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Abstract

This paper studies estimation of multiplicative, unobserved components

panel data models without imposing the strict exogeneity assumption on the

explanatory variables. The method of moments estimators proposed have

significant robustness properties; they require only a conditional mean

assumption, and apply to models with lagged dependent variables, finite

distributed lag models that allow arbitrary feedback from the explained to

the explanatory variables, and models with contemporaneous endogeneity. The

model can be applied to any nonnegative explained variable, including count

variables, binary variables, and continuously distributed nonnegative

variables. An extension of the basic model applies to certain Euler equation

applications with individual data.





1. Introduction

Textbook treatments of the standard linear unobserved effects model

assume that the explanatory variables are nonrandom. While the assumption of

fixed regressors is mostly harmless in analyzing pure cross section problems,

in models with a time dimension it is operationally the same as assuming

strict exogeneity of the explanatory variables. Importantly, as shown, for

example, in Chamberlain (1984), the usual fixed effects (within) estimator is

inconsistent when the explanatory variables are not strictly exogenous. For

certain applications the strict exogeneity assumption can be quite

restrictive. One case where strict exogeneity cannot hold is when a lagged

dependent variable is included among the regressors, as in the models studied

by Balestra and Nerlove (1966) and Anderson and Hsiao (1982) . But the strict

exogeneity assumption can also be restrictive in static and finite

distributed lag models, as it rules out certain kinds of feedback from the

explained variable to future explanatory variables. Standard fixed effects

estimators in nonlinear panel data models, such as the count models

considered by Hausman, Hall, and Griliches (1984) (HHG) , are also

inconsistent if the explanatory variables are not strictly exogenous; see

Chamberlain (1984) and Wooldridge (1990).

To formalize the discussion, let y , t=l,...,T, denote the variable to

be explained at time t and let z , t=l T, denote a vector of

contemporaneous conditioning variables at time t. Let <j> denote the latent,

time-constant effect. Interest lies in E(y |<£,x ), where the vector of

explanatory variables x consists of elements from (z y
1
,z ..,..., z.. ,y ) ,

with the restriction that the lag lengths appearing in x do not depend on t.

Examples are ^ - y^, x
fc

^ V x
fc

- (yt _rVl' yt-2 •*t-2 ) '
and X

t
"



(z , . . .
,z ) . When interest centers on the conditional mean, the strict

exogeneity assumption (conditional on the latent effect) is stated as

E(y
t
|^,x

1
x
T

) -E(y
t
|rf,x

t
). (1.1)

Equation (1.1) is necessarily false if x contains y .. or other lags of y,

the result mentioned above. Further, (1.1) can easily fail even if x

contains only current and lagged z , i.e. x = (z , ...,z ). Provided

enough lags of z can be included in x to account for all of the distributed

lag dynamics, (1.1) is equivalent to

E(y
t
|0,z

1
,...,z

T
) = E(y

t
|^,z

1
,...z

t
). (1.2)

When all conditional expectations are linear, (1.2) is equivalent to the

Granger noncausality condition

E(zt^' Z
t-l ,yt-l

Z
l' yl )

= E ( z
t
^' Z

t-l
Z
l

} (1 " 3)

(Chamberlain (1982)), so that past y does not help to predict z once the

latent effect and past z's have been controlled for. When the conditional

expectations are nonlinear, neither condition implies the other (Chamberlain

(1982)), but if there is reason to believe that (1.3) fails then one should

also be concerned about the strict exogeneity assumption (1.2).

It is easy to think of cases where (1.3) might fail, especially when z

contains variables that are directly or indirectly affected by the economic

unit under analysis. An example is the Hausman, Hall, and Griliches (1984)

(HHG) patents -R&D application. The vector z contains expenditures on R&D by

a particular firm and y is patents applied for or awarded to the firm in

year t. Condition (1.3) requires that firms do not adjust future R&D

expenditures based on the number of patents awarded in previous years. This

condition could easily fail, depending on the underlying model of firm



behavior

.

