
ACTA ARITHMETICA

LXII.3 (1992)

Multiplicative functions of polynomial values
in short intervals

by

Mohan Nair (Glasgow)

1. Introduction. Let d(n) denote the divisor function and let P (n) be
an irreducible polynomial of degree g with integer coefficients.

In 1952, Erdős [2] showed that there exist constants c1 and c2, which
may depend on P , such that

c1x log x ≤
∑
n≤x

d(|P (n)|) ≤ c2x log x

for x ≥ 2. This result was generalized by Delmer [1] who showed that for
any l ∈ N,

c1x(log x)s ≤
∑
n≤x

dl(|P (n)|) ≤ c2x(log x)s

with s = 2l − 1 and where the ci may depend, in addition, on l. The lower
bound in Erdős’s result is fairly straightforward but the upper bound is a
combination of characteristically ingenious ideas.

In 1971, Wolke [6] clarified these ideas and together with several impor-
tant contributions of his own, showed that any suitable sum of the form∑

n≤x f(an) can be similarly bounded. Here f is any non-negative multi-
plicative function with f(pl) ≤ c1l

c2 , c1, c2 constants, and {an} is a sequence
of natural numbers with a structure amenable to the sieve method. Apply-
ing his results to f(n) = d(n) and an = |P (n)|, he recovered Erdős’s result
and, indeed, gave several other interesting applications. The very generality
of Wolke’s results meant that the bounds obtained lacked uniformity with
respect to any particular class of sequences {an}.

In 1980, Shiu [5] obtained such a uniformity for the class of arith-
metic progressions, i.e. for linear polynomials and refined the Erdős–Wolke
method, in this particular case, to include a larger class of multiplicative
functions as well as to obtain a short-interval result. He considered the
class of non-negative multiplicative functions f which satisfy the weaker
conditions f(pl) ≤ Al

0, f(n) ≤ A1(ε)nε for any ε > 0 and constants A0, A1.
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He showed that ∑
x−y<n≤x, n≡a (mod k)

f(n) � y

ϕ(k)
1

log x
exp

( ∑
p≤x, p-k

f(p)
p

)
uniformly for k ≤ y1−β and xα < y ≤ x. Here ϕ(k) is Euler’s function, p
denotes a prime number, α, β ∈ R with 0 < α, β < 1

2 and a, k ∈ N with
a < k and (a, k) = 1. The implied constant in the � notation, although not
explicitly stated as such in [5], depends only on α, β, A0 and the particular
function A1.

In this paper we extend these ideas further to estimate the general sum∑
x−y<n≤x f(|P (n)|) while preserving sufficient uniformity with respect to

the polynomial P (n) to obtain a bound which implies Shiu’s theorem when
applied to P (m) = km + a, (a, k) = 1 and also, in the general case, extends
Erdős’s result to polynomials having distinct zeros (not necessarily irre-
ducible) and to n lying in a short interval. The uniformity which we obtain in
our theorem has the interesting implication that the apparent generalisation
to n lying in an arithmetic progression is, in fact, a corollary of the theorem.

2. Definitions. We define P to be the class of polynomials P with
integer coefficients, of degree g, with non-zero discriminant D and having
no fixed prime divisors. Let %(m) denote, for m ∈ N, the number of solutions
n (mod m) of the congruence P (n) ≡ 0 (mod m). The condition that P
has no fixed prime divisor is equivalent to %(p) < p for all primes p. It is
well known (see e.g. Nagell [4]) that

(i) %(ab) = %(a)%(b) if (a, b) = 1,
(ii) %(pl) ≤ g if p - D,
(iii) %(p) ≤ g ∀p, and
(iv) if pσ ‖D with σ ≥ 1 then

(a) %(pl) = %(p2σ+1) if l > 2σ, and
(b) %(pl) ≤ pl−1%(p) ∀l ∈ N.

We note that (ii) and (iv) imply that %(pl) ≤ gp2σ and hence that

(v) %(m) ≤ (gD2)ω(m) ∀m ∈ N,

where the discriminantal factor D is defined by

D =
∏

pσ‖D, %(p) 6=0

pσ.

We also define the size of P , denoted by ‖P‖, by

‖P‖ = max
i
|ai|

where P (t) =
∑

0≤i≤g ait
i. Note that, ∀n ∈ N, |P (n)| ≤ (g + 1)‖P‖ng.
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The class M of multiplicative functions which we consider is the same
as that in Shiu [5], i.e. M consists of non-negative multiplicative functions
which satisfy the following two conditions:

(i) There exists a positive constant A0 such that

f(pl) ≤ Al
0, ∀ primes p and l ∈ N.

