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Abstract: Dengue is a vector-borne disease that is endemic to several countries, including the Do-
minican Republic, which has experienced dengue outbreaks for over four decades. With outbreaks
growing in incidence in recent years, it is becoming increasingly important to develop better tools to
understand drivers of dengue transmission. Such tools are critical for providing timely information
to assist healthcare authorities in preparing human, material, and medical resources for outbreaks.
Here, we investigate associations between meteorological variables and dengue transmission in the
Dominican Republic in 2019, the year in which the country’s largest outbreak to date ocurred. We
apply generalized linear mixed modelling with gamma family and log link to model the weekly
dengue incidence rate. Because correlations in lags between climate variables and dengue cases
exhibited different behaviour among provinces, a backward-type selection method was executed to
find a final model with lags in the explanatory variables. We find that in the best models, meteoro-
logical conditions such as temperature and rainfall have an impact with a delay of 2–5 weeks in the
development of an outbreak, ensuring breeding conditions for mosquitoes.

Keywords: dengue; Dominican Republic; climate variables; lags; generalized linear mixed models

MSC: 92B15; 62P10; 62J12

1. Introduction

Dengue is one of the most significant mosquito-borne diseases to threaten human
populations, particularly in tropical and subtropical regions. The number of dengue cases
reported to the World Health Organization (WHO) has increased sharply from less than
0.5 million in 2000 to 5.2 million in 2019, and the number of dengue-induced deaths
increased from 960 in 2000 to 4032 in 2015 [1], leading WHO to name dengue as one of
the ten biggest threats to global health in 2019 [2]. Given the global increases in dengue in
recent years, it is increasingly important to develop tools to better understand drivers of
dengue transmission and to predict future outbreaks.

One country where dengue has long been endemic is the Dominican Republic. In the
past decade, however, dengue outbreaks have grown in incidence, with the 2019 outbreak
being the largest outbreak in the country to date [3,4]. In fact, 2019 was the year in which
the WHO recorded the highest number of global dengue cases ever to occur within a
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year [1], suggesting that dengue in the Dominican Republic is mirroring global trends.
In an exploratory analysis of dengue in the Dominican Republic, Iutis et al. [3] showed
there is no single meteorological, demographic or geographic factor that affects the inci-
dence rate of dengue. They instead suggest that a combination of different factors could
be responsible for increases in dengue cases. Among these factors is climate, which plays
a very important role in dengue transmission and in the life cycle of the mosquitos that
transmit dengue virus. For example, it is well known that the mosquito must have certain
meteorological conditions to survive and reproduce [5,6]. Herein, we aim to characterize
relationships between dengue cases and meteorological variables such as temperature, hu-
midity, and precipitation by considering the 2019 outbreak of dengue in multiple provinces
of the Dominican Republic. It is important to study not only the impact of climate variables
on dengue transmission, but also lags between dengue cases and these variables because
there are inherent lags in the dengue transmission process that arise from the mosquito life
cycle. To that end, we also explore the relevance of time between meteorological conditions
and reported dengue incidence by studying lags between climate and dengue variables.

By using 2019 dengue case data collected by hospitals in geographically distinct ar-
eas of the Dominican Republic, we implement gamma generalized linear mixed models
(gamma-GLMM) to model relationships between dengue incidence rate and climatic vari-
ables, such as temperature, humidity, and precipitation. We emphasize here that 2019
is an important year in the evolution of dengue in the Dominican Republic and globally
because the highest number of dengue cases ever reported both in the country and globally
was in 2019 [1], and an investigation such as the present one will contribute to a better
understanding of the drivers of this large outbreak.

This paper is organized as follows. First, we review literature of recent research on
dengue. In Section 3, we introduce the response variable and discuss possible explanatory
variables. We analyze the effect of lags between variables by studying correlations between
the response variable and the meteorological variables with delays. Section 4 describes
the gamma-GLMM method implemented for this study. In Section 5, we present two
regression models and their results and discuss implications for modelling the weekly
dengue incidence rate. Finally, in Section 6, we present some conclusions and directions for
future work.

2. Literature Overview
2.1. Disease Transmission

Dengue virus is transmitted to humans by female mosquitoes, mainly of the species
Aedes aegypti and Aedes albopictus. There are four strains of the dengue virus, and people
can be infected with the virus more than once [7]. Infection in humans begins when an
infectious female mosquito bites a human and injects dengue virus from one strain into
the blood of the human host. Then the dengue virus develops and causes symptomatic or
asymptomatic infection in humans. Symptoms of the disease can range from mild forms
such as sudden fever, severe headache, nausea, vomiting, myalgia, and skin erythema,
to more severe forms including dengue hemorrhagic fever and dengue shock syndrome.
Severe dengue can cause death due to plasma leakage, fluid accumulation, severe bleeding,
and respiratory failure [1].

On average, dengue infection persists for approximately 2 weeks [8]. The infected
person has permanent immunity to the strain of dengue virus that caused the illness and
temporary immunity to the other three strains. It should be noted that, in many cases,
a second infection with a different strain of dengue virus can lead to a more virulent
form of the disease [9]. Dengue virus transmission depends on four factors: the presence
of the virus, the human host, the mosquito vector, and the suitability of environmental
conditions [10]. With regard to environmental conditions, the transmission of the dengue
virus is influenced by several factors, such as temperature, precipitation, relative humidity,
and rapid urbanization [1].
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2.2. Disease Control

To date, there are no effective antiviral therapies and the only treatment is to control
the symptoms with medication. Vaccination is a measure of reduced effectiveness because
currently there is only one licensed dengue vaccine which has several limitations. In partic-
ular, it can only be administered to people between 9 and 45 years old who have already
been infected with one of the dengue viruses [1,11]. Vector control is the only available
strategy against dengue.To this end, it is possible to implement measures including the use
of insecticides and educational campaigns. Although insecticides have been effective in
controlling dengue, increasing trends in mosquito-borne diseases may indicate an increase
in insecticide resistance or ineffectiveness in controlling dengue transmission. Therefore, it
is of great importance to understand mechanisms of resistance and the susceptibility of
the mosquitoes to insecticides in order to develop more effective Aedes mosquito-control
methods [12]. Educational campaigns are of great importance in preventing and controlling
the spread of dengue. It is very important that the population recognize the symptoms
of dengue, to be aware of the importance of having medical treatment in case of severe
dengue, and to know how to control populations of the Aedes mosquito. In [13] the authors
concluded that the population of Sri Lanka in 2019 has better awareness of dengue preven-
tion compared to awareness of dengue mortality and dengue management. This study on
knowledge, attitudes, and practices regarding dengue fever identified as a weak point the
patient awareness of the patient’s role in the management of dengue and identification of
warning signs that precede hospitalization. If dengue hemorrhagic fever is detected early,
the mortality is 2–5% but is can increase to 20% if there is no immediate treatment.