A second example appears in Rose (1990) , who uses panel data to examine

the effects of financial variables -- in particular, measures of

profitability --on airline accident counts. For this application, condition

(1.3) requires that the accident rate today does not affect current or

subsequent profitability, an assumption that could be false. . It is important

to see that, when fixed effects techniques are used, lagging variables that

are suspected of being contemporaneously endogenous , such as measures of

profitability, does not solve the endogeneity problem. This is because (1.1)

requires that all future values of explanatory variable be uncorrelated with

the implicit error at time t. For example, if x contains profit variables

dated at time t-1, then x .. contains these variables dated at time t, and

these must be uncorrelated with the error at time t (and the errors at all

other time periods) for standard fixed effects estimators to be consistent.

One important consequence of this discussion is that fixed- effects type

estimators, which allow arbitrary dependence between the unobserved effect <j>

and the explanatory variables (x.. x ) , are not necessarily more robust

than their non fixed-effects counterparts. For example, in an additive,

linear context, consistency of the usual OLS estimator using the pooled data

relies on the assumption

E(*|x
t

) = E(*), t=l,...,T, (1.4)

but does not require (1.1). As a result, a significant difference between

the pooled OLS estimator and the fixed effects estimator can be due to

violations of (1.4) or (1.1). The fixed effects estimator is not more robust

than pooled OLS, unless one takes (1.1) as a maintained assumption. Similar

statements apply in nonlinear contexts.



For the case of linear models, Holtz-Eakin, Newey, and Rosen (1988)

(HNR) have recently offered a general approach to consistently estimating

linear unobserved effects models without the strict exogeneity assumption.

HNR focus on vector autoregressions , but their approach can be used whenever

x is not strictly exogeneous, provided that the errors are unpredictable

given at least some lagged variables of observable variables. HNR's

instrumental variables method consists of first differencing to remove the

unobserved effect, and then selecting instruments that can be used in the

first differenced equations.

This paper offers estimation methods for nonlinear, multiplicative

unobserved effects models without the strict exogeneity assumption. In an

earlier paper (Wooldridge (1990)) I showed how to obtain consistent and

asymptotically normal estimators in multiplicative models when the strict

exogeneity assumption is maintained but without distributional assumptions

(see Chamberlain (1990) for another approach to this problem). Here, I show

how to relax the strict exogeneity assumption, thereby allowing for arbitrary

feedback from the explained to future explanatory variables. In addition,

the model is expanded to allow nonlinear transformations of the endogenous

variables which depend on unknown parameters , so that these methods can be

applied to estimating Euler equations with unobserved effects using

individual data.

Section 2 introduces the basic model and the assumptions, and offers a

differencing- like transformation that can be used to construct orthogonality

conditions in the observable data. Generalized method of moments estimation

of the model is covered in section 3. Several examples of the basic

framework are provided in section 4. The model is extended in section 5 to

allow for nonlinear transformations of the explained variables that depend on



unknown parameters. Section 6 contains concluding remarks.

2. A Multiplicative Unobserved Effects Model without Strict Exogeneity

Let { (y. ,x. ,</>. ) :i=l,2, . . . } be a sequence of i.i.d. random variables
,

where y. = (y. ..,...,y)' is an observable Txl vector of nonnegative

variables, x. = (x'. , ,x'.„ x'. „)' is a TxK matrix of observable explanatory
l ll i2 lT r J

variables (x is lxK, t=l T) , and </>. is a nonnegative unobservable

random scalar. The explanatory variables x can contain lags of y or

current and lagged values of some conditioning variables, say z . Thus, a

finite distributed lag (DL) model would take x. (z z. _) ,
while a

it it l , t-Q

simple first-order dynamic model model would take x. = (z. ,y. - ) . For

simplicitly, the number of lags showing up in x is assumed not to depend on

t; hence the assumption that x. is lxK for all t. Note that x. can containr it it

a set of time dummies that are constant across i. For notational simplicity,

the time index appearing in the model starts at t = 1, which should be

interpreted as the first time period for which a full set of explanatory

variables is available. No restrictions are imposed on the distribution of

<f> . given the observed explanatory variables x. -,..., x. .

