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Abstract

Learning temporal dependencies between variables oveinocons time is an
important and challenging task. Continuous-time Bayesigtworks effectively
model such processes but are limited by the number of conditintensity matri-
ces, which grows exponentially in the number of parents pgable. We develop
a partition-based representation using regression tre$oaests whose param-
eter spaces grow linearly in the number of node splits. Usingultiplicative
assumption we show how to update the forest likelihood isedioform, produc-
ing efficient model updates. Our results show multiplicafirests can be learned
from few temporal trajectories with large gains in perfono@aand scalability.

1 Introduction

The modeling of temporal dependencies is an important aatlectying task with applications in
fields that use forecasting or retrospective analysis, agdinance, biomedicine, and anomaly de-
tection. While analyses over time series data with fixedsréig time intervals are well studied, as
for example in[[1], there are domains in which discretizihg time leads to intervals where no ob-
servations are made, producing “missing data” in thoseogdsrior there is no natural discretization
available and so the time series assumptions are restricfi note, experiments in previous work
provide evidence that coercing continuous-time data im tseries and conducting time series
analysis is less effective than learning models built withtimuous-time data in mind][2].

We investigate a subset of continuous-time models: prdisabimodels over finite event spaces
across continuous time. The prevailing model in this fielthis continuous-time Markov process
(CTMP), a model that provides an initial distribution ovetes and a rate matrix parameterizing the
rate of transitioning between states. However, this modesadhot scale for the case where a CTMP
state is a joint state over many variable states. Becauseutimder of joint states is exponential
in the number of variables, the size of the CTMP rate matrowgrexponentially in the number
of variables. Continuous-time Bayesian networks (CTBMNsjamily of CTMPs with a factored
representation, encode rate matrices for each variablehendependencies among variablées [3].
Figure[1 shows a complete trajectory, i.e., a timeline whiegestate of each variable is known for
all timest, for a CTMP with four joint statesa, b), (a, B), (4,b), and(A, B) factorized into two
binary CTBN variables: andj (with states: and A, andb and B, respectively).

Previous work on CTBNs includes several approaches to peifig CTBN inference[4,15,16, 7] 8]
and learning[[23]. Briefly, CTBNs do not admit exact infererwithout transformation to the
exponential-size CTMP. Approximate inference methodsuiting expectation propagationl[4],
mean field [[6], importance sampling-based methods [7], a@M@ [8] have been applied, and
while these methods have helped mitigate the inferencelgmmglinference in large networks re-
mains a challenge. CTBN learning involves parameter legrosing sufficient statistics (e.g. num-
bers of transitions\/ and durationg” in Figure[1) and structure learning over a directed (pogsibl
cyclic) graph over the variables to maximize a penalizedliiiood score. Our work addresses learn-
ing in a generalized framework to which the inference meshrodntioned above can be extended.



In this work we introduce a generalization of CTBNs: paotitbased CTBNs. Partition-based
CTBNs remove the restriction used in CTBNs of storing one raatrix per parents setting for
every variable. Instead partition-based CTBNs define fi@ms over the joint state space and define
the transition rate of each variable to be dependent on thebmeship of the current joint state
to an element (part) of a partition. As an example, supposdave partition” composed of
partsp; = {(a,b), (4,b)} andps = {(a, B), (A, B)}. Then the transition inte; from joint state
(A, B) in Figure[1 would be parameterized by transition rafe,. Partition-based CTBNs store
one transition rate per part, as opposed to one transitienmatrix per parents setting. Later we
will show that, for a particular choice of partitions, a péoh-based CTBN is equivalentto a CTBN.
However, the more general framework offers other choicgadftions which may be more suitable
for learning from data.

Partition-based CTBNs avoid one limitation of
CTBNs: that the model size is necessarily ex-
ponential in the maximum number of parents per Si
variable. For networks with sparse incoming con- A
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Given the framework of partition-based CTBNSs, ,
we need to provide a way to determine useful b \ /m
partitions. Thus, we introduce partition-based | i

