MULTIPLICATIVE OPERATIONS IN $B P^{*} B P$

Douglas C. Ravenel

One of the present computational difficulties in complex cobordism theory is the lack of a known algebra splitting of $B P * B P$, the algebra of stable cohomology operations for the Brown-Peterson cohomology theory, analogous to the splitting isomorphism

$$
M U^{*} M U \approx M U^{*}(p t) \otimes S
$$

where S is the Landweber-Novikov algebra. S has the added advantage of being a cocommutative Hopf algebra over Z.

This paper does not remove this difficulty, but we will show that the monoid of multiplicative operations in $B P * B P$, (i.e. those operations which induce ring endomorphisms on $B P^{*} X$ for any space X, which we will denote by $\Gamma(B P)$, has a submonoid analogous to the monoid of multiplicative operations in S.

The latter monoid is known (see Morava [3]) to be isomorphic to the group of formal power series $f(x)$ over Z such that $f(0)=0$ and $f^{\prime}(0)=1$ and where the group operation is composition of power series.

For the basic properties of $M U^{*} M U$ and $B P^{*} B P$, see Adams [1], especially $\S \S 11$ and 16.

The main construction of this paper was inspired by the work of Honda ([3]) although none of his results are needed here. I am grateful to Jack Morava for bringing Honda's work to my attention.

Before stating our main result we must review the description of $\Gamma(B P)$ implicit in [1] § 16. An operation $\alpha \in \Gamma(B P)$ is characterized by its action on the canonical generator $z \in B P^{*}\left(C P^{\infty}\right) \cong \pi_{*} B P[[z]]$. It is shown that $\alpha(z)$ is a power series $f(z)$ over $\pi_{*} B P$ where

$$
\begin{equation*}
f^{-1}(z)=z+{ }_{\mu} t_{1} z^{p}+{ }_{\mu} t_{2} z^{p^{2}}+{ }_{\mu} t_{3} z^{p^{3}}+{ }_{\mu} \cdots \tag{1}
\end{equation*}
$$

where $+_{\mu}$ denotes the sum in the formal group defined over $\pi_{*} B P$ and $t_{i} \in \pi_{*} B P$. (This formula appears on page 96 of [1].)

The action of α on $\pi_{*} B P$ can be read off from (1). Let $l_{n} \in$ $\pi_{2 p^{n-2}} B P \otimes Q$ be defined by $\log ^{B P} x=\sum_{n=0} l_{n} x^{p n}\left(l_{n}\right.$ is the $m_{p^{n-1}}$ of [1]). Then we have

$$
\begin{equation*}
\alpha\left(l_{n}\right)=\sum_{0 \leq i \leq n} l_{n} t_{n-i}^{p^{i}} \tag{2}
\end{equation*}
$$

and this formula also characterizes α.
In other words $\Gamma(B P)$ is an infinite dimensional affine space over
$\pi_{*} B P$ with coordinates t_{i} with a composition law which can be read off from (2). The difficulty mentioned above is that the subset of elements with integer coordinates is not a submonoid.

The main object of this paper is to construct new coordinates s_{i} of $\Gamma(B P)$ such that the subset of elements with coordinates in Q_{p} (the set of rational numbers with denominators prime to p) is a submonoid which will be denoted by $\gamma(B P)$. Moreover this submonoid is isomorphic to a direct product of countably many copies of Q_{p}, although this isomorphism is somewhat accidental in a sense to be described below. The s_{i} are not unique as they depend upon a choice of generators of $\pi_{*} B P$. What's worse, they are not algebraic functions of the t_{i}, so they do not lead to a splitting of $B P^{*} B P$.

Let $\left\{v_{j} \in \pi_{*} B P\right\}$ be a set of generators. Define a ring endomorphism σ of $\pi_{*} B P$ by $v_{j}^{\sigma}=v_{j}^{p}$, extending σ linearly over all of $\pi_{*} B P$. Then our main result is

Theorem. For every sequence of coordinates $\left\{t_{n} \in \pi_{*} B P\right\}$ there exists $\left\{s_{n} \in \pi_{*} B P\right\}$ such that

$$
\begin{equation*}
\sum_{0 \leqq i \leqq n} l_{i} t_{n \rightarrow i}^{p^{i}}=\sum_{0 \leqq i \leqq n} l_{i} s_{n-i}^{o i} \tag{3}
\end{equation*}
$$

for every $n>0$, and for every $\left\{s_{n}\right\}$ there exist $\left\{t_{n}\right\}$ satisfying the same conditions.

