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Multiplicative functions in short intervals
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Dedicated to Andrew Granville

Abstract

We introduce a general result relating “short averages” of a multiplica-

tive function to “long averages” which are well understood. This result has

several consequences. First, for the Möbius function we show that there

are cancellations in the sum of µ(n) in almost all intervals of the form

[x, x+ψ(x)] with ψ(x) → ∞ arbitrarily slowly. This goes beyond what was

previously known conditionally on the Density Hypothesis or the stronger

Riemann Hypothesis. Second, we settle the long-standing conjecture on the

existence of xε-smooth numbers in intervals of the form [x, x+ c(ε)
√
x], re-

covering unconditionally a conditional (on the Riemann Hypothesis) result

of Soundararajan. Third, we show that the mean-value of λ(n)λ(n + 1),

with λ(n) Liouville’s function, is nontrivially bounded in absolute value

by 1 − δ for some δ > 0. This settles an old folklore conjecture and con-

stitutes progress towards Chowla’s conjecture. Fourth, we show that a

(general) real-valued multiplicative function f has a positive proportion of

sign changes if and only if f is negative on at least one integer and nonzero

on a positive proportion of the integers. This improves on many previous

works and is new already in the case of the Möbius function. We also obtain

some additional results on smooth numbers in almost all intervals, and sign

changes of multiplicative functions in all intervals of square-root length.

1. Introduction

Let f : N → [−1, 1] be a multiplicative function. We introduce a gen-

eral result relating many “short averages” of a multiplicative function over a

bounded length interval to “long averages” which are well understood using

tools from multiplicative number theory.

Theorem 1. Let f : N → [−1, 1] be a multiplicative function. There exist

absolute constants C,C ′ > 1 such that for any 2 ≤ h ≤ X and δ > 0,
∣∣∣∣∣∣
1

h

∑

x≤n≤x+h

f(n)− 1

X

∑

X≤n≤2X

f(n)

∣∣∣∣∣∣
≤ δ + C ′ log log h

log h
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for all but at most

CX

Ç

(log h)1/3

δ2hδ/25
+

1

δ2(logX)1/50

å

integers x ∈ [X, 2X]. One can take C ′ = 20000.

Note that Theorem 1 allows h, δ and f to vary uniformly. For example,

taking δ = (log h)−1/200 gives a saving of 2(log h)−1/200 with an exceptional

set of at most CX(log h)−1/100. Already for the Möbius function µ(n) The-

orem 1 goes beyond what was previously known conditionally; the density

hypothesis implies that there are cancellations in the sum of µ(n), but “only”

in almost all intervals x ≤ n ≤ x + h of length h ≥ xε, whereas the Rie-

mann hypothesis implies cancellations of µ(n) in almost all intervals but again

“only” if h > (logX)A for some constant A > 0 (by unpublished work of Peng

Gao). Unconditionally, using results towards the density hypothesis, it was

previously known that there are cancellation of µ(n) in almost all intervals of

length x1/6+ε (a result due to Ramachandra [34]).

One naturally wonders if it is possible to establish Theorem 1 in all in-

tervals of length h ≍
√
X. However, this is not possible in general, since it

would require us to control the contribution of the large primes factors which

is completely arbitrary for general f . However, we prove a bilinear version of

Theorem 1 which holds in all intervals of length ≍
√
X. The bilinear structure

allows us to eliminate the contribution of the large primes.

Theorem 2. Let f : N → [−1, 1] be a multiplicative function. Then, for

any 10 ≤ h ≤ x,

1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

f(n1)f(n2)

=

Ç

1√
x

∑
√
x≤n≤2

√
x

f(n)

å2

+O

Ç

log log h

log h
+

1

(log x)1/100

å

.

An important feature of Theorem 2 is that it holds uniformly in h and f .

Theorem 2 allows us to show the existence of many Xε smooth numbers in

intervals of length ≍
√
X. Alternatively we could have deduced this from

Theorem 1 using ideas of Croot [4] (building on earlier work of Friedlander

and Granville [9]).

Corollary 1. Let ε > 0 be given. There exists a positive constant C(ε)

such that the number of Xε-smooth numbers in [X,X + C(ε)
√
X] is at least√

X(logX)−4 for all large enough X .
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This recovers unconditionally a conditional (on the Riemann Hypothesis)

result of Soundararajan [37] and comes close to settling the long-standing con-

jecture that every interval [x, x+
√
x], with x large enough, contains xε-smooth

numbers (see for example [11, Challenge Problem 2000 in §4]). The later con-

jecture is motivated by attempts at rigorously estimating the running time of

Lenstra’s elliptic curve factoring algorithm [24, §6]. Our result also improves

on earlier work of Croot [4], Matomäki [28], [27] and Balog [1]. Finally for small

fixed ε, a more difficult to state variant of Theorem 2 (see Section 2) shows that

C(ε) = ρ(1/ε)−13 is admissible, where ρ(u) is the Dickman-de Bruijn function.

In fact with a little additional work the constant C(ε) can be reduced further

to ρ(1/ε)−7 and the exponent 4 in
√
x(log x)−4 could be refined to log 4.

Another corollary of Theorem 1 is related to Chowla’s conjecture,

(1)
1

X

∑

n≤X

λ(n)λ(n+ 1) = o(1), as x→ ∞

with λ(n) := (−1)Ω(n) Liouville’s function. Chowla’s conjecture is believed to

be at least as deep as the twin prime conjecture [18]. This motivates the old

folklore conjecture according to which the sum (1) is, for all X large enough,

bounded in absolute value by ≤ 1−δ for some δ > 0. For example, Hildebrand

writes in [17]“one would naturally expect the above sum to be o(x) when

x→ ∞, but even the much weaker relation

lim inf
x→∞

1

x

∑

n≤x

λ(n)λ(n+ 1) < 1

is not known and seems to be beyond reach of the present methods.” Theorem 1

allows us to settle this conjecture in a stronger form.

Corollary 2. For every integer h ≥ 1, there exists δ(h) > 0 such that

1

X

∣∣∣∣∣∣
∑

n≤X

λ(n)λ(n+ h)

∣∣∣∣∣∣
≤ 1− δ(h)

for all large enough X > 1. In fact the same results holds for any completely

multiplicative function f : N → [−1, 1] such that f(n) < 0 for some n > 0.

For h = 1, Corollary 2 also holds for any multiplicative f : N → [−1, 1]

which is completely multiplicative at the prime 2. (This rules out, for ex-

ample, the f such that f(2k) = −1 and f(pk) = 1 for all p ≥ 3, k ≥ 1.)

The ternary analogue of Corollary 2 concerning cancellations in the sum of

λ(n)λ(n+ 1)λ(n+ 2) is surprisingly much easier; it is stated as an exercise in

Elliott’s book [6, Ch. 33] (see also [5] and [2]).

Corollary 2 is closely related to the problem of counting sign changes of

f(n). Using Halász’s theorem one can show that if
∑

f(p)<0 1/p = ∞ and

f(n) 6= 0 for a positive proportion of the integers n, then the nonzero val-

ues of f(n) are half of the time positive and half of the time negative (see [30,
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Lemma 2.4] or [7, Lemma 3.3]). Since we expect f(n) and f(n+1) to behave in-

dependently, this suggests that, for nonvanishing f such that
∑

f(p)<0 1/p=∞,

there should be about x/2 sign changes among integers n ≤ x. When f is al-

lowed to be zero we say that f has k sign changes in [1, x] if there are integers

1 ≤ n1 < n2 < · · · < nk+1 ≤ x such that f(ni) 6= 0 for all i and f(ni), f(ni+1)

are of opposite signs for all i ≤ k. For nonlacunary multiplicative f , i.e., mul-

tiplicative f such that f(n) 6= 0 on a positive proportion of the integers, we

still expect ≍ x sign changes in [1, x].

Corollary 3. Let f : N → R be a multiplicative function. Then f(n)

has a positive proportion of sign changes if and only if f(n) < 0 for some

integer n > 0 and f(n) 6= 0 for a positive proportion of integers n.

There is a large literature on sign changes of multiplicative functions. For

specific multiplicative functions Corollary 3 improves on earlier results for

• The Möbius function. The previous best result was due to Harman, Pintz

and Wolke [14] who obtained more than x/(log x)7+ε sign changes for n ≤ x,

using Jutila’s bounds towards the density hypothesis ([21]).

• Coefficients of L-functions of high symmetric powers of holomorphic Hecke

cusp forms. In this setting the best previous result was xδ sign changes with

some δ < 1 [23].

• Fourier coefficients of holomorphic Hecke cusp forms. In this case Corollary 3

recovers a recent result of the authors [30].

As observed by Ghosh and Sarnak in [10], the number of sign changes of λf (n)

for n ≤ k1/2 (with k the weight of f) is related to the number of zeros of f

on the vertical geodesic high in the cusp. A suitable variation of Corollary 3

(again deduced from Theorem 1) has consequences for this problem. These

results are discussed in a paper by the authors and Steve Lester (see [25]).

For general multiplicative functions, Corollary 3 improves on earlier work

of Hildebrand [18] and Croot [3]. Croot obtained x exp(−(log x)1/2+o(1)) sign

changes for completely multiplicative nonvanishing functions. On the other

hand, Hildebrand showed that there exists an infinite (but quickly growing)

subsequence xk such that f has more than xk(log log xk)
−4 sign changes on the

integers n ≤ xk.

Corollary 3 suggests that unless f is nonnegative, there should be few

long clusters of consecutive integers at which f is of the same sign. Our next

corollary confirms this expectation.

Corollary 4. Let f : N → R be a multiplicative function. If f(n) < 0

for some integer n and f(n) 6= 0 for a positive proportion of integers n, then,

for any ψ(x) → ∞, almost every interval [x, x+ ψ(x)] contains a sign change

of f .
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This is an optimal result, since on probabilistic grounds we expect that

for any fixed h > 0, there is a positive proportion of intervals [x, x + h] of

length h on which f is of the same sign. We also have the following analogue

of Corollary 4 for all intervals of length ≍ √
x.

Corollary 5. Let f : N → R be a completely multiplicative function. If

f(n) < 0 for some integer n > 0 and f(n) 6= 0 for a positive proportion of

integers n, then there exists a constant C > 0 such that f has a sign change

in the interval [x, x+ C
√
x] for all large enough x.

As a consequence of Corollary 5 there exists a constant C > 0, such that

every interval [n, n+C
√
n] has a number with an even number of prime factors,

and one with an odd number of prime factors.

Our methods may also be used to demonstrate the existence of smooth

numbers in almost all short intervals. It is well known that the number of

X1/u smooth numbers up to X is asymptotically ρ(u)X, with ρ(u) denoting

the Dickman-de Bruijn function [38]. We show that this remains true in almost

all short intervals, with the interval as short as possible.

Corollary 6. Let ψ(x) → ∞, and let u > 0 be given. Then, for almost

all x, the number of x1/u-smooth integers in [x, x + ψ(x)] is asymptotically

ρ(u)ψ(x).

This improves on earlier work of Matomäki [27] and unpublished work

of Hafner [13]. It would be interesting, in view of applications towards the

complexity of Lenstra’s elliptic curve factoring algorithm, to extend Corollary 6

to significantly smoother numbers (and one would naturally need somewhat

longer intervals [x, x+ ψ(x)] with a ψ(x) depending on the smoothness under

consideration), even under the assumption of the Riemann Hypothesis.