(ii) For every ε > 0, there exists a positive constant A1 = A1(ε) such that

f(n) ≤ A1n
ε, ∀n ∈ N.

We note that the function %(n) itself belongs to M with A0 = gD2 and
A1 = A1(g,D, ε). For convenience, we also extend the definition of f and
put f(0) = 0.

3. Notation

t, x, y and z denote positive real numbers,
p and q, with or without subscripts, denote prime numbers,
a, b, d, g, i, j, k, l, m, n, r and s, with or without subscripts, denote natural

numbers,
P+(n) and P−(n) denote, respectively, the greatest and the least prime

factor of n (≥ 2). For technical convenience, we adopt the convention
P−(1) = ∞ and P+(1) = 1,

Ω(n) and ω(n) denote, as usual, the number of prime factors of n with
and without counting multiplicity, respectively,

α, β, ϑ, ε and δ denote positive real numbers less than 1,
c, c1, c2, . . . denote positive real constants and

Ψ(x, z) =
∑

n≤x, P+(n)≤z

1.

The dependence of the constant implicit in the � notation on the poly-
nomial P , unless emphasised otherwise, will always be at most on the degree
g and on the prime power divisors of the discriminantal factor D. It may,
however, depend on all constants associated with f and with the interval y.

4. Results. Our main theorem is the following.

Theorem. Let f ∈ M , P ∈ P and let α, δ ∈ R with 0 < α, δ < 1. For
any x, y ∈ R with x, y ≥ 2 and xα ≤ y ≤ x we have∑

x−y<n≤x

f(|P (n)|) � y
∏
p≤x

(
1− %(p)

p

)
exp

( ∑
p≤x

f(p)%(p)
p

)
provided that x ≥ c‖P‖δ, where the constant c depends only on g, α, δ and
the function A1 associated with M .
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The dependence of the constant implicit in the � notation on the poly-
nomial P is only on

(i) the degree g and on
(ii) the discriminantal factor D mentioned earlier.

It can, of course, depend on α, δ and the constants associated with the
class M .

We make the observation that, in general, one would expect an upper
bound for the sum considered in our theorem to depend on %(pl) for all
l ≥ 1. Since our bound depends, explicitly, only on %(p) and it is well
known that %(pl) can be large for primes which divide the discriminant of
P , it is perhaps to be expected that there is some dependence on D in the
implicit constant.

We now state the corollary of the theorem which extends the result to
arithmetic progressions.

Corollary. With the same hypotheses as in the Theorem, let , in ad-
dition, a, k ∈ N with a ≤ k, (k, P (a)) = 1 and k ≤ y1−β , where β is any
constant with 0 < β < 1. Then∑

x−y<n≤x, n≡a(mod k)

f(|P (n)|)

� y

k
∏
p | k

(1− %(p)/p)

∏
p≤x

(
1− %(p)

p

)
exp

( ∑
p≤x, p-k

f(p)%(p)
p

)

provided that x ≥ c1‖P‖δ where the constant c1 depends only on g, α, δ and
the function A1 associated with M .

The dependence of the implicit constant on the polynomial P is as de-
scribed in (i) and (ii) in the statement of the Theorem. There is, in addition
to those mentioned there, a dependence on β. The condition (k, P (a)) = 1
ensures that the sequence P (n), n ≡ a (mod k) has no fixed prime divisor.

The Corollary applied to P (n) = n, so that D = 1, ‖P‖ = 1, %(p) = 1,
∀p, recovers Shiu’s theorem in its entirety. In fact, all the implications of
Shiu’s theorem, as mentioned in [5], can now be extended to the polynomial
case. We give just one example:

For r, l ∈ N, r ≥ 2, we have∑
x−y<n≤x, n≡a (mod k)

dl
r(|P (n)|) � y

k

(
ϕ(k)

k
log x

)rl−1

uniformly in a, k and y with a, k ∈ N, a ≤ k, (k, P (a)) = 1, xα ≤ y ≤ x and
k ≤ y1−β provided that x � 1. Here α and β are any real numbers with
0 < α, β < 1.
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The implicit constants in this example, and only in this example, may
depend on P,M, r, l, α and β. The function dr(n) is, as usual, the number
of ways of writing n as a product of r factors, taking account of ordering.

