proposition 19. Let p be as in the previous lemma and gcd(c, p) = 1. Then
µpc = µc and νpcf ≤ νcf .

Proof. By Lemma 18 λp = 0. Thus, the Fourier expansion of f(z)|k
(
x′ −c∗
c p

)
is a series in integral powers of qhc if, and only if, (36) is a series in integral powers
of qhc . Hence µpc = µc.

Furthermore, the smallest power of qhc with a non-zero coefficient in the left
hand side of (31) has exponent (νcf + µc)p. Therefore (36) and ν 1

t
l′pc

f = νpcf

imply νpcf + µpc ≤ νcf + µc.

We finish this section with a technical result that will allow us to get information

about νcf at those cusps 1
c not considered in Proposition 17, i.e. whenever p

M
2 ‖c

for some prime p with pM‖N . But before we need to observe the following:

Remarks 2. (i) Lemma 3, and Propositions 4, 5 and 6 also hold if c is replaced
by tc, where t is any integer with gcd(t,N) = 1.

(ii) For t as above and t′ ∈ {0, 1, . . . , p− 1} such that t′ ≡ t (mod N)

f(z)|k
(

1 0
tc 1

)
= f(z)|k

(
1 0
t′c 1

)
.

So, from now on we take t to be in {0, 1, . . . , p− 1}.

Proposition 20. Assume there is at most one prime p such that pM‖N , M > 0

even, and p
M
2 ‖c.

Assume also that (2M1 , χ2) is none of the following: (22, ψ2), (23, ψ1), (23, ψ2),
(23, ψ3), (24, ψ1), (24, ψ2), (24, ψ3), (25, ψ1) or (25, ψ3), where 2M1 denotes the
2-part of N . Then µc = 0.

Furthermore, if the Fourier series of f(z) at 1
c is given by (3) and νcf 6= 0 then

cn = 0 whenever νcf is not a factor of n.

Proof. Since (2M1 , χ2) = (2M1 , ψ0) for M1 = 2, 3, 4, we have µc = 0. If νcf = 1
there is nothing else to prove, hence we assume νcf > 1 for the rest of this proof.
By Propositions 13 and 17 we know that νcf = pν for some positive integer ν.

Suppose there exist some cn 6= 0 such that n is not divisible by νcf . If we write

f(z)|k
(

1 0
tc 1

)
=
∞∑
n=0

c(t)n qnhc

for every 0 ≤ t ≤ N , gcd(t,N) = 1, our assumption implies the existence of

n0 = min{n ∈ Z : c(t)n 6= 0, n is not divisible by pν}

where 1 ≤ t ≤ N with gcd(t,N) = 1. Fix t0 such that c
(t0)
n0 6= 0. Since ν 1

t0c
f = pν ,

there is a prime r 6= p such that r is a factor of n0.
In the following we divide this proof into four cases and show that each of them

yields a contradiction.
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Case 1. gcd(r,N) = 1.
Let r∗ ∈ Z such that r∗r ≡ 1 (mod N). Let t1 = r∗t0. Then

f(z)|k
(

1 0
rt1c 1

)
=
∞∑
n=0

c(t0)
n qnhc

By equation (16) the coefficient of q
n0
r

hc
in the Fourier series of λrf(z)|k

(
1 0
t1c 1

)
is

λrc
(t1)
n0
r

= c(t0)
n0

+ χ(r)rk−1c
(r∗t1)
n0
r2

= c(t0)
n0
6= 0

This is a contradiction to the minimality of n0.

Case 2. r‖N and gcd(r, c) 6= 1.
Let r∗ ∈ Z such that r∗r ≡ 1 (mod N

c ) and gcd(r∗, c) = 1. Let t1 be as above.
It is possible to show, as in the proof of Lemma 3 (ii), the following identity

Trf(z)|k
(

1 0
t1c 1

)
= r

k
2−1

r−1∑
l=0

f(z)|k
(

1 0
rt1c 1

)(
1 l − rnl
0 r

)
where nl ∈ Z with l− rnl ≡ 0 (mod N

c ). This equation yields

λr

∞∑
n=0

c(t1)
n qnhc = r−1

∞∑
n=0

c(t0)
n

(
r−1∑
l=0

exp

(
2πi

n

hc

l − rnl
r

))
q
n
r

hc
.

In particular we get λrc
(t1)
n0
r

= c
(t0)
n0 6= 0. But again, this is impossible by the

minimality of n0.

Case 3. r‖N and gcd(r, c) = 1.
Let 0 ≤ l ≤ r − 1 such that t0cl + 1 = x′r for some integer x′. There is t1 ∈ Z

such that t0 ≡
(
t0
N
r + r

)
t1 (mod N

c ) and gcd(t1, N) = 1. Hence

f(z)|k
(

x′ l
t0c r

)
= χ

(
t0
N

r
+ r

)
f(z)|k

(
1 0
t1c 1

)(
1 −N

rc
0 1

)
= χ

(
t0
N

r
+ r

) ∞∑
n=0

c(t1)
n exp

(
−2πin

gcd(Nc , c)

r

)
qnhc .

If we put f(z)|k
(

1 0
t0rc 1

)
=
∑∞
n=0 anq

n
hrc

(recall µrc = µc = 0 by an argu-

ment in the proof of Proposition 5), equation (17) implies

λrc
(t0)
n0

= r−1an0

r−1∑
l′′=1

χr(l
′′) + rk−1χ

(
t0
N

r
+ r

)
c
(t1)
n0
r

exp

(
−2πin0

gcd(Nc , c)

r2

)
.