2.3. Dengue Modelling

Simulation models are useful for understanding the drivers and spread of dengue and
for helping to understand the efficacy of potential control methods. Many simulation model
studies use dynamical models based on ordinary differential equations [14–16]. However,
in general, these models do not describe the effects that arise from delays between drivers
and reported cases. There are inherent delays in the dengue transmission cycle that arise
from the mosquito life cycle, the incubation period of the pathogen in the mosquito, and the
incubation period of the pathogen in humans. Delay differential equations can model
delayed effects because these models take into account not only the present time but
also the past. For instance, in [10], the authors developed a model involving delayed
(deterministic) differential equations that predicts locations of mosquito occurrence with
a high accuracy, and the model realistically replicates mosquito population dynamics.
The model depends on environmental drivers (temperature, precipitation, photoperiod,
latitude, day of year) and human population density, and was tested with data from the
Aedes albopictus mosquito, the most common dengue vector in Asia. By using this model,
the authors analyzed the risk of dengue transmission in mainland China and concluded that
temperature plays a key role in dengue outbreaks. Based on a dengue virus transmission
model with maturation delay for mosquito production and seasonality, in [17] it is also
found that the temperature change causes periodic oscillations of dengue fever cases.

Other usual approaches in the literature to investigate relationships between climatic
factors and dengue incidence are based on regression models where overdispersion, which
is often observed in dengue datasets, is taken into consideration. For instance, applying
negative binomial regression models with climatic, spatial, cyclical and seasonal features
as explanatory variables, ref. [18] found that precipitation, air pressure and climatic season
significantly affected dengue transmission in Sri Lanka during the study period (2017–2019).
In [18], all the variables were calculated with zero lags. In [19] a generalized additive model
also considering a negative binomial distribution for the dengue cases (but adjusted for
seasonality) was built by using climatic features with lags of 0–10 weeks and correlations
were determined via Spearman’s coefficient test. The model revealed that the relative
humidity (with a lag of 1 week), minimum temperature (with a lag of 10 weeks) and wind
(with a lag of 4 weeks) are associated with dengue cases in Asunción, Paraguay. These
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authors, however, did not evaluate the fitting of the proposed model to their data. In [20],
generalized linear mixed models are fitted to the number of dengue cases and allow for
specific effects for different data groupings. Concretely, negative binomial regression mod-
els, with random effects related to the localization (city), the time period (year), and their
interaction (city:year) are constructed to describe the associations between the dengue
cases reported in 20 cities in the Brazilian state of Goiás. Spearman’s correlation test is
also used to identify which lags in climate factors are more correlated with cases. The au-
thors conclude that weekly precipitation, minimum temperature, maximum temperature,
and relative humidity are positively associated with dengue cases, with lags of 10,10,10,
and 6 weeks, respectively.

Another way to analyse dengue data is based on stochastic models. For instance,
in [21], discrete time–space stochastic SIR-SI models (susceptible-infective-recovered for
human populations; susceptible-infective for vector populations) were adapted from their
deterministic analogs in order to estimate the relative risk for dengue disease mapping in
Malaysian states during the years 2008–2009. The authors concluded that all the states have
similar patterns of expected relative risk for all epidemiological weeks.

Concerning the modelling of dengue datasets from the Dominican Republic, we
highlight [22] where a generalized linear model was fitted to the cumulative reported
cases for each outbreak between 2012 and 2018. In that work, the authors concluded that
emerging dengue outbreaks were robust to climatological and spatiotemporal conditions,
indicating that constant surveillance is necessary to prevent future outbreaks. In addition,
they showed that reported dengue cases occurred mainly in the 0–15 year age group,
indicating that the older age groups had higher levels of immunity. However, the effect of
a time delay is not considered in this study.

In this work, we study the dependence of the dengue incidence rate in the Dominican
Republic in 2019 on delayed meteorological characteristics (temperature, rainfall, and hu-
midity) by using gamma regression models with a normal random effects structure. The
random effect is determined by geographical area (namely, the provinces) which means,
in a broader sense, the modelling is conditioned to the geographical conditions of each
considered area. To account for delays in transmission of dengue that arise from timing
the mosquito life cycle that may be climate-dependent, we analyze relationships between
dengue case data and independent meteorological variables at different times (consider-
ing lag time). For the selection of the lags, cross-correlation analysis (conditional to each
province) and simple gamma regressions (one for each meteorological variable and lag)
will be discussed and used to identify significant lag periods which will then be included
in the final multiple regression model.

3. Material
3.1. Geographical Area and Period of Time

This study focuses on dengue cases reported in 2019 in the Dominican Republic when
a total of 20,230 dengue cases were reported corresponding to 195.3 cases per 100,000 in-
habitants. The Dominican Republic is a Caribbean country on the eastern two-thirds of
the Island of Hispaniola. Divided into 31 provinces plus one autonomous district (Distrito
Nacional, to which we refer hereafter as one of the provinces for simplicity), the coun-
try’s estimated population in 2019 was over 10.3 million people, with the metropolitan
area of Santo Domingo comprising 32% of the total population [23]. The country largely
experiences a tropical climate for most of the regions.

Epidemiological surveillance data for dengue and weather records were reported
during 2019 for each of the 32 provinces; however, due to the lack of completeness of
the data available to us, this study focuses only on eight provinces for which the total
percentage of missing values was very low: Barahona, Distrito Nacional, La Romana,
Monte Cristi, Puerto Plata, Samaná, Santiago, and Santo Domingo (see provinces labeled in
Figure 1).
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Figure 1. Dengue incidence per 100,000 inhabitants, in Dominican Republic in 2019. We include
labels for the eight provinces included in this study.

3.2. Dependent Variable

The observed number of dengue cases officially diagnosed in hospitals of the Domini-
can Republic during 2019, is the dependent variable used for modelling the weekly dengue
incidence rate. The data were recorded weekly and were aggregated by province. We let
yij be the number of cases in province i (i = 1, . . . , 8) reported in epidemiological week j
(j = 1, · · · , 52).

We compute five descriptive summary statistics: minimum (Min), maximum (Max),
mean, standard deviation (Std.Dev), and coefficient of variation (in percentage, C.Var(%))
for the eight provinces in the study (Table 1). Throughout 2019, dengue incidence per
week was, on average, highest in Santo Domingo and lowest in Samaná. Barahona had the
least variability in relation to its mean comparatively among the eight provinces. For three
of eight provinces, namely Barahona, Distrito Nacional, and Santo Domingo, there were
dengue cases reported every week of the year.

Table 1. Summary statistics for dengue cases by province and by week in 2019 along with calculations
of the annual dengue incidence rate (aDIR) and estimates of population size (Population).

Barahona Distrito La Romana Monte Puerto Samana Santiago Santo
Nacional Cristi Plata Domingo

Min 4 5 0 0 0 0 0 17
Max 46 89 42 15 21 7 132 287
Mean 16.6 32.9 8.0 5.7 6.7 1.6 43.4 117.7
Std.Dev 10.9 23.7 9.9 4.9 6.4 1.7 40.3 90.2
C.Var(%) 65.9 72.0 123.5 86.4 94.6 106.7 92.89 76.6
aDIR 456.2 163.9 153.0 250.8 104.7 72.2 216.1 210.7
Population 189,149 1,036,494 270,166 116,605 332,386 111,217 1,038,044 2,855,892

Std.Dev, standard deviation; C.Var(%), standard deviation/mean × 100% (coefficient of variation); Population,
total number of inhabitants.