5. Preliminary lemmas. We shall make use of the following lemmas.

Lemma 1. Let G(t) ∈ Z[t] with degree g. Let a ∈ N and let x, y, z > 0
with z ≤ y ≤ x. Then

(5.1) |{n : x− y < n ≤ x, P−(G(n)) ≥ z, (G(n), a) = 1}|

�g y
∏

p<z, p-a

(
1− %′(p)

p

)
where %′(p) is the number of solutions m (mod p) of the congruence G(m) ≡
0 (mod p).

P r o o f. This is a straightforward application of Brun’s sieve. First note
that if p1 is any fixed prime divisor of G, then either p1 | a or p1 < z implies
that the left-hand side of (5.1) is zero and the result is trivially true. Suppose
therefore that any such p1 satisfies p1 - a and p1 ≥ z. We follow the notation
of Halberstam and Richert [3] and consider Brun’s sieve with

A = {G(n) : x− y < n ≤ x}, B = {p : p < z, p - a, p prime} ,

w(p) =
{

%′(p) if p < z, p - a,
0 otherwise.

It is easily checked that Ω0 is satisfied with A0 = g and that ∀p,

0 ≤ ω(p)
p

≤ 1− 1
g + 1

so that Ω1 holds with A1 = g + 1. Lemma 2.2, p. 52 of [3] implies that
Ω2(k) holds with k = A0 = A2 = g. The condition R in Brun’s sieve ([3],
p. 68) is trivially satisfied and the result follows.

Lemma 2. For any t ≥ 2, we have

(i)
∏

p<t1/s

(
1− %(p)

p

)
�g sg

∏
p<t

(
1− %(p)

p

)
uniformly in s, provided that 1 ≤ s ≤ log t.

(ii)
∏

p<t1/2,p-a

(
1− %(p)

p

)
�g

(
a

ϕ(a)

)g ∏
p<t

(
1− %(p)

p

)
.

(iii) For any F ∈ M ,∑
n≤t

F (n)%(n)
n

� exp
( ∑

p≤t

F (p)%(p)
p

)
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where the implicit constant depends on g,D and on the constants A0 and
A1 associated with F .

P r o o f. Let T be defined by

T =
∏

t1/s≤p<t

(
1− %(p)

p

)−1

.

Using the fact that %(p) ≤ min{g, p− 1}, we deduce that

0 ≤ log T =
∑

t1/s≤p<t

− log
(

1− %(p)
p

)

=
∑

t1/s≤p<t, p≤g

− log
(

1− %(p)
p

)
+

∑
t1/s≤p<t, p>g

− log
(

1− %(p)
p

)
≤ g

∑
t1/s≤p<t, p>g

1
p

+ Og(1) ≤ g log s + Og(1).

Thus T �g sg and (i) follows.
To show (ii), note that∏

p<t1/2, p-a

(
1− %(p)

p

)
≤

∏
g<p<t1/2, p-a

(
1− %(p)

p

)

�g

∏
p<t1/2

(
1− %(p)

p

) ∏
g<p<t1/2, p|a

(
1− %(p)

p

)−1

.

By (i) and a simple calculation, this is

�g

∏
p<t

(
1− %(p)

p

) ∏
p|a

(
1− 1

p

)−g

=
(

a

ϕ(a)

)g ∏
p<t

(
1− %(p)

p

)
as required.

For (iii), we have∑
n≤t

F (n)%(n)
n

≤
∏
p≤t

(
1 +

F (p)%(p)
p

+
∞∑

l=2

F (pl)%(pl)
pl

)

≤ exp
( ∑

p≤t

F (p)%(p)
p

+
∑
p≤t

∑
l≥2

F (pl)%(pl)
pl

)
.

Since %(pl) ≤ gD2 and F (pl) ≤ cpl/3, we deduce that∑
p≤t

∑
l≥2

F (pl)%(pl)
pl

� 1

and (iii) follows.
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Lemma 3. For all x ≥ 3, we have

Ψ(x, log x log log x) ≤ c exp
(

3 log x

(log log x)1/2

)
for some absolute constant c.

P r o o f. This is Lemma 1 of Shiu [5].

Lemma 4. Let F ∈ M. For any t ≥ 2, we have∑
t1/2≤n≤t

P+(n)≤t1/s

F (n)
n

≤ c1 exp
( ∑

p≤t

F (p)
p

− 1
10

s log s

)

uniformly in s, 1 ≤ s ≤ log t/ log log t, where the constant c1 depends only
on the constants A0 and A1 associated with F .