The basic model studied in this paper can be expressed as

y. = ^.m(x._,/3 )u. , t=l,...,T, (2.1)y it i it "o it

where B is a Pxl vector of unknown parameters, /x(x. ,B) > for all x and

all (3 is a known function, and u. is an unobserved multiplicative error.

Note that y can be a binary variable, a count variable, or a nonnegative

continuous variable. The most popular form for ju is ^(x . ,/3) = exp(x . B)
,

but there is no need to use this particular functional form. A more flexible

form is p(x . ,6) = exp[x . (p)S], where x. (p) denotes a vector of transformed



explanatory variables, such as Box-Cox transformed variables. Depending on

the form of /i, not all of the elements of x need be time -varying; this is

discussed further in section 3. Section 5 extends (2.1) to the case where

y. is replaced by the scalar transformation r(y. ,A ), where y. can now be
•'it

F J J lt o 'it

a vector and A is a vector of unknown parameters.

In Wooldridge (1990) I analyzed (2.1) under the strict exogeneity

assumption

%
E(u

it |^i
,x

il
,...,x

iT
) = 1, t=l T, (2.2)

which is equivalent to assuming E(y U.,x.-, . . . ,x. ) = E(y
it l^i' xit )

=

4>.fi(x. ,f) ). (Note that, because <j> . has an unrestricted mean, the assumption

that E(u. ) = 1 is without loss of generality.) As stated in the

introduction, (2.2) rules out lagged dependent variables in x and, more

generally, certain forms of feedback from y to x. , r > t. Under (2.1) and

(2.2), it is possible to consistently estimate /9 , as shown by Chamberlain

(1990) and Wooldridge (1990). One simple consistent estimator, regardless of

the actual distribution of y. conditional on <j> . and x. , is the fixed effectsy it l l

Poisson or multinomial quasi-conditional maximum likelihood estimator (QCMLE)

(Wooldridge (1990)). Unfortunately, this estimator is no longer guaranteed

to be consistent if (2.2) fails.

Instead of (2.2), consider the weaker condition

E(u.
t |^

i
,x

il
,...,x

it
) = 1, t=l T, (2.3)

which is equivalent to

E(y.
t
|^,x

il
,...,x

it ) = V (xit'V-
2

(2 - 4)

Condition (2.3) is perhaps not as weak as one would like; in particular, it

presumes a kind of correct dynamic specification. This is not very

restrictive for autoregressive , distributed lag, and other dynamic models



because one usually assumes that enough lags are included in x. so that

(2.3) holds (although the truncation effect in finite distributed lag models

can be problematical). Condition (2.3) is most restrictive for static models

where x. = z.^ and one does not care about distributed lag dynamics. Some
it it o J

of the discussion focuses on (2.3), but below I offer some weaker

assumptions. At a minimum, (2.3) allows feedback from y. to x, , r > t, soy it ir

it is much more applicable than (2.2). It essentially corresponds to the

linear counterpart used by HNR, except that here x might not include lagged

dependent variables

.

The primary problem addressed in this paper is estimation of /3 under

(2.1) and (2.3). As mentioned above, the methods of Chamberlain (1990) and

Wooldridge (1990) no longer produce consistent estimators. The differencing

method proposed by HNR does not work in the multiplicative case.

Nevertheless, there is a transformation that leads to orthogonality

conditions that can be exploited in estimation. To state these, define

Mit (0)
- M(*it ,j8) and

r
lt </» - ylt/Mlt

(/J) -^.tVl.t-lO"' « T. (2.5)

Note that r. (/?) depends only on the observed data and the parameter vector /9

through the known function /i(x .,/?). From (2.1), r. (/? ) can be expressed as

*-AP ) = tf.u. - <j>.u. . = 0.(u. - u. ,) (2.6)it^o' *i it *i i,t-l *i v it i.t-l'

This representation leads to a simple but useful lemma.