(38)

By minimality of n0 we must have

λrc
(t0)
n0

= r−1an0

r−1∑
l′′=1

χr(l
′′)

Since λr 6= 0 (see Proposition 8) we conclude that χr is the trivial character.
Then ν 1

t0rc
f = νrcf 6= 0 by equation (17). Moreover ν 1

t1c
f = ν 1

t0c
f = νcf > 0,

hence νcf = νrcf by Proposition 8. This give us a factor of N , namely rc, satisfying
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the same conditions than c in the statement of this proposition, with an0 6= 0 and
νrcf = pν . Furthermore, the identity (38) above and the minimality of n0 (defined
in terms of c) imply

n0 = min{n ∈ Z; b(t)n 6= 0, n 6≡ 0 (mod pν)}

where the b
(t)
n ’s are defined by f(z)|k

(
1 0
trc 1

)
=
∑∞
n=0 b

(t)
n qnhrc .

Now we just apply the arguments from the previous case to rc and obtain the
desired contradiction.

Case 4. r2 divides N .
Let rMr‖N . Since r 6= p, then rα‖c for some α ∈ {0, 1, . . . ,Mr} − {Mr

2 }.
Suppose Mr ≥ 3. Then λr = 0 by Proposition 16. Consequently

0 =
∞∑
n=0

r|n

c(t0)
n q

n
r

hc

if Mr+1
2 ≤ α ≤Mr (see equation (19)). Thus c

(t0)
n0 6= 0 implies α ≤ Mr−1

2 .

From Lemma 14 we also have λ̃r = 0, thus the previous argument shows c̃
(t∗0)
n0 = 0

where

f̃(z)|k
(

1 0
t∗0
N
c 1

)
=
∞∑
n=0

c̃
(t∗0)
n qnhN

c

for any 0 ≤ α ≤ Mr−1
2 and any integer t∗0 satisfying gcd(t∗0, N) = 1.

On the other hand, gcd(t0, N) = 1 implies t0y+ N
c x = 1 for some x, y ∈ Z. Then(

0 −1
N 0

)(
t0 x
−Nc y

)
=

(
1 0
t0c 1

)(
N
c −y
0 c

)
.

Since there is m ∈ Z such that gcd(−Nc m+y, c) = 1, we can take t∗0 ∈ Z satisfying

t∗0(−Nc m+ y) ≡ 1 (mod c) and gcd(t∗0, N) = 1. Then, we use the previous identity
and get

f(z)|k
(

1 0
t0c 1

)(
N
c −y
0 c

)
= χ(y − N

c
m)f̃(z)|k

(
1 0
t∗0
N
c 1

)(
1 −m
0 1

)
.

As hN
c

= c2

N hc, one obtains

N
k
2

ck

∞∑
n=0

c(t0)
n exp

(
−2πin

y

hcc

)
q
n N
c2

hc
= χ(y − N

c
m)

∞∑
n=0

c̃
(t∗0)
n exp

(
−2πin

mN
c

hcc

)
q
nNc
hcc

.

Thus c̃
(t∗0)
n0 = 0 if, and only if, c

(t0)
n0 = 0.

Consequently c̃
(t∗0)
n0 6= 0, which implies λ̃r 6= 0 and therefore Mr = 2.

If λr = 0 then λ̃r = 0 by Lemma 15. Hence the previous argument yields a
contradiction. Finally, if λr 6= 0 then νcf = 0 by Lemma 15 again. But this is
impossible by assumption.

Remark 1. One can also use the proof above in order to show the following: Let
(2M , χ2) = (25, ψ1), (25, ψ3) (resp. (24, ψ2)) and c = 23c′ (resp. c = 22c′) for some
odd integer c′. Assume νcf = 2ν and r‖N for any prime factor r of c′. Then, if the
Fourier series of f(z) at 1

c is given by (3), the equation cn = 0 holds whenever νcf
is not a factor of n.
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Before we close this section we observe that it is also possible to get information
about νcf in those exceptional cases not covered by Proposition 17. Nevertheless,
we prefer to postpone the analysis of these cases until we are able to show some
explicit upper bounds for νcf .

5. On η-quotients which are eigenforms of Hecke operators

From now on we only work with modular forms satisfying conditions (B) and
(C) of section 3 and which are of the form ηg(z) ∈ Mkg (Ng, χg) for some g =
tr11 t

r2
2 . . . trss . Since ηg(z) also satisfies (A), we can make use of any result from the

previous section.

Proposition 21. Let g =
∏s
j=1 t

rj
j such that ηg(z) ∈Mkg(Ng, χg). Let pM‖Ng.

If M ≥ 2 then p = 2 or 3. Furthermore, M ≤ 8 if p = 2 and M ≤ 3 if p = 3.

Proof. Let c0 =
Ng
pM . If p is odd then µpαc0ηg = 0 for all 0 ≤ α ≤ M (see (27)).

Moreover νpαc0ηg = 1 for all 0 ≤ α ≤ M , α 6= M
2 . This follows from Propositions

13 and 17 when M ≥ 3, and from Lemmas 12, 15, 18 and Propositions 10 and 13
if M = 2. The above also holds for p = 2 and M ≥ 6 by the same argument.

Thus, from equation (6) we get

hpαc0
∑
d∈D

(
α∑
l=0

pldrpld +
M∑

l=α+1

p2α−ldrpld) = 24(39)

for all α in {0, 1, . . . ,M}−{M2 }, whereD = {d ∈ Z; d > 0, d dividesNg, gcd(p, d) =
1}.

One deduces from this system of equations that
∑
d∈D drpld = 0 for all l ∈

{0, 1, . . . ,M}−{M−1
2 , M+1

2 } if M is odd, and
∑
d∈D drpld = 0 for all l ∈ {0, 1, . . . ,

M} − {M2 − 1, M2 ,
M
2 + 1} if M is even. Consequently, the system (39) reduces to∑
d∈D

(p
M−1

2 dr
p
M−1

2 d
+ p

M+1
2 dr

p
M+1

2 d
) = 24,(40) ∑

d∈D
(p

M+1
2 dr

p
M−1

2 d
+ p

M−1
2 dr

p
M+1

2 d
) = 24(41)

if M is odd, and∑
d∈D

(p
M
2 −1dr

p
M
2
−1d

+ p
M
2 dr

p
M
2 d

+ p
M
2 +1dr

p
M
2

+1d
) = 24,(42)

∑
d∈D

(p
M
2 −1dr

p
M
2
−1d

+ p
M
2 dr

p
M
2 d

+ p
M
2 −1dr

p
M
2

+1d
) =

{
0
24pu,

(43) ∑
d∈D

(p
M
2 +1dr

p
M
2
−1d

+ p
M
2 dr

p
M
2 d

+ p
M
2 −1dr

p
M
2

+1d
) = 24(44)

if M is even, where u is some non-negative integer.