Because the eight provinces vary greatly in population size, the total number of
diagnosed dengue cases yij does not always give enough information about the severity of
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transmission, so we calculate the total weekly incidence per 100,000 people. We calculate
the incidence rate in week j in province i as

yij/ni × 100,000, (1)

where ni denotes the total number of inhabitants in province i. This variable will be used
in our analyses in Section 4. Additionally, we analyse the annual dengue incidence rate per
100,000 inhabitants, aDIRi, for each province i:

aDIRi = ∑
j

yij/ni × 100,000. (2)

We include the annual dengue incidence rate per 100,000 inhabitants in Table 1 for
each province studied. Additionally, Figure 1 shows the annual dengue incidence rate
per 100,000 inhabitants for all 32 provinces of the Dominican Republic. Although we only
have reliable meteorological data from eight provinces, it can be seen in Figure 1 that
these provinces are representative of all geographic regions of the country (in the figure,
provinces with name labels in the figure are those included in this study). Spatially, it is
possible to observe that the disease was spread across the country. Barahona exhibited
the highest value of aDIR (≈456 cases per 100,000 inhabitants) followed by Monte Cristi
(≈251 cases per 100,000 inhabitants), which is the second-largest province by population
among the eight provinces. Two provinces in the north and north east, Samaná and Puerto
Plata exhibited the lowest values of aDIR, with Samaná having the lowest aDIR of fewer
than 73 cases per 100,000 inhabitants.

3.3. Independent Variables

In this study, meteorological conditions such as temperature, rainfall, and humid-
ity are the factors considered to influence dengue incidence. Environmental data were
obtained from the Oficina Nacional de Meteorologia (ONAMET), Dominican Republic,
and supplemented with data from the National Aeronautics and Space Administration
(NASA), of the United States of America, when some data were missing. The data include
daily information on temperature (Temp; minimum, average, and maximum), precipitation
(Precip; cumulative and average), relative humidity (RH; average) and daily temperature
range (DTR; minimum, average, and maximum), in a total of nine variables.

3.3.1. Preliminary Analysis

For each province and meteorological variable, daily data were aggregated into the
52 epidemiological weeks of 2019, giving the corresponding statistical measure per week.
For instance, Temp.min is the weekly minimum of daily minimum temperatures and
Temp.avg is the average temperature of the week calculated from the mean of the daily
average temperatures.

For the 24 provinces not included in this study, there were missing values for many
weeks (14 or more) for some independent variables. For the eight remaining provinces and
the nine meteorological independent variables over the 70 weeks (=the last 18 weeks of
2018 + the 52 weeks of 2019) considered in a preliminary analysis, only about 0.7% of values
were missing. Interpolations of those values were then executed by using the average of
the values observed in the week before and after the occurrence of each missing value.
Then, statistical measures for all the nine independent variables with respect to 2019 were
calculated by province and are displayed in Table 2.

As shown in Table 2, average, maximum, and minimum temperature measurements
across provinces were mostly similar. The exceptions are Monte Cristi and La Romana
which both presented very low minimum values for the weekly minimum temperatures
(Temp.min). For Monte Cristi, we also observed the largest coefficients of variation for
both weekly minimum temperatures and maximum temperatures with C.Var(%) values of
20% and 12%, respectively. For DTR, Monte Cristi was the province whose measurements
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deviated the most from the others, with low average, maximum, and minimum DTR values
and higher C.Var(%) values.

Table 2. Summary statistics for weekly meteorological variables across the eight provinces in 2019.

Barahona Distrito La Romana Monte Puerto Samaná Santiago Santo
Variables Statistics Nacional Cristi Plata Domingo

Temp.avg

Min 24.94 26.06 22.90 20.34 24.21 24.69 23.40 26.06
Max 29.88 30.42 28.54 26.87 29.85 29.84 29.25 30.42
Mean 27.44 28.30 26.26 24.51 27.25 27.61 26.69 28.30
Std.Dev 1.34 1.33 1.48 1.48 1.76 1.36 1.69 1.33
C.Var(%) 4.87 4.70 5.65 6.05 6.47 4.93 6.33 4.70

Temp.max

Min 30.60 31.00 30.50 23.00 30.20 29.50 30.20 31.00
Max 35.80 37.00 35.80 35.90 37.70 35.00 37.40 37.00
Mean 32.83 33.82 32.97 27.34 33.83 32.80 33.80 33.82
Std.Dev 1.29 1.66 1.39 3.30 2.18 1.53 1.71 1.66
C.Var(%) 3.92 4.91 4.20 12.06 6.43 4.67 5.07 4.91

Temp.min

Min 18.00 20.10 0.00 2.20 15.60 14.00 15.00 20.10
Max 25.00 26.00 23.20 25.00 23.60 25.00 22.00 26.00
Mean 21.68 22.90 19.08 21.40 20.86 22.11 19.17 22.90
Std.Dev 1.71 1.49 3.50 4.18 1.94 2.16 2.08 1.49
C.Var(%) 7.88 6.53 18.35 19.55 9.31 9.77 10.87 6.53

DTR.avg

Min 5.99 6.94 8.99 0.00 8.54 5.26 8.76 6.94
Max 11.30 10.50 14.10 10.20 12.57 10.39 15.47 10.50
Mean 8.72 8.47 11.09 2.29 10.31 8.18 11.98 8.47
Std.Dev 1.15 0.88 1.15 3.99 0.85 1.07 1.18 0.88
C.Var(%) 13.20 10.43 10.33 174.08 8.21 13.13 9.81 10.43

DTR.max

Min 7.10 7.50 10.20 0.00 10.10 6.50 10.80 7.50
Max 12.70 12.60 32.20 13.30 18.10 18.00 18.60 12.60
Mean 10.44 9.96 13.18 2.97 12.25 9.90 13.91 9.96
Std.Dev 1.29 1.04 3.00 4.98 1.40 1.84 1.58 1.04
C.Var(%) 12.39 10.45 22.78 167.78 11.41 18.61 11.34 10.45

DTR.min

Min 3.50 3.60 4.10 0.00 5.00 -4.00 5.40 3.60
Max 9.60 9.70 12.20 9.50 11.20 8.80 13.80 9.70
Mean 6.82 6.97 8.99 1.55 8.50 6.67 9.77 6.97
Std.Dev 1.41 1.03 1.53 3.04 1.20 1.85 1.82 1.03
C.Var(%) 20.69 14.80 16.98 196.30 14.07 27.77 18.62 14.80

Precip.avg

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 14.23 11.97 21.44 15.36 21.29 21.14 20.03 11.97
Mean 2.19 2.23 3.10 1.09 2.56 4.42 2.48 2.23
Std.Dev 3.27 2.81 .57 2.39 3.98 4.29 3.95 2.81
C.Var(%) 149.05 125.98 147.80 219.66 155.78 97.06 159.05 125.98

Precip.total

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 99.60 83.80 150.10 107.50 149.00 148.00 140.20 83.80
Mean 15.00 13.73 20.98 7.63 17.63 30.69 16.94 13.73
Std.Dev 22.65 18.23 31.32 16.86 27.76 29.84 27.48 18.23
C.Var(%) 151.07 132.75 149.30 221.04 157.39 97.25 162.22 132.75

RH.avg

Min 64.23 72.56 76.29 60.66 75.44 77.03 69.66 72.56
Max 83.10 84.06 90.20 77.56 90.46 89.43 88.83 84.06
Mean 72.51 78.57 82.59 69.34 81.76 83.20 79.84 78.57
Std.Dev 4.12 2.56 3.32 3.69 3.91 2.67 4.06 2.56
C.Var(%) 5.69 3.26 4.02 5.33 4.78 3.21 5.08 3.26

Temp. avg., average of daily temperature observed during a week. Similar extension for the other variables:
Precip., precipitation; RH, relative humidity; DTR, daily temperature range. C. Var(%), standard deviation/
mean × 100% (coefficient of variation).