We end this introduction by discussing extensions and limitations of our

main result. Theorem 1 and its variants do not hold for complex valued multi-

plicative functions as the example f(p) = pit shows. However, the result does

extend to complex-valued functions which are not nit-pretentious. We carried

out this extension in [31] (joint with Terence Tao), where we used this complex

variant, together with other ideas, to prove an averaged version of Chowla’s

conjecture.

It is also interesting to notice that one cannot hope to establish general

results on sign changes of a multiplicative function f : N → R in all short

intervals [x, x+ y(x)] with y(x) < exp(((2+ o(1)) log x log log x)1/2). Indeed in

an interval of this length every integer might be divisible by a distinct prime

factor. Therefore one can rig the sign of the multiplicative function on those

primes so that f(n) is always positive in [x, x + y(x)] even though f(n) has

many sign changes in the full interval [x, 2x].
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In forthcoming work, the authors will investigate versions of our results

for multiplicative functions vanishing on a positive proportion of the primes.

This is naturally related to sieves of small dimensions. In addition we will also

look at the related question of what happens when |f(p)| is not bounded by 1.

In particular, we will obtain results for the k-fold divisor function. In another

forthcoming work, related to Theorem 2 and joint with Andrew Granville and

Adam Harper, we will try to understand individual averages of a multiplicative

function f in intervals of length xθ with θ > 1/2, and with n restricted to

smooth numbers (thus eliminating the contribution of large primes).

2. Initial reduction and key ideas

We will deduce Theorem 1 from a variant where n is restricted to a dense

subset SX ⊂ [X, 2X] which contains only those n which have prime divisors

from certain convenient ranges. To define the set S we need to introduce some

notation. Let η ∈ (0, 1/6). Consider a sequence of increasing intervals [Pj , Qj ]

such that

• Q1 ≤ exp(
√
logX);

• the intervals are not too far from each other, precisely

(2)
log logQj

logPj−1 − 1
≤ η

4j2
.

• the intervals are not too close to each other, precisely

(3)
η

j2
logPj ≥ 8 logQj−1 + 16 log j.

For example, given 0 < η < 1/6, choose any [P1, Q1] with exp(
√
logX) ≥ Q1 ≥

P1 ≥ (logQ1)
40/η large enough, and choose the remaining [Pj , Qj ] as follows:

(4) Pj = exp(j4j(logQ1)
j−1 logP1) and Qj = exp(j4j+2(logQ1)

j).

Let S = SX be a set of integers X ≤ n ≤ 2X having at least one prime factor

in each of the intervals [Pj , Qj ] for j ≤ J , where J is chosen to be the largest

index j such that Qj ≤ exp((logX)1/2).

Notice that, for any j ≤ J , the number of integers in [X, 2X] which do not

have a prime factor from [Pj , Qj ] is by a standard sieve bound of order X
logPj

logQj
,

which with the choice (4) is X logP1

j2 logQ1
. Hence once Q1 is large enough in terms

of P1, most integers belong to S. It is also worth noticing that with the choice

(4), a typical integer has about log
logQj

logPj
= 2 log j + log logQ1 − log logP1

distinct prime factors in every fixed interval [Pj , Qj ].

We will establish the following variant of Theorem 1 on the integers n ∈ S.

Theorem 3. Let f : N → [−1, 1] be a multiplicative function. Let S = SX

be as above with η ∈ (0, 1/6). If [P1, Q1] ⊂ [1, h], then for all X > X(η)
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large enough,

1

X

∫ 2X

X

∣∣∣∣∣∣∣∣

1

h

∑

x≤n≤x+h
n∈S

f(n)− 1

X

∑

X≤n≤2X
n∈S

f(n)

∣∣∣∣∣∣∣∣

2

dx≪ (log h)1/3

P
1/6−η
1

+
1

(logX)1/50
.

We show in Section 9 that for an appropriate choice of S, almost all inte-

gers n ∈ [X, 2X] belong to S. It follows by taking f(n) = 1 in Theorem 3 that

the same property holds in almost all short intervals. Combining this observa-

tion with Theorem 3 and the assumption that |f(n)| ≤ 1 implies Theorem 1.

To prove Theorem 2 we will establish the following variant on the integers

n1, n2 ∈ S.

Theorem 4. Let f : N → [−1, 1] be a multiplicative function. Let S be as

above with η ∈ (0, 1/6). If [P1, Q1] ⊂ [1, h], then for all x > x(η) large enough,

1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

n1,n2∈S

f(n1)f(n2) =

Ç

1√
x

∑
√
x≤n≤2

√
x

n∈S

f(n)

å2

+O

Ç

(logQ1)
1/6

P
1/12−η/2
1

+ (logX)−1/100

å

.

As before, upon specializing the set S and sieving, we can get rid of the

requirement that n1, n2 ∈ S, thus obtaining Theorem 2. While Theorem 4

is more complicated than Theorem 2, it outperforms the latter in certain ap-

plications, such as, for example, estimating the constant C(ε) in Corollary 1.

Using Theorem 4 gives C(ε) = ρ(1/ε)−13 in Corollary 1, for small fixed ε,

while Theorem 4 would only give estimates of the form C(ε) = exp(c/ρ(1/ε)).

In addition, by using a smoothing in Theorem 4, one could further reduce

the estimate for C(ε) to ρ(1/ε)−7 for small fixed ε. Similarly, using Theo-

rem 3 instead of Theorem 1 allows us to give a better bound in Corollary 4

for the exceptional set E ⊂ [X, 2X] of those x’s for which [x, x + h] has no

sign change of f . Indeed we can show using Theorem 3 that E has measure

Oε(Xh
−1/6+ε + (logX)−1/50).

2.1. Outline of the proofs of Theorems 3 and 4. We now discuss the ideas

behind the proofs of Theorems 3 and 4. In both cases the first step consists in

reducing the problem essentially to showing that

(5)

∫ X/h

(logX)1/15

∣∣∣∣∣∣∣∣

∑

X≤n≤2X
n∈S

f(n)

n1+it

∣∣∣∣∣∣∣∣

2

dt≪ (log h)1/3

P
1/6−η
1

+
1

(logX)1/50
.
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The above bound is established in Proposition 1 in Section 8, and we will now

sketch how to prove this bound. We caution the reader that in the actual proof

of Proposition 1 we need to argue more carefully and, in particular, split most

Dirichlet polynomials into much shorter ranges to avoid an accumulation of

error terms.

We begin by splitting the range of integration (logX)1/15 ≤ t ≤ X/h into

J +1 disjoint sets T1, . . . , TJ ,U , which are defined according to the sizes of the

Dirichlet polynomials

(6)
∑

Pj≤p≤Qj

f(p)

p1+it
.

More precisely, we will define Tj as follows: t ∈ Tj if j is the smallest index

such that all appropriate subdivisions of (6), i.e.,
∑

P≤p≤Q

f(p)

p1+it
with [P,Q] ⊂ [Pj , Qj ],

are small (i.e., with an appropriate power-saving). In practice the “sub-

divisions” [P,Q] will be narrow intervals covering [Pj , Qj ]. We will also define

U as follows: t ∈ U if there does not exist a j such that t ∈ Tj . The set U is

rather sparse (its measure is O(T 1/2−ε)), and therefore t ∈ U can be considered

an exceptional case. The argument then splits into two distinct parts.

The first is concerned with obtaining a saving for

(7)

∫

Tj

∣∣∣∣∣∣
∑

X≤n≤2X
n∈S

f(n)

n1+it

∣∣∣∣∣∣

2

dt

for each 1 ≤ j ≤ J , and the second part of the argument is concerned with

bounding

(8)

∫

U

∣∣∣∣∣∣
∑

X≤n≤2X
n∈S

f(n)

n1+it

∣∣∣∣∣∣

2

dt.

The smaller the length of the interval h is, the more sets Tj we are required to

work with, which leads to an increasing complication of the proof. It is worth

mentioning that for intervals of length h = Xε, it is enough to take J = 1, and

most of the work consists in dealing with U . In addition, in the special case

h = Xε and f(n) = µ(n) we do not even need to consider the integral over U
and a very simple argument suffices. Both of the above remarks are explained

in detail in our short note [29].

When t ∈ Tj we use an analogue of Buchstab’s identity (a variant of

Ramaré’s identity [8, §17.3]) to extract from the Dirichlet polynomial

∑

X≤n≤2X
n∈S

f(n)

n1+it
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a Dirichlet polynomial over the primes in [Pj , Qj ], which is known to be small

(by our assumption that t ∈ Tj). More precisely, for completely multiplicative

f(n) (the same ideas works for general multiplicative functions, but is more

transparent in this case), we have

∑

X≤n≤2X
n∈S

f(n)

n1+it
=

∑

Pj≤p≤Qj

f(p)

p1+it

∑

X/p≤m≤2X/p
m∈Sj

f(m)

m1+it
· 1

#{Pj ≤ q ≤ Qj : q|m}+ 1
,

(9)

where Sj is the set of integers which have a prime factor from each interval

[Pi, Qi] with i ≤ J except possibly not from [Pj , Qj ]. The next step (after

disposing of the condition X/p ≤ m ≤ 2X/p through splitting into short

segments) is to use a pointwise bound (which follows from the definition of Tj)
for the polynomial over p ∈ [Pj , Qj ] and a mean-value theorem for Dirichlet

polynomials for the remaining polynomial over m (by forgetting about the

condition t ∈ Tj and extending the range of integration to |t| ≤ X/h). This

gives the desired saving in (7) when j = 1, but for j > 1, the length of the

Dirichlet polynomial

(10)

RP (1 + it) =
∑

X/P≤m≤2X/P
m∈Sj

f(m)

m1+it
· 1

#{Pj ≤ p ≤ Qj : p|m}+ 1
, P ∈ [Pj , Qj ]

is too short compared to the length of integration to produce a good bound. To

get around this issue, we will use the definition of Tj , namely the assumption

that there exists a narrow interval [P,Q] ⊂ [Pj−1, Qj−1] for which

∑

P≤p≤Q

f(p)

p1+it

is large, say ≥ V . This allows us to bound the mean-value of (10) by the

mean-value of

(11)

(
V −1

∑

P≤p≤Q

f(p)

p1+it

)ℓ

RP (1 + it)

with an appropriate choice of ℓ, making the length of the above Dirichlet poly-

nomial close to X/h (which is also the length of integration). While computing

the moments, the conditions (2) and (3) on [Pj , Qj ] arise naturally: Qj−1 needs

to be comparatively small with respect to Pj so that the length of the Dirichlet

polynomial (11) is necessarily close to X/h for some choice of ℓ. On the other

hand, Qj−1 cannot be too small compared to Pj , so that we are not forced to

choose too large an ℓ which would increase too much the mean-value of (11).
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Fortunately, it turns out that neither condition is very restrictive and there is

a large set of choices of [Pj , Qj ] meeting both conditions.