Assume M ≥ 3. From the equations above we know that either p
M
2 −1 or p

M−1
2

is a factor of 24, hence p = 2 or 3. Moreover, M ≤ 8 if p = 2 and M ≤ 4 if p = 3.
In order to rule out the case p = 3 and M = 4 we observe that for these values∑

d∈D
dr33d =

{
1
1− 3u
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by subtracting (44) from (42) and then subtracting (43) from (42). Then, equation
(43) is equal to

6 + 9
∑
d∈D

dr32d = 0 or 6(1− 3u) + 9
∑
d∈D

dr32d = 24 · 3u

both of which yield a contradiction.
Finally, assume M = 2. Again, if we subtract (44) from (42) and use this

equation when we subtract (43) from (42) we obtain

(p2 − 1)
∑
d∈D

drp2d =

{
24
24(1− pu).

If u = 0 then there is nothing to prove, so we assume u ≥ 1. Consequently
p = 2, 3, 5 or equation (43) becomes 24pu = 2

∑
d drd + p

∑
d drpd. In the former

case p = 5 implies
∑
d drp2d = 1 or 1−pu, which yields a contradiction if we consider

the identity (43). In the latter case we conclude that p is a factor of
∑
d drd, and

therefore it is also a factor of 24 by (42).

Corollary 22. Let g =
∏s
j=1 t

rj
j such that ηg(z) ∈ Mkg (Ng, χg). If µc 6= 0 then

νcηg = 0.

Proof. By Proposition 13 any prime divisor of 2νcηg + 1 is a divisor of gcd(c,
Ng
c ).

Then, by the last proposition, 2νcηg + 1 = 3mc for some non-negative integer mc.
Moreover, mc 6= 0 implies 32‖Ng and 3‖c (see Propositions 13, 17 and 21).

From Proposition 19 µ c
3
ηg = µcηg 6= 0 and νcηg ≤ ν c

3
ηg. Hence, the previous

argument shows that 2ν c
3
ηg + 1 = 1. Thus νcηg = 0.

As we mentioned before, the Fourier series of ηg(z) ∈Mkg (Ng, χg) at the cusp 1
c

is given by (5). The holomorphic function G 1
c
(z) in that equation can be written

explicitly as the infinite product

G 1
c
(z) =

s∏
j=1

∞∏
n=1

(1− exp (2πin
gcd(tj , c)

tj
vj)q

n
gcd(tj ,c)

2

tj )rj(45)

where each vj ∈ Z satisfies cvj ≡ gcd(tj , c) (mod tj) (see [7]).
Next we study the function G 1

c
(z) in order to find some upper bounds for νcηg

at those cusps 1
c of Γ0(Ng) where there is an even integer M > 0 such that 2M‖Ng

and 2
M
2 ‖c. For the following six results we assume these conditions on Ng and c,

plus the hypothesis gcd(3, c) = 1. Moreover, we order the set g = tr11 t
r2
2 . . . trss in

such a way that 1 ≤ j1 ≤ j2 ≤ s implies
gcd(tj1 ,c)

2

tj1
≤ gcd(tj2 ,c)

2

tj2
.

Lemmas 23 and 25 below are stated without proof since they follow from straight-
forward algebraic manipulations.

Lemma 23. Let u and N be some positive integers such that 2u‖N . Let a1, a2 ∈ Z
not both zero, ξ ∈ C a primitive N -th root of unity, and l ∈ Z with gcd(l, N2u ) = 1.

If ξ is a root of a1X
2ul + a2X ∈ Z[X ] then u = 1 and a1 = a2.

Proposition 24. Let c = 2
M
2 c′ with c′ a positive integer relatively prime to 6. If

the coefficient of q
gcd(t1,c)

2

t1 in the product G 1
c
(z) is zero, then t1 = 2

M
2 −13β1t′1 for

some t′1 ≥ 1, gcd(t′1, 6) = 1 and β1 ≥ 0. Moreover t2 = 2
M
2 +13β1t′1, r1 = r2 and

gcd(t1,c)
2

t1
< gcd(t3,c)

2

t3
.
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Proof. Assume that r1 is non-zero. Let t1 = 2α13β1t′1 for some integers α1, β1 and
t′1 with gcd(t′1, 6) = 1.

If t2 is a divisor of Ng with gcd(t1,c)
2

t1
= gcd(t2,c)

2

t2
then t2 = 2M−α13β1t′1. As the

coefficient of q
gcd(t1,c)

2

t1 in (45) is zero and gcd(t1,c)
2

t1
is minimal by the ordering in g,

we get α1 6= M − α1, say α1 <
M
2 . One can choose integers l, v such that

c

gcd(t1, c)
lv ≡ 1 (mod

t1
gcd(t1, c)

) and
c

gcd(t2, c)
v ≡ 1 (mod

t2
gcd(t2, c)

).

Then, the coefficient of q
gcd(t1,c)

2

t1 in (45) is given by

−r1 exp (2πi
gcd(t′1, c

′)

3β1t′1
lv)− r2 exp (2πi

gcd(t′1, c
′)

2
M
2 −α13β1t′1

v).

Therefore α1 = M
2 − 1 and r1 = r2 by Lemma 23.

Lemma 25. Let N be an odd positive integer and θ ∈ C an N -th root of unity.

(i) If α ∈ Z, α > 0 satisfies 2α ≡ 1 (mod N), then θ2α+1 + θ4α + θ2 6= 0.
(ii) If a1, a2 ∈ Z, not both zero and a1(θ2α+1 + θ4α + θ2) + a2θ

2 = 0 then θ = 1
and a2 = −3a1.