Although all eight provinces experienced weeks without rain in 2019, the maximum
and average values of precipitation in 2019 tend to vary greatly among provinces. Precip-
itation is perhaps the factor that differs most among provinces of all the meteorological
variables, with very high C.Var(%) values for both average and total weekly precipitation.
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Most of the provinces present a coefficient of variation higher than 100% for both measure-
ments with the only exception being Samaná province. Concerning the relative humidity,
the weekly averages and variability therein were similar across all provinces.

3.3.2. Spearman’s Rank Correlation in Lags

Because dengue infection relies on transmission by a mosquito vector, which in turn,
along with the virus, experiences a life cycle regulated by meteorological conditions, it is
important to study the time between meteorological conditions and reported cases. We
consider here lags between environmental data and dengue cases. In this analysis, we
include meteorological data from September 2018–December 2019 in order to consider
potential impacts of weather conditions in late 2018 on transmission in early 2019.

We calculate Spearman’s rank correlation coefficients between each one of the nine
meteorological variables indicated in Table 2 and the weekly dengue incidence rate with
time lags of 0–18 weeks, globally (by aggregating the eight provinces: ∑i yij/ni × 100,000)
and locally (by province, given by (Equation (1))). For the local analyses, because there are
eight simultaneous null hypotheses for each pair lag-variable in test, the Holm procedure for
multiple testing correction was applied to control the family-wise error rate at level 0.05. We
show correlation coefficients for each lag for each province in Figures 2–4. In these figures,
solid dots and plus points correspond to statistically significant correlations with adjusted
p-values < 0.05 and p-values < 0.05, respectively, with nongray colour corresponding to
each of the provinces, and gray colour corresponding to the global observations.
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Figure 2. Spearman’s rank correlation coefficient between the dengue incidence rate (1) and the
minimum temperature (top left), the maximum temperature (top right) and the average temperature
(bottom center) by week at lag 0–18 weeks.
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Figure 3. Spearman’s rank correlation coefficient between the dengue incidence rate (1) and the
minimum DTR (top left), the maximum DTR (top right) and the average DTR (bottom center) by
week at lag 0–18 weeks.

These graphs show that the effect of time lag of meteorological variables on dengue
incidence rate is varied among the eight provinces. For temperature variables, almost
all provinces had significant positively correlated lags between dengue incidence rate
and minimum, maximum, and average temperatures for many of the 19 time points
we considered. Notably, Monte Cristi and Barahona were the only two provinces in
which temperature variables were significantly negatively correlated with temperature.
Correlation of lags with daily temperature range were much more mixed, with some
provinces having negative correlations with lags in the same week that others had positive
correlations in lags. However, in general, correlations in lags between dengue incidence
rate and DTR were negative for most weeks studied. Regarding precipitation, very few lags
were significantly correlated with dengue incidence. In fact, there are only two provinces
where precipitation with lags less than 18 weeks was positively correlated with dengue
cases: Samaná taking lag = 2 and Santiago taking lag = 8. Correlations in lags between
dengue incidence rate and relative humidity exhibited a downward trend as the length of
the lag increased: in general, correlations in smaller lags with average relative humidity
were positive while correlations in larger lags were negative and often significantly so. This
could be indicative of seasonal fluctuations in relative humidity.

Moreover, when we compared lags at the global level with those of provinces, we saw
that correlations between climate variables, particularly temperature and DTR measure-
ments, and dengue incidence rate in some provinces differed from the global correlations
in direction and trends with increasing lag time. This potential province-specific lag effect
introduces more complexity in the modelling of dengue incidence because global trends in
meteorological variables may not be useful for predicting dengue at a local level, suggesting



Axioms 2023, 12, 150 10 of 22

that the inclusion of lags in variables for each province may be necessary to understand
and predict dengue transmission at the province level.

To avoid increasing complexity, a singular lag per independent variable was outlined
for the present work. Hence, a lag selection criterion was first established based on a
positive lower lag for which there are significant associations between the independent
variable, and each dependent variable for the largest number of provinces and, at the same
time, preferably, for the global level. Inspecting again Figures 2–4, some lag values might
visually be suggested for each climatic variable. Concretely, in Figure 2, it is observed
that statistically significant associations of dengue incidence with (weekly) minimum and
average temperature are only found simultaneously for all the eight provinces and globally
when lag is equal to 1 and 2 weeks, respectively. However, for the remaining climatic
variables, the selection of a lag value following that criterion for the eight provinces and at
the global level simultaneously is more difficult. In this sense, to avoid subjectivity, further
on, in Section 4, a more objective lag-selection criterion will be established.
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Figure 4. Spearman’s rank correlation coefficient between the dengue incidence rate (1) and the
cumulative precipitation (top left), the average precipitation (top right) and the average relative
humidity (bottom center) by week at lag 0–18 weeks.

4. Method

For analyzing the effect of the meteorological variables on dengue incidence rate
that follows a gamma distribution, gamma regressions defined by generalized linear
models with fixed effects (gamma-GLM) or mixed effects (gamma-GLMM) can be adequate.
Although both types of models have been applied in many studies, the latter has the
advantage of being able to model clustered data structures and then incorporate within-
group variability.
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4.1. Gamma Distribution

The gamma distribution is a probability distribution for a positive continuous random
variable Y with density function given by

f (y; k, θ) =
1

Γ(k)θk yk−1 exp(−y/θ) , y > 0 ,

where k and θ are the shape parameter and the scale parameter of the distribution of
Y, respectively, and Γ(k) is the gamma function evaluated at k. For lower values of k,
the density function is right-skewed.

The expected value µ and the variance value σ2 of Y are related to the shape and scale
parameters in the following way:

µ = kθ and σ2 = µθ.

4.2. Gamma Regression

Let
{
(xj1, · · · , xjp, Yj) , j = 1, 2, · · · , n

}
be a random sample defined by n independent

random variables Yj, j = 1, 2, · · · , n, such that Yj|(xj1, · · · , xjp) follows a gamma distribu-
tion, and consequently, its mean depends on p explanatory variables (xj1, · · · , xjp), i.e.,

µj = E
(
Yj|xj1, · · · , xjp

)
, j = 1, · · · , n.

In a generalized linear model with gamma responses (gamma-GLM), each mean µj is
described as a function of the p covariates using the link log on a linear predictor in the
following form,

log(µj) = β0 + β1xj1 + · · ·+ βpxjp, j = 1, · · · , n , (3)

where [β0 · · · βp] is a vector of p + 1 unknown parameters. Because the log function is
invertible, then the Gamma-GLM provides a multiplicative model to the arithmetic mean:

µj = exp
(

β0 + β1xj1 + · · ·+ βpxjp
)

.

