
Multiplicative Forests for Continuous-Time Processes

Jeremy C. Weiss
University of Wisconsin

Madison, WI 53706, USA
jcweiss@cs.wisc.edu

Sriraam Natarajan
Wake Forest University

Winston Salem, NC 27157, USA
snataraj@wakehealth.edu

David Page
University of Wisconsin

Madison, WI 53706, USA
page@biostat.wisc.edu

Abstract

Learning temporal dependencies between variables over continuous time is an
important and challenging task. Continuous-time Bayesiannetworks effectively
model such processes but are limited by the number of conditional intensity matri-
ces, which grows exponentially in the number of parents per variable. We develop
a partition-based representation using regression trees and forests whose param-
eter spaces grow linearly in the number of node splits. Usinga multiplicative
assumption we show how to update the forest likelihood in closed form, produc-
ing efficient model updates. Our results show multiplicative forests can be learned
from few temporal trajectories with large gains in performance and scalability.

1 Introduction

The modeling of temporal dependencies is an important and challenging task with applications in
fields that use forecasting or retrospective analysis, suchas finance, biomedicine, and anomaly de-
tection. While analyses over time series data with fixed, discrete time intervals are well studied, as
for example in [1], there are domains in which discretizing the time leads to intervals where no ob-
servations are made, producing “missing data” in those periods, or there is no natural discretization
available and so the time series assumptions are restrictive. Of note, experiments in previous work
provide evidence that coercing continuous-time data into time series and conducting time series
analysis is less effective than learning models built with continuous-time data in mind [2].

We investigate a subset of continuous-time models: probabilistic models over finite event spaces
across continuous time. The prevailing model in this field isthe continuous-time Markov process
(CTMP), a model that provides an initial distribution over states and a rate matrix parameterizing the
rate of transitioning between states. However, this model does not scale for the case where a CTMP
state is a joint state over many variable states. Because thenumber of joint states is exponential
in the number of variables, the size of the CTMP rate matrix grows exponentially in the number
of variables. Continuous-time Bayesian networks (CTBNs),a family of CTMPs with a factored
representation, encode rate matrices for each variable andthe dependencies among variables [3].
Figure 1 shows a complete trajectory, i.e., a timeline wherethe state of each variable is known for
all timest, for a CTMP with four joint states(a, b), (a,B), (A, b), and(A,B) factorized into two
binary CTBN variablesα andβ (with statesa andA, andb andB, respectively).

Previous work on CTBNs includes several approaches to performing CTBN inference [4, 5, 6, 7, 8]
and learning [2, 3]. Briefly, CTBNs do not admit exact inference without transformation to the
exponential-size CTMP. Approximate inference methods including expectation propagation [4],
mean field [6], importance sampling-based methods [7], and MCMC [8] have been applied, and
while these methods have helped mitigate the inference problem, inference in large networks re-
mains a challenge. CTBN learning involves parameter learning using sufficient statistics (e.g. num-
bers of transitionsM and durationsT in Figure 1) and structure learning over a directed (possibly
cyclic) graph over the variables to maximize a penalized likelihood score. Our work addresses learn-
ing in a generalized framework to which the inference methods mentioned above can be extended.

1

In this work we introduce a generalization of CTBNs: partition-based CTBNs. Partition-based
CTBNs remove the restriction used in CTBNs of storing one rate matrix per parents setting for
every variable. Instead partition-based CTBNs define partitions over the joint state space and define
the transition rate of each variable to be dependent on the membership of the current joint state
to an element (part) of a partition. As an example, suppose wehave partitionP composed of
partsp1 = {(a, b), (A, b)} andp2 = {(a,B), (A,B)}. Then the transition intosi from joint state
(A,B) in Figure 1 would be parameterized by transition rateqa|p2

. Partition-based CTBNs store
one transition rate per part, as opposed to one transition rate matrix per parents setting. Later we
will show that, for a particular choice of partitions, a partition-based CTBN is equivalent to a CTBN.
However, the more general framework offers other choices ofpartitions which may be more suitable
for learning from data.

a

A

b

B

Time

Ma|B

Ta|B

Mb

Tb

X

ti
si

Figure 1: Example of a complete trajectory in
a two-node CTBN. The arrows show the tran-
sitions and time intervals that are aggregated to
compute selected sufficient statistics (M’s and
T’s). A anda denote two states for one variable,
andB andb two states for a second variable.