CTBN learning using regression tree modifica- \Mb//M/

tions in place of CTBN learning using graph op- 1 |
erators of adding, reversing, and deleting edges. :
In the spirit of context-specific independenice [9],

we can view tree learning as a method for Iearr'}-i ure 1: Example of a complete traiectory in
ing compact partition-based dependencies. How'J : P P J y

ever, tree learning induces recursive subpar‘i?\—two'nOOIe CTBN. The arrows show the tran-

tions, which limits their ability to partition the sitions and time intervals that are aggregated to

joint state space. We therefore introduce mu?__ompute selected sufficient statistics (M's and

tiplicative forests for CTBNSs, which allow the Sgi' A ar('jda denote tw;) states for((j)ne \_/alr)llable,
model to represent up to an exponential numb@? 5 andb two states for a second variable.
of transition rates with parameters still linear in

the number of splits.
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Following canonical tree learning methods, we perform dyeteee and forest learning using it-
erative structure modifications. We show that the partibased change in log likelihood can be
calculated efficiently in closed form using a multiplicaimssumption. We also show that using
multiplicative forests, we can efficiently calculate the Marameters. Thus, we can calculate the
maximum change in log likelihood for a forest modificatiowposal, which gives us the best itera-
tive update to the forest model.

Finally, we conduct experiments to compare CTBNSs, regoessee CTBNs (treeCTBNs) and mul-
tiplicative forest CTBNs (mfCTBNS) on three data sets. Ogpdthesis is twofold: first, that learn-
ing treeCTBNs and mfCTBNs will scale better towards largendims because of their compact
model structures, and second, that mfCTBNs will outperftioth CTBNs and treeCTBNs with
fewer data points because of their ability to capture miidépive dependencies.

The rest of the paper is organized as follows: in Sedfion 2 meige background on CTBNS. In
Sectior B we present partition-based CTBNs, show that thlegtsne CTBNs and define the parti-
tions that tree and forest structures induce. We also destiteoretical advantages of using forests
for learning and how to learn these models efficiently. Wespnéresults in Sectidd 4 showing that
forest CTBNs are scalable to large state spaces and leden tietn CTBNSs, from fewer examples
and in less time. Finally, in Sectiohb 5 dnd 6 we identify agtions to functional gradient boost-
ing and related continuous-time processes and discuss towark addresses one limitation that
prevents CTBNs from finding widespread use.



2 Background

CTBNs are probabilistic graphical models that capture ddpacies between variables over con-
tinuous time. A CTBN is defined by 1) a distribution for thetial state over variableg” given

by a Bayesian Networl, and 2) a directed (possibly cyclic) graph over variabtewith a set of
Conditional Intensity Matrices (CIMs) for each variablé € & that hold the rates (intensitieg),,,

of variable transitions given their parerifs; in the directed graph. Here a CTBN variablec &
has states!, ..., z", and there is an intensity, |, for every stater € X given an instantiation
over its parents. € Ux. The intensity corresponds to the rate of transitioningaiigtater; the
probability density function for staying in staiegiven an instantiation of parentsis g, %",
Given a transitionX’ moves to some other statéwith probability®,,,.|,,. Taking the product over
intervals bounded by single transitions, we obtain the CTRijctory likelihood:
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where theM,, and M, are the sufficient statistics indicating the number of titéorss out of

statex (total, and tar’, respectively), and th&,,, are the sufficient statistics for the amount of time
spent inz given the parents are in state

3 Partition-based CTBNs

Here we define partition-based CTBNs, an alternative fraonkefor determining variable transition
rates. We give the syntax and semantics of our model, pruyithe generative model and likelihood
formulation. We then show that CTBNs are one instance in maméwork. Next, we introduce
regression trees and multiplicative forests and deschbeartitions they induce, which are then
used in the partition-based CTBN framework. Finally, weedss the advantages of using trees and
forests in terms of learning compact models efficiently.

Let X be a finite set of discrete variablé$ of size n, with each variableX having a discrete
set of state{z',22,...,2*}, wherek may differ for each variable. We define a joint state
s = {x1,22,...,2,} Oover X where the subscript indicates the variable index. We aldmele
the partition spac® = Af]. We will shortly define set partition® over P, composed of disjoint
partsp, each of which holds a set of elemeasts

Next we define the dynamics of the model, which form a contirsdtime process ovet’. Each
variableX transitions among its states with rate paramejey for entering state’ given the joint
statedd. This rate parameter (called an intensity) parameterizesekponential distribution for
transitioning intar’, given by the pdfp(«/, s, t) = qw/|se*qw’\st for timet € [0, 00).