The generalized linear mixed model with gamma responses (gamma-GLMM) is an
extension of the gamma-GLM in which random effects are added to the fixed-effect pa-
rameters β0, β1, · · · , βp in the linear predictor (3). This class of regression models is useful
when there is a grouping structure of k object clusters in the set of the n data points. In such
conditions, the response variable Y(i)

j corresponds to the jth observation into the ith group

with values of the independent variables x(i)j1 , · · · , x(i)jp . Denoting b(i) = [b(i)1 · · · b(i)q ] a
vector of q random effects, which are specific to the group i, the conditional response
Y(i)

j |(xj1, · · · , xjp, b(i)) follows a gamma distribution with expected value µij satisfying:

log(µij) = β
(i)
0 + β

(i)
1 x(i)j1 + · · ·+ β

(i)
p x(i)jp + b(i)1 z(i)1 + · · ·+ b(i)q z(i)q (4)

for j = 1, · · · , ni , i = 1, · · · , k, where ∑i ni = n, the variables z(i)1 , z(i)2 , · · · , z(i)q depend on
the independent variables and define the specific random effect for the ith predefined object
cluster, and the vector of random effects b(i) is assumed to follow a q-multivariate normal
distribution N(0, Σb), where Σb is a positive definite covariance matrix independent of the
cluster i.

In this work, the modelling of the dengue incidence rate in terms of the environmental
variables is analyzed assuming the eight provinces as k = 8 clusters in the dataset and
random effect models with q = 1 and z(i)1 = 1 in (4), and, consequently, Σb = σ2 > 0.
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Therefore, generalized regression models with gamma responses and a specific Y-intercept
for each level of the random effects were fitted to the following models:

log(µij) = β
(i)
0 + β

(i)
1 x(i)j1 + · · ·+ β

(i)
p x(i)jp + b(i), j = 1, · · · , 52 , i = 1, · · · , 8 . (5)

The beta parameter β
(i)
k , for k = 1, · · · , p, can be interpreted by comparing the ex-

pected value of incidence rate µij at week j in the province i with that obtained when
the independent xk increases a unit and the remaining ones are not changed. In fact,
from (Equation (5)) we have

µij when x(i)jk + 1

µij when x(i)jk

= exp(β
(i)
k ), j = 1, · · · , 52 , i = 1, · · · , 8 . (6)

Hence, these beta parameters correspond to the logarithm of the rate ratio. Therefore,
if exp(β

(i)
k ) > 1, it is expected that the dengue incidence rate, at kth epidemiological week

in the province i, increases (exp(β
(i)
1 )− 1)× 100% for each one-unit increase in the inde-

pendent variable x(i)jk . Otherwise, if exp(β
(i)
1 ) < 1, it is expected that the dengue incidence

rate, at kth epidemiological week in the province i, decreases (1− exp(β
(i)
k )) × 100% for

each one-unit increase in the independent variable x(i)jk .

4.3. Gamma Fitting for the Dependent Variable

The dengue incidence rate (Equation (1)) is a continuous variable limited to the interval
[0,+∞). It is asymmetrically distributed due to the greater presence of lower values. Given
the presence of zero, the rate (Equation (1)) was (artificially) rescaled to guarantee strict
positive outcomes and, consequently, a more suitable fitting of a gamma distribution.
Then, an auxiliary constant equal to 0.5 was added to the numerator of (1) resulting in the
adjusted rate

y∗ij =
yij + 0.5

ni
× 100,000 (7)

for the jth week and province i.
This strategy of adding an amount of 0.5 becomes relevant whenever there are no

weekly records of dengue (a similar approach was also reported in other nonnormal
regression models (e.g., [24]). We note that we considered alternative constants (such as
0.0001, 0.1, and 1), but numerical experiments showed that 0.5 provides good results in
terms of convergence in the estimation process of the gamma-GLMM regression.

4.4. Lag Selection of the Independent Variables

Because certain climatic conditions can favor the development of the mosquito and
virus, and consequently, dengue transmission at a later time, effects of meteorological
conditions on dengue infections were analyzed with lags. From the cross-correlation
analysis of lags of 0–18 weeks performed in Section 3.3.2, it was observed that there was
no clear identification of which delay week for each meteorological variable is the most
important to dengue incidence rate. Thus, a more objective lag selection procedure was
then established.

Concretely, the effect of each independent meteorological variable, with lags from 0 up
to 5 weeks, on the adjusted incidence rate (Equation (7)) were then separately examined by
using (simple) gamma-GLMM models with a single independent variable (i.e., model (5)
with p = 1). The period until 5 weeks in lags is justified, as it is a biologically plausible
period of time that includes the combined time for Ae. aegypti egg hatching and larval
development to adult mosquitoes. So, an exhaustive study with lags until 5 weeks seems
to provide an adequate choice from a practical point of view.
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Thus, for each meteorological variable, six simple models (simple in that there is
only one independent variable and the random intercept) were considered: one for each
lag-week. The lag-weeks that led to significant association (p-value < 0.05) to the adjusted
incidence rate (Equation (7)) were identified so they could be present in the final multiple
model. To determine the best lag-week of each meteorological variable, four different
selection criteria were then established as follows. Three criteria are based on the Akaike
Information Criterion (AIC). Because all the models have the same number of parameters,
comparing AIC is equivalent to comparing deviance (i.e., −2 log (likelihood function)).
For each meteorological variable, the best lag-week was defined among the simple models
with significant independent variables as

- Criterion I: the first week (0 ≤ weeks ≤ 5) where a local minimum value of AIC
occurred;

- Criterion II: the shortest delay (1 ≤ weeks ≤ 5) where a local minimum value of AIC
occurred;

- Criterion III: the delay (1 ≤ weeks ≤ 5) where the global minimum value of AIC
occurred;

- Criterion IV: the shortest delay (1 ≤ weeks ≤ 5) where a significant association was
first achieved.

In Table 3, the best lag is identified for each independent variable, in accordance
with each Criterion I-IV. For RH avg., there is no significant association with the adjusted
incidence rate (7), with the lowest p-value of 0.1891 calculated for a lag of 5 weeks (data
not shown). For the variable DTR.min and for both rainfall variables, Precip.total and Pre-
cip.avg, the same lag was identified by all criteria: five and two delayed weeks, respectively.
For the other five meteorological variables, the four criteria are not consensual about the
lag set selection for the independent variables.

Table 3. Selection of the best lag-week based on the criteria I-IV for each independent variable.

Criterion I Criterion II Criterion III Criterion IV
Best Lag AIC Best Lag AIC Best Lag AIC Best Lag p-Value

Temp.avg 2 1767.1 ** 2 1767.1 ** 5 1750.2 ** 0 0.0000
Temp.max 2 1847.6 ** 2 1847.6 ** 4 1846.7 ** 0 0.0000
Temp.min 0 1876.1 ** 2 1869.6 ** 5 1869.3 ** 0 0.0000
DTR.avg 5 1921.5 ** 5 1921.5 ** 5 1921.5 ** 2 0.0420
DTR.max 3 1923.6 ** 3 1923.6 ** 5 1922.1 ** 2 0.0192
DTR.min 5 1925.4 * 5 1925.4 * 5 1925.4 * 5 0.0119
Precip.avg 2 1925.1 * 2 1925.1 * 2 1925.1 * 2 0.0137
Precip.total 2 1925.6 * 2 1925.6 * 2 1925.6 * 2 0.0178
RH.avg — — — —

*: 0.01 ≤ p-value < 0.05; **: p-value < 0.01.