Let us now explain how one bounds the remaining integral (8). In this

case we split the Dirichlet polynomial

∑

X≤n≤2X
n∈S

f(n)

n1+it

into a Dirichlet polynomial whose coefficients are supported on the integers

which have a prime factor in the range

exp((logX)1−1/48) ≤ p ≤ exp(logX/ log logX),

say, and a Dirichlet polynomial whose coefficients are supported on the integers

which are co-prime to every prime in this range. The coefficients of the second

Dirichlet polynomial are supported on a set of smaller density, and applying the

mean-value theorem easily shows that we can ignore its contribution. To the

first Dirichlet polynomial we apply the version of Buchstab’s identity discussed

before. In addition, since U is a thin set (of size O(T 1/2−ε)), we can bound the

integral by a sum of O(T 1/2−ε) well-spaced points. Thus our problem reduces

essentially to bounding

(12) (logX)2+ε
∑

t∈T
|P (1 + it)M(1 + it)|2,

where T is a set of well-spaced points from U , where P (1+ it) is a polynomial

whose coefficients are supported on the primes in a dyadic range, M(1 + it)

is the corresponding Dirichlet polynomial over the integers arising from Buch-

stab’s identity, and the term (logX)2+ε comes from the loss incurred by en-

suring that P is in a dyadic interval.

The Dirichlet polynomial |P (1 + it)| is small most of the time (in fact

for f = µ, it is always small for |t| ≤ X), and on the set where it is small

we are done by simply bounding P and applying Halász’s large value estimate

to sum |M(1 + it)|2 over the well-spaced points t ∈ T . (Halász’s large val-

ues theorem is applicable since |T | ≪ T 1/2−ε.) On the other hand, taking

moments we can show that |P (1 + it)| is large extremely rarely (on a set of

size exp((logX)1/48+o(1))). We know in addition that |M(1 + it)|2 is always

≪ (logX)−δ, for some small fixed δ > 0, by Halász’s theorem on multiplicative

functions (since f ∈ R and |t| > (logX)1/15 is bounded away from zero). Ap-

plying this pointwise bound to |M(1+it)|2 we are left with averaging |P (1+it)|2
over a very sparse set of points, and we need to save one logarithm compared

to the standard application of Halász’s large value estimate (which already

regains one logarithm from the mean square of coefficients of P since the coef-

ficients are supported on primes in a dyadic interval). To do this, we derive a

Halász type large value estimates for Dirichlet polynomials whose coefficients
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are supported on the primes. Altogether we regain the loss of (log x)2 and

we win by (log x)−δ+ε, which followed from Halász’s theorem on multiplicative

functions.

Finally, we note that an iterative decomposition of Dirichlet polynomials

is employed in a different way in two very recent papers on moments of L-

functions (see [33] and [16]).

3. Halász theorem

As explained above, in the proof we use Halász’s theorem, which says

that unless a multiplicative function pretends to be pit, it is small on average.

Pretending is measured through the distance function

D(f, g;x)2 =
∑

p≤x

1−ℜf(p)g(p)
p

which satisfies the triangle inequality

D(f, h;x) ≤ D(f, g;x) + D(g, h;x)

for any f, g, h : N → {z ∈ C : |z| ≤ 1}.
Upon noticing that D(fp−it, pit0 ;x) = D(f, pit+it0 ;x), the following lemma

follows immediately from Halász’s theorem (see, for instance, [12, Cor. 1]) and

partial summation.

Lemma 1. Let f : N → [−1, 1] be a multiplicative function, and let

F (s) =
∑

x≤n≤2x

f(n)

ns

and T0 ≥ 1. Let

M(x, T0) = min
|t0|≤T0

D(f, pit+it0 ;x)2.

Then

|F (σ + it)| ≪ x1−σ
Å

M(x, T0) exp(−M(x, T0)) +
1

T0
+

log log x

log x

ã

.

The following lemma, which is essentially due to Granville and Soundarara-

jan, is used to get a lower bound for the distance.

Lemma 2. Let f : N → [−1, 1] be a multiplicative function, and let ε > 0.

For any fixed A and 1 ≤ |α| ≤ xA,

D(f, piα;x) ≥
Ç

1

2
√
3
− ε

å√
log log x+O(1).

Proof. By the triangle inequality,

2D(f, piα;x) = D(p−iα, f ;x) + D(f, piα;x) ≥ D(p−iα, piα;x) = D(1, p2iα;x).
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Furthermore,

D(1, p2iα;x)2 =
∑

p≤x

1−ℜp−2iα

p
≥

∑

exp((log x)2/3+ε)≤p≤x

1−ℜp−2iα

p

≥
Å

1

3
− ε

ã

log log x+O(1)−

∣∣∣∣∣∣∣

∑

exp((log x)2/3+ε)≤p≤x

1

p1+2iα

∣∣∣∣∣∣∣

≥
Å

1

3
− ε

ã

log log x+O(1)

by the zero-free region for the Riemann zeta-function. �

Actually we will need to apply Halász theorem to a function which is not

quite multiplicative, and the following lemma takes care of this application to

a polynomial arising from the Buchstab type identity (9).

Lemma 3. Let X ≥ Q ≥ P ≥ 2. Let f(n) be a real-valued multiplicative

function and

R(s) =
∑

X≤n≤2X

f(n)

ns
· 1

#{p ∈ [P,Q] : p | n}+ 1
.

Then, for any t ∈ [(logX)1/16, XA],

|R(1 + it)| ≪ logQ

(logX)1/16 logP
+ logX · exp

Å

− logX

3 logQ
log

logX

logQ

ã

.

Proof. Splitting n = n1n2 where n1 has all prime factors from [P,Q] and

n2 has none, we get

|R(1 + it)| =

∣∣∣∣∣∣∣∣∣

∑

n1≤X3/4

p|n1 =⇒ p∈[P,Q]

f(n1)

n1+it
1 (ω(n1) + 1)

∑

X/n1≤n2≤2X/n1

p|n2 =⇒ p 6∈[P,Q]

f(n2)

n1+it
2

∣∣∣∣∣∣∣∣∣

+O

á

∑

n2≤X1/2

p|n2 =⇒ p 6∈[P,Q]

1

n2

∑

X/n2≤n1≤2X/n2

p|n1 =⇒ p∈[P,Q]

1

n1

ë

≪
∑

n1≤X3/4

p|n1 =⇒ p∈[P,Q]

1

n1

∣∣∣∣∣∣∣∣∣

∑

X/n1≤n2≤2X/n1

p|n2 =⇒ p 6∈[P,Q]

f(n2)

n1+it
2

∣∣∣∣∣∣∣∣∣

+
∑

n2≤X1/2

1

n2

∑

X/n2≤n1≤2X/n2

p|n1 =⇒ p<Q

1

n1
.
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By an estimate for the number of Q-smooth numbers, the second term is at

most O((logX)−1 + logX exp(− logX
3 logQ log logX

logQ )). To the first term we apply

Halász’s theorem (Lemmas 1 and 2) to the sum over n2 obtaining a saving of

(logX)−1/16 and we bound the sum over n1 by
∏

p∈[P,Q](1 − 1/p)−1 ≪ logQ
logP .

Hence

|R(1 + it)| ≪ logQ

(logX)1/16 logP
+ (logX) exp

Å

− logX

3 logQ
log

logX

logQ

ã

. �

We will also evaluate the average of f(n) on intervals slightly shorter

than x. For this we use the following Lipschitz type result due to Granville

and Soundararajan.

Lemma 4. Let f : N → [−1, 1] be a multiplicative function. For any x ∈
[X, 2X] and X/(logX)1/5 ≤ y ≤ X , one has

1

y

∑

x≤n≤x+y

f(n) =
1

X

∑

X≤n≤2X

f(n) +O

Ç

1

(logX)1/20

å

.

Proof. We shall show that, for any X/4 ≤ Y ≤ X,

(13)

∣∣∣∣∣∣
1

X

∑

n≤X

f(n)− 1

Y

∑

n≤Y

f(n)

∣∣∣∣∣∣
≪ 1

(logX)1/4
,

from which the claim follows easily.

Let tf be the t for which D(f, pit;X) is minimal among |t| ≤ logX. Notice

that if D(f, pitf ;X)2 ≥ 1
3 log logX, then (13) follows immediately from Halász’s

theorem (Lemma 1). This is, in particular, the case if |tf | ≥ 1/100, since in

this case

D(f, pitf ;X)2 ≥
∑

p≤X

1− | cos(tf log p)|
p

≥
Ç

1− 1

2π

∫ 2π

0
| cosα|dα− o(1)

å

log logX

=

Å

1− 2

π
− o(1)

ã

log logX

by partial summation and the prime number theorem.
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Hence we can assume that |tf | ≤ 1/100 and D(f, pitf ;X)2 < 1
3 log logX.

By [12, Lemma 7.1 and Th. 4], recalling that f is real-valued,

∣∣∣∣∣∣
1

X

∑

n≤X

f(n)−
Å

X

Y

ãitf

· 1

Y

∑

n≤Y

f(n)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

X1+itf

∑

n≤X

f(n)− 1

Y 1+itf

∑

n≤Y

f(n)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1 + itf
X

∑

n≤X

f(n)

nitf
− 1 + itf

Y

∑

n≤Y

f(n)

nitf

∣∣∣∣∣∣
+O

Å

1

logX
exp(D(1, f ;X)2)

ã

≪ 1

(logX)1/4
.

(14)

For |tf | ≤ 1/100, we have |(X/Y )itf − 1| ≤ 1/2, so that (14) implies
∣∣∣∣∣∣
1

X

∑

n≤X

f(n)− 1

Y

∑

n≤Y

f(n)

∣∣∣∣∣∣
≤ 1

2
· 1

Y

∑

n≤Y

f(n) +O((logX)−1/4),

which implies that either the left-hand side is O((logX)−1/4) (i.e. (13) holds))

or 1
X

∑
n≤X f(n) and 1

Y

∑
n≤Y f(n) have the same sign. In the latter case we

notice that (14) implies also (see also [12, Cor. 3])
∣∣∣∣∣∣

∣∣∣∣∣∣
1

X

∑

n≤X

f(n)

∣∣∣∣∣∣
−
∣∣∣∣∣∣
1

Y

∑

n≤Y

f(n)

∣∣∣∣∣∣

∣∣∣∣∣∣
≪ 1

(logX)1/4
,

and (13) follows, since the averages have the same sign, so that the inner

absolute values can be removed. �

We will actually need to apply the previous two lemmas for sums with

the additional restriction n ∈ S, where S is as in Section 2. This can be

done through the following immediate consequence of the inclusion-exclusion

principle.

Lemma 5. Let S be as in Section 2. For J ⊆ {1, . . . , J}, let g be the

completely multiplicative function

gJ (p
j) =




1 if p 6∈ ⋃j∈J [Pj , Qj ],

0 otherwise.

Then

∑

X≤n≤2X
n∈S

an =
∑

X≤n≤2X

an

J∏

j=1

(1−g{j}(n)) =
∑

J⊆{1,...,J}
(−1)#J ∑

X≤n≤2X

gJ (n)an.



MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS 1029

4. Mean and large value theorems for Dirichlet polynomials

Let us first collect some standard mean and large value results for Dirichlet

polynomials.

Lemma 6. Let A(s) =
∑

n≤N ann
−s. Then

∫ T

−T
|A(it)|2dt = (T +O(N))

∑

n≤N

|an|2.

Proof. See [20, Th. 9.1]. �

For the rest of the paper, we say that T ⊆ R is well spaced if |t − r| ≥ 1

for all distinct t, r ∈ T .