Corollary. Let $\alpha^{\prime}, \alpha^{\prime \prime} \in \Gamma(B P)$ have coordinates $s_{n}^{\prime}, s_{n}^{\prime \prime} \in Q_{p}$ respectively. Then the coordinates $s_{n}^{\prime \prime \prime}$ of $\alpha^{\prime \prime \prime}=\alpha^{\prime} \cdot \alpha^{\prime \prime}$ are given by

$$
s_{n}^{\prime \prime \prime}=\sum_{i+j=n} s_{i}^{\prime} s_{j}^{\prime \prime}
$$

i.e. if we define power series $s^{\prime}(x), s^{\prime \prime}(x), s^{\prime \prime \prime}(x)$ by $s^{\prime}(x)=1+\sum_{n>0} s_{n}^{\prime} x^{n}$, etc., then $s^{\prime \prime \prime}(x)=s^{\prime}(x) s^{\prime \prime}(x)$.

The corollary follows from (3) by direct computation, remembering that σ fixes $Q_{p} \subset \pi_{*} B P$.

To prove the theorem we need an analogue of (1) involving the new coordinates s_{n}, and some elementary properties of formal groups beginning with

Lemma A. For every $r \in Q_{p}$ there is a power series $[r](z) \in$ $\pi_{*} B P[[z]]$ such that
(a) $[1](z)=z$
(b) $\left[r^{\prime}\right](z)+{ }_{\mu}\left[r^{\prime \prime}\right](z)=\left[r^{\prime}+r^{\prime \prime}\right](z)$
(c) $\left[r^{\prime}\right]\left(\left[r^{\prime \prime}\right](z)\right)=\left[r^{\prime} r^{\prime \prime}\right](z)$
(d) $[r](z) \equiv r z \operatorname{modulo}\left(z^{2}\right)$.

Proof. If r is a positive integer define $[r](z)$ inductively by $[r](z)=z+{ }_{\mu}[r-1](z)$; the existence of $[-1](z)$ is one of the formal group axioms; and if r is an integer prime to p, define $[1 / r](z)$ to be the formal inverse of $[r](z)$. Then (c) enables us to define $[r](z)$ for any $r \in Q_{p}$.

Now let $\mathbf{M}=\left(m_{1}, m_{2}, m_{3}, \cdots\right)$ be a sequence of nonnegative integers, of which all but a finite number are zero, and let

$$
v^{M}=\prod_{j>0} v_{j}^{m_{j}} \in \pi_{*} B P
$$

Then the v^{M} s form a Q_{p}-basis of $\pi_{*} B P$ and we can write

$$
s_{i}=\sum s_{i, M} v^{M}
$$

with $s_{i, M} \in Q_{p}$ and the sum ranging over all M. With this notation we have

Lemma B. Formula (3) is equivalent to

$$
\begin{equation*}
{ }_{n>0}^{\mu} t_{n} z^{p n}={ }_{n, M}^{\mu}\left[s_{n, M}\right]\left(v^{M} z^{p n}\right) \tag{4}
\end{equation*}
$$

where ${ }^{\mu} \sum$ denotes the formal group sum.
Proof. Multiplying both sides of (3) by $z^{p n}$ and summing over all positive n gives

$$
\sum_{n>0} \log t_{n} z^{p n}=\sum_{n, M} s_{n, M} \log v^{M} z^{p n}
$$

which is equivalent to (4).
Lemma C. For $r \in Q_{p}$, there exist $r_{n} \in \pi_{*} B P$ with $r_{0}=r$ such that for any $u \in B P^{*} C P^{\infty}$

$$
\begin{equation*}
[r](u)={ }^{\mu} \sum_{n \geqq 0} r_{n} u^{p n} \tag{5}
\end{equation*}
$$