4.5. Selection of the Final Gamma-GLMMs

Given that the four criteria I-IV suggest that the lags 0, 2, 4, and 5 could be assigned
to the different temperature variables and the lags 2, 3, and 5 could be assigned to the
variables DTR.avg and DTR.max, multiple regression models combining these lags for the
(meteorological) independent variables were constructed. One of the two precipitation
variable, either Precip.average or Precip.total, was also included in the constructed models.
Both precipitation variables are not simultaneously considered in the same model. For both,
lag = 2 was selected in accordance with the four criteria (Table 3). The remaining variables,
DTR.min and RH.avg, were also included in the models and with lag equal to 5 and 2,
respectively, in accordance with the four criteria. An exhaustive comparative analysis of the
constructed multiple regression models was performed to find the best multiple gamma-
GLMM (Equation (5)) for estimating the adjusted incidence rate (Equation (7)). Normal
and independent random intercepts b(i), i = 1, · · · , 8 (defined by the eight provinces) were
assumed for all the constructed models. The best-fitting final model was identified by the
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lowest AIC. At the end, two multiple gamma-GLMMs, both incorporating only intercept
random effects determined by provinces, were established.

4.6. Validation of the Gamma-GLMMs

For checking the fitting of the gamma distribution to the observed values of the
adjusted rates (7), a QQ-plot and the test based on the ratio V of two variance estimators
proposed in [25] were used. For analyzing the fitting of the two final gamma GLMMs
to the data, the behavior of the deviance residuals of the fitted models was examined:
(i) the existence of residual patterns, globally and by province, was visually evaluated
using adequate residual plots; and (ii) the normality of the deviance residuals was assessed
by using QQ-plot and the Shapiro–Wilks test. To assess how well the two final gamma
GLMMs performs on each province, a 95% confidence interval of the weekly average of
the adjusted dengue incidence rate estimated from these two developed final models was
constructed by province and verified whether the provinces contain the correspondent
weekly average observed from the data.

4.7. Software

All the statistical analyses were performed in the R statistical environment (R Core
Team, 2020) by using the package EnvStats [26] for construction of gamma QQ-plot,
the package goft [27] for goodness-of-fit test of the gamma distribution with unknown
shape and scale parameters [25], and the package lme4 [28] for modelling of the data by
gamma-GLMMs with normal random intercept. The maps of the Dominican Republic was
constructed by using QGIS software.

5. Results
5.1. Selected Models

Based on the lags suggested by Criterion I-IV (Section 4.5), twelve multiple gamma-
GLMMs for estimating the adjusted incidence rate (Equation (7)) in terms of meteorological
regressors were constructed: models M01-M12 with lags of meteorological variables as
indicated in Table 4. For the construction of these models, we considered the variable
Precip.avg as the precipitation regressor. For six of these models, the process of estimating
the parameters was not convergent (i.e., the iteration process in the optimizer via the
R-function glmer was stopped without an optimum value for the objective function) as
noted in the last column in Table 4. Among the remaining six models, the lowest AIC was
achieved by the model M12, which employs as explanatory variables the weekly average
and minimum temperatures and average DTR with a lag of 5 weeks, the weekly maximum
temperature with a lag of 4 weeks, and the average weekly precipitation with a lag of
2 weeks. M12 also included the maximum and minimum DTR with a lag of 5 weeks,
but these variables were not significant to predictions.

In fact, the variable DTR.max was not a significant predictor in any of the previous
models, so it was removed, and we replicated the procedure as before. With DTR.max
removed, a total of eight models were developed, M13-M20 as indicated in Table 4.
Among the convergent models, the lowest AIC was achieved to the model M20, which
included all of the same predictors as M12 excepting DTR.max.

For both models, M12 and M20, the same set of independent variables was obtained
as statistically significant: Temp.avg, Temp.max, Temp.min, DTR.avg, DTR.min and Pre-
cip.avg with lag equals to 5, 4, 5, 5, 5, and 2 weeks, respectively. Finally, because the variable
DTR.min (with lag = 5 weeks) is not statistically significantly in the model, it was removed
at this stage to obtain the final model (M21 in Table 4) which reached a slightly lower AIC
value than the previous ones.

In this final model, temperature and DTR variables have larger lags. Therefore, this
model could represent a long-term alarm based on both temperature and DTR conditions.
Therefore, it will be called a longer-term model. Given this result, we aimed to next answer
the question: could these same variables predict adjusted dengue incidence rate in a shorter
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time? Consequently, an extra model (M22 in Table 4), called a shorter-term model, with all
these variables with a delay of 2 weeks was analyzed. All variables with a delay of 2 weeks
were significant predictors; however, the AIC for M22 was not lower than that of M21,
indicating that it is not a better model overall.

Table 4. Lag for the meteorological regressors in 22 multiple gamma-GLMMs constructed for fitting
the dengue incidence rate. Statistical significance of the regressors are identified.

Temperature DTR Precipitation
Model avg. max. min. avg. max. min. avg. AIC

M01 0 0 0 2 2 5 2 nc
M02 0 0 0 5 3 5 2 1806.5

(0.0003) (0.0659)
M03 0 0 0 5 5 5 2 nc
M04 2 2 0 2 2 5 2 1738.9

(<0.0001) (0.0905) (0.0174) (0.0744) (<0.0001)
M05 2 2 0 5 3 5 2 1729.5

(<0.0001) (0.0309) (0.0021) (<0.0001)
M06 2 2 0 5 5 5 2 nc
M07 2 2 2 2 2 5 2 nc
M08 2 2 2 5 3 5 2 1728.1

(0.0026) (<0.0001)
M09 2 2 2 5 5 5 2 1728.6

(<0.0001) (0.0038) (0.0950) (<0.0001)
M10 5 4 5 2 2 5 2 nc
M11 5 4 5 5 3 5 2 nc
M12 5 4 5 5 5 5 2 1699.3

(<0.0001) (0.0006) (0.0153) (0.0076) (0.0296)

M13 0 0 0 2 – 5 2 1804.8
(0.0002) (0.0086) (0.0001)

M14 0 0 0 5 – 5 2 1804.8
(0.0002) (0.0086) (0.0001)

M15 2 2 0 2 – 5 2 nc
M16 2 2 0 5 – 5 2 1728.6

(<0.0001) (0.0523) (<0.0001) (<0.0001)
M17 2 2 2 2 – 5 2 nc
M18 2 2 2 5 – 5 2 1727.2

(<0.0001) (<0.0001) (<0.0001)
M19 5 4 5 2 – 5 2 nc
M20 5 4 5 5 – 5 2 1697.3

(<0.0001) (0.0006) (0.0120) (<0.0001) (0.0250)

M21 5 4 5 5 – – 2 1695.5
(<0.0001) (0.0004) (0.0120) (<0.0001) (0.0258)

M22 2 2 2 2 – – 2 1736.8
(<0.0001) (0.1260) (<0.0001) (<0.00005) (0.0258)

The p-value is indicated in parentheses; nc means the optimization routine was non-convergent.