Lemma 7. Let A(s) =
∑

n≤N ann
−s, and let T ⊂ [−T, T ] be a sequence

of well-spaced points. Then

∑

t∈T
|A(it)|2 ≪ (T +N) log 2N

∑

n≤N

|an|2.

Proof. See [20, Th. 9.4]. �

Lemma 8. Let

P (s) =
∑

P≤p≤2P

ap
ps
, with |ap| ≤ 1.

Let T ⊂ [−T, T ] be a sequence of well-spaced points such that |P (1+it)| ≥ V −1

for every t ∈ T . Then

|T | ≪ T
2 log V
logP V 2 exp

Å

2
log T

logP
log log T

ã

.

Proof. Let k = ⌈log T/ logP ⌉ and

P (s)k =:
∑

Pk≤n≤(2P )k

b(n)n−s.

Notice that

∑

Pk≤n≤(2P )k

Ç

b(n)

n

å2

≤
∑

n

(
∑

p1···pk=n
P≤pj≤2P

1

p1 · · · pk

)2

≤ 1

P k

∑

p1···pk=q1···qk
P≤pj ,qj≤2P

1

p1 · · · pk
≤ 1

P k
k!

Ç ∑

P≤p≤2P

1

p

åk

.
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Hence by the previous lemma and Chebyschev’s inequality

|T | ≪ V 2k · (T + (2P )k) log(2P )k
1

P k
k!

Ç ∑

P≤p≤2P

1

p

åk

≪ T
2 log V
logP V 25kk!. �

For sparse sets T , one can use work of Halász to improve on the bound

given for
∑

t∈T |A(it)|2 in Lemma 7. We will actually need two versions of

Halász’s inequality. The first, stated below, works for arbitrary Dirichlet poly-

nomials supported on integers. The second, stated in Lemma 11, requires the

Dirichlet polynomial to be supported on the primes and is stronger in certain

situations. Accordingly we call the first lemma a “Halász inequality for the

integers” and the second a “Halász inequality for the primes.”

Lemma 9 (Halász inequality for integers). Let A(s) =
∑

n≤N ann
−it, and

let T be a sequence of well-spaced points. Then

∑

t∈T
|A(it)|2 ≪ (N + |T |

√
T ) log 2T

∑

n≤N

|an|2.

Proof. See [20, Th. 9.6]. �

Let us now explain why we need a separate “Halász inequality for the

primes”. In all the mean and large value theorems presented so far, the term

N
∑

n≤N |an|2 reflects the largest possible value of |A(it)|2. However, when n is

supported on a thin sets such as primes, such a bound loses a logarithmic factor

compared to the expected maximum (even when there is no log 2T or log 2N

present). Our “Halász inequality for the primes” recovers this loss when T is

very small, which is enough for us. The proof relies on the duality principle,

which we state below.

Lemma 10 (Duality principle). Let X = (xmn) be a complex matrix and

D ≥ 0. The following two statements are equivalent :

• for any complex numbers an,

∑

m

∣∣∣∣∣
∑

n

anxmn

∣∣∣∣∣

2

≤ D
∑

n

|an|2;

• for any complex numbers bm,

∑

n

∣∣∣∣∣
∑

m

bmxmn

∣∣∣∣∣

2

≤ D
∑

m

|bm|2.

Proof. See [32, Ch. 7, Th. 6, p. 134]. �
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Lemma 11 (Halász inequality for primes). Let P (s) =
∑

P≤p≤2P app
−s be

a Dirichlet polynomial whose coefficients are supported on the primes, and let

T ⊂ [−T, T ] be a sequence of well-spaced points. Then

∑

t∈T
|P (it)|2 ≪

Ç

P + |T |P exp

Ç

− logP

(log T )2/3+ε

å

(log T )2
å

·
∑

P≤p≤2P

|ap|2
logP

.

Proof. By the duality principle (Lemma 10) applied to (pit)P≤p≤2P,t∈T , it
is enough to prove that

∑

P≤p≤2P

log p

∣∣∣∣∣∣
∑

t∈T
ηtp

it

∣∣∣∣∣∣

2

≪
Ç

P + |T |P exp

Ç

− logP

(log T )2/3+ε

å

(log T )2
å

·
∑

t∈T
|ηt|2

for any complex numbers ηt. Opening the square, we see that

∑

P≤p≤2P

log p

∣∣∣∣
∑

t∈T
ηtp

it
∣∣∣∣
2

≤
∑

pk

log p

∣∣∣∣
∑

t∈T
ηtp

kit
∣∣∣∣
2

f
(pk

P

)

≤
∑

t,t′∈T
|ηtηt′ |

∣∣∣∣
∑

pk

log p · pki(t−t′)f
(pk

P

)∣∣∣∣,

where f(x) is a smooth compactly supported function such that f(x) = 1 for

1 ≤ x ≤ 2 and f decays to zero outside of the interval [1, 2]. Let f̃ denote the

Mellin transform of f . Then f̃(x+ iy) ≪A,B (1 + |y|)−B uniformly in |x| ≤ A.

In addition,

∑

n

Λ(n)nitf
( n
P

)
= − 1

2πi

∫ 2+i∞

2−i∞
f̃(s)

ζ ′

ζ
(s− it)

P s

s
ds.(15)

We truncate the integral at |t| = T , making a negligible error of OA(T
−A). In

the remaining integral, we shift the contour to σ = 1− c(log T )−2/3+ε, staying

in the zero-free region of the ζ-function, and use the following bound there (see

[19, eq. (1.52)]):

ζ ′

ζ
(σ + it) =

∑

̺=β+iγ
|t−γ|<1

1

σ + it− ̺
+O(log(|t|+ 2)) ≪ (log T )1+2/3+ε.

One readily checks this bound by noticing that there are O(log T ) zeros in the

sum and they are ≫ (log T )−2/3+ε away from the contour. It follows that (15)

is equal to

f̃(1 + it)

1 + it
· P 1+it +O

Ç

P exp

Ç

− logP

(log T )2/3+ε

å

(log T )2
å

.

Combining the above observations and using the inequality |ηtηt′ | ≤ |ηt|2 +

|ηt′ |2, we obtain



1032 KAISA MATOMÄKI and MAKSYM RADZIWI L L

∑

P≤p≤2P

log p

∣∣∣∣∣∣
∑

t∈T
ηtp

it

∣∣∣∣∣∣

2

≪
∑

t,t′∈T
|ηtηt′ |

∣∣∣∣
∑

pk

log p · pki(t−t′)f
(pk

P

)∣∣∣∣

≪
∑

t,t′∈T
(|ηt|2 + |ηt′ |2)

(∣∣∣∣∣
f̃(1 + i(t− t′))
1 + i(t− t′)

∣∣∣∣∣

· P + P exp

Ç

− logP

(log T )2/3+ε

å

(log T )2
å

≪
(
P + |T |P exp

Ç

− logP

(log T )2/3+ε

å

(log T )2
)
·
∑

t∈T
|ηt|2

since
∑

t∈T |f̃(1− i(t− t′))| = O(1). �

Remark. On the Riemann Hypothesis one can replace

P exp(− logP/(log T )2/3+ε)(log T )2

in the above lemma by P 1/2 logP log T .

5. Decomposition of Dirichlet polynomials

In this section we prove a technical version of the Buchstab decomposi-

tion (9). We are grateful to Terry Tao for pointing out that our “Buchstab

decomposition” is a variant of Ramaré’s identity [8, §17.3].
Lemma 12. Let H ≥ 1 and Q ≥ P ≥ 1. Let am, bm and cp be bounded

sequences such that amp = bmcp whenever p ∤ m and P ≤ p ≤ Q. Let

Qv,H(s) =
∑

P≤p≤Q

ev/H≤p≤e(v+1)/H

cp
ps

and

Rv,H(s) =
∑

Xe−v/H≤m≤2Xe−v/H

bm
ms

· 1

#{P ≤ q ≤ Q : q|m, q ∈ P}+ 1
,

and let T ⊆ [−T, T ]. Then,

∫

T

∣∣∣∣
∑

X≤n≤2X

an
n1+it

∣∣∣∣
2

dt≪ H log
(Q
P

)
×
∑

j∈I

∫

T

∣∣∣∣Qj,H(1 + it)Rj,H(1 + it)|2dt

+
T +X

X

(
1

H
+

1

P
+

∑

X≤n≤2X
(n,
∏

P≤p≤Q
p)=1

|an|2
n

)
,

where I is the interval ⌊H logP ⌋ ≤ j ≤ H logQ.



MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS 1033

Proof. Let us write s = 1 + it and notice that

(16)

∑

X≤n≤2X

an
ns

=
∑

P≤p≤Q

∑

X/p≤m≤2X/p

apm
(pm)s

· 1

#{P ≤ q ≤ Q : q|m, q ∈ P}+ 1
+

∑

X≤n≤2X
(n,P)=1

an
ns
,

where P =
∏

P≤p≤Q p. Notice that when p ∤ m, we can replace apm by bmcp.

Let also ω(n;P,Q) = #{P ≤ p ≤ Q : p|n}. This allows us to rewrite the first

summand as

∑

P≤p≤Q

cp
ps

∑

X/p≤m≤2X/p

bm
ms

· 1

ω(m;P,Q) + 1

+
∑

P≤p≤Q

∑

X/p≤m≤2X/p
p|m

apm − bmcp
(pm)s

· 1

ω(m;P,Q) + 1
.

We split the first sum further into dyadic ranges getting that it is

∑

j∈I

∑

ej/H≤p<e(j+1)/H

P≤p≤Q

cp
ps

∑

Xe−(j+1)/H≤m≤2Xe−j/H

X≤mp≤2X

bm
ms

· 1

ω(m;P,Q) + 1
.

We remove the condition X ≤ mp ≤ 2X overcounting at most by the integers

mp in the ranges [Xe−1/H , X] and [2X, 2Xe1/H ]. Similarly, removing numbers

with Xe−(j+1)/H ≤ m ≤ Xe−j/H we undercount at most by integers mp in the

range [Xe−1/H , Xe1/H ]. Therefore we can, for some bounded dm, rewrite (16)

as

∑

j∈I
Qj,H(s)Rj,H(s) +

∑

Xe−1/H≤m≤Xe1/H

dm
ms

+
∑

2X≤m≤2Xe1/H

dm
ms

+
∑

P≤p≤Q

∑

X/p2≤m≤2X/p2

ap2m − cpbpm

(p2m)s
· 1

ω(mp;P,Q) + 1
+

∑

X≤n≤2X
(n,P)=1

an
ns
.

We square this, integrate over T and then apply Cauchy-Schwarz on the first

sum over j and the mean-value theorem (Lemma 6) on the remaining sums.

This gives the result since it is easily seen that the later mean-values are

bounded by the stated quantities. �

6. Moment computation

In this section we prove a lemma which allows us to compute the second

moment of the Dirichlet polynomial in (11). Let us first introduce some relevant
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notation. Let Y1, Y2 ≥ 1, and consider,

Q(s) =
∑

Y1≤p≤2Y1

cp
ps

and A(s) =
∑

X/Y2≤m≤2X/Y2

am
ms

,

with coefficients |am|, |cp| ≤ 1.