LEMMA 2.1: Under (2.1) and (2.3),

E[r
it ( /

3
o )|^ i

,x
il

,...,x
i)t: _ 1

]
= 0, t=2 T. (2.7)

PROOF: From (2.6), it is enough to show that



)},

E[
*i

(u
it - "l.t-l^I^il x

i,t-l ]
=

-

But this expectation equals

*i v it |VV il' ' i,t-l / ^ i,t-l lvV il' ' i,t-l

= 4>
L
a - 1)

=

by (2.3) and the law of iterated expectations. B

Lemma 2.1 immediately provides orthogonality conditions that can be used

to estimate 8 under standard identification assumptions. Let w. be a lxL^
'o r it t

vector of functions of x., , . . . ,x. .. , t=2 T. Then, from Lemma 2.1 and
il i,t-l

finite moment assumptions,

E[w'
it

r
it (/3

o
)] = 0, t=2 T; (2.8)

for B * B , E[w'. r. (0)] * in general. Note that the list of available

instruments generally grows with t under (2.3).

From Lemma 2.1 it is clear that (2.3) can be relaxed to some degree.

More generally, it is useful to view w as a function of some subset of

(x.- x. n ) , say v. , such that
il l, t-1 J it

E(u
it

|*.,v.
t

) = Etu.^l*.^) = 1. (2.9)

For example, if in (2.1) x. contains some endogenous elements that are

correlated with u. , then v. would exclude the endogenous elements of
it it °

x. This causes no problems provided v. is rich enough to identify B .

As is usual in nonlinear contexts, the requirements for formally identifying

B are modest. Some additional examples are given in section 4.

Sometimes there are elements of x. that can be maintained as being

strictly exogenous. In this case, all leads and lags of strictly exogenous



variables can be included in v. .

it

3 . Method of Moments Estimation

The orthogonality conditions <2.8) can be used to obtain a variety of

method of moments estimators. In what follows, assume that the lxL vector
A

of instruments w. is obtained as
it

;
it = s t

(v
it ,;N ), t=2 '-- T

'

where g is a known, continuously differentiable function of 7, v satisfies
A

(2.9), and 7 is a Gxl vector estimator of some nuisance parameters. A

regularity condition used in the subsequent analysis is

/N(-
N 7 ) = o

p
(i) (3.1)

t a* G
for some 7 € IR . This allows for the case where 7 is an initial

A

/N- cons is tent estimator of /? , as well as when 7 estimates parameters
A

outside of the model (2.1). It is also useful to note that 7 can be an

initial inconsistent estimator of j3 , such as the multinomial QCMLE when the

strict exogeneity assumption fails

.

Define the (T-l)xl vector r^/3) = (r
±2 (P) r^fi))' . Let L - L

2
+ L

3

+ ... +1^. £nd define a (T-l)xL matrix of instruments as

(3.2)

W
i2

• •

A
A A

w. = w.(7
N ) -

v.. • •

i3

A

lT

Under (2.1) and (2.9),

E[w.( 7 )'r
i

(/9
o
)] = 0. (3.3)

Thus, as usual, /3 can be estimated by setting the Lxl vector



N"
1

I W.^03)
i=l

as close as possible to zero. Given the choice of instruments, the minimum
A

chi square estimator /3 is obtained by solving

r N
mm

ft
1-1 1 1

r ii a

Xv.r.GS) Q' 1
Zw'r.(^)

N
1=1

l l
(3.4)

where the LxL symmetric, positive definite matrix fl is a consistent estimator

of

Q* = E[w.(7*)'r.()9 )r.(/3 )'w.(7*)]
1 l o l o 1

(3.5)

In many cases 7 = B , so if -y„ is a /N- consistent estimator of B , then Q. T-' 'o N o N

can be taken to be

A N A A A A

fi« N"
1

X w.(7XT)'r.(7„)r.( 7„)'w.(7„)N .^. i
wN i

wN /
i
wN' l 'N

1=1
(3.6)

The asymptotic variance of the minimum chi -square estimator is obtained from

Hansen (1982). Let V r.(£) denote the (T-l)xP derivative of r

.