Partition-based CTBNs avoid one limitation of
CTBNs: that the model size is necessarily ex-
ponential in the maximum number of parents per
variable. For networks with sparse incoming con-
nections, this issue is not apparent. However,
in many real domains, a variable’s transition rate
may be a function of many variables.

Given the framework of partition-based CTBNs,
we need to provide a way to determine useful
partitions. Thus, we introduce partition-based
CTBN learning using regression tree modifica-
tions in place of CTBN learning using graph op-
erators of adding, reversing, and deleting edges.
In the spirit of context-specific independence [9],
we can view tree learning as a method for learn-
ing compact partition-based dependencies. How-
ever, tree learning induces recursive subparti-
tions, which limits their ability to partition the
joint state space. We therefore introduce mul-
tiplicative forests for CTBNs, which allow the
model to represent up to an exponential number
of transition rates with parameters still linear in
the number of splits.

Following canonical tree learning methods, we perform greedy tree and forest learning using it-
erative structure modifications. We show that the partition-based change in log likelihood can be
calculated efficiently in closed form using a multiplicative assumption. We also show that using
multiplicative forests, we can efficiently calculate the MLparameters. Thus, we can calculate the
maximum change in log likelihood for a forest modification proposal, which gives us the best itera-
tive update to the forest model.

Finally, we conduct experiments to compare CTBNs, regression tree CTBNs (treeCTBNs) and mul-
tiplicative forest CTBNs (mfCTBNs) on three data sets. Our hypothesis is twofold: first, that learn-
ing treeCTBNs and mfCTBNs will scale better towards large domains because of their compact
model structures, and second, that mfCTBNs will outperformboth CTBNs and treeCTBNs with
fewer data points because of their ability to capture multiplicative dependencies.

The rest of the paper is organized as follows: in Section 2 we provide background on CTBNs. In
Section 3 we present partition-based CTBNs, show that they subsume CTBNs and define the parti-
tions that tree and forest structures induce. We also describe theoretical advantages of using forests
for learning and how to learn these models efficiently. We present results in Section 4 showing that
forest CTBNs are scalable to large state spaces and learn better than CTBNs, from fewer examples
and in less time. Finally, in Sections 5 and 6 we identify connections to functional gradient boost-
ing and related continuous-time processes and discuss how our work addresses one limitation that
prevents CTBNs from finding widespread use.

2

2 Background

CTBNs are probabilistic graphical models that capture dependencies between variables over con-
tinuous time. A CTBN is defined by 1) a distribution for the initial state over variablesX given
by a Bayesian NetworkB, and 2) a directed (possibly cyclic) graph over variablesX with a set of
Conditional Intensity Matrices (CIMs) for each variableX ∈ X that hold the rates (intensities)qx|u
of variable transitions given their parentsUX in the directed graph. Here a CTBN variableX ∈ X
has statesx1, . . . , xk, and there is an intensityqx|u for every statex ∈ X given an instantiation
over its parentsu ∈ UX . The intensity corresponds to the rate of transitioning outof statex; the
probability density function for staying in statex given an instantiation of parentsu is qx|ue

−qx|ut.
Given a transition,X moves to some other statex′ with probabilityΘxx′|u. Taking the product over
intervals bounded by single transitions, we obtain the CTBNtrajectory likelihood:

∏

X∈X

∏

x∈X

∏

u∈UX

q
Mx|u

x|u e−qx|uTx|u

∏

x′ 6=x

Θ
Mxx′|u

xx′|u

where theMx|u andMxx′|u are the sufficient statistics indicating the number of transitions out of
statex (total, and tox′, respectively), and theTx|u are the sufficient statistics for the amount of time
spent inx given the parents are in stateu.