Lemma 13. Let ℓ = ⌈ log Y2

log Y1
⌉. Then

∫ T

−T
|Q(1 + it)ℓ ·A(1 + it)|2dt≪

Å

T

X
+ 2ℓY1

ã

· (ℓ+ 1)!2.

Proof. The coefficients of the Dirichlet polynomial Q(s)ℓA(s) are sup-

ported on the interval

[Y ℓ
1 ·X/Y2, (2Y1)

ℓ · 2X/Y2] ⊆ [X, 2ℓ+1Y1X].

Using the mean-value theorem for Dirichlet polynomials (Lemma 6), we see

that
∫ T

−T
|Q(1 + it)ℓ ·A(1 + it)|2dt

≪ (T + 2ℓY1X)
∑

X≤n≤2ℓ+1Y1X

1

n2
·
(

∑

n=mp1···pℓ
Y1≤p1,...,pℓ≤2Y1

X/Y2≤m≤2X/Y2

1

)2

.

Here ∑

n=mp1···pℓ
Y1≤p1,...,pℓ≤2Y1

X/Y2≤m≤2X/Y2

1 ≤ ℓ! ·
∑

n=mr
p|r =⇒ Y1≤p≤2Y1

1 =: ℓ! · g(n),

say, where g is multiplicative and

g(pk) =




(k + 1) if Y1 ≤ p ≤ 2Y1,

1 otherwise.

With this notation,

(17)

∫ T

−T
|Q(1 + it)ℓ ·A(1 + it)|2 ≪ (T + 2ℓY1X)ℓ!2

∑

X≤n≤2ℓ+1Y1X

g(n)2

n2
.

By Shiu’s bound [36, Th. 1] for sums of positive-valued multiplicative functions

we have, for any Y ≥ 2,

(18)
∑

Y≤n≤2Y

g(n)2 ≪ Y
∏

p≤Y

Ç

1 +
|g(p)|2 − 1

p

å

≪ Y.

The claim follows by splitting the sum over n in (17) into sums over dyadic

intervals and applying (18) to each of them. �
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7. Parseval bound

The following lemma shows that the behavior of a multiplicative function

in almost all very short intervals can be approximated by its behavior on a

long interval if the mean square of the corresponding Dirichlet polynomial is

small. This is in the spirit of previous work on primes in almost all intervals;

see, for instance, [15, Lemma 9.3].

Lemma 14. Let |am| ≤ 1. Assume 1 ≤ h1 ≤ h2 = X/(logX)1/5. Con-

sider, for X ≤ x ≤ 2X ,

Sj(x) =
∑

x≤m≤x+hj

am,

and write

A(s) :=
∑

X≤m≤4X

am
ms

.

Then

1

X

∫ 2X

X

∣∣∣∣
1

h1
S1(x)−

1

h2
S2(x)

∣∣∣∣
2

dx

≪ 1

(logX)2/15
+

∫ 1+iX/h1

1+i(logX)1/15
|A(s)|2 |ds|+ max

T≥X/h1

X/h1

T

∫ 1+i2T

1+iT
|A(s)|2 |ds|.

Proof. By Perron’s formula,

Sj(x) =
1

2πi

∫ 1+i∞

1−i∞
A(s)

(x+ hj)
s − xs

s
ds.

Let us split the integral in Sj(x) into two parts Uj(x) and Vj(x) according to

whether |t| ≤ T0 := (logX)1/15 or not. In Uj(x) we write

(x+ hj)
s − xs

s
= xs

(
1 +

hj

x

)s
− 1

s
= xs

Ç

hj
x

+O

Ç

T0

Å

hj
X

ã2åå

and get

Uj(x) =
hj
x

· 1

2πi

∫ 1+iT0

1−iT0

A(s)xsds+O

Ç

T 2
0 · x

Å

hj
X

ã2å

,

so that
1

h1
U1(x)−

1

h2
U2(x) ≪ T 2

0 x
h2

X2
≪ 1

(logX)1/15
.

Hence it is enough to consider, for j = 1, 2,

1

X

∫ 2X

X

Ç

|Vj(x)|
hj

å2

dx≪ 1

h2
jX

∫ 2X

X

∣∣∣∣∣

∫ 1+i∞

1+iT0

A(s)
(x+ hj)

s − xs

s
ds

∣∣∣∣∣

2

dx.

We would like to add a smoothing, take out a factor xs, expand the square,

exchange the order of integration and integrate over x. However, the term
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(x + hj)
s prevents us from doing this, and we overcome this problem in a

similar way to [35, p. 25]. We write

(x+ hj)
s − xs

s

=
1

2hj

Ç∫ 3hj

hj

(x+ w)s − xs

s
dw −

∫ 3hj

hj

(x+ w)s − (x+ hj)
s

s
dw

å

=
x

2hj

∫ 3hj/x

hj/x
xs

(1 + u)s − 1

s
du− x+ hj

2hj

∫ 2hj/(x+hj)

0
(x+ hj)

s (1 + u)s − 1

s
du,

where we have substituted w = x ·u in the first integral and w = hj+(x+hj)u

in the second integral. Let us only study the first summand, the second one

being handled completely similarly. Thus we assume that

1

X

∫ 2X

X

Ç

|Vj(x)|
hj

å2

dx

≪ X

h4
j

∫ 2X

X

∣∣∣∣∣

∫ 3hj/x

hj/x

∫ 1+i∞

1+iT0

A(s)xs
(1 + u)s − 1

s
dsdu

∣∣∣∣∣

2

dx

≪ 1

h3
j

∫ 3hj/X

hj/(2X)

∫ 2X

X

∣∣∣∣∣

∫ 1+i∞

1+iT0

A(s)xs
(1 + u)s − 1

s
ds

∣∣∣∣∣

2

dxdu

≪ 1

h2
jX

∫ 2X

X

∣∣∣∣∣

∫ 1+i∞

1+iT0

A(s)xs
(1 + u)s − 1

s
ds

∣∣∣∣∣

2

dx

for some u≪ hj/X.

Let us introduce a smooth function g(x) supported on [1/2, 4] and equal

to 1 on [1, 2]. We obtain

1

X

∫ 2X

X

Ç

|Vj(x)|
hj

å2

dx≪ 1

h2
jX

∫
g
( x
X

) ∣∣∣∣∣

∫ 1+i∞

1+iT0

A(s)xs
(1 + u)s − 1

s
ds

∣∣∣∣∣

2

dx

≤ 1

h2
jX

∫ 1+i∞

1+iT0

∫ 1+i∞

1+iT0

∣∣∣∣∣A(s1)A(s2)
(1 + u)s1 − 1

s1

(1 + u)s2 − 1

s2

∣∣∣∣∣

·
∣∣∣∣
∫
g
( x
X

)
xs1+s2dx

∣∣∣∣ |ds1ds2|

≪ 1

h2
jX

∫ 1+i∞

1+iT0

·
∫ 1+i∞

1+iT0

|A(s1)A(s2)|min

®

hj
X
,
1

|t1|

´

min

®

hj
X
,
1

|t2|

´

X3

|t1 − t2|2 + 1
|ds1ds2|
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≪ X2

h2
j

∫ 1+i∞

1+iT0

·
∫ 1+i∞

1+iT0

|A(s1)|2 min{(hj/X)2, |t1|−2}+|A(s2)|2 min{(hj/X)2, |t2|−2}
|t1−t2|2 + 1

|ds1ds2|

≪
∫ 1+iX/hj

1+iT0

|A(s)|2|ds|+ X2

h2
j

∫ 1+i∞

1+iX/hj

|A(s)|2
|t|2 |ds|.

The second summand is

≪ X2

h2
j

∫ 1+i∞

1+iX/(2hj)

1

T 3

∫ 1+i2T

1+iT
|A(s)|2|ds|dT

≪ X2

h2
j

· 1

X/hj
max

T≥X/(2hj)

1

T

∫ 1+i2T

1+iT
|A(s)|2|ds|

(19)

so that

1

X

∫ 2X

X

Ç

|Vj(x)|
hj

å2

dx≪
∫ 1+iX/hj

1+iT0

|A(s)|2|ds|

+
X

hj
max

T≥X/hj

1

T

∫ 1+i2T

1+iT
|A(s)|2|ds|.

Since h2 ≥ h1, the expression on the right-hand side with j = 2 is always

smaller than the same expression with j = 1, and the claim follows. �

8. The main proposition

By Lemma 14, Theorem 3 will essentially follow from the following propo-

sition.

Proposition 1. Let f : N → [−1, 1] be a multiplicative function. Let S
be a set of integers as defined in Section 2. Let

F (s) =
∑

X≤n≤2X
n∈S

f(n)

ns
.

Then, for any T ,
∫ T

(logX)1/15
|F (1 + it)|2 dt≪

Ç

T

X/Q1
+ 1

å

(
(logQ1)

1/3

P
1/6−η
1

+
1

(logX)1/50

)
.

Remark. The “trivial bound” for
∫ T

0 |F (1 + it)|2dt, obtained by applying

a standard mean-value theorem (Lemma 6), is T/X + 1.

Proof. Since the mean-value theorem gives the bound O( TX + 1), we can

assume T ≤ X. Pick a sequence αj for 1 ≤ j ≤ J with

(20) αj =
1

4
− η

Å

1 +
1

2j

ã

,
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where η ∈ (0, 1/6) is such that (2) and (3) hold. Notice that

1

4
− 3

2
η = α1 ≤ α2 ≤ . . . ≤ αJ ≤ 1

4
− η.

We now split into several cases. Let

Qv,Hj (s) :=
∑

Pj≤q≤Qj

ev/Hj≤q≤e(v+1)/Hj

f(q)

qs
, where Hj := j2 P

1/6−η
1

(logQ1)1/3
.

Notice that this can be nonzero only when

v ∈ Ij := {v : ⌊Hj logPj⌋ ≤ v ≤ Hj logQj}.
We write

[T0, T ] =
J⋃

j=1

Tj ∪ U , T0 = (logX)1/15

as a disjoint union, where t ∈ Tj when j is the smallest index such that

(21) for all v ∈ Ij : |Qv,Hj (1 + it)| ≤ e−αjv/Hj

and t ∈ U if this does not hold for any j.

Let us first consider the integrals over the sets Tj . Let

Rv,Hj (s) =
∑

Xe−v/Hj≤m≤2Xe−v/Hj

m∈Sj

f(m)

ms
· 1

#{Pj ≤ p ≤ Qj : p|m}+ 1
,

where Sj is the set of those integers which have at least one prime factor in every

interval [Pi, Qi] with i 6= j and i ≤ J (and possibly but not necessarily some

prime factors in [Pj , Qj ]). Using Lemma 12 with H = Hj , P = Pj , Q = Qj and

am = f(m)1S , cp = f(p), bm = f(m)1Sj (where 1A is the indicator function

of the set A), we see that
∫

Tj
|F (1 + it)|2dt

≪ Hj · logQj

∑

v∈Ij

∫

Tj
|Qv,Hj (1 + it)Rv,Hj (1 + it)|2dt+ 1

Hj
+

1

Pj
.