P r o o f. This is essentially Lemma 4 of Shiu [5] with the implicit constant
explicitly described and applied with k = 1.

6. Proof of the Theorem. Let z = y1/2 and for each n in (x− y, x],
write

|P (n)| = anbn

where if

|P (n)| = pα1
1 . . . p

αj

j p
αj+1
j+1 . . . pαl

l , p1 < p2 < . . . < pl,

we define

an = pα1
1 . . . p

αj

j

with j chosen such that

an ≤ z < anp
αj+1
j+1 .

If no such j exists, define an = 1. The associated bn is just defined by
bn = |P (n)|/an. Note that (an, bn) = 1 with P−(bn) > P+(an). We write
P−(bn) as qn and divide the set of n in (x− y, x] into four classes:

I: qn ≥ z1/2,
II: qn < z1/2, an ≤ z1/2,

III: qn ≤ log x log log x, an > z1/2 and
IV: log x log log x < qn < z1/2, an > z1/2.

We estimate
∑

f(|P (n)|) for n belonging to each class in turn. First we
have

(6.1)
∑
n∈I

f(|P (n)|) �
∑
a≤z

f(a)
∑(1)

x−y<n≤x

f(b)



264 M. Nair

where
∑(1) indicates a sum over those n in (x − y, x] such that a |P (n),

P−(b) ≥ z1/2 and (a, b) = 1 where b = |P (n)|/a. Now

(z1/2)Ω(b) ≤ b =
|P (n)|

a
≤ (g + 1)‖P‖xg

a
� xg+1/δ

so that Ω(b) � 1 and hence f(b) ≤ A
Ω(b)
0 � 1. This implies that the inner

sum in (6.1) is

�
∑(1)

x−y<n≤x

1.

We write this sum as

(6.2)
∑

ri (mod a)

∑(1)

x−y<n≤x
n≡ri (mod a)

1

where ri denote the %(a) solutions of the congruence P (m) ≡ 0 (mod a). To
investigate the inner sum in (6.2), write n = am+ri and P (ri) = aλi, λi ∈ Z.
Then P (n) = P (am + ri) = P (ri) + amQ(am, ri) for some Q(at, ri) ∈ Z[t],
of degree g − 1. The conditions on the inner sum in (6.2) now reduce to

x− ri

a
− y

a
< m ≤ x− ri

a
,

P−(λi + mQ(am + ri)) ≥ z1/2 ,

(a, λi + mQ(am + ri)) = 1 .

Since y/a ≥ z1/2, we can apply Lemma 1 with G(t) = λi + tQ(at + ri) to
deduce that the inner sum in (6.2) is

� y

a

∏
p<z1/2, p-a

(
1− %1(p)

p

)
where %1(p) is the number of solutions of the congruence

λi + tQ(at, ri) ≡ 0 (mod p).

Since P (at + ri) = a(λi + tQ(at + ri)), it is easily verified that %1(p) = %(p)
for p - a, so that (6.2) reduces to

�
∑
ri

y

a

∏
p<z1/2, p-a

(
1− %(p)

p

)
.

Hence, from (6.1),∑
n∈I

f(|P (n)|) �
∑
a≤z

f(a)y%(a)
a

∏
p<z1/2, p-a

(
1− %(p)

p

)
.
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Using Lemma 2(ii), we deduce the bound

� y
∏
p<z

(
1− %(p)

p

) ∑
a≤z

f(a)%(a)
a

(
a

ϕ(a)

)g

.

We now note that the function F (a) = f(a)(a/ϕ(a))g ∈ M and appeal to
Lemma 2(i), (iii) to deduce

� y
∏
p<x

(
1− %(p)

p

)
exp

( ∑
p≤x

f(p)%(p)
p

)
as required.

We now turn to n ∈ II and note that to each such n, there corresponds
a prime p and an exponent s such that ps ‖P (n), p ≤ z1/2 and ps > z1/2.
For each p ≤ z1/2, let sp denote the least integer s with ps > z1/2. Hence
sp ≥ 2 and p−sp ≤ min(z−1/2, p−2). Thus∑

p≤z1/2

1
psp

≤
∑

p≤z1/4

z−1/2 +
∑

z1/4<p≤z1/2

p−2 � z−1/4.