3 Partition-based CTBNs

Here we define partition-based CTBNs, an alternative framework for determining variable transition
rates. We give the syntax and semantics of our model, providing the generative model and likelihood
formulation. We then show that CTBNs are one instance in our framework. Next, we introduce
regression trees and multiplicative forests and describe the partitions they induce, which are then
used in the partition-based CTBN framework. Finally, we discuss the advantages of using trees and
forests in terms of learning compact models efficiently.

Let X be a finite set of discrete variablesX of sizen, with each variableX having a discrete
set of states{x1, x2, . . . , xk}, wherek may differ for each variable. We define a joint state
s = {x1, x2, . . . , xn} over X where the subscript indicates the variable index. We also define
the partition spaceP = X 1. We will shortly define set partitionsP overP , composed of disjoint
partsp, each of which holds a set of elementss.

Next we define the dynamics of the model, which form a continuous-time process overX . Each
variableX transitions among its states with rate parameterqx′|s for entering statex′ given the joint
states2. This rate parameter (called an intensity) parameterizes the exponential distribution for
transitioning intox′, given by the pdf:p(x′, s, t) = qx′|se

−qx′|st for time t ∈ [0,∞).

A partition-based CTBN has a collection of set partitionsP overP , onePx′ for every variable state
x′. For shorthand, we will often denotep = Px′(s) to indicate the partp of partitionPx′ to which
states belongs. We define the intensity parameter asqx′|s = qx′|p for all s ∈ p. Note that this fixes
this intensity to be the same for everys ∈ p, and also note that the set of partsp coversP . The pdf
for transitioning is given byp(x′, s, t) = p(x′, Px′(s), t) = qx′|pe

−qx′|pt for all s in p.

Now we are ready to define the partition-based CTBN model. A partition-based CTBN modelM is
composed of a distribution over the initial state of our variables, defined by a Bayesian networkB,
and a set of partitionsPx′ for every variable statex′ with corresponding sets of intensitiesqx′|p.

The partition-based CTBN provides a generative framework for producing a trajectoryz defined by a
sequence of (state, time) pairs(si, ti). Given an initial states0, transition times are sampled for each
variable statex′ according top(x′, Px′(s0), t). The next state is selected based on the transition to
thex′ with the shortest time, after which the transition times areresampled according top(x′, si, t).
Due to the memoryless property of exponential distributions, no resampling of the transition time
for x′ is needed ifp(x′, si, t) = p(x′, si−1, t). The trajectory terminates when all sampled transition
times exceed a specified ending time.

1Note we can generalize this to larger spacesP = R × X , whereR is an external state space as in [10].
but for our analysis we restrictR to be a single elementr, i.e.P ∼

= X .
2Of note, partition-based CTBNs are modeling the intensity of transitioning to the recipient statex′, rather

than from the donor statex because we are more often interested in the causes ofentering a state.

3

Given a trajectoryz, we can also define the model likelihood. For each intervalti, the joint state
remains unchanged, and then one variable transitions intox′. The likelihood given the interval is:
qx′|si−1

∏
X

∏
x∈X e

−qx|si−1
ti , i.e., the product of the probability density forx′ and the probability

that no other variable transitions beforeti. Taking the product over all intervals inz, we get the
model likelihood:

∏

X∈X

∏

x′∈X

∏

s

q
Mx′|s

x′|s e−qx′|sTs (1)

whereMx′|s is the number of transitions intox′ from states, andTs is the total duration spent in
s. Combining terms based on the membership ofs to p and definingMx′|p =

∑
s∈p Mx′|s and

Tp =
∑

s∈p Ts, we get:

Eq.(1) =
∏

X∈X

∏

x′∈X

∏

p∈Px′

q
Mx′|p

x′|p e−qx′|pTp

3.1 CTBN as a partition-based CTBN

Here we show that CTBNs can be viewed as an instance of partition-based CTBNs. Each variable
X is given a parent setUX , and the transition intensitiesqx|u are recorded forleaving donor states
x given the current setting of the parentsu ∈ UX . The CTBN likelihood can be shown to be:

∏

X∈X

∏

x∈X

∏

u∈UX

e−qx|uTx|u

∏

x′ 6=x

q
Mxx′|u

xx′|u (2)

as in [5], whereqxx′|u andMxx′|u denote the intensity and number of transitions from statex to
statex′ given parents settingu, and