We note that the procedure described above was replicated substituting the variable
Precip.avg by Precip.total as a precipitation regressor. Under this condition, more noncon-
vergent models emerged, and slightly higher values of AIC were in general produced for
the convergent homologous models (data not shown). We also note that when the random
intercepts b(i) are not included in the multiple model (5) (i.e., where the approach GLM
is used for modelling of the adjusted dengue incidence rate (Equation (7)), substantially
higher values of AIC would be obtained for the correspondent GLMs, namely AIC = 1923.7
and AIC = 1936.8) for the fitted longer-term model and shorter-term model, respectively,
justifying the modelling of the dengue data set by GLMM than by GLM.

As indicated in Table 4, in the longer-term model (M21), the weekly dengue incidence
rate is described in of terms the average and the minimum values of the temperature both
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delayed by 5 weeks (Temp.avg5 and Temp.min5), the maximum value of the temperature
delayed by 4 weeks (Temp.max4), and the average value of precipitation delayed by
2 weeks (Precip.avg2). In the shorter-term model (M22), the weekly dengue incidence rate
is described by effects of those five meteorological features all with a delay of 2 weeks
(Temp.avg2, Temp.max2, Temp.min2, DTR.avg2, and Precip.avg2).

Formally, these two models are defined as follows,

log(µij) = β0 + β1Temp.avg5j + β2Temp.max4j + β3Temp.min5j + β4DTR.avg5j + β5Precip.avg2j + Province(i)

and

log(µij) = β0 + β1Temp.avg2j + β2Temp.max2j + β3Temp.min2j + β4DTR.avg2j + β5Precip.avg2j + Province(i)

respectively, for each province i = 1, · · · , 8, and meteorological conditions summarized
in epidemiological week j = 1, · · · , 52 of 2019. The variable Province(i) is assumed to be
normally distributed with zero mean and constant variance σ2

i in the estimation process
of the regressor coefficients in each model and represents the random effect specific (Y-
intercept) to the ith province.

5.2. Validation

The histogram and the QQ-plot presented in Figure 5 suggest that the empirical right-
skewed distribution of the adjusted rates (Equation (7)) for the set of the eight provinces
is close to a gamma distribution (with µ ≈ 4.29 and σ ≈ 4.09). There was no signifi-
cant evidence that a gamma distribution did not provide an adequate fit (V = 0.51294,
p-value = 0.7168).
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Figure 5. Histogram and gamma QQ-plot for the adjusted dengue incidence rate.

In Figure 6, for both models, it is observed that almost all of the deviance residuals
vary between −2 and 2 and there is a higher spread of points for higher observed values
of the incidence rate (7). When the observed incidence rate is close to zero, there are
many negative residuals suggesting that both models tend to predict higher incidence
rates than the observed rates. For higher observed values (e.g., for weekly incidence rate
between approximately 6 and 15 per 100,000 inhabitants), both the smoothed average
curves (red lines in the graphs) tend to increase, indicating that the values predicted by
both models will be lower than the observed. Nevertheless, for situations with the highest
incidence rates, the fitted curve is closer to zero in the shorter-term model. This suggests
that meteorological conditions of temperature, DTR and precipitation of 2 weeks earlier
tend to provide better predictions for dengue incidence when outbreaks are larger than
than those predictions using longer delays.
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Figure 6. Deviance residuals versus observed values of the longer-term model (on the left) and the
shorter-term model (on the right) with smooth loess curve (in red).

In Figure 7, the comparative boxplots of the deviance residuals for the eight provinces
show that (i) the deviance residuals only exceeds the interval [−2, 2] in Santiago, and only
slightly; (ii) there are outliers, suggesting that there are a few weeks when the model
estimates of the incidence rates could be atypical (in Distrito Nacional, Puerta Plata and
Santiago); and (iii) the variability in two provinces, Santo Domingo and Distrito Nacional,
seems to be lower than in other provinces. Although these results indicate the models do
not always predict the true incidence rates in some weeks and some provinces, both the
models fit relatively well to the data.
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Figure 7. Comparative boxplots for deviance residuals across the eight provinces.

In Figure 8, the good alignment of the points with the diagonal line in both the QQ-
plots suggests a normal distribution to the deviance residuals for both models. From the
Shapiro–Wilks test, there was no significant evidence that the distributions of deviance
residuals of both models were nonnormal (p-value = 0.818 for longer-term model and
p-value = 0.136 for the shorter-term model).
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Figure 8. QQ-plots for the deviance residual related to the longer-term model (on the left) and the
shorter-term model (on the right).

5.3. Interpretation

The estimates of the fixed effects and the effect variance of the two fitted models
are displayed in Table 5. Only a single covariate coefficient (Temp.max2 for the shorter-
term model) was not statistically significantly different from zero at a 5% significance
level. Therefore, associations between each significant meteorological variable and the
dengue incidence rate for the eight provinces of Dominican Republic can be then described
assuming that the remaining variables are fixed. Variations in the daily average temperature
(Temp.avg) have the greatest effect on the dependent variable (dengue incidence rate)
with an increase of 1 ◦C leading to an increase in the dengue incidence rate by 52.4%
(exp(0.4212) = 1.5238) 2 weeks later and 44.4% (exp(0.3674) = 1.4440) 5 weeks later.
Although the same increase of the maximum temperature (Temp.max) increases the dengue
incidence rate by 3.5% (exp(0.0341) = 1.0347) 2 weeks later and 13% (exp(0.1218) =
1.1295) 4 weeks later, the minimum temperature (Temp.min) reduces the rate of reported
cases by 5.0% (exp(−0.0510) = 0.9503) 2 weeks later and 6.0% (exp(−0.0618) = 0.9401)
5 weeks later. If the average daily temperature range (DTR.avg) is 1 ◦C higher, then a
decrease of 18.3% (exp(−0.2025) = 0.8167) and 11.5% (exp(−0.1224) = 0.8848) in dengue
incidence rate is observed 5 and 2 weeks later, respectively. A 1-mm increase in the weekly
average precipitation (Precip.avg) triggers an increase in the dengue incidence rate of 2.0%
(exp(0.0210) = 1.0212) and 4.5% (exp(0.0436) = 1.0446) 2 weeks later for the longer-term
and shorter-term models, respectively.

Table 5. Parameter estimates of two fitted gamma-GLMMs for modelling the adjusted incidence
dengue rate.