Lemma 26. Let c be as in Proposition 24. Assume that the coefficients of q
gcd(t1,c)

2

t1

and q2
gcd(t1,c)

2

t1 in the product G 1
c
(z) are zero. Then 2 gcd(t1,c)

2

t1
= gcd(t3,c)

2

t3
.

Furthermore, either G 1
c
(z) = 1 or s ≥ 4, r4 6= 0 and

G 1
c
(z) =

s∏
j=4

∞∏
n=1

(1− exp (2πin
gcd(tj , c)

tj
vj)q

n
gcd(tj ,c)

2

tj )rj .(46)

Proof. By the previous proposition there are some non-negative integers β1 and t′1
with gcd(t′1, 6) = 1, such that t1 = 2

M
2 −13β1t′1, and t2 = 2

M
2 +13β1t′1. Moreover

r1 = r2. Thus

G 1
c
(z) =

∞∏
n=1

(1− ξ2lnqn
gcd(t1,c)

2

t1 )r1(1− ξnqn
gcd(t1,c)

2

t1 )r1(47)

×
s∏
j=3

∞∏
n=1

(1− exp (2πin
gcd(tj , c)

tj
vj)q

n
gcd(tj ,c)

2

tj )rj

where ξ = exp (2πi
gcd(t′1,c

′)
2·3β1 t′1

v2) and l is defined in Proposition 24.

Since the coefficient of q2
gcd(t1,c)

2

t1 in this infinite product is zero, we must have

2 gcd(t1,c)
2

t1
= gcd(t3,c)

2

t3
and r3 6= 0 by Lemma 25 (i). This implies t3 = 2

M
2 3β1t′1 and

therefore the coefficient of q2
gcd(t1,c)

2

t1 in G 1
c
(z) is r1ξ

2l+1−r1ξ4l−r1ξ2−r3ξ2. From

Lemma 25 (ii) we get r3 6= 0, ξ = −1 and r3 = −3r1. Thus β1 = 0 and t′1 is a
factor of c′. Finally, equation (46) can be obtained from (47) after some algebraic
manipulations.

Proposition 27. Let c be as in Proposition 24. Then there is a power of q in the
infinite product G 1

c
(z), say qf for some f ∈ Q, which has a non-zero coefficient

and satisfies 0 ≤ 2-part of f ≤ 2
M
2 .
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Proof. Obviously, we must have one of the following cases:

a) the coefficient of q
gcd(t1,c)

2

t1 in G 1
c
(z) is not zero,

b) the coefficients of q
gcd(t1,c)

2

t1 and q
2

gcd(t1,c)
2

t1 in G 1
c
(z) are zero and non-zero

respectively,

c) the coefficients of q
gcd(t1,c)

2

t1 and q
2

gcd(t1,c)
2

t1 are both zero.

If a) occurs we take f = gcd(t1,c)
2

t1
. If b) occurs let f = 2 gcd(t1,c)

2

t1
. If c) occurs,

either G 1
c
(z) = 1 and we take f = 0, or G 1

c
(z) is given by (46), in which case we

repeat the previous argument on this product.

Corollary 28. Let g = tr11 t
r2
2 . . . trss and c as in Proposition 24. Assume that

(2M , χ2) is none of the following: (22, ψ2), (24, ψ1) or (24, ψ3). Then µc = 0 and

νcηg ≤ 2
M
2 .

Proof. From Propositions 20 and 21 we know that µc = 0. Moreover νcηg = 0 or
νcηg = 2u for some non-negative integer u. In the latter case νcηg = 2u must divide
the exponent of every power of qhc in the series (5) with a non-zero coefficient.
Hence 2u must divide the exponent of every power of qhc in the product (45).

Thus, 2u ≤ 2
M
2 by Proposition 27.

Remark 2. Clearly, all four Lemmas 23, 24, 25 and 26 also hold if 2M‖Ng with

M odd and 2
M+1

2 ‖c. We only have to enlarge the original formal product g =
tr11 t

r2
2 . . . trss with factors of the form t0 where t is any factor of 2Ng which does not

divide Ng, and then take G 1
c
(z) as the infinite product defined by this bigger set.

Consequently, we can have a statement analogous to Proposition 27 for this

case. Namely, if M is odd and 2
M+1

2 ‖c, there is a rational power of q, say qf ,
in the infinite product G 1

c
(z) such that it has a non-zero coefficient and satisfies

0 ≤ 2-part of f ≤ 2
M+1

2 .
Now we put together several previous results in the following.

Proposition 29. Let g = tr11 t
r2
2 . . . trss such that ηg(z) ∈Mkg(Ng, χg). Let 2M‖Ng

and assume that (2M ,χ2) is none of the following: (22, ψ2), (23, ψ1), (23, ψ2), (23, ψ3),
(24, ψ1), (24, ψ2), (24, ψ3), (25, ψ1) or (25, ψ3).

If c is any divisor of Ng then 0 ≤ νcηg ≤ 2
M
2 . Furthermore, either νcηg ∈ {0, 1}

or M is an even positive integer and 2
M
2 ‖c.

Proof. Assume νcηg 6∈ {0, 1}. By Corollary 22 we have µc = 0. Then, from

Propositions 13, 17 and 21, M is some even positive integer and 2
M
2 ‖c or 32‖Ng

and 3‖c. In the latter case we consider c
3 and by Proposition 19 ν c

3
ηg 6∈ {0, 1}.

Hence M must be positive, even and 2
M
2 ‖c. Finally, the inequalities follow from

the corollary above.