(B) with

respect to 8, with rows given by the lxP vectors

Vit^ = -iyit/[Mlt </j>] >ylt (/»> (3.7)

+ iyi.t-i/^i,t-i<«i }Vi.t-i (/,)
'

t=2 T -

Here, V p (B) is the lxP derivative of y..AB). The asymptotic variance of

St St — i a — i St

/N(0 - 8 ) is (R '0 " R )"
, where R is the LxP matrix

R* = E[w ( 7*)'V r (fl )]
i p l o

(3.8)

A A A
1- ^-1

The asymptotic variance of /3 is estimated by (Rj[Aj Rx,) /N, where

1=1
(3.9)

When 7 = 8 , so that 7 is an initial /N-consistent estimator of 8 , it

10



is straightforward to obtain a one-step estimator which is first-order

equivalent to the corresponding minimum chi- square estimator. Generally,
A

given a /N-consistent estimator /3 of $ , the one-step estimator /3 is given

by

N

% =
^n

+ (HPsV
1
*

1

?> v (3 - 10)

i=l

where s. = R^Ji w'.r. is a Pxl vector and all quantities on the right hand

side are evaluated at fl„T .

N

For the general minimum chi -square estimator that uses L > P

nonredundant orthogonality conditions, a test of (2.1) and (2.9) is easily

obtained from the GMM overidentification statistic, given by

N

N
-l

i=l

r N
I v'.r.dL) Q' 1

yw'.r.(/3„)
^, 1 l ^IST N .

Zj
, l 1 N

i=l
(3.11)

under (2.1), (2.9), and standard regularity conditions, (3.11) has a limiting

2 __

y distribution. This statistic can detect misspecified functional form as

well as instruments that are not appropriately orthogonal to u. .

For models where x. contains no lags of y. or no contemporaneous

endogenous elements, one might want to estimate the model under the strict

exogeneity assumption. As mentioned above, a simple, consistent estimator is

given by the multinomial quasi-conditional MLE. Given this estimator, it is

straightforward to test the strict exogeneity assumption by constructing

additional orthogonality conditions and computing a specification test; see

Wooldridge (1990) for details. Alternatively, one can include functions of

x . .
.
,x in w above and compute the minimum chi-square test statistic.

Of course, this test cannot distinguish between a misspecified functional

form and violation of the strict exogeneity assumption.

Before turning to some examples, I should briefly discuss identification

11



.of B . Although identification in these contexts is frequently taken on

faith, it is sometimes easy to show that B is not identified. One important

case where identification fails is when x. contains some time-constant
it

variables and u(x. ./3) = exp(x. B) . Partition x. as (x. i; x._), where x.
it r it it ltl i2 i2

is a lxK„ vector of time constant variables. Then, for any B„

,

r
it<"or'

5
2

) " ^i
eXP[ Xi2 (^o2 * ^ (u

it - "i.t-l*'

so that

E[r
it (^ol^2

)l^,vit ] =0,

whenever v. contains x.„, which is usually the case. Thus, as in the case
it i2 J

of strictly exogenous explanatory variables , coefficients on the

time-constant regressors cannot be identified. The term exp(x.~/3
9 ) is

simply absorbed in <j> . . This does not mean that time constant variables can

never be included in the analysis; it depends on the functional form for

n(x. ,B) . For example, interaction terms between time-varying and time

constant variables can be included in an exponential model.

4 . Examples

This section covers some specific choices of instruments in models that

might arise in practice. The question of efficient estimation is difficult

enough under the strict exogeneity assumption (see Chamberlain (1990)), and

relaxing the strict exogeneity assumption introduces further difficulties

.

Thus, we restrict ourselves to estimators that cannot be expected to achieve

efficiency bounds. Recall, however, that the minimum chi- square estimator is

efficient for the given choice of instruments.