∑
x′ 6=x qxx′|u = qx|u. Rearranging the product from equation

2, we achieve a likelihood in terms of recipient statesx′:

Eq. (2)=
∏

X∈X

∏

x∈X

∏

u∈UX

∏

x′ 6=x

q
Mxx′|u

xx′|u e−qxx′|uTx|u

=
∏

X∈X

∏

x′∈X

∏

p∈Px′

q
Mx′|p

x′|p e−qx′|pTp (3)

where we definep as{x}×{u}×(X \(X×UX)) in each partitionPx′ , and likewise:qx′|p = qxx′|u,
Mx′|p = Mxx′|u, andTp = Tx|u. Thus, CTBNs are one instance of partition-based CTBNs, with
partitions corresponding to a specified donor statex and parents settingu.

3.2 Tree and forest partitions

Trees and forests induce partitions over a space defined by the set of possible split criteria [11]. Here
we will define the Conditional Intensity Trees (CITs): regression trees that determine the intensities
qx′|p by inducing a partition overP . Similarly, we will define Conditional Intensity Forests (CIFs),
where tree intensities are named intensity factors whose product determinesqx′|p. An example of a
CIF, composed of a collection of CITs, is shown later in the experiment results in Figure 4.

Formally, aConditional Intensity Tree (CIT) fx′ is a directed tree structure on a graphG(V,E) with
nodesV and edgesE(Vi, Vj). Internal nodesVi of the tree hold splitsσVi

= (πVi
, {E(Vi, ·)})

composed of surjective mapsπVi
: s 7→ E(Vi, Vj) and lists of the outgoing edges. The mapsπ

induce partitions overP and endow each outgoing edgeE(Vi, Vj) with partpVj
. External nodes

l, or leaves, hold non-negative real valuesqCIT
x′|p called intensities. A pathρ from the root to a leaf

induces a partp, which is the intersection of the parts on the edges of the path: p =
⋂

E(Vi,Vj)∈ρ pVj
.

The parts corresponding to paths of a CIT form a partition over P , which can be shown easily using
induction and the fact that the mapsπVi

induce disjoint partspVj
that coverP .

A Conditional Intensity Forest (CIF) Fx′ is a set of CITs{fx′}. Because the parts of each CIT
form a partition, a CIF induces a joint partition overP where a partp is the set of statess that have
the same paths through all CITs. Finally, a CIF produces intensities from joint states by taking the
product over the intensity factors from each CIT:qCIF

x′|pCIF =
∏

fx′
qCIT
x′|pCIT .

4

Using regression trees and forests can greatly reduce the number of model parameters. In CTBNs,
the number of parameters grows exponentially in the number of parents per node. In tree and forest
CTBNs, the number of parameters may be linear in the number ofparents per node, exploiting the
efficiency of using partitions. Notably, however, tree CTBNs are limited to having one intensity
per parameter. In forest CTBNs, the number of intensities can be exponential in the number of
parameters. Thus, the forest model has much greater potential expressivity per parameter than the
other models. We quantify these differences in the Supplementary Materials at our website.

3.3 Forest CTBN learning

Here we discuss the reasoning for using the multiplicative assumption and derive the changes in like-
lihood given modifications to the forest structure. Previous forests learners have used an additive
assumption, e.g. averaging and aggregating, thereby taking advantage of properties of ensembles
[12, 13]. However, if we take the sum over the intensity factors from each tree, there are no direct
methods for calculating the change in likelihood aside fromcalculating the likelihood before and af-
ter a forest modification, which would require scanning the full data once per modification proposal.
Furthermore, summing intensity factors could lead to intensities outside the valid domain[0,∞).