For those cases not covered by Proposition 29 we also have an upper bound on
νcηg, but for this we need to study each case by itself.
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First we note that for p = 2, equation (7) yields

λ2ηg(z)|k
(

1 0
2α−1c 1

)
= 2

k
2−1(ηg(z)|k

(
1 0

2αc 1

)(
1 0
0 2

)

+ χ2(1− 2α−1c(1− 2n))ηg(z)|k
(

1 0
2αc 1

)(
1 1− 2n
0 2

)
)

(48)

where 1−2n ≡ 0 (mod N
2M ) and gcd(2, c) = 1, for all integers αwith M+1

2 ≤ α ≤M .
Assume that c is a factor of Ng relatively prime to 6. Then, in each of the

exceptional cases we argue as follows:
(i) (2M , χ2) = (25,Ψ1), (25,Ψ3).
By Propositions 10 and 16 gcd(2, ν24cηg) = gcd(2, ν25cηg) = 1. Hence ν24cηg =

ν25cηg = 1 from Proposition 13. Next we use Lemma 14 and by a similar argument
conclude νcηg = ν2cηg = 1.

(Here, and for the rest of this section we are making constant use of Lemma 12
and Proposition 21).

If we put together the remarks given after Proposition 20 and Corollary 28 we
get the inequality ν23cηg ≤ 23. Then, we also get ν22cηg ≤ 23.

(ii) (2M , χ2) = (24,Ψ2).
By the same reasons ν2αcηg = 1 for α = 0, 1, 3, 4 and ν22cηg ≤ 22.
(iii) (2M , χ2) = (24,Ψ1), (24,Ψ3).
If λ2 = 0 one can prove νcηg = ν2cηg from equation (7). On the other hand,

λ̃2 = 0 implies gcd(2, νN
2c
η̃g) = 1 by equation (48). But this yields that νcηg is

even, which is impossible by Proposition 10 (iv) for η̃g(z). Hence λ̃2 6= 0. This
in turn implies that ν23cηg is odd by equation (25) on η̃g(z). But ν23cηg is even
according to the identity (48), hence we have a contradiction which shows λ2 6= 0.

By a symmetric argument we also have λ̃2 6= 0. Next we use equation (25) again
and conclude that ν2cηg and ν23cηg are odd. Hence νcηg and ν24cηg are also odd
by Proposition 7 and equation (22). Consequently, ν2αcηg = 1 for α = 0, 1, 3, 4. By
Corollary 22 ν22cηg = 0.

(iv) (2M , χ2) = (23,Ψ2).
If λ2 6= 0 then ν2cηg is odd by equation (23). Hence, from (7) and Proposition

13 we obtain νcηg = 0. In particular νNg
c

η̃g = 0. Now, if we suppose that λ̃2 6= 0

then νNg
2c

η̃g = 0 by equation (22), i.e. ν2cηg = 0, a contradiction. Therefore we

must have λ̃2 = 0. But in this case we get gcd(2, νNg
c

η̃g) = 1 by Proposition 10.

Thus νcηg is odd, which again is a contradiction. Hence λ2 = 0. Similarly, λ̃2 = 0.
Under these conditions νcηg must be odd and therefore νcηg = 1 (see Propositions
13 and 21). From equation (48) we get ν2cηg = νcηg. By the same arguments on
η̃g we conclude νcηg = ν2cηg = ν22cηg = ν23cηg = 1.

(v) (2M , χ2) = (23,Ψ1), (23,Ψ3).
By Corollary 22 ν2cηg = ν22cηg = 0, and from Proposition 13 νcηg, ν23cηg ∈

{0, 1}.
(vi) (2M , χ2) = (22,Ψ2).
By the argument above, ν2cηg = 0 and νcηg, ν22cηg ∈ {0, 1}.
We end this section with a summary of all the information that we have about

the integers νcηg.
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Theorem 30. Let g = tr11 t
r2
2 . . . trss such that ηg(z) ∈ Mkg(Ng, χg). Assume that

both ηg(z) and η̃g(z) are eigenforms for all Hecke operators.
Let Ng = 2M3M1N ′ for some non-negative integers M, M1, N

′ with gcd(N ′, 6)
= 1, and denote by χ2 the 2-part of χg.

Then, for any factor c of Ng, the non-negative integer νcηg satisfies one the
properties below:

(i) If M ∈ {0, 1} then νcηg ∈ {0, 1}.
(ii) If (2M , χ2) ∈ {(23, ψ0), (25, ψ0), (25, ψ2)} or M = 7 then νcηg = 1.

(iii) If M ∈ {4, 6, 8} then 0 ≤ νcηg ≤ 2
M
2 . Moreover νcηg = 1 for gcd(2M , c) 6=

2
M
2 .

(iv) If (2M , χ2) ∈ {(25, ψ1), (25, ψ3)} then 0 ≤ νcηg ≤ 23. Moreover νcηg = 1 for
c such that gcd(25, c) 6= 22 and gcd(25, c) 6= 23.

(v) If (2M , χ2) ∈ {(23, ψ1), (23, ψ3)} then νcηg ∈ {0, 1}. Moreover νcηg = 0
whenever gcd(23, c) = 2 or gcd(23, c) = 22.

(vi) If (2M , χ2) = (23, ψ2) then νcηg = 1.
(vii) If M = 2 then 0 ≤ νcηg ≤ 2. Moreover νcηg ∈ {0, 1} for c such that

gcd(22, c) 6= 2. In fact, νcηg = 0 for gcd(22, c) = 2 if χ2 6= ψ0.

Furthermore in every case, νcηg ≥ 2 implies that the only prime divisors of νcηg
are 2 or 3, with 3 dividing it only if 32‖Ng and 3‖c.

Proof. If νcηg 6= 0 then µc = 0 by Corollary 22. Hence any prime divisor of νcηg ≥ 2
is 2 or 3 (by 13 and 21).

Suppose that 3 divides νcηg. Then 32‖Ng and 3‖c by Propositions 13, 17 and
21. Moreover νcηg ≤ ν c

3
ηg, by Proposition 19. Consequently, if we want an upper

bound for νcηg we may assume that 3 does not divide c.
Now, the proof of each statement above is the following:

(i) If M ∈ {0, 1} then 2 does not divide gcd(c, Nc ) and therefore 0 ≤ νcηg ≤ 1.
(ii) In this case µc = 0 by the table (27) and so 2 is not a factor of νcηg by

Proposition 17 (this is true when 3 is a factor of c too). Thus νcηg = 1.
(iii) For M = 6, 8 and (2M , χ2) = (24, ψ0) we use the previous argument and get

νcηg = 1 whenever gcd(2
M
2 , c) 6= 2

M
2 . The inequality follows from Corollary

28. If (2M , χ2) is (24, ψ1), (24, ψ2) or (24, ψ3) we obtain the same conclusion
from the analysis of the exceptional cases done above.