Here the second and third terms contribute in total to integrals over all Tj ,

≪
J∑

j=1

Ç

1

Hj
+

1

Pj

å

≪ (logQ1)
1/3

P
1/6−η
1

,

since Pj ≥ P j2

1 by (3). We can thus concentrate, for 1 ≤ j ≤ J , on bounding

Ej := Hj logQj ·
∑

v∈Ij

∫

Tj
|Qv,Hj (1 + it)Rv,Hj (1 + it)|2dt.(22)



MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS 1039

By the definition of the set Tj , we have |Qv,Hj (1 + it)| ≤ e−αjv/Hj for t ∈ Tj .
Therefore, for 1 ≤ j ≤ J ,

(23) Ej ≪ Hj logQj ·
∑

v∈Ij
e−2αjv/Hj

∫

Tj
|Rv,Hj (1 + it)|2dt.

Recalling that [T0, T ] = T1 ∪ T2 ∪ · · · ∪ TJ ∪ U (with T0 = (logX)1/15) we see

that

(24)

∫ T

T0

|F (1 + it)|2dt≪ E1 + E2 + · · ·+ EJ +

∫

U
|F (1 + it)|2dt.

We will now proceed as follows. In Section 8.1 we bound E1, in Section 8.2

we bound Ei with 2 ≤ i ≤ J , and finally in Section 8.3 we obtain a bound for∫
U |F (1 + it)|2dt.

8.1. Bounding E1. If j = 1, then by the mean-value theorem (Lemma 6),

we get

E1 ≪ H1 logQ1 ·
∑

v∈I1
e−2α1v/H1 ·

Å

T +
X

ev/H1

ã

1

X/ev/H1

≪ H1 logQ1 · P−2α1
1

1

1− e−2α1/H1
·
Ç

T

X/Q1
+ 1

å

≪ H2
1 logQ1 · P−1/2+3η

1

Ç

T

X/Q1
+ 1

å

≪
Ç

T

X/Q1
+ 1

å

(logQ1)
1/3

P
1/6−η
1

by the choice of H1.

8.2. Bounding Ej with 2 ≤ j ≤ J . Now suppose that 2 ≤ j ≤ J . In this

case we split further

Tj =
⋃

r∈Ij−1

Tj,r,

where

Tj,r = {t ∈ Tj : |Qr,Hj−1(1 + it)| > e−αj−1r/Hj−1}.

Note that this is indeed a splitting, since by the definition of Tj , for any t ∈ Tj ,
there will be an index r ∈ Ij−1 such that |Qr,Hj−1(1 + it)| > e−αj−1r/Hj−1 .

Therefore, for some v = v(j) ∈ Ij and r = r(j) ∈ Ij−1,

(25) Ej ≪ Hj logQj ·#Ij ·#Ij−1 · e−2αjv/Hj ×
∫

Tj,r
|Rv,Hj (1 + it)|2dt.

On Tj,r, we have |Qr,Hj−1(1 + it)| > e−αj−1r/Hj−1 . Therefore, for any ℓj,r ≥ 1,

multiplying by the term (|Qr,Hj−1(1 + it)|eαj−1r/Hj−1)2ℓj,r ≥ 1, we can bound
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this further as

Ej ≪ (Hj logQj)
3 · e−2αjv/Hj

× exp
(
2ℓj,r · αj−1r/Hj−1

) ∫

Tj,r
|Qr,Hj−1(1 + it)ℓj,rRv,Hj (1 + it)|2dt.

Choosing

ℓj,r =

¢

v/Hj

r/Hj−1

•

≤ Hj−1

r
· v

Hj
+ 1,

we get

Ej ≪ H3
j (logQj)

3 · exp
(
2v(αj−1 − αj)/Hj + 2αj−1r/Hj−1

)

·
∫ T

−T
|Qr,Hj−1(1 + it)ℓj,rRv,Hj (1 + it)|2dt.

Now we are in the position to use Lemma 13, which gives
∫ T

−T
|Qr,Hj−1(1 + it)ℓj,rRv,Hj (1 + it)|2dt≪

Å

T

X
+ 2ℓj,rer/Hj−1

ã

· (ℓj,r + 1)!2

≪
Å

T

X
+Qj−1

ã

exp (2ℓj,r log ℓj,r) .

Here by the mean-value theorem and the definition of ℓj,r,

ℓj,r log ℓj,r ≤
v/Hj

r/Hj−1
log

v/Hj

r/Hj−1
+ log logQj + 1

≤ v

Hj
· log logQj

logPj−1 − 1
+ log logQj + 1,

so that
∫ T

−T
|Qr,Hj−1(1 + it)ℓj,rRv,Hj (1 + it)|2dt

≪
Å

T

X
+ 1

ã

Qj−1(logQj)
2 exp

Ç

v

Hj
· 2 log logQj

logPj−1 − 1

å

≪
Å

T

X
+ 1

ã

Qj−1(logQj)
2 exp

Ç

η

2j2
· v

Hj

å

by (2). Note that (2) also implies

log logQj ≤
1

24
logPj−1 ≤ logQ

1/24
j−1 =⇒ logQj ≤ Q

1/24
j−1 ,

so that

H3
j (logQj)

5Qj−1 exp(2αj−1r/Hj−1) ≪ H3
j (logQj)

5Q2
j−1

≪ H3
jQ

5/2
j−1 ≪ j6P

1/2
1 Q

5/2
j−1 ≪ j6Q3

j−1.
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Therefore we end up with the bound

Ej ≪
Å

T

X
+ 1

ã

j6Q3
j−1 exp

Ç

2v

Hj

Å

αj−1 − αj +
η

4j2

ã

å

≪
Å

T

X
+ 1

ã

j6Q3
j−1 exp

Å

− η

2j2
logPj

ã

≪
Å

T

X
+ 1

ã

1

j2Qj−1
≪
( T
X

+ 1
) 1

j2P1

by (20) and (3).

8.3. Bounding
∫
U |F (1 + it)|2dt. Let us now bound the integral

∫

U
|F (1 + it)|2dt.

We again apply Lemma 12, this time with am = bm = f(m)1S(m), cp = f(p)

and P = exp((logX)1−1/48), Q = exp(logX/(log logX)) and H = (logX)1/48

to see that, for some v ∈ [⌊H logP ⌋, H logQ], the integral is bounded by

H2(logX)2
∫

U
|Qv,H(1 + it)Rv,H(1 + it)|2dt+

Å

T

X
+ 1

ãÅ

1

H
+

1

P
+

logP

logQ

ã

,

where

Qv,H(s) =
∑

ev/H≤p≤e(v+1)/H

f(p)

ps

and

Rv,H(s) =
∑

Xe−v/H≤m≤2Xe−v/H

m∈S

f(m)

ms
· 1

#{p ∈ [P,Q] : p | m}+ 1
.

We then find a well-spaced set T ⊆ U such that
∫

U
|Qv,H(1 + it)Rv,H(1 + it)|2dt ≤ 2

∑

t∈T
|Qv,H(1 + it)|2 · |Rv,H(1 + it)|2.

By definition of J and (2), we know that QJ ≤ exp((logX)1/2) and

logPJ ≥ 4j2

η
· log logQJ+1 ≥ 4j2

η
· log(logX)1/2 =⇒ PJ ≥ (logX)2/η.

Now, by definition of U , for each t ∈ T , there is v ∈ IJ such that |Qv,HJ
(s)| >

e−αJv/HJ . Applying Lemma 8 to Qv,HJ
(s) for every v ∈ IJ , we get

|T | ≪ |IJ | · T 2αJ+o(1) · T η ·Xo(1) ≪ T 1/2−η ·Xo(1).

Let

TL = {t ∈ T : |Qv,H(1 + it)| ≥ (logX)−100}
and

TS = {t ∈ T : |Qv,H(1 + it)| < (logX)−100}.
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By Lemma 9,
∑

t∈TS
|Qv,H(1 + it)Rv,H(1 + it)|2dt≪ (logX)−200 ·

∑

t∈T
|Rv,H(1 + it)|2

≪ (logX)−200 ·
(
Xe−v/H + |T |T 1/2

)
log(2T )

1

Xe−v/H
≪ (logX)−199,

and thus we can concentrate on the integral over TL.
By Lemma 8, we have

|TL| ≪ exp

Ç

2
log(logX)100

v/H
log T + 2 log(logX)100 + 2

log T

v/H
log log T

å

≪ exp

Ç

(logX)1+o(1)

logP

å

≪ exp((logX)1/48+o(1)),

and by Lemmas 3 and 5 (since 2J ≪ (logX)o(1)),

max
(logX)1/15≤|u|≤2T 1+ε

|Rv,H(1 + iu)| ≪ (logX)−1/16+o(1) · logQ
logP

.

Thus by Lemma 11, and the Halász bound above,
∑

t∈TL
|Rv,H(1 + it)|2 · |Qv,H(1 + it)|2

≪ (logX)−1/8+o(1)
Å

logQ

logP

ã2 (
ev/H + |TL| · ev/H · exp(−(logX)1/5)

)

·
∑

ev/H≤r≤e(v+1)/H

r∈P

1

r2 log r

≪ (logX)−1/8+o(1)
Å

logQ

logP

ã2 H

v

∑

ev/H≤r≤e(v+1)/H

r∈P

1

r

≪ (logX)−1/8+o(1) (logQ)2

(logP )4
1

H
,

where the additional gain comes from the sum over r ∈ P saving us an addi-

tional 1/v ≪ 1/(H logP ) (since we are looking at primes in a short interval).

Combining the above estimates, we get the bound
∫

t∈U
|F (1 + it)|2dt

≪ H(logX)2(logX)−1/8+o(1) (logQ)2

(logP )4
+

Å

T

X
+ 1

ãÅ

1

H
+

logP

logQ

ã

≪
Å

T

X
+ 1

ã

(logX)−1/48+o(1).
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8.4. Conclusion. Collecting all the bounds and referring to (24), we get
∫ T

T0

|F (1 + it)|2dt

≪
Ç

T

X/Q1
+ 1

å

(logQ1)
1/3

P
1/6−η
1

+

Å

T

X
+ 1

ã

Ñ

∑

2≤j≤J−1

1

j2P1
+

1

(logX)1/48+o(1)

é

≪
Ç

T

X/Q1
+ 1

å

(
(logQ1)

1/3

P
1/6−η
1

+
1

(logX)1/50

)
,

which is the desired bound. �

9. Proofs of Theorems 1 and 3

Proof of Theorem 3. Combining Lemma 14 with Proposition 1 it follows

that

1

X

∫ 2X

X

∣∣∣∣∣∣∣∣

1

h

∑

x≤n≤x+h
n∈S

f(n)− 1

h2

∑

x≤n≤x+h2
n∈S

f(n)

∣∣∣∣∣∣∣∣

2

dx≪ (log h)1/3

P
1/6−η
1

+
1

(logX)1/50
,

when Q1 ≤ h ≤ h2 = X
(logX)1/5

. Using Lemma 4 together with Lemma 5 we

have, for any X ≤ x ≤ 2X,

(26)
1

h2

∑

x≤n≤x+h2
n∈S

f(n) =
1

X

∑

X≤n≤2X
n∈S

f(n) +O((logX)−1/20+o(1)),

and the claim follows in case h ≤ h2. In case h > h2, the claim follows

immediately from (26). �

Proof of Theorem 1. Let us start by separating the contribution of n 6∈ S,
where S is a set satisfying the conditions in Theorem 3. We get∣∣∣∣∣∣

1

h

∑

x≤n≤x+h

f(n)− 1

X

∑

X≤n≤2X

f(n)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣

1

h

∑

x≤n≤x+h
n∈S

f(n)− 1

X

∑

X≤n≤2X
n∈S

f(n)

∣∣∣∣∣∣∣∣
+

1

h

∑

x≤n≤x+h
n 6∈S

1 +
1

X

∑

X≤n≤2X
n 6∈S

1.