Hence we deduce that∑
n∈II

1 ≤
∑

p≤z1/2

∑
x−y<n≤x
psp |P (n)

1 =
∑

p≤z1/2

%(psp)
(

y

psp
+ O(1)

)

�
∑

p≤z1/2

(
y

psp
+ O(1)

)
� y

z1/4
+ z1/2 � y7/8.

We now show that the n which belong to III are also few in number. For
each n ∈ III, ∃a, a |P (n), z1/2 < a ≤ z and P+(a) < log x log log x. Hence

(6.3)
∑

n∈III

1 ≤
∑

z1/2<a≤z

P+(a)<log x log log x

∑
x−y<n≤x

a|P (n)

1

=
∑

z1/2<a≤z

P+(a)<log x log log x

%(a)
(

y

a
+ O(1)

)
� y

∑
z1/2<a≤z

P+(a)<log x log log x

%(a)
a

.

Now if z ≥ c(g,D) then

%(a) ≤ (gD2)ω(a) ≤ (gD2)c log z/ log log z ≤ z1/8.

On the other hand, if z < c(g,D) then, trivially,

%(a) ≤ a < c(g,D).
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Thus (6.3) reduces, by Lemma 3, to

�g,D

yz1/8

z1/2
Ψ(z, log x log log x) +

y

z1/2
� y7/8.

Thus ∑
n∈II

1 +
∑

n∈III

1 � y7/8.

Now note that for any ε1 > 0,

f(|P (n)|) ≤ A1(ε1)|P (n)|ε1 ≤ (g + 1)ε1A1(ε1)‖P‖ε1xgε1 .

Using x ≥ c‖P‖δ with ε1 sufficiently small, we deduce that f(|P (n)|) �
y1/16. Hence∑

n∈II

f(|P (n)|) +
∑

n∈III

f(|P (n)|) � y15/16 � y

(log x)g

� y
∏
p<x

(
1− %(p)

p

)
exp

( ∑
p≤x

f(p)%(p)
p

)
as required.

It remains to consider n belonging to class IV:∑
n∈IV

f(|P (n)|) �
∑

z1/2<a≤z

f(a)
∑(2)

x−y<n≤x

f(b)

where
∑(2) indicates a sum over those n in (x − y, x] such that a |P (n),

(a, b) = 1 and log x log log x < P−(b) ≤ z1/2 where b = |P (n)|/a. We divide
the interval for P−(b) into subintervals (z1/(s+1), z1/s] where

2 ≤ s ≤ s0 := [log z/ log(log x log log x)].

Note that s0 ≤ log z/ log log z.
Consider now those n in

∑(2) for which

z1/(s+1) < P−(b) ≤ z1/s.

For such n, we have P+(a) ≤ z1/s and also

zΩ(b)/(s+1) ≤ (P−(b))Ω(b) ≤ b ≤ (g + 1)‖P‖xg � xg+1/δ

so that Ω(b) � s. Hence f(b) ≤ As for some A > 0. Thus∑
n∈IV

f(|P (n)|) �
s0∑

s=2

As
∑

z1/2<a≤z, P+(a)≤z1/s

f(a)
∑(3)

x−y<n≤x

1

where
∑(3) indicates a sum over those n in (x − y, x] such that a |P (n),
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(a, b) = 1 and z1/(s+1) < P−(b) ≤ z1/s where b = |P (n)|/a. So denoting by
ri the %(a) solutions of P (m) ≡ 0 (mod a), we have∑

n∈IV

f(|P (n)|) �
s0∑

s=2

As
∑

z1/2<a≤z

P+(a)≤z1/s

f(a)
∑

ri (mod a)

∑(3)

x−y<n≤x
n≡ri (mod a)

1.

Writing n = am+ri, we deduce, as with the n in class I, that since z1/(s+1) ≤
y/a the inner sum is

� y

a

∏
p<z1/(s+1), p-a

(
1− %(p)

p

)
and hence∑

n∈IV

f(|P (n)|) �
s0∑

s=2

As
∑

z1/2<a≤z

P+(a)≤z1/s

f(a)y%(a)
a

∏
p<z1/(s+1)

p-a

(
1− %(p)

p

)

� y

s0∑
s=2

As
∑

z1/2<a≤z

P+(a)≤z1/s

f(a)%(a)
a

∏
p<z1/(s+1)

(
1− %(p)

p

) ∏
p|a

(
1− %(p)

p

)−1

.