A partition-based CTBN has a collection of set partitidheverP, oneP,. for every variable state
a’. For shorthand, we will often denote= P,/ (s) to indicate the panp of partition P,/ to which
states belongs. We define the intensity parameteg.ag = q,, for all s € p. Note that this fixes
this intensity to be the same for everye p, and also note that the set of pastsoversP. The pdf
for transitioning is given by(a', s,t) = p(z’, Por (s),t) = qurpe %' 1" for all s in p.

Now we are ready to define the partition-based CTBN model. itimm-based CTBN modeM is
composed of a distribution over the initial state of our &ales, defined by a Bayesian netwdik
and a set of partition®,, for every variable state’ with corresponding sets of intensitigs ,.

The partition-based CTBN provides a generative framewarkfoducing a trajectory defined by a
sequence of (state, time) pairs, ¢;). Given an initial state, transition times are sampled for each
variable stater’ according top(2’, P,/ (so),t). The next state is selected based on the transition to
thez” with the shortest time, after which the transition timesrasampled according g(2’, s;, t).

Due to the memoryless property of exponential distribugjoro resampling of the transition time
for 2/ is needed ip(2/, s;,t) = p(2’, s;—1, t). The trajectory terminates when all sampled transition
times exceed a specified ending time.

"Note we can generalize this to larger spafes- R x X, whereR is an external state space as[inl[10].
but for our analysis we restri® to be a single element i.e. P = X.

20f note, partition-based CTBNSs are modeling the intensityansitioning to the recipient stat€, rather
than from the donor statebecause we are more often interested in the causargening a state.



Given a trajectory, we can also define the model likelihood. For each intetyahe joint state
remains unchanged, and then one variable transitionseint@he likelihood given the interval is:
Qorisi o I x Taeex e %=1t j e, the product of the probability density fetand the probability
that no other variable transitions befate Taking the product over all intervals iy we get the

model likelihood:
[T IT ITaw e" 1)

XeXaz'eX s

where M|, is the number of transitions intd from states, andT is the total duration spent in
s. Combining terms based on the membership ¢d p and definingM,.. ., = Zsep M, and
T, = Zsep T,, we get:

‘Ip
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3.1 CTBN asa partition-based CTBN

Here we show that CTBNs can be viewed as an instance of partitised CTBNs. Each variable
X is given a parent séfx, and the transition intensitieg,,, are recorded foleaving donor states
x given the current setting of the parents Ux. The CTBN likelihood can be shown to be:

ITIT I e [T e ®)

XeXzeXueUx z'#x

as in [5], whereg, /|, and M,,,|,, denote the intensity and number of transitions from state
statez’ given parents setting, andzm/#w Qea'|u = 42|u- RE€Qrranging the product from equation
[2, we achieve a likelihood in terms of recipient statés

Eq. @)= ] IT II II m“/ﬂ;‘“ e ol
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where we defing as{z} x {u} x (X'\ (X x Ux)) in each partitionP,., and likewise g, |, = qz'|u,
My, = My, andTy, = T,,,. Thus, CTBNs are one instance of partition-based CTBNd) wit
partitions corresponding to a specified donor siatad parents setting.

3.2 Treeand forest partitions

Trees and forests induce partitions over a space definedsettof possible split criteria[L1]. Here
we will define the Conditional Intensity Trees (CITs): regg®n trees that determine the intensities
4., Dy inducing a partition oveP. Similarly, we will define Conditional Intensity ForestsIfs),
where tree intensities are named |ntenS|ty factors Wh(mdm:rt determineg,.,. An example of a
CIF, composed of a collection of CITs, is shown later in thpexkment results in Figuig 4.

Formally, aConditional Intensity Tree (CIT) f, is a directed tree structure on a gra@tV/, £') with
nodesV and edges(V;,V;). Internal noded/; of the tree hold splitery, = (mv,, {E(V;,*)})
composed of surjective maps;, : s — E(V;,V;) and lists of the outgoing edges. The maps
induce partitions ove and endow each outgoing edg&V;, V;) with partpy,. External nodes
[, or leaves, hold non-negative real valuﬁgp called intensities. A patp from the root to a leaf
induces a pant, which is the intersection of the parts on the edges of thie: pat ﬂE(m,vj)epPVj .
The parts corresponding to paths of a CIT form a partitiorr &evhich can be shown easily using
induction and the fact that the mapg, induce disjoint partgy, that coverp.