Instead we use a multiplicative assumption since it gives usthe correct range over intensities. As we
show below, using the multiplicative assumption also has the advantage that it is easy to compute
the change in log likelihood with changes in forest structure. Consider a partition-based CTBN
M = (B, {Fx′}) where the partitionsPx′ and intensitiesqx′|p are given by the CIFs{Fx′}. We
focus on change in forest structure for one statex′ ∈ X and removex′ from the subscript notation
for simplicity. Given a current forest structureF and its partitionP , we formulate the change in
likelihood by adding a new CITf ′ and its partitionP ′. One example off ′ is a new a one-split stub.
Another example off ′ is a tree copied to have the same structure as a CITf in F with all intensity
factors set to one, except at one leaf node where a split is added. This is equivalent to adding a split
to f . We denoteP̂ as the joint partition ofP andP ′ and partŝp ∈ P̂ , p ∈ P , andp′ ∈ P ′. We
consider the change in log likelihood∆LL given the new and old models:

∆LL = (
∑

p̂

Mp̂ log qp̂ − qp̂Tp̂)− (
∑

p

Mp log qp − qpTp)

= (
∑

p̂

Mp̂(log qp′ + log qp)− qp̂Tp̂)− (
∑

p

Mp log qp − qpTp)

= (
∑

p̂

Mp̂ log qp′ − qp̂Tp̂) +
∑

p

qpTp

=
∑

p′

Mp′ log qp′ −
∑

p̂

qp̂Tp̂ +
∑

p

qpTp (4)

We make use of the multiplicative assumption thatqp̂ = qp′qp and
∑

p Mp =
∑

p′ Mp′ =
∑

p̂ Mp̂

to arrive at equation 4. The first and third terms are easy to compute given the old intensities and
new intensity factors. The second term is slightly more complicated:

∑

p̂

qp̂Tp̂ =
∑

p̂

qp′qpTp̂ =
∑

p′

qp′

∑

p̂∼p′

qpTp̂

We introduce the notation̂p ∼ p′ to denote the partŝp that correspond to the partp′. The second
term is a summation over partŝp; we have simply grouped together terms by membership inp′.

The number of parts in the joint partition setP̂ can be exponentially large, but the only remaining
dependency on the joint partition space in the change in log likelihood is the term

∑
p̂∼p′ qpTp̂.

We can keep track of this value as we progress through the trajectories, so the actual time cost is
linear in the number of trajectory intervals. Thinking of intensitiesq as rates, and given durations
T , we observe that the second and third terms in equation 4 are expected numbers of transitions:
Ep̂ =

∑
p̂ qp̂Tp̂ andEp =

∑
p qpTp. We additionally defineEp′ =

∑
p̂∼p′ qpTp̂. Specifically, the

expectationsEp′ andEp are the expected number of transitions in partp′ andp using the old model
intensities, respectively, whereasEp̂ is the expected number of transitions using the new intensities.

5

http://pages.cs.wisc.edu/~jcweiss/nips2012/

3.4 Maximum-likelihood parameters

The change in log likelihood is dependent on the intensity factor values{qp′} we choose for the new
partition. We calculate the maximum likelihood parametersby setting the derivative with respect to
these factors to zero to getqp′ =

Mp′∑
p̂∼p′ qpTp̂

=
Mp′

Ep′
. Following the derivation in [2], we assign

priors to the sufficient statistics calculations. Note, however, that the priors affect the multiplicative
intensity factors, so a tree may split on the same partition set twice to get a stronger effect on the
intensity, with the possible risk of undesirable overfitting.

3.5 Forest implementation

We use greedy likelihood maximization steps to learn multiplicative forests (mfCTBNs). Each itera-
tion requires repeating three steps: (re)initialization,sufficient statistics updates, and model updates.
Initially we are given a blank forestFx′ per statex′ containing a blank treefx′ , that is, a single root
node acting as a leaf with an intensity factor of one. We also are given sets of possible splits{σ} and
a penalty functionκ(|Z|, |M|) to penalize increased model complexity. First, for every leaf l in M,
we (re)initialize the sufficient statisticsMl andEl in M, as well as sufficient statistics for potential
forest modifications:Ml,σ, El,σ, ∀l, σ. Then, we traverse each of our trajectoriesz ∈ Z to update
each leaf. For every (state, duration) pair(si, ti), whereti is the time spent in statesi−1 before the
transition tosi, we update the sufficient statistics that compose equation 4. Finally, we compute the
change in likelihood for possible forest modifications, andchoose the modification with the greatest
score. If this score is greater than the cost of the additional model complexity,κ, we accept the
modification. We replace the selected leaf with a branch nodesplit upon the selectedσ. The new
leaf intensity factors are the product of the old intensity (factor)ql and the intensity factorqp′ .