12



EXAMPLE 4.1: Let /i(x . ,B) = exp(x B) (or, more generally, exp[^>(x. )$] for

a known lxP function $(x. )). Assume that (2.3) holds. Then a consistent
A

estimator of 5 is obtained simply by choosing w. = w. =
'o J J ° it it

A

(l,x. ...... ,x. .. ) , t=2,..,T, and 0„ I . Given this consistent estimator,
il l, t-1 N L
A

say 7 , a more efficient estimator is obtained by setting

A A A

w
it

s (1 -
x
ii ^.t-r^'VN^ir-'^^.t-iV^ (4 - 1}

t=2 T

and
A IN A A A A

0„ = N"
1
Y w'.r.(7„)r.(7„)'w. . (4.2)
1=1

(Or, x. can be replaced by 0(x. ) .
) After obtaining the minimum chi-square

A

estimator B , the test statistic (3.11) can be used to test the validity of

(2.1) and (2.3).

EXAMPLE 4.2: A special case of Example 4.1 is a simple distributed lag model

for count data, as in HHG: x. = (z. , . . . ,z. „) . The estimator obtained
it v it' ' i,t-Q y

requires only E(y. |<£.,z ,z.,) = E(y. \<f>.,z z. _) =m j ^it'^i' it' ' il y w it l¥ i' it' ' i,t-Q/

^.exp(x. B ). Neither distributional assumptions nor the strict exogeneity

assumption (1.2) are needed.

EXAMPLE 4.3: A nonlinear, first order model is also a special case of

Example 4.1. Let fi^x^.B) = exp[tf(x
it

)j8] = expto^r^
t _ ±

) + z
± t _ 1

«
Q

] ,

where r(y. . ) is a known function of lagged y. . This is analogous to the

linear vector autoregressions covered by HNR, under the assumption

E(yit^i'yi ,t-i'
z
i,t-i'yi,t-2'

z
i,t-2'---'yii'

z
ii )

= E (yit i^>yi>t .r z
i>t -i)-

Note that v
lt

- (y^,^ ylit>2
.«
1>t _ 2

>. t-2,...,T.

13



EXAMPLE 4.4: Models with contemporaneous endogeneity can also be estimated

in this framework. Consider a static model where x. = (z. , ,z. „)

:

it ltl it2

y.
t
= ^

1
exp(«

lt^ol
+ z

it2£o2
)u

it>

where E(u. |z. _) is not necessarily constant. If we assume that
it 1 it2 J

^tt^ltl-'l.t-l.l^l.t-l^'"
= l

then this falls under (2.9) with

v
it

s (z
ill'

z
il2

z
i

)
t-2

( l'
Z
i,t-2,2'

z
i,t-l,l ) '

A A

After obtaining an intial consistent estimator 7., of B , the instruments w.a No it
A A

can be any function of v and 7 and the weighting matrix ft can be chosen

as in (4.2)

.

EXAMPLE 4.5: Consider an exponential model containing expectations of future

variables

:

y.
t
= ^exp[z.

t^ol
+ E

t
(zit+1>2 )^o2

]e
it ,

where E (•) denotes the rational expectation given information at time t and

E(e. U. ,z. . . . . ,z.-) = 1.
it' 1 it ll

Writing

Z
t,t+1,2

== E
t
(z
i,t+1,2 ) + C

i,t+1'

assume in addition that c. , is independent of 6. ,e. ,z. ,z. , , . . . ,z.,

.

i,t+l K *i it' it' i,t-l' ll

Then, defining u_
t
= exp^c^

t+/o2
)e.

t ,

E(u
it^i'

e
it'

Z
it'

Z
i,t-l

Z
il )

= E[exp( - C
i,t+l^o2

)]e
it'

so

E(u. \d>.,z. ,z. ,,...,z.,) = 5 .

it lvV it' i,t-l' ' il' o

Setting 5 = 1 is without loss of generality, so 8 , and B „ can be estimated
o > 'ol o2

by writing the model as

14



y.
t

= ^exp(z.
tl

/3
ol

+ « wl 2*o2
>u

lt ;

thus, this model fits into (2.1) and (2.9), with x = (z. .. , z . - _) and

V
it " (*ll'"'-'"l > t-l

> -

EXAMPLE 4.6: Finally, consider a particular binary choice model for panel

* *
data. Let y. and a. be latent variables and let y. be the observed binaryy it it -'it J

variable. For each individual, let 6. be an unobserved, time -constant
l

effect, and let x. denote the observable variables. Assume that y. is
it -'it

determined by

y. =1 if y. > and a. >
-'it ^it it

= otherwise,

where

y-*. = x. B + i; (4.3)y it it'o 'it

a* = 8. + i/._. (4.4)
it i it

The errors n and i/_ are assumed to be independent of (0 . ,x. .,,... ,x. ) with
it it r l ll it

distribution functions F( • ) and G(-), respectively. In addition, r\ . and v.