Similarly, (iv), (v) and (vi) follow from the remarks preceding this theorem and
the fact that these also hold if c is a multiple of 3.

Finally, we get (vi) by Proposition 13, Corollary 28 and the last exceptional case
studied above.

6. The computation of η-quotients which are eigenforms of

the Hecke algebra

Here we show that is possible to determine explicitly all g = tr11 t
r2
2 . . . trss char-

acterized in Theorem 30.
First, let’s recall that a complete set of representatives for the cusps of Γ0(N) is

given in section 2 by the set CN . If Kerχ denotes the kernel of the real Dirichlet
character χ and A is in Γ0(N)−Kerχ then

CN,A = CN ∪ {A(
a

c
);
a

c
∈ CN , µ ac = 0}

is a complete set of representatives for all cusps of Kerχ.
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Let f(z) be in Mk(N,χ). Consider f(z) as a modular form on Kerχ and denote
its order of zero at the cusp x ∈ CN,A by νx,χf . Then it is easy to prove that
µ a
c

= 0 implies ν a
c
,χf = ν a

c
f and νA( ac ),χf = ν a

c
f , as well as µ a

c
6= 0 implies ν a

c
,χf =

2ν a
c
f + 1.

Since f(z) is a modular form invariant under Kerχ, if we assume f(z) 6= 0 for
all z ∈ H we get ∑

a
c∈C

ν a
c ,χ
f +

∑
a
c
∈C

µ a
c

=0

νA( ac ),χf =
k

12
[SL2(Z) : Kerχ].

Consequently, from the previous identities and Corollary 22, we have the follow-
ing

Lemma 31. Let g = tr11 t
r2
2 . . . trss such that ηg(z) ∈Mkg (Ng, χg). Then

2
∑
a
c
∈C

µa
c

=0

ν a
c
ηg +

∑
a
c
∈C

µa
c
6=0

1 =
kg
6

[SL2(Z) : Γ0(Ng)].(49)

The number of elements ac
c in C for a fixed divisor c of Ng is φ(gcd(

Ng
c , c)),

where φ denotes the Euler function. If we use the upper bounds for ν ac
c
ηg = νcηg

given in Theorem 30, we obtain from the previous equation an upper bound for
kg
6 [SL2(Z) : Γ0(Ng)]. For example

Lemma 32. Let g = tr11 t
r2
2 . . . trss , as in theorem 30. Let 2M‖Ng and assume that

(2M , χ2) is none of the following: (22, ψ2), (23, ψ1), (23, ψ2), (23, ψ3), (24, ψ1),
(24, ψ2), (24, ψ3), (25, ψ1) or (25, ψ3). Then

kg
6

[SL2(Z) : Γ0(Ng)] ≤ 2
∑
c|Ng

φ(gcd(
Ng
c
, c))

if M = 0, 1, 3, 5, 7, and

kg
6

[SL2(Z) : Γ0(Ng)] ≤ 2(
∑
c|Ng

φ(gcd(
Ng
c
, c)) + (2

M
2 − 1)

∑
c|Ng

2
M
2 ‖c

φ(gcd(
Ng
c
, c)))

if M = 2, 4, 6, 8.

Analogous inequalities can be obtained for each one of the exceptional cases.
Since the mapping on Z defined by N 7→

∑
c|N φ(Nc , c)) is multiplicative, the

right hand side of the inequalities in the lemma above can be written in terms

of
∑
c|2M φ(2M

c , c)),
∑
c|3M1 φ(3M1

c , c)) and
∑
c|N ′ φ(N

′

c , c)), where Ng = 2M3M1N ′

and gcd(N ′, 6) = 1. Consequently, one obtains

2
M−1

2 kg
∏
p|N ′(p+ 1) ≤ 23

∏
p|N ′ 2 if M > 0 odd, M1 = 0,

2
M−1

2 3
M1−1

2 kg
∏
p|N ′(p+ 1) ≤ 22

∏
p|N ′ 2 if M > 0 odd, M1 = 1, 3,

2
M−1

2 3kg
∏
p|N ′(p+ 1) ≤ 23

∏
p|N ′ 2 if M > 0 odd,M1 = 2,

2
M
2 kg

∏
p|N ′(p+ 1) ≤ (2

M
2 + 2)22

∏
p|N ′ 2 if M > 0 even, M1 = 0,

2
M
2 3

M1−1
2 kg

∏
p|N ′(p+ 1) ≤ (2

M
2 +1 + 22)

∏
p|N ′ 2 if M > 0 even, M1 = 1, 3,

2
M
2 3kg

∏
p|N ′(p+ 1) ≤ (2

M
2 + 2)22

∏
p|N ′ 2 if M > 0 even, M1 = 2.
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We get similar inequalities for M = 0 and for all exceptional cases.
The left hand side of these inequalities always growth faster than the right hand

side. Hence, there exist only a finite number of pairs (Ng, kg) satisfying at least
one of these. This means there are only a finite number of modular forms ηg(z) ∈
Mk(Ng, χg) such that both ηg(z) and η̃g(z) are eigenforms for all Hecke operators.

It is not hard to compute all pairs (Ng, kg) satisfying any of the inequalities
obtained above. For each Ng in one of these pairs we consider the system of linear
equations in the variables rt

1

24

Ng
gcd(Ng, c2)

∑
t|Ng

gcd(t, c)2

t
rt = ac(50)

where c and t are running in the set of positive divisors of Ng. The values ac =
νcηg + µc ∈ 1

2Z are subject to the conditions and bounds given in the table (27)
and Theorem 30.