Unlike most forest learning algorithms, mfCTBNs learn trees neither in series nor in parallel. No-
tably, the best split is determined solely by the change in log likelihood, regardless of the tree to
which it belongs. If it belongs to the blank tree at the end of the forest, that tree produces non-trivial
factors and a new blank tree is appended to the forest. In thisway, as mfCTBN learns, it automat-
ically determines the forest size and tree depth according to the evidence in the data. We provide
code and Supplementary Materials at our website.

4 Experiments

gender

blood pressure

atherosclerosis

smoking

glucose level

bmi age

arrhythmia

MI

chest pain

abnormal heart electrophysiology

troponin levelsthrombolytic therapy

stroke

HDL

Figure 2: The cardiovascular health (CV health)
structure used in experiments.

We evaluate our tree learning and forest learn-
ing algorithms on samples from three models.
The first model, which we call “Nodelman”,
is the benchmark model developed in [3, 2].
The second is a simplified cardiovascular health
model we call “CV health” shown in Figure
2. The cause of pathologies in this field are
known to be multifactorial [14]. For example, it
has been well-established that independent pos-
itive risk factors for atherosclerosis include be-
ing male, a smoker, in old age, having high glu-
cose, high BMI, and high blood pressure. The
primary tool for prediction in this field is risk
factor analysis, where transformations over the
product of risk factor values determines overall
risk. The third model we call “S100” is a large-
scale model with one hundred binary variables.
Parents are determined by the binomial distri-
butionB(0.05, 200) over variable states, with
intensity factor ratios of1 : 0.5. Our goal is to show that treeCTBNs and mfCTBNs can scale to
much larger model types and still learn effectively. In our experiments we set the potential splits
{σ} to be the set of binary splits determined by indicators for each variable statex′. We setκ to be
zero and terminate model learning when the tune set likelihood begins to decrease.

6

http://pages.cs.wisc.edu/~jcweiss/nips2012/

Trajectories

lo
g

Li
ke

lih
oo

d

−
70

−
60

−
50

−
40

−
30

−
20

10 100 1000 10000

Truth
TreeCTBN
mfCTBN
N−CTBN

Trajectories

lo
g

Li
ke

lih
oo

d

−
10

0
−

80
−

60
−

40
−

20

10 100 1000 10000

Truth
TreeCTBN
mfCTBN
N−CTBN

Trajectories

lo
g

Li
ke

lih
oo

d

−
20

0
−

15
0

−
10

0
−

50
0

10 100 1000 10000

Truth
TreeCTBN
mfCTBN

Figure 3: Average testing set log likelihood varying the training set size for each model: Nodelman
(left), CV health (center), and S100 (right). N-CTBN averages are omitted on the S100 model as
one third of the runs did not terminate.

We compare our algorithms against the learning algorithm presented in [2] using code from [15],
which we will call N-CTBN. N-CTBNs perform a greedy Bayesianstructure search, adding, remov-
ing, or reversing arcs to maximize the Bayesian informationcriterion score, a tradeoff between the
likelihood and a combination of parameter and data size. Ouralgorithms use a tune set by sieving
off one quarter of the original training set trajectories. We use the same Laplace prior as used in
[15]. We use the same training and testing set for each algorithm. The trajectories are sampled
from the ground truth models for durations10, 10 and2 units of time, respectively. We evaluate the
three models using the testing set average log likelihood. To provide an experimental comparison
of model performance, we choose to analyze the p-values for atwo-sided paired t-test for the aver-
age log likelihoods between mfCTBNs and N-CTBNs for each training set size. The results come
from testing sets with one thousand sampled trajectories. Additional evaluation criteria assessing
structural recovery were also analyzed and are provided in the Supplementary Materials.

4.1 Results

Figure 3 (left) shows that the mfCTBN substantially outperforms both the treeCTBN and the N-
CTBN on the Nodelman model in terms of average log likelihood. This effect is most pronounced
with relatively few trajectories, suggesting that mfCTBNsare able to learn more quickly than either
of the other models.