A Conditional Intensity Forest (CIF) 7, is a set of CITS{f,-}. Because the parts of each CIT
form a partition, a CIF induces a joint partition ov@rwhere a parp is the set of statesthat have
the same paths through all CITs. Finally, a CIF producessities from joint states by taking the
product over the intensity factors from each oyjﬁfpw =11, qg,'|TPC|T.

4



Using regression trees and forests can greatly reduce theenof model parameters. In CTBNSs,
the number of parameters grows exponentially in the numbgai@nts per node. In tree and forest
CTBNSs, the number of parameters may be linear in the numbgai@nts per node, exploiting the

efficiency of using partitions. Notably, however, tree CT8are limited to having one intensity

per parameter. In forest CTBNs, the number of intensitigs lwa exponential in the number of

parameters. Thus, the forest model has much greater padterfiressivity per parameter than the
other models. We quantify these differences in the Supphang Materials at our website.

3.3 Forest CTBN learning

Here we discuss the reasoning for using the multiplicatbgeimption and derive the changes in like-
lihood given modifications to the forest structure. Presiorests learners have used an additive
assumption, e.g. averaging and aggregating, therebygadmantage of properties of ensembles
[12,[13]. However, if we take the sum over the intensity fagtioom each tree, there are no direct
methods for calculating the change in likelihood aside foatculating the likelihood before and af-
ter a forest modification, which would require scanning thledata once per modification proposal.
Furthermore, summing intensity factors could lead to isitées outside the valid domajf, oo).

Instead we use a multiplicative assumption since it giveb@gorrect range over intensities. As we
show below, using the multiplicative assumption also hasdtivantage that it is easy to compute
the change in log likelihood with changes in forest struetu€onsider a partition-based CTBN
M = (B,{F.}) where the partitiong’,, and intensities,|, are given by the CIF$F,/}. We
focus on change in forest structure for one stdte X and remover’ from the subscript notation
for simplicity. Given a current forest structuse and its partitionP, we formulate the change in
likelihood by adding a new CIT’ and its partition”’. One example of is a new a one-split stub.
Another example of” is a tree copied to have the same structure as afGHI.F with all intensity
factors set to one, except at one leaf node where a split isdadthis is equivalent to adding a split
to f. We denoteP as the joint partition of? and P’ and party) € P, p € P, andp’ € P’. We
consider the change in log likelihoatlL L given the new and old models:

ALL = (Z Mjlog qp — q3T5) — (Z My log qp — qpT})
D P

= () M;(log gy +logqy) — q5T5) — (> Mylogqy, — q,T))
p P

P
= (Z Mjlog qp — qpT}) + Z 4Ty
P P
= Z M,y log gy — Z qpTp + Z Ty (4)
P’ P P

We make use of the multiplicative assumption that= g, q, andd_ M, = > , My =55 M;
to arrive at equatiof]4. The first and third terms are easy topete given the old intensities and
new intensity factors. The second term is slightly more clicafed:

Z qpTp = Z G apTp = Z ap’ Z 4Ty
p P P’

prp’

We introduce the notatiofi ~ p’ to denote the parts that correspond to the past. The second
term is a summation over pagiswe have simply grouped together terms by membership.in

The number of parts in the joint partition sBtcan be exponentially large, but the only remaining
dependency on the joint partition space in the change inilajiiood is the termziwp, ey
We can keep track of this value as we progress through thectaajes, so the actual time cost is
linear in the number of trajectory intervals. Thinking ofensitiesq as rates, and given durations
T, we observe that the second and third terms in equBtion 4xpectd numbers of transitions:
Ey =3 sapTp andEy, = 7 q,T,. We additionally definez,, = >, ¢,T;. Specifically, the
expectationg,, andE, are the expected number of transitions in paeandp using the old model
intensities, respectively, whereas is the expected number of transitions using the new intessit


http://pages.cs.wisc.edu/~jcweiss/nips2012/

3.4 Maximum-likelihood parameters

The change in log likelihood is dependent on the intensitjoiavalues{ g, } we choose for the new
partition. We calculate the maximum likelihood paramelsrsetting the derivative with respect to

these factors to zero to gefy = % = gp’ . Following the derivation in]2], we assign
prp! 4PLP p’

priors to the sufficient statistics calculations. Note, bwer, that the priors affect the multiplicative

intensity factors, so a tree may split on the same partit@rivgice to get a stronger effect on the