are independent of each other conditional on (0.,x... x. ). Under these
l ll it

assumptions

,

E(y±t'V*ii x
it> = P(

yit
=1

i^i- xii
x
it)

=P(y*
t
^0, a*

t
>O|0.,x

il
,...,x

it )

= P(y*
t
^ 0|*. 1

x.
1

, . . . ,x.
t
)P(a*

t
^ 0| 0.,x.

1
, . . . .x^)

= P(ij._ > -x.J3 )P(v. > -9.)
it it o it 1

= [1 - F(-x
it

j9
o
)][l - G(-0

i
)]

- ^
i
M(x

it
,/3

o
), (4.5)

where <f>^ = 1 - G(-0 ) and fi(x 3) = 1 - F(-x. 3) . Thus, this model fits

into the framework of section two, namely equations (2.1) and (2.3). If the

15



strict exogeneity assumption (2.2) is imposed, then the multinomial QCMLE

consistently estimates B . Without the strict exogeneity assumption the GMM

procedures offered in section 3 and in the previous examples can be used.

Typically, F(
•
) would be the logistic function or the standard normal cdf, in

which case u(x.,B) = F(x. B) .

it it

Note that this example differs from the usual method for introducing

latent effects into binary choice models. Typically, the model is

y.. = 9. + x.B + r\.^, (4.6)J it l it o it

*
where r\. is independent of (9 . ,x., , . . . , x._) . Then y. = 1 if y. > 0, so

it c
l ll lT •'it y it

P(y- =l|0-,x.) = F(9. + x.B ),J it ' 1 1 l it o

where F(-) is the symmetric distribution function of r) . . If F( • ) is the

logistic function, then conditional ML techniques can be used if y and y. ,

t * r, are independent conditional on (0. ,x. ...... ,x._) . If F( • ) is the

normal cdf then conditional MLE cannot be used to eliminate $.. Instead, one
l

must specify the distribution of 9. given (x.- x. )

.

In (4.4) and (4.5), under the assumptions imposed, we do not need strict

exogeneity, F(
•
) can be any known distribution function, G(-) need not be

specified, and the distribution of 8. conditional on x. is unrestricted andli
unknown. Thus, (4.4)-(4.5) might be a useful alternative to (4.6), but one

needs to to investigate whether (4.4) -(4. 5) describes interesting economic

behavior. One possible example is in modelling the choice of renting or

owning a home. Equation (4.4) could describe financial considerations, while

the unobserved effect in (4.5) might capture the idea that some are

consistently more opposed to owning than others, regardless of the financial

incentives

.
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now

5. Extension to Nonlinear Transformations of y

The' model analyzed in sections 2, 3, and 4 is easily extended to allow

Euler equation- type applications and other models where a nonlinear

transformation of y.^., possibly a vector, is of interest. Let the model

be

r(y.«.,A ) = 4>.ii(x.^,p )u. k , t=l,...,T, (5.1)
'it o l it o it

where r(y. , A) is a known scalar transformation and A is a Qxl vector ofy it o

3
parameters . The remaining quantities are as in previous sections . The

assumption on the errors is as in (2.9):

E(u. \<f>. ,v. ) = E(u. ,|<A.,v. ) = 1, (5.2)v it 1 *!' it' v i,t-l' r i' it y v '

where v. is some subset of (x., x. ,). Models of the form (5.1) and
it il' i.t-1'

(5.2) often arise as Euler equations from dynamic models of individual

behavior, where an expected discounted future stream of consumption, cash

flow, etc. is maximized. To the best of my knowledge, to date these models

have been estimated first by linearizing them and then removing fixed effects

by differencing or subtracting off time averages. Then, OLS or IV procedures

are applied; see, for example, Shapiro (1984), Zeldes (1989), and Morduch

(1990) . It is easy to see that such a procedure is inconsistent (even if one

ignores the approximation due to linearization) if the strict exogeneity

assumption is violated. This is potentially important, as the rational

expectations hypothesis does not imply the strict exogeneity assumption.