We observe an even larger difference between the mfCTBN and the other models in the CV health
model in Figure 3 (center). With relatively few trajectories, the mfCTBN is able to identify the
multifactorial causes as observed in the high log likelihood and structural recall. For runs with
fewer than 500 training set trajectories, many N-CTBN models have nodes including every other
node as a parent, requiring the estimation of about 300,000 parameters on average, shown in the
Supplementary Materials. Figure 3 (right) shows that mfCTBNs can effectively learn dense models
an order of magnitude larger than those previously studied.The expected number of parents per node
in the S100 model is approximately 20. In order to exactly reconstruct the S100 model, a traditional
CTBN would then need to estimate221 intensity values. For many applications, variables need
more parents than this. We observe that N-CTBNs have difficulty scaling to models of this size.
The N-CTBN learning time on this data set ranges from 4 hours to more than 3 days; runs were
stopped if they had not terminated in that time. About one third of the runs failed to complete,
and the runs that did complete suggested that N-CTBN performed poorly, similar to the differences
observed in the CV health experiment. We suspect the algorithm may be similarly building nodes
with many parents; the model might need to estimate2100 parameters, a bottleneck at minimum. By
comparison, all runs using treeCTBNs and mfCTBNs completedin less than 1 hour. The averaged
results of N-CTBNs on the S100 model are omitted accordingly.

We tested for significant differences in the average log likelihoods between the N-CTBN and
mfCTBN learning algorithms. In the Nodelman model, the differences were significant at level
of p =1e-10 for sizes 10 through 500,p = 0.05 for sizes 1000 and 5000, and not significant for size
10000. In the CV health model, the differences were significant atp =1e-9 for all training set sizes.
We were unable to generate a t-test comparison of the S100 model.

7

<50% atherosclerotic

0.010

True

 1.0

False

Male

 1.0 0.020

False

0.050

True

Youth

 1.0

False

 0.10

True

Normal BP

 1.0

True

 2.0

False

Normal weight

 2.0

False

 1.0

True

Normal glucose

True

 2.0

False

Frequent smoker

 1.0

False

 2.0

True

Youth

 0.12

True

 1.1

False

<50% atherosclerotic

0.0080

True

 1.4

False

Normal glucose

 0.36

True

Hypertensive

False

Hypertensive

0.020

False

Female

True

Normal weight

 1.3

False

 0.68

True

Frequent smoker

False

 0.13

True

 1.1

True

 3.5

False

 0.18

False

 0.38

True

Figure 4: Ground truth (left) and mfCTBN forest learnt from 1000 trajectories (right) for inten-
sity/rate of developing severe atherosclerosis.

Figure 4 shows the ground truth forest and the mfCTBN forest learned for the “severe atheroscle-
rosis” state in the CV health model. To calculate the intensity of transitioninginto this state, we
identify the leaf in each forest that matches the current state and take the product of their intensity
factors. Figure 4 (right) shows the recovery of the correct dependencies in approximately the right
ratios. Full forest models can be found in the SupplementaryMaterials.

5 Related Work

We discuss the relationships between mfCTBNs and related work in two areas: forest learning and
continuous-time processes. Forest learning with a multiplicative assumption is equivalent to forest
learning in the log space with an additive assumption and exponentiating the result. This suggests
that our method shares similarities with functional gradient boosting (FGB), a leading method for
constructing regression forests, run in the log space [16].However, our method is different in its
direct use of a likelihood-based objective function and in its ability to modify any tree in the forest at
any iteration. Further discussion comparing the methods isprovided in the Supplementary Materials.

Several other works that model variable dependencies over continuous time also exist. Poisson pro-
cess networks and cascades model variable dependencies andevent rates [17, 18]. Perhaps the most
closely related work, piecewise-constant conditional intensity models (PCIMs), reframes the con-
cept of a factored CTMP to allow learning over arbitrary basis state functions with trees, possibly
piecewise over time [10]. These models focus on the “positive class”, i.e. the observation or count
of observations of an event. The trouble with this is that thedata used to learn the model may be in-
complete. Given a timeline, we receive allobservations of events but not necessarily alloccurrences
of the events, and we would like to include this uncertainty in our model. For Poisson processes in
particular, the representation of the “negative” class is missing, when in some cases it is the absent
state of a variable that triggers a process, as for example inthe case of gene expression networks and
negative regulation. Finally other related work includes non-parametric continuous-time processes,
which produce exchangeable distributions over transitionrate sets in unfactored CTMPs [19].