Longer-Term Model Shorter-Term Model
Parameter Lag Beta Std. Error p-Value Lag Beta Std. Error p-Value

(Intercept) −9.7579 0.7087 0.0000 −9.3166 0.7250 0.0000
Temp.avg 5 0.3674 0.0526 0.0000 2 0.4212 0.0676 0.0000
Temp.max 4 0.1218 0.0343 0.0004 2 0.0341 0.0476 0.4743
Temp.min 5 −0.0618 0.0247 0.0122 2 −0.0510 0.0247 0.0388
DTR.avg 5 −0.2025 0.0249 0.0000 2 −0.1224 0.0296 0.0000
Precip.avg 2 0.0210 0.0094 0.0258 2 0.0436 0.0101 0.0000

The variances of the random effects, σ2
province, were estimated to be equal to 0.2363

and 0.2764 for the longer-term and shorter-term models, respectively. This result indicates
slightly lower variability among the eight provinces for the Y-intercept of the fitted model
when the meteorological variables are considered with more delays.
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In Table 6, we show the observed adjusted dengue incidence rate along with 95%
confidence intervals in the weekly average adjusted dengue incidence rate estimated by
using both longer-term and shorter-term models across the eight provinces under study.
The observed values fall within the estimated 95% confidence interval in all cases except for
in Barahona for the longer-term model. Consequently, the longer-term model overestimates
the dengue incidence rate in Barahona.

Table 6. Weekly average of the observed value and 95% confidence intervals (CI) for the weekly
average of the estimated value from the two fitted gamma-GLMMs across the 52 weeks of 2019 for
the adjusted dengue incidence rate for each province.

Longer-Term Model Shorter-Term Model
Provinces Lower CI Upper CI Observed Lower CI Upper CI Observed

Barahona 9.377 13.160 9.038 8.549 11.732 9.038
Distrito Nacional 2.767 3.826 3.221 2.685 3.597 3.221
La Romana 2.257 3.193 3.153 2.289 3.177 3.153
Monte Cristi 4.788 6.356 5.278 4.473 5.869 5.278
Puerto Plata 1.726 2.472 2.117 1.788 2.518 2.170
Samaná 1.709 2.333 1.850 1.837 2.459 1.850
Santiago 3.160 4.504 4.233 3.764 5.406 4.233
Santo Domingo 3.357 4.642 4.140 3.274 4.386 4.140

In Table 7, estimates of the random effects are presented. Comparing longer-term
and shorter-term models, we observe very similar negative estimates of random intercepts
between models among four provinces: Santo Domingos, Puerto Plata, Districto Nacional
and Samaná. This indicates that, based on meteorological variables with shorter and longer
delays, with lags as described in Table 5 for both models, lower expected values for the
adjusted dengue incidence rate are predicted for these four provinces, with Samaná pre-
senting the lowest one. Among the other four provinces, which have positive estimates,
similar values between the two models are only observed for Santiago’s province. The high-
est estimate of the random intercept of the longer-term model occurs for the province of
Barahona and for the shorter-term model the highest estimate occurs for Monte Cristi.
Therefore, although the adjusted dengue incidence rate based on 2 week-lag meteorological
variables is expected to be higher in Monte Cristi, meteorological variables with a longer
delay, with lags as indicated in the longer-term model will lead to a higher estimated rate
in Barahona.

Table 7. Estimated intercept random effects for each of the eight provinces for the two fitted gamma-
GLMMs.

Random Effects
Provinces Longer-Term Model Shorter-Term Model

Barahona 0.977 0.873
Distrito Nacional −0.648 −0.646
La Romana 0.240 0.136
Monte Cristi 0.747 0.908
Puerto Plata −0.550 −0.535
Samaná −0.841 −0.851
Santiago 0.536 0.567
Santo Domingo −0.454 −0.448

6. Conclusions

Dengue outbreaks are a consequence of complex interactions among multiple fac-
tors. In particular, dengue disease depends on the development of mosquitoes through
a four-stage life cycle that is heavily influenced by environmental conditions [29]. This
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implies that the current number of cases can be influenced by past conditions that impact
the mosquito life cycle. By using consistent methods for fitting gamma-GLMM models, we
have analysed the effect of meteorological conditions with lags on the incidence of dengue
conditioned to the human population density of eight provinces of the Dominican Republic.
We defined two relationships in terms of province-specific effects and different statistics
for meteorological variables related to temperature (average, maximum, minimum), daily
temperature range (average), and precipitation (average) to explain the dengue incidence
rate. Although one model provides estimates of dengue incidence by using meteorological
variables in the short term (2 weeks), the other describes dengue incidence in terms of mete-
orological conditions reported after passage of more time. Our results showed a significant
effect from temperatures with delay of 2, 4, and 5 weeks, from daily temperature range
with delay of 2 and 5 weeks and from precipitation with delay of 2 weeks. Additionally,
variations in average temperature (Temp.avg) have the greatest effect on dengue cases.
These results are in agreement with similar studies that found significant risk of dengue
when considering lags in climate variables of 2–5 weeks [3,4]. Our findings provide a better
understanding of the relationships between meteorological conditions and weekly trends
in dengue cases during the outbreak that occurred in the Dominican Republic in 2019.

Different geographical and spatial locations may have local effects that lead to different
dengue models. We note that the focus of this work is on the effects of meteorological
variables and the modelling of the dengue cases is conditioned to the population size of each
province. But other influencers of dengue transmission are likely. We included province-
specific random effects to account for some of the variability that could be produced by
these influencers. In particular, geographical and sociopolitical features of each province
could play a role in dengue transmission; however, these features are not considered
as independent variables in this study. Analysing the variances of random effects, it is
possible to conclude that among the eight provinces studied there is lower variability.
But the distribution of values for random effects (Table 7) suggest that it is important to
question whether other factors could be considered to improve model predictions. Our
results highlight that dengue prediction models developed at local scales are important
to understanding the risk of dengue because conditions at a higher level (such as at the
national level), may not be useful for predicting dengue cases that have high heterogeneity
driven by different geographic, climatic, sociodemographic, or other factors.

The analysis of the deviance residuals shows that, overall, both the models fit relatively
well to the data. A normal distribution is fitted to the deviance residuals; however, there
is a variability of the incidence rate within the provinces which suggest that both models
might be improved by the addition of more random effects. The diagnostic model showed
that there is variability in the incidence rate between provinces. Using the same lag for
all provinces could not be the best choice; instead, it is important to investigate whether
the selected lags in the meteorological variables are province-specific. For this reason,
further studies are needed to develop a better understanding of variability in dengue
incidence rates.

The lack of reliable data for a long period of time was a limitation of this work. There is
a lack of long-term spatiotemporal and climate data for dengue incidence in the Dominican
Republic. In spite of having data for 32 provinces, we only had reliable data for eight
of them. Even considering eight provinces, it was necessary to supplement climate data
collected in the Dominican Republic with data collected from other sources (NASA) to
reduce missing values in the database. For future works, complete climate data from other
provinces in the Dominican Republic is necessary. Having data from more provinces would
allow us to assess how well the two final models perform in other provinces. Moreover,
having data from more provinces and years could allow us to establish a better final model
by using another strategies like cross-validation by splitting the data into two sets: a
training data set for model-selection and a testing data set for inference. In order to develop
better models aimed at understanding the intensification of dengue transmission in the
Dominican Republic and to develop reliable warning systems for predicting future dengue
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incidence, it is important to gather more long-term data and to build robust systems for
continuous collection of this data.

This research contributes to developing a better understanding of the dynamics of
dengue and their relationship with climatological variables in the Dominican Republic,
a tropical country where, despite minor differences in climate across the country, dengue
incidence can vary greatly. This paper has practical implications for preparing vector
control and public health departments by providing potential warning indicators for
dengue outbreaks, which will in turn contribute to the development of comprehensive
dengue management programs.
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