intensity, with the possible risk of undesirable overfitin

3.5 Forest implementation

We use greedy likelihood maximization steps to learn miidipive forests (mfCTBNS). Each itera-
tion requires repeating three steps: (re)initializatgrificient statistics updates, and model updates.
Initially we are given a blank foresk,. per stater’ containing a blank treg,., that is, a single root
node acting as a leaf with an intensity factor of one. We als@#en sets of possible splifs} and

a penalty functiom: (| Z|, |M|) to penalize increased model complexity. First, for eveay lén M,

we (re)initialize the sufficient statistid®/; and E; in M, as well as sufficient statistics for potential
forest modifications,; ., E; ., Vi,0. Then, we traverse each of our trajectories Z to update
each leaf. For every (state, duration) pair, ¢;), wheret; is the time spent in state_; before the
transition tos;, we update the sufficient statistics that compose equiati&imélly, we compute the
change in likelihood for possible forest modifications, ahdose the modification with the greatest
score. If this score is greater than the cost of the additiomalel complexity,x, we accept the
modification. We replace the selected leaf with a branch mpiieupon the selected. The new
leaf intensity factors are the product of the old intensiigior) ¢; and the intensity factay,, .

Unlike most forest learning algorithms, mfCTBNs learn sreeither in series nor in parallel. No-
tably, the best split is determined solely by the change gnlikelihood, regardless of the tree to
which it belongs. If it belongs to the blank tree at the endhefforest, that tree produces non-trivial
factors and a new blank tree is appended to the forest. Imthysas mfCTBN learns, it automat-
ically determines the forest size and tree depth accordirije evidence in the data. We provide
code and Supplementary Materials at/our website.

4 Experiments

We evaluate our tree learning and forest learn-
ing algorithms on samples from three models.
The first model, which we call “Nodelman”,

is the benchmark model developed in [3, 2].
The second is a simplified cardiovascular health
model we call “CV health” shown in Figure
2. The cause of pathologies in this field are
known to be multifactoria[[14]. For example, it
has been well-established that independent pos-
itive risk factors for atherosclerosis include be-
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ing male, a smoker, in old age, having high glu- '
cose, high BMI, and high blood pressure. The @’@\ abnormal heart electrophysiology
primary tool for prediction in this field is risk L=

factor analysis, where transformations over th

product of risk factor values determines overall

risk. The third model we call “S100" is a largeigyre 2: The cardiovascular health (CV health)
scale model with one hundred binary variableg,cture used in experiments.

Parents are determined by the binomial distri-

bution B(0.05,200) over variable states, with

intensity factor ratios of : 0.5. Our goal is to show that treeCTBNs and mfCTBNs can scale to
much larger model types and still learn effectively. In oyperiments we set the potential splits
{o} to be the set of binary splits determined by indicators fahezariable state’. We setx to be
zero and terminate model learning when the tune set liketifzegins to decrease.
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Figure 3: Average testing set log likelihood varying thértirag set size for each model: Nodelman
(left), CV health (center), and S100 (right). N-CTBN avezagre omitted on the S100 model as
one third of the runs did not terminate.

We compare our algorithms against the learning algorithesgmted in[[2] using code frorn [15],
which we will call N-CTBN. N-CTBNs perform a greedy Bayesktructure search, adding, remov-
ing, or reversing arcs to maximize the Bayesian informatidgterion score, a tradeoff between the
likelihood and a combination of parameter and data size. d@arithms use a tune set by sieving
off one quarter of the original training set trajectoriese Wée the same Laplace prior as used in
[15]. We use the same training and testing set for each #hgori The trajectories are sampled
from the ground truth models for duratioh@, 10 and2 units of time, respectively. We evaluate the
three models using the testing set average log likelihoadprovide an experimental comparison
of model performance, we choose to analyze the p-valuestiwo-@ided paired t-test for the aver-
age log likelihoods between mfCTBNs and N-CTBNs for eachning set size. The results come
from testing sets with one thousand sampled trajectoriefdit®dnal evaluation criteria assessing
structural recovery were also analyzed and are providduEisupplementary Materials.

4.1 Results

Figure[3 (left) shows that the mfCTBN substantially outperis both the treeCTBN and the N-
CTBN on the Nodelman model in terms of average log likeliho®klis effect is most pronounced
with relatively few trajectories, suggesting that mfCTB&ie able to learn more quickly than either
of the other models.