Let us write
1

h

∑

x≤n≤x+h
n 6∈S

1 = 1 +O(1/h)− 1

h

∑

x≤n≤x+h
n∈S

1

=
1

X

∑

X≤n≤2X
n 6∈S

1 +
1

X

∑

X≤n≤2X
n∈S

1 +O(1/h)− 1

h

∑

x≤n≤x+h
n∈S

1,
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so that
∣∣∣∣∣∣
1

h

∑

x≤n≤x+h

f(n)− 1

X

∑

X≤n≤2X

f(n)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣

1

h

∑

x≤n≤x+h
n∈S

f(n)− 1

X

∑

X≤n≤2X
n∈S

f(n)

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

1

h

∑

x≤n≤x+h
n∈S

1− 1

X

∑

X≤n≤2X
n∈S

1

∣∣∣∣∣∣∣∣
+

2

X

∑

X≤n≤2X
n 6∈S

1 +O(1/h).

Theorem 3 applied to f(n) and to 1 implies that the first and second terms

are both at most δ/100 with at most

(27) ≪ X(log h)1/3

P
1/6−η
1 δ2

+
X

(logX)1/50δ2

exceptions.

By the fundamental lemma of the sieve, for all large enough X,

∑

X≤n≤2X
n 6∈S

1 ≤
Å

1 +
1

100

ã

X
∑

j≤J

∏

Pj≤p≤Qj

(
1− 1

p

)
≤
Å

1 +
1

100

ã

X
∑

j≤J

logPj

logQj
.

Hence we get that

(28)

∣∣∣∣∣∣
1

h

∑

x≤n≤x+h

f(n)− 1

X

∑

X≤n≤2X

f(n)

∣∣∣∣∣∣
≤ δ/50 +

Å

2 +
1

50

ã∑

j

logPj

logQj

with at most (27) exceptions.

To deduce Theorem 1 we pick an appropriate sequence of intervals [Pj , Qj ].

In case h ≤ exp((logX)1/2), we choose

η = 1/150, Q1 = h, P1 = max{hδ/4, (log h)40/η}

and Pj and Qj as in (4). With this choice the expression in (28) is at most

δ + 20000 log log h
log h and the number of exceptions is as claimed.

In case h > exp((logX)1/2), we choose

η = 1/150, Q1 = exp((logX)1/2), P1 = Q
δ/4
1

and Pj and Qj as in (4). This is a valid choice since we can assume δ ≥
(logX)−1/100, so that P1 ≥ (logQ1)

40/η. With this choice the expression in

(28) is at most δ and the number of exceptions is as claimed. �
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10. Proof of Theorems 4 and 2

Let ηξ,v(x) be a smoothing of the indicator function of [1− v, 1+ v] which
decays on the segments [1− ξ − v, 1− v] and [1 + v, 1 + ξ + v]. Precisely, let

ηξ,v(x) =





1 if 1− v ≤ x ≤ 1 + v,

(1 + v + ξ − x)/ξ if 1 + v ≤ x ≤ 1 + ξ + v,

(x+ v + ξ − 1)/ξ if 1− ξ − v ≤ x ≤ 1− v,

0 otherwise.

We find that

η̂ξ,v(s) := −
∫ ∞

0
tsdηξ,v(t) = −

∫ 1−v

1−v−ξ

ts

ξ
dt+

∫ 1+v+ξ

1+v

ts

ξ
dt

=
(1 + ξ + v)s+1 − (1 + v)s+1

ξ(s+ 1)
− (1− v)s+1 − (1− ξ − v)s+1

ξ(s+ 1)
.

Therefore by Mellin inversion,

(29) ηξ,v(x) =
1

2πi

∫ 1+i∞

1−i∞

x−s

s
· η̂ξ,v(s)ds.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let h1 = h
√
x and h2 = x(log x)−1/5. Let vj = hj/x

and ξj = δhj/x for some small δ to be chosen later. Let also ηj(x) := ηξj ,vj (x)

for j = 1, 2. Consider

Sj =
∑

√
x≤n1≤2

√
x

n1,n2∈S

f(n1)f(n2)ηj
(n1n2

x

)
.

Using (29), we see that Sj equals

1

2πi

∫ 1+i∞

1−i∞
M1(s)M2(s)x

s

·(1 + ξj + vj)
s+1 − (1 + vj)

s+1 − (1− vj)
s+1 + (1− ξj − vj)

s+1

ξj · s(s+ 1)
ds,

where

M1(s) :=
∑

√
x≤n≤2

√
x

n∈S

f(n)

ns
and M2(s) :=

∑
√
x/2≤n≤2

√
x

n∈S

f(n)

ns
.

As in the proof of Lemma 14 we split the integral in Sj into two parts Uj and Vj
according to whether |t| ≤ T0 := (log x)1/12 or not. In Uj , we expand each term
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in the following way: (1+w)1+s = 1+w(1+s)+w2

2 s(1+s)+O(|w|3|s||s+1||s−1|)
(for |w| ≤ 1/2 and ℜs = 1). This gives

xs · (1 + ξj + vj)
s+1 − (1 + vj)

s+1 − (1− vj)
s+1 + (1− ξj − vj)

s+1

ξjs(s+ 1)

= (ξj + 2vj)x
s +O(x(1 + |s|)(ξ3

j + v3
j )/ξj)

= (2 + δ) · hj
x

· xs +O(x · T0(hj/x)
2/δ),

so that
∣∣∣∣
1

h1
U1 −

1

h2
U2

∣∣∣∣≪
T 2

0

δ
· h2

x
≪ (log x)1/6−1/5

δ
≪ (log x)−1/30

δ
.

On the other hand, to bound Vj , we notice that (on ℜs = 1)

|η̂j(s)|
|s| =

∣∣∣∣
∫ ∞

0
ts−1η(t)dt

∣∣∣∣≪
hj
x

and
|η̂j(s)|
|s| ≪ 1

|s|ξ|s+ 1| ≪
x

δhj
· 1

1 + |s|2 .

Therefore splitting the integral Vj at height x/hj , we get

∣∣∣∣
1

h1
V1 −

1

h2
V2

∣∣∣∣ ≤
1

δ

2∑

j=1

Ç ∫ 1+ix/hj

1+iT0

|M1(s)M2(s)||ds|

+
x

hj
max

T>x/hj

1

T

∫ 1+2iT

1+iT
|M1(s)M2(s)||ds|

å

,

similarly to (19). Using Cauchy-Schwarz inequality and Proposition 1 we thus

get the following bound (recall that h1 = h
√
x, h2 = x/(log x)1/5 and h ≥ Q1

by assumptions):
∣∣∣∣
1

h1
V1 −

1

h2
V2

∣∣∣∣≪
(logQ1)

1/3

δP
1/6−η
1

+
1

δ(logX)1/50
.

We now choose δ = max((logQ1)
1/6/P

1/12−η/2
1 , (logX)−1/100) and notice that

1

hj

∑
√
x≤n1≤2

√
x

x+hj≤n1n2≤x+δhj

1 ≪ δ.

Therefore

1

h1

∑
√
x≤n1≤2

√
x

x−h1≤n1n2≤x+h1
n1,n2∈S

f(n1)f(n2)

=
1

h2

∑
√
x≤n1≤2

√
x

x−h2≤n1n2≤x+h2
n1,n2∈S

f(n1)f(n2) +O
((logQ1)

1/6

P
1/12−η/2
1

+
1

(logX)1/100

)
.

(30)
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Finally,

∑

x−h2≤n1n2≤x+h2√
x≤n1≤2

√
x

n1,n2∈S

f(n1)f(n2) =
∑

√
x≤n1≤2

√
x

n1∈S

f(n1)
∑

(x−h2)/n1≤n2≤(x+h2)/n1

n2∈S

f(n2),

and [(x− h2)/n1, (x+ h2)/n1] is an interval of length ≍ √
x/(log x)1/5 around

≍ √
x. Using Lemma 4 and Lemma 5, we get

1

h2/n1

∑

(x−h2)/n1≤n2≤(x+h2)/n1

n2∈S

f(n2)

=
2√
x

∑
√
x≤n≤2

√
x

n∈S

f(n) +O((log x)−1/20+o(1)),

so that

1

h2

∑
√
x≤n1≤2

√
x

x−h2≤n1n2≤x+h2
n1,n2∈S

f(n1)f(n2)

=
2√
x

∑
√
x≤n≤2

√
x

n∈S

f(n)
∑

√
x≤n1≤2

√
x

n1∈S

f(n1)

n1
+O((log x)−1/20+o(1))

= 2 log 2 ·
( 1√

x

∑
√
x≤n≤2

√
x

n∈S

f(n)
)2

+O((log x)−1/20+o(1))

by partial summation and Lemmas 4 and 5. The claim follows by combining

this with (30). �

Proof of Theorem 2. We can assume that h ≤ exp((log x)1/2) since the

claim for longer intervals follows by splitting the sum on the left-hand side

into sums over intervals of length
√
x exp((log x)1/2).

We take η = 1/12, Q1 = h, and P1 = (log h)40/η = (log h)480 and for

j ≥ 2, the intervals [Pj , Qj ] as in (4). Arguing as in the proof of Theorem 1,

and noticing that

Ñ

∑
√
x≤n≤2

√
x

1

é2

=
∑

√
x≤n1,n2≤2

√
x

1 =

Ñ

∑
√
x≤n≤2

√
x,n∈S

1

é2

+
∑

√
x≤n1,n2≤2

√
x

n1 6∈S or n2 6∈S

1,
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we obtain
∣∣∣∣∣∣∣∣∣

1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

f(n1)f(n2)−
( 1√

x

∑
√
x≤n≤2

√
x

f(n)
)2

∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣∣

1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

n1,n2∈S

f(n1)f(n2)−
( 1√

x

∑
√
x≤n≤2

√
x

n∈S

f(n)
)2

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

n1,n2∈S

1−
( 1√

x

∑
√
x≤n≤2

√
x

n∈S

1
)2

∣∣∣∣∣∣∣∣∣∣∣∣

+
2

x

∑
√
x≤n1,n2≤2

√
x

n1 6∈S or n2 6∈S

1 +O(1/h).

Now we apply Theorem 4 to the first two terms and use the fundamental

lemma of the sieve to get that

1√
x

∑
√
x≤n≤2

√
x

n/∈S

1 ≪
∑

j

logPj

logQj
≪ logP1

logQ1
≪ log log h

log h
.

It follows that

1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

f(n1)f(n2)

=

Ç

1√
x

∑
√
x≤n≤2

√
x

f(n)

å2

+O

Ç

(log h)1/6+ε

P
1/12−η/2
1

+
log log h

log h
+ (log x)−1/100

å

,

and the claim follows recalling our choices of η and P1. �

11. Proofs of the corollaries

11.1. Smooth numbers.

Proof of Corollary 6. Follows immediately from Theorem 1 by taking f to

be the multiplicative function such that f(pν) = 1 for p ≤ x1/u and f(pν) = 0

otherwise. �
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Proof of Corollary 1. The qualitative statement in Corollary 1 would fol-

low immediately from Theorem 2 together with the Cauchy-Schwarz inequality

through the same choice of f as in the previous proof. However, to get a better

value for C(ε), we prove the result using Theorem 4 with an appropriate choice

of S.
Let δ be a small positive constant, η ∈ (0, 1/6), and h be fixed but large

in terms of δ and η. Choose P1 = h1−δ, Q1 = h, and for j ≥ 2, choose

(31) Pj = exp((j/δ)4j(log h)j) and Qj = exp((j/δ)4j+2(log h)j).