This defines a finite number of square systems of linear equations for Ng, and it
is a fact that each of them has a unique solution.

Collecting in one set the integral solutions for all systems of equations (50), we
define a set L′ of formal products g = tr11 t

r2
2 . . . trss . By Theorem 30 and the previous

computations of (Ng, kg) we know that L′ must contain all those g such that ηg(z)
and η̃g(z) are eigenforms of the Hecke algebra.

Consequently, we only have to decide which elements in L′ are indeed eigenforms
for all Tp in order to get the complete list of η-quotients with this property.

Let g = tr11 t
r2
2 . . . trss ∈ L′. If p is a prime divisor ofNg we compute the coefficients

of ηg(z) and Tpηg(z) at the cusp at infinity up to a certain power of q. If this power
is large enough we can decide whether or not ηg(z) is an eigenform of Tp just by
comparing these two set of coefficients. Hence, with a computer, we can easily find
all those elements g in L′ such that ηg(z) and η̃g(z) are eigenforms of the Hecke
operators Tp with p a factor of Ng. Call this new set L.

We exhibit the elements of L in the second column of our next table. The first
column gives the levelNg for the corresponding modular form, and the third column
says if ηg(z) is a cusp form. The meaning of the last column will be explained in
the final section.

Now we deal with the action of Tp on ηg(z) for g ∈ L and gcd(p,Ng) = 1.

Proposition 33. Let g = tr11 t
r2
2 . . . trss ∈ L and gcd(p,Ng) = 1. Then ηg(z) and

η̃g(z) are eigenforms of Tp.

Proof. Let c be any divisor of Ng. If νcηg ∈ {0, 1} then

νcTpηg ≥ νcηg(51)

by Proposition 4.
If νcηg = ν ≥ 2 we check by direct computation that every power of qhc with a

non-zero coefficient in the product G 1
c
(z) has ν as a factor of its exponent. Thus,

every power of qhc with a non-zero coefficient in ηg(z)|k
(

1 0
c 1

)
has an exponent

divisible by ν. Hence, inequality (51) holds by Proposition 4.

As ηg(z) is non-zero in H, (51) implies that the quotient
Tpηg(z)
ηg(z) is a constant in

C, therefore ηg(z) is an eigenform of Tp. Since gcd(p,Ng) = 1, the above implies
that η̃g(z) is also an eigenform of Tp.
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The main consequence of Proposition 33 is that g = tr11 t
r2
2 . . . trss ∈ L if, and

only if, ηg(z) ∈Mkg (Ng, χg) and both ηg(z) and η̃g(z) are eigenforms for all Hecke
operators. This is precisely the statement of Theorem 1.

7. Multiplicative η-quotients and finite groups

As we mentioned in the introduction, most of the η-products which are eigen-
forms for the Hecke algebra can be related to the largest Mathieu group M24.
Namely, one can show the existence of some graded, infinite-dimensional, complex
vector space V =

⊕∞
n=1 Vnq

n such that

(i) for every n ≥ 1 the subspace Vn is a finite-dimensional CM24-module, and
(ii) for every g ∈M24 its graded trace in V , trV (g) =

∑∞
n=1 trVn(g)qn, is precisely

one of the multiplicative η-products listed in [5].

An explicit construction of V is given in [17]. The above is an example of a
McKay-Thompson series for the finite group M24.

In [18] and [20] the concept of a McKay-Thompson series is generalized to what
is called elliptic system (see also [21]). Basically, an elliptic system of a finite
group G is a mapping that associate to every element h in G some graded, infinite-
dimensional, complex vector space Vh, such that

(i) every homogeneous component of Vh affords a finite-dimensional, complex
representation for the centralizer of h in G, and

(ii) if g ∈ G commutes with h then its graded trace in Vh, trVh(g), is a modular
function or modular form.

Moreover, there is a particular functional equation relating trVh(g) and trVh′ (g
′)

whenever the commuting pairs (h, g) and (h′, g′) generate the same subgroup of G.
In [20] G. Mason constructs an explicit elliptic system for a large class of finite

groups. In [21] Mason study this elliptic system for the group M24, and exhibits
the graded traces trVh(g) for all commuting pairs (h, g) in M24×M24 for which the
action of g in Vh is rational. This list of modular forms contains all η-products and
some of the η-quotients from the second column of Table I.

Table I: Multiplicative η-quotients

Ng g = tr11 t
r2
2 . . . trss cusp form Conway group

1 124 yes 1A
2 18 · 28 yes 2A
3 1−3 · 39 no 3C
3 19 · 3−3 no (3C)|W9

3 16 · 36 yes 3B
4 1−4 · 210 · 4−4 no (8D)|W8T
4 1−4 · 26 · 44 no −4C
4 14 · 26 · 4−4 no (−4C)|W4

4 212 yes 2C
4 14 · 22 · 44 yes 4C
5 1−1 · 55 no 5C
5 15 · 5−1 no (5C)|W5

5 14 · 54 yes 5B
6 12 · 22 · 32 · 62 yes 6E
7 13 · 73 yes 7B
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Table I (continued)

8 24 · 44 yes 4D
8 1−2 · 23 · 43 · 8−2 no (16A)|TW16T
8 1−2 · 23 · 4 · 82 no −8E
8 12 · 2 · 43 · 8−2 no (−8E)|W8

8 12 · 2 · 4 · 82 yes 8E
9 13 · 3−2 · 93 no 9C
9 38 yes 3D
11 12 · 112 yes 11A
12 1−2 · 22 · 32 · 4 · 12 no −12I
12 1 · 3 · 42 · 62 · 12−2 no (−12I)|W12

12 12 · 3−2 · 4 · 62 · 12 no 12I
12 1 · 22 · 3 · 4−2 · 122 no 12H
12 23 · 63 yes 6G
14 1 · 2 · 7 · 14 yes 14B
15 12 · 3−1 · 5−1 · 152 no 15E
15 1−1 · 32 · 52 · 15−1 no (15E)|W3