We observe an even larger difference between the mfCTBNldther models in the CV health
model in Figurd B (center). With relatively few trajectajghe mfCTBN is able to identify the
multifactorial causes as observed in the high log likelith@md structural recall. For runs with
fewer than 500 training set trajectories, many N-CTBN medwelve nodes including every other
node as a parent, requiring the estimation of about 300,8@&npeters on average, shown in the
Supplementary Materials. Figure 3 (right) shows that mfG§Ban effectively learn dense models
an order of magnitude larger than those previously studibd.expected number of parents per node
in the S100 model is approximately 20. In order to exactlpnstruct the S100 model, a traditional
CTBN would then need to estimaf2! intensity values. For many applications, variables need
more parents than this. We observe that N-CTBNs have diffi@daling to models of this size.
The N-CTBN learning time on this data set ranges from 4 hauradre than 3 days; runs were
stopped if they had not terminated in that time. About onedtlif the runs failed to complete,
and the runs that did complete suggested that N-CTBN peddpoorly, similar to the differences
observed in the CV health experiment. We suspect the afgonihay be similarly building nodes
with many parents; the model might need to estimafé parameters, a bottleneck at minimum. By
comparison, all runs using treeCTBNs and mfCTBNs complatédess than 1 hour. The averaged
results of N-CTBNs on the S100 model are omitted accordingly

We tested for significant differences in the average loglik®ds between the N-CTBN and
mfCTBN learning algorithms. In the Nodelman model, the eti#nces were significant at level
of p =1e-10 for sizes 10 through 500 = 0.05 for sizes 1000 and 5000, and not significant for size
10000. In the CV health model, the differences were sigmifiesyp =1e-9 for all training set sizes.
We were unable to generate a t-test comparison of the S108lmod
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Figure 4: Ground truth (left) and mfCTBN forest learnt frod0D trajectories (right) for inten-
sity/rate of developing severe atherosclerosis.

Figure[4 shows the ground truth forest and the mfCTBN foreastred for the “severe atheroscle-
rosis” state in the CV health model. To calculate the intgnsi transitioninginto this state, we
identify the leaf in each forest that matches the currené stad take the product of their intensity
factors. Figuré¥ (right) shows the recovery of the corregehdencies in approximately the right
ratios. Full forest models can be found in the Supplemenitaterials.

5 Reated Work

We discuss the relationships between mfCTBNs and relatek iwdwo areas: forest learning and
continuous-time processes. Forest learning with a midéple assumption is equivalent to forest
learning in the log space with an additive assumption anadeeptiating the result. This suggests
that our method shares similarities with functional gratigoosting (FGB), a leading method for
constructing regression forests, run in the log spack [Hewever, our method is different in its
direct use of a likelihood-based objective function andsrability to modify any tree in the forest at
any iteration. Further discussion comparing the methopisoigided in the Supplementary Materials.

Several other works that model variable dependencies aviintious time also exist. Poisson pro-
cess networks and cascades model variable dependenciegardated [17, 18]. Perhaps the most
closely related work, piecewise-constant conditionaisity models (PCIMs), reframes the con-
cept of a factored CTMP to allow learning over arbitrary bastate functions with trees, possibly
piecewise over timeé [10]. These models focus on the “pasitiass”, i.e. the observation or count
of observations of an event. The trouble with this is thatdat used to learn the model may be in-
complete. Given a timeline, we receive alfiservations of events but not necessarily atfcurrences

of the events, and we would like to include this uncertaintpiir model. For Poisson processes in
particular, the representation of the “negative” classissing, when in some cases it is the absent
state of a variable that triggers a process, as for examphheioase of gene expression networks and
negative regulation. Finally other related work includes{parametric continuous-time processes,
which produce exchangeable distributions over transitie sets in unfactored CTMRs [19].

6 Conclusion

We presented an alternative representation of the dynah@@$BNSs using partition-based CTBNs
instantiated by trees and forests. Our models grow lineatlye number of forest node splits, while
CTBNSs grow exponentially in the number of parent nodes perkite. Motivated by the domain

over intensities, we introduced multiplicative forestslahowed that CTBN likelihood updates
can be efficiently computed using changes in log likeliho&thally, we showed that mfCTBNs

outperform both treeCTBNs and N-CTBNSs in three experimantsthat mfCTBNs are scalable to
problems with many variables. With our contributions in eleping scalable CTBNs and efficient
learning, along with continued improvements in infere@EBNs can be a powerful statistical tool
to model complex processes over continuous time.
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