6 Conclusion

We presented an alternative representation of the dynamicsof CTBNs using partition-based CTBNs
instantiated by trees and forests. Our models grow linearlyin the number of forest node splits, while
CTBNs grow exponentially in the number of parent nodes per variable. Motivated by the domain
over intensities, we introduced multiplicative forests and showed that CTBN likelihood updates
can be efficiently computed using changes in log likelihood.Finally, we showed that mfCTBNs
outperform both treeCTBNs and N-CTBNs in three experimentsand that mfCTBNs are scalable to
problems with many variables. With our contributions in developing scalable CTBNs and efficient
learning, along with continued improvements in inference,CTBNs can be a powerful statistical tool
to model complex processes over continuous time.

7 Acknowledgments

We gratefully acknowledge CIBM Training Program grant 5T15LM007359, NIGMS grant
R01GM097618-01, NLM grant R01LM011028-01, and ICTR NIH NCATS grant UL1TR000427.

8

References

[1] T. Dean and K. Kanazawa, “A model for reasoning about persistence and causation,”Compu-
tational Intelligence, vol. 5, no. 2, pp. 142–150, 1989.

[2] U. Nodelman, C. R. Shelton, and D. Koller, “Learning continuous time Bayesian networks,” in
UAI, 2003.

[3] U. Nodelman,Continuous time Bayesian networks. PhD thesis, Stanford University, 2007.

[4] U. Nodelman, D. Koller, and C. R. Shelton, “Expectation propagation for continuous time
Bayesian networks,” inUAI, 2005.

[5] S. Saria, U. Nodelman, and D. Koller, “Reasoning at the right time granularity,” inUAI, 2007.

[6] I. Cohn, T. El-Hay, N. Friedman, and R. Kupferman, “Mean field variational approximation
for continuous-time Bayesian networks,” inUAI, 2009.

[7] Y. Fan and C. R. Shelton, “Sampling for approximate inference in continuous time Bayesian
networks,” inAI and Mathematics, 2008.

[8] V. Rao and Y. Teh, “Fast MCMC sampling for Markov jump processes and continuous time
Bayesian networks,” inUAI, 2011.

[9] D. Heckerman, “Causal independence for knowledge acquisition and inference,” inUAI,
pp. 122–127, 1993.

[10] A. Gunawardana, C. Meek, and P. Xu, “A model for temporaldependencies in event streams,”
in NIPS, 2011.

[11] C. Strobl, J. Malley, and G. Tutz, “An introduction to recursive partitioning: rationale, applica-
tion, and characteristics of classification and regressiontrees, bagging, and random forests.,”
Psychological methods, vol. 14, no. 4, p. 323, 2009.

[12] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-line learning and an
application to boosting,” inComputational learning theory, 1995.

[13] L. Breiman, “Random forests,”Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[14] W. Kannel, “Blood pressure as a cardiovascular risk factor,” JAMA, vol. 275, no. 20, p. 1571,
1996.

[15] C. Shelton, Y. Fan, W. Lam, J. Lee, and J. Xu, “Continuoustime Bayesian network reasoning
and learning engine,”JMLR, vol. 11, pp. 1137–1140, 2010.

[16] J. Friedman, “Greedy function approximation: a gradient boosting machine,”Annals of Statis-
tics, 2001.

[17] S. Rajaram, T. Graepel, and R. Herbrich, “Poisson-networks: A model for structured point
processes,” inAI and Statistics, 2005.

[18] A. Simma,Modeling Events in Time Using Cascades Of Poisson Processes. PhD thesis, EECS
Department, University of California, Berkeley, Jul 2010.

[19] A. Saeedi and A. Bouchard-Ct, “Priors over recurrent continuous time processes,” inNIPS,
2011.

9