This choice satisfies conditions (2) and (3), provided that h is fixed but large

enough in terms of δ and η.

Notice that with the same choice of f as above, Theorem 4 implies that

1

h
√
x

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

n1,n2∈S
n1,n2 xε-smooth

1 ≫
Ç

1√
x

∑
√
x≤n≤2

√
x

n∈S
n xε-smooth

1

å2

+O

Ç

(logQ1)
1/6

P
1/12−η
1

+ (log x)−1/100

å

.

The fundamental lemma of the sieve shows that for any j ≤ J , we have

∑
√
x≤n≤2

√
x

p|n =⇒ p 6∈[Pj ,Qj ]
n xε-smooth

1 ≤ (1 + δ2)ρ(1/(2ε))
√
x · logPj

logQj

provided that x is large enough, so that

1√
x

∑
√
x≤n≤2

√
x

n∈S
n xε-smooth

1 ≥ 1√
x

∑
√
x≤n≤2

√
x

n xε-smooth

1− 1√
x

J∑

j=1

∑
√
x≤n≤2

√
x

p|n =⇒ p 6∈[Pj ,Qj ]
n xε-smooth

1

≥ ρ(1/(2ε))(1 + o(1))−
J∑

j=1

(1 + δ2)ρ(1/(2ε)) · logPj

logQj

≥ ρ(1/(2ε))

Ñ

1 + o(1)− (1 + δ2)(1− δ)−
J∑

j=2

δ2

j2

é

≥ δ/2 · ρ(1/(2ε)).

Hence

1

h
√
x

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

n1,n2∈S
n1,n2 xε-smooth

1 ≫ δ2ρ(1/(2ε))2 +O
(
h−(1−δ)/12+1/1000 + (log x)−1/100

)
.
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Therefore, for any small enough δ > 0, and all x large enough, the left-hand

side is

≫ δ2ρ(1/ε)1.01 +O
(
h−1/12+2δ+1/1000 + (log x)−1/100

)
.

It follows that the lower bound is positive if h= ρ(1/ε)−13 and δ, ε are taken

small enough. We conclude by using the Cauchy-Schwarz inequality, noting

that

√
x≪

Ç ∑

x≤n≤x+C
√
x

n xε-smooth

1

å1/2
Ñ

∑

x≤n≤x+C
√
x

(
∑

n1n2=n

1

)2
é1/2

≪
Ç ∑

x≤n≤x+C
√
x

n xε-smooth

1

å1/2
Ä√

x(log x)4
ä1/2

,

and the claim follows. �

11.2. Signs of multiplicative functions.

Proof of Corollary 4. First notice that the condition that f(n) 6= 0 for a

positive proportion of n is equivalent to
∑

p,f(p)=0
1
p < ∞, and also that we

can assume without loss of generality that f(n) ∈ {−1, 0, 1}. The qualitative

statement in Corollary 4 would follow from Theorem 1 using a slightly simpler

variant of the argument below. However, to get a better bound for the size of

the exceptional set, we prove the result using Theorem 3 with an appropriate

choice of S.
Let us choose Pj and Qj and thus S as in the proof of Corollary 1 in

previous subsection, with δ small but fixed. By (13) together with Lemma 5,

1

X

∑

X≤n≤2X
n∈S

g(n) =
1

X

∑

n≤X
n∈S

g(n) +O((logX)−1/20+o(1))

for g = f and g = |f |. Let pν0 be the smallest prime power for which f(pν0) =

−1. Now
∑

n≤X
n∈S

|f(n)| − f(n) ≥
∑

n≤X/pν0
n∈S,p0∤n

|f(n)| − f(n) + |f(pν0n)| − f(pν0n)

= 2
∑

n≤X/pν0
n∈S,p0∤n

|f(n)| ≫ X

by the fundamental lemma of sieve, similarly to the proof of Corollary 1.

Applying Theorem 3 to f(n) and |f(n)|, we obtain that
∑

x≤n≤x+h
n∈S

|f(n)| − f(n) ≫ h
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for all but at most

(32) ≪ (log h)1/3

h(1−ε)(1/6−η)
+

1

(logX)1/50

integers x ∈ [X, 2X]. Hence f(n) is negative in almost all short intervals.

Similarly, we can show that
∑

x≤n≤x+h
n∈S

|f(n)|+ f(n) ≫ h

for all but at most (32) exceptional integers x ∈ [X, 2X]. Hence f(n) must be

positive in almost all short intervals, and the claim follows. We actually get

that the number of exceptions is ≪ X/h1/6−ε+(logX)−1/50 for any ε > 0. �

It is worth remarking that when
∑

f(p)<0 1/p < ∞, one can work out

directly the number of sign changes of f up to x. For example, for nonvanishing

completely multiplicative f such that
∑

f(p)<0 1/p < ∞, the number of sign

changes up to x is asymptotically

x ·
Ñ

1

2
− 1

2

∏

p : f(p)<0

Å

1− 4

p+ 1

ã

é

.

Such formulas were pointed out to us by Andrew Granville and Greg Martin,

and essentially the formula in general case as well as its proof can be found

from a paper by Lucht and Tuttas [26].

Proof of Corollary 3. Follows immediately from the proof of Corollary 4.

�

Proof of Corollary 2. By Corollary 3, there is a positive proportion δ of

integers n such that f(n)f(n+ 1) ≤ 0. Hence
∑

n≤x

f(n)f(n+ 1) ≤
∑

n≤x
f(n)f(n+1)>0

1 ≤ (1− δ)x.

On the other hand,

f(n)f(n+ 1)f(2n)f(2n+ 1)2f(2(n+ 1)) = (f(2)f(n)f(n+ 1)f(2n+ 1))2 ≥ 0,

so that one of f(n)f(n+ 1), f(2n)f(2n+ 1) and f(2n+ 1)f(2n+ 2) must be

nonnegative, so that
∑

n≤x

f(n)f(n+ 1) ≥
∑

n≤x
f(n)f(n+1)<0

(−1) ≥ −(1− δ)x.

Hence

(33)

∣∣∣∣∣∣
∑

n≤x

f(n)f(n+ 1)

∣∣∣∣∣∣
≤ (1− δ)x.
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For h ≥ 2,

∣∣∣∣∣∣
∑

n≤x

f(n)f(n+ h)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣

∑

n≤x
h∤n

f(n)f(n+ h)

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∑

n≤x
h|n

f(n)f(n+ h)

∣∣∣∣∣∣∣∣∣

≤
Å

1− 1

h

ã

x+ 1 + |f(h)|
∣∣∣∣∣∣
∑

n≤x/h

f(n)f(n+ 1)

∣∣∣∣∣∣

≤
Å

1− 1

h

ã

x+ 1 + (1− δ)
x

h
< (1− δ(h))x

by (33). �

Proof of Corollary 5. Without loss of generality we can assume that f(n)∈
{−1, 0, 1}. Theorem 2 implies that for any multiplicative function g : N →
[−1, 1],

(34)

1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

g(n1)g(n2)=

Ñ

1√
x

∑
√
x≤n≤2

√
x

g(n)

é2

+O((log h)−1/100).

Let us study, for a given f ,

S± =
1

h
√
x log 2

∑

x≤n1n2≤x+h
√
x√

x≤n1≤2
√
x

(|f(n1)f(n2)| ± f(n1)f(n2)).

We will show that S+ > 0 and S− > 0. The first of these implies that there

is n ∈ [x, x + h
√
x] such that f(n) > 0 (since f is assumed to be completely

multiplicative), whereas the second one implies that there is n ∈ [x, x+ h
√
x]

such that f(n) < 0.

By (34),

S± =

Ç

1√
x

∑
√
x≤n≤2

√
x

|f(n)|
å2

±
Ç

1√
x

∑
√
x≤n≤2

√
x

f(n)

å2

+O((log h)−1/100).

Here the first square is ≫ 1 by the assumption that f is nonvanishing for

positive proportion of n, so that immediately S+ ≫ 1. On the other hand,

S− =

Ñ

1√
x

∑
√
x≤n≤2

√
x

(|f(n)|+ f(n))

é

·
Ñ

1√
x

∑
√
x≤n≤2

√
x

(|f(n)| − f(n))

é

+O((log h)−1/100).
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Arguing as in beginning of proof of Corollary 4,

1√
x

∑
√
x≤n≤2

√
x

(|f(n)| ± f(n)) ≫ 1,

so that also S− ≫ 1, and the claim follows. �

It is worth noticing that the case
∑

p : f(p)<0
1
p < ∞ is easier than the

general case — actually it follows from work of Kowalski, Robert and Wu [22]

on B-free numbers in short intervals that f has a sign change in all intervals

[x, x+ xθ] for any θ > 7/17.
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[25] S. Lester, K. Matomäki, and M. Radziwi l l, Small scale distribution of zeros

and mass of modular forms, 2015. arXiv 1501.01292.

http://www.ams.org/mathscinet-getitem?mr=2881302
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1287.11054
http://dx.doi.org/10.4171/JEMS/308
http://www.ams.org/mathscinet-getitem?mr=2467549
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1230.11157
http://www.ams.org/mathscinet-getitem?mr=2016245
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1047.11093
http://dx.doi.org/10.4153/CJM-2003-047-0
http://www.ams.org/mathscinet-getitem?mr=0886032
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0544.10041
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0544.10041
http://www.ams.org/mathscinet-getitem?mr=2331072
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1220.11118
http://www.arxiv.org/abs/1305.4618
http://www.ams.org/mathscinet-getitem?mr=1222182
http://www.ams.org/mathscinet-getitem?mr=0848849
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0615.10053
http://dx.doi.org/10.1017/S0305004100066056
http://dx.doi.org/10.1017/S0305004100066056
http://www.ams.org/mathscinet-getitem?mr=0792089
http://www.ams.org/mathscinet-getitem?mr=1994094
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1034.11046
http://www.ams.org/mathscinet-getitem?mr=2061214
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1059.11001
http://www.ams.org/mathscinet-getitem?mr=0429790
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0307.10045
http://www.ams.org/mathscinet-getitem?mr=2351136
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1246.11099
http://dx.doi.org/10.4171/RMI/496
http://www.ams.org/mathscinet-getitem?mr=2718828
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1267.11047
http://dx.doi.org/10.1007/s11425-010-4046-z
http://dx.doi.org/10.1007/s11425-010-4046-z
http://www.ams.org/mathscinet-getitem?mr=0934218
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0686.14039
http://www.arxiv.org/abs/1501.01292


MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS 1055

[26] L. Lucht and F. Tuttas, Aufeinanderfolgende Elemente in multiplikativen

Zahlenmengen, Monatsh. Math. 87 (1979), 15–19. MR 0528874. Zbl 0369.10029.

http://dx.doi.org/10.1007/BF01470935.
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