Proof. We will first show that there exist $r_{(k)} \in \pi_{*} B P$ such that

$$
\begin{equation*}
[r](u)={ }_{k>0}^{\mu} \boldsymbol{r}_{(k)} u^{k} \tag{6}
\end{equation*}
$$

and then show that $r_{(k)}=0$ unless $k=p^{n}$. The proof of the former statement is by induction on k. Let $r_{(1)}=r$ and suppose we have found $r_{(1)}, r_{(2)}, \cdots, r_{(m)}$ such that

$$
[r](u)={ }^{\mu} \sum_{k=1}^{m} r_{(k)} u^{k} \quad \text { modulo }\left(u^{m+1}\right) .
$$

Then we can take $r_{(m+1)}$ to be the coefficient of u^{m+1} in

$$
[r](u)-\mu \sum_{k=1}^{m} r_{(k)} u^{k}
$$

and the first statement follows. Taking the log of both sides of (6) we have

$$
r \log u=\sum_{k>0} \log r_{(k)} u^{k}
$$

i.e.

$$
r \sum_{n \geq 0} l_{n} u^{p n}=\sum_{\substack{k \geq 0 \\ j \geq 0}} l_{j} r_{k j k}^{p_{k j}^{j}} u^{k^{k j}}
$$

Equating coefficients of u^{i} yields the lemma.
Lemma D. For $a^{\prime}, a^{\prime \prime} \in \pi_{*} B P$, there exist $a_{n} \in \pi_{*} B P$ for $n \geqq 0$ with $a_{0}=a^{\prime}+a^{\prime \prime}$ such that for any $u \in B P^{*} C P^{\infty}$

$$
\begin{equation*}
a^{\prime} u+{ }_{\mu} a^{\prime \prime} u=\sum_{n \geq 0}^{\mu} a_{n} u^{p n} . \tag{7}
\end{equation*}
$$

The proof of Lemma D is similar to that of Lemma C and is left to the reader.

We are now ready to prove the theorem via (4). Given $\left\{t_{n}\right\}$ we will construct $\left\{s_{n}\right\}$ by induction on n, beginning with $s_{1}=t_{1}$. Suppose we have found $s_{1}, s_{2}, \cdots, s_{m}$ such that

$$
\begin{equation*}
\sum_{n>0}^{\mu} t_{n} z^{z^{n}} \equiv \sum_{0<\sum_{n i}^{\mu} m}^{\mu}\left[s_{n, \mu]}\right]\left(v^{\mu n} z^{p n} \quad \operatorname{modulo}\left(z^{1+p n}\right)\right) \tag{8}
\end{equation*}
$$

By repeated application of Lemmas C and D we can find $w_{n} \in \pi_{*} B P$ such that the right hand side of (8) is equal to $\sum_{n>0}^{n} w_{n} z^{z^{n}}$ and we know $w_{n}=t_{n}$ for $n \leqq m$. This allows us to set $s_{m+1}=t_{m+1}-w_{m+1}$, and the first half of the theorem is proved. Similarly if we are given $\left\{s_{n}\right\}$, let $t_{1}=s_{1}$ and suppose we have found t_{n} for $n \leqq m$. Then we can set $t_{m+1}=w_{m+1}+s_{m+1}$, and the theorem is proved.

Now I will describe the sense in which the commutativity of $\gamma(B P)$ is accidental. If this paper were being written for number theorists rather than topologists, we would replace $\pi_{*} B P$ by $\pi_{*} B P \boldsymbol{\otimes}_{Q_{p}}$ $W(k)$, where $W(k)$ is the Witt ring of a finite field k of characteristic p. Lemma A would go through only for $r \in W\left(F_{p}\right)$, the p-adic integers. The ring endomorphism σ when restricted to $W(k)$ would be the lifting of the Frobenius automorphism on k. The corollary (with $s_{n}^{\prime}, s_{n}^{\prime \prime} \in W(k)$) would then read

$$
s_{n}^{\prime \prime \prime}=\sum_{i+j=n} s_{i}^{\prime}\left(s_{j}^{\prime \prime}\right)^{a^{i}}
$$

The resulting group $\gamma_{k}(B P)$ would not be abelian if k has more than p elements.

References

1. J. F. Adams, Quillen's Work on Formal Groups and Complex Cobordism, University of Chicago Lecture Notes, 1970.
2. T. Honda, The theory of commutative formal groups, J. Math. Soc. Japan, 22 (1970), 213-246.
3. J. Morava, Structure Theorems for Cobordism Comodules, (to appear).

Received December 4, 1974. Research partially supported by NSF Grant GP-32843.
Columbia University