We now appeal to Lemma 2(i), twice, together with a simple calculation to
deduce the bound

� y
∏
p<x

(
1− %(p)

p

) s0∑
s=2

As(s + 1)g
∑

z1/2<a≤z

P+(a)≤z1/s

f(a)%(a)
a

(
a

ϕ(a)

)g

.

Lemma 4 with F (a) = f(a)%(a)(a/ϕ(a))g now implies that the inner sum
above is

� exp
( ∑

p≤z

F (p)
p

− 1
10

s log s

)
� exp

( ∑
p≤x

f(p)%(p)
p

− 1
10

s log s

)
so that we finally deduce that∑

n∈IV

f(|P (n)|)

� y
∏
p<x

(
1− %(p)

p

)
exp

( ∑
p≤x

f(p)%(p)
p

) ∑
s≥2

(s + 1)gAs exp
(
− 1

10
s log s

)

� y
∏
p<x

(
1− %(p)

p

)
exp

( ∑
p≤x

f(p)%(p)
p

)
as required. This completes the proof of the Theorem.
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7. Proof of the Corollary. We denote by J the interval ((x− a− y)/k,
(x− a)/k] and write∑

x−y<n≤x
n≡a (mod k)

f(|P (n)|) =
∑
m∈J

f(|P (km + a)|).

Put G(m) = P (km + a). We shall apply our theorem to G(m). First note
that deg G = deg P = g. Recall that if P (t) = agt

g + . . .+a0, ag 6= 0, is any
polynomial with zeros α1, . . . , αg in C, then its discriminant D is given by

D = a2g−2
g

∏
i<j

(αi − αj)2.

Hence G(t) has zeros (αi − a)/k, 1 ≤ i ≤ g, and discriminant

(7.1) D1 = (agk
g)2g−2

∏
i<j

(
αi − a

k
− αj − a

k

)2

= kg(g−1)D.

Further, if %1(d) denotes the number of solutions (mod d) of the congruence
G(m) ≡ 0 (mod d), it is easily verified that

(7.2)
%1(p) = 0 if p | k (since (k, P (a)) = 1) and

%1(pα) = %(pα) if p - k.

We deduce from (7.1) and (7.2) that

D1 =
∏

pσ‖D1
%1(p) 6=0

pσ =
∏

pσ‖D1,p-k
%1(p) 6=0

pσ =
∏

pσ‖D,p-k
%1(p) 6=0

pσ =
∏

pσ‖D,p-k
%(p) 6=0

pσ.

Hence D1 |D so that the prime power divisors of D1 are amongst those
of D. Also note that (7.2) implies that G(m) has no fixed prime divisors.
It remains to check the other hypotheses of the Theorem. The condition(

y

k

)
≥

(
x− a

k

)α1

is satisfied for a suitably small α1 > 0 since k ≤ y1−β and y ≥ xα. Further,
since ‖G‖ ≤ kg‖P‖ and x ≥ c1‖P‖δ, we have x ≥ c‖G‖δ1 for a suitably
small δ1 > 0. The Theorem now yields that∑

x−y<n≤x
n≡a (mod k)

f(|P (n)|)

� y

k

∏
p<(x−a)/k

(
1− %1(p)

p

)
exp

( ∑
p≤(x−a)/k

f(p)%1(p)
p

)
.
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Using (7.2) we simplify this to

� y

k

∏
p<(x−a)/k

p-k

(
1− %(p)

p

)
exp

( ∑
p≤(x−a)/k

p-k

f(p)%(p)
p

)

� y

k
∏

p<(x−a)/k
p|k

(1− %(p)/p)

∏
p<(x−a)/k

(
1− %(p)

p

)
exp

( ∑
p≤x
p-k

f(p)%(p)
p

)

� y

k
∏

p<x
p|k

(1− %(p)/p)

∏
p<(x−a)/k

(
1− %(p)

p

)
exp

( ∑
p≤x
p-k

f(p)%(p)
p

)
.

Since (x − a)/k � xβ , we can appeal to Lemma 2(i) to finally obtain the
bound

� y

k
∏

p<x
p|k

(1− %(p)/p)

∏
p<x

(
1− %(p)

p

)
exp

( ∑
p≤x
p-k

f(p)%(p)
p

)

� y

k
∏
p|k

(1− %(p)/p)

∏
p<x

(
1− %(p)

p

)
exp

( ∑
p≤x
p-k

f(p)%(p)
p

)

as required.
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