15 1 · 3 · 5 · 15 yes 15D
16 24 · 4−4 · 84 no 8B
16 2−4 · 416 · 8−4 yes (4D)|T
16 2−12 · 436 · 8−12 yes (2C)|T
16 46 yes 4F
20 1 · 2 · 4−1 · 5−1 · 10 · 20 no −20C
20 1−1 · 2 · 4 · 5 · 10 · 20−1 no (−20C)|W5

20 22 · 102 yes 10F
23 1 · 23 yes 23A
24 1 · 3−1 · 4 · 6 · 8−1 · 24 no −24F
24 1−1 · 2 · 3 · 8 · 12 · 24−1 no (−24F )|W3

24 2 · 4 · 6 · 12 yes 12J
27 32 · 92 yes (3D, 3B)
32 22 · 4−1 · 8−1 · 162 no 16A
32 2−2 · 49 · 8−5 · 162 no (−8E)|TW16T
32 22 · 4−5 · 89 · 16−2 no (−8E)|TW16TW32

32 2−2 · 45 · 85 · 16−2 yes (2C, 4D)
32 42 · 82 yes 8F
36 1 · 2−1 · 3−2 · 4 · 64 · 9 · 12−2 · 18−1 · 36 no ?
36 64 yes 6I
44 2 · 22 yes 22A
48 2 · 4−1 · 6 · 8 · 12−1 · 24 no 24E
48 2−1 · 44 · 6−1 · 8−1 · 124 · 24 yes (12J)|T
48 2−3 · 49 · 6−3 · 8−3 · 129 · 24−3 yes (6G)|T
63 3 · 21 yes 21C
64 42 · 8−2 · 162 no (8D)|T
64 4−2 · 88 · 16−2 yes (8F )|T
64 4−6 · 818 · 16−6 yes (4F )|T
64 4−14 · 838 · 16−14 yes (2C, 2A)|T
80 2−2 · 46 · 8−2 · 10−2 · 206 · 40−2 yes (10F )|T
80 4 · 20 yes 20B
96 2 · 4−3 · 6−1 · 84 · 124 · 16−1 · 24−3 · 48 no (−24F )|TW48TW3
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Table I (continued)

96 2−1 · 44 · 6 · 8−3 · 12−3 · 16 · 244 · 48−1 no (−24F )|TW48T
108 6 · 18 yes (6G, 3D)
128 8 · 16 yes (4F, 4D)
144 6−4 · 1212 · 24−4 yes (6I)|T
144 122 yes 12M
176 2−1 · 43 · 8−1 · 22−1 · 443 · 88−1 yes (22A)|T
256 8−1 · 164 · 32−1 yes (4F, 4D)|T
320 4−1 · 83 · 16−1 · 20−1 · 403 · 80−1 yes (20B)|T
432 6−1 · 123 · 18−1 · 24−1 · 363 · 72−1 yes (6G, 3D)|T
576 12−2 · 246 · 48−2 yes (12M)|T
576 4−2 85 122 16−2 24−4 36−2 482 725 144−2 no ?

In order to find a similar conection between the set of η-quotients classified by
Theorem 1 and some finite group we consider the elliptic system defined in [20] for
the group G of automorphisms of the Leech lattice, i.e. the Conway group.

The non-trivial 24-dimensional permutation representation of G associates to
any g in G a formal product tr11 t

r2
2 . . . trss , where tj , rj , s are integers, tj , s > 0,

called the Frame shape of g (see [16]). These Frame shapes are listed in [13]. The
elliptic system for G that we are considering is such that

trV1(g) =
s∏

tj=1

η(tjz)rj(52)

where V1 is the vector space corresponding to the identity element 1 ofG. We should
mention that if the Frame shape of g defines an η-product, i.e. all r1, r2, . . . , rs
are non-negatives, then the level Ng of the form trV1(g) = ηg(z) is the product of
the smallest and the largest of t1, t2, . . . , ts for which the corresponding exponents
r1, r2, . . . , rs are non-zero.

In any elliptic system, two modular forms associated to different pairs of com-
muting elements (h, g) and (h′, g′) are related provide that both pairs generate the
same group. For example, if we write f(h, g, z) for the modular form trVh(g) we
must have

f(h, g, z)|k
(
Qa b
Nc Qd

)
= Cf(hQdg−

N
Q c, h−bga, Qz)(53)

where C is some complex number, k is the weight of f(h, g, z), Q‖N , N = NhNg,
Nh (resp. Ng) is the level of the modular form f(1, h, z) (resp. f(1, g, z)) and

WQ =

(
Qa b
Nc Qd

)
is the corresponding Atkin-Lehner involution.

Similarly, if g ∈ G and 2e divides Ng

f(1, g, z)|k
(

0 −1
Ng 2−eNg

)
= C′f(g−1, g2−eNg , Ngz).(54)

From the Frame shapes of the elements g in G we compute all modular forms in
this elliptic system of type f(1, g, z). Since M24 is a subset of G, all forms f(h, g, z)
computed in [21] are also part of it. Then, we apply to these modular forms the
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transformations defined by equation (53) above or, in those cases where f(1, g, z)
is an η-product, the transformation f(1, g, z)|kT given by equation (54), with 2e

being the largest power of 2 dividing every tj that has a non-zero rj in the Frame
shape of g. We get in this way a few more elements of this particular elliptic system.

After the computations described above we observe that at least 72 of the 74
η-quotients satisfying the conditions of Theorem 1 can be realized as modular forms
f(h, g, z) in this elliptic system for G. We summarize the explicit correspondence
in the last column of Table I. The notation that we use take the names for g ∈ G
from the Atlas of finite simple groups [4]. We write a pair (h, g) ∈ G × G for the
form f(h, g, z), a single element g for f(1, g, z), and put (h, g)|WQ and (h, g)|T
for f(h, g, z)|kWQ and f(h, g, z)|kT respectively. Notice that our computations do
not exhaust all modular forms of this elliptic system for G, hence it is tempting
to think that all η-quotients in Table I are related to the Conway group via this
construction.
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