Estimating jS and A follows as in sections 2 and 3. v Let 8 = (/?', A')'° o o o o o

be the (P+Q)xl vector of parameters to estimate, and define

r
it

(^) - r(y.
t
,A)/M .

t
( /9) - r(y.

>t _ 1
,A)/M .

t _ 1
(/3), t=2,...,T. (5.3)
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As with Lemma 2.1, the following lemma is simple to verify under (5.1) and

(5.2):

LEMMA 5.1: Under (5.1) and (5.2),

E[r
it

(^
o
)|^.,v

it
]
= 0, t=2 T. (5.4)

Lemma 5.1 provides orthogonality conditions that can be used to estimate /3

and A , as well as to test any overidentification restrictions imposed in the

*
estimation. Let w. (7 ) be a lxL vector of functions of v. , so that

it t it

E[w
it ( 7*)'r it

(0
o
)] = 0, t=2 T.

The GMM analysis in section 3 carries over with only some slight changes.

First, note that

Vit ( *>
=
iVit (°'Vit ( '>J (5 - 6)

is now a lx(P+Q) vector, where

Vit ( * } = t'(7lt .A)/[/.
lt

(/J)]
a
}V

/jMlt
(/J) (5.7)

+ ^i,t-r A)/^,t-i (^ 2)
yi,t-i (^' t=2 '---- T

and

Vit^ = v^it- A)^it (^ - v (yi,t-r
A)
^i,t-i (^- (5 - 8)

A

Here, V r(y A) is the lxQ derivative of r(y. ,A) with respect to A. Let 9

A

denote a minimum chi- square estimator, based on the weighting matrix Q given
A

by (3.6), except that 7 now denotes a preliminary consistent estimator of

St St — 1 a — 1 Sc

8 . The asymptotic variance of /N(0 - 8 ) is (R ' Q R ) , where Q = plim

*
Q , R is the Lx(P+Q) matrix

R* - E[w ( 7*)'V r .(8 )], (5.9)
1 (7 X O
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and w. (7 ) and r.(0) are defined as in section 3. The asymptotic variance of
A AAA

the minimum chi- square estimator 9 is still estimated by (RCA-, R»j) /N,

where .

1=1

The usual overidentification test statistic can be used to test- model

specification.

EXAMPLE 5.1: Shapiro (1984), Zeldes (1989), and Morduch (1990) analyze

life-cycle models of consumption using panel data, the latter two authors

under liquidity constraints. For simplicity, I consider only one version of

the model without constraints; the same issues arise in the analysis of more

general models. Let c denote consumption of family i at time t, let 9.

denote taste shifters , let S . denote the rate of time preference for family

i, and let r. _ denote the return from holding asset j from period t to

t+1. Under the assumption that utility is given by

u(c
it

,*.
t

) = exP (*
it)cJ;V(l - «,). (5.1D

'it = ZiA + V (5 - 12)

where r\ . is an unobserved effect, the Euler equation is easily seen to be

<cWcit^
a
° (1 + ^i.t^ It

= (1 + 5
i
)" 1

exp(x
it^o ), (5.13)

where ib . is family i's information set at time t and x. = z. - z. •

it J it it i,t+l

note that (5.13) assumes that z. ..
- z. e tb. . This could be relaxed, but

i,t+l it *it

in these studies it reduces to assuming that family size at time t+1 is

perfectly predictable at time t, not an unreasonable assumption. In fact,

x might satisfy the strict exogeneity assumption, in which case a and /3

can be estimated by GMM by taking y. = (c. , /c . ,r. ,) and v. to be aJ J 6 J it v i,t+r it' i,t+i' it
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subset of (x.,c. ,...., c.,,r: , ,...,r.-), t=2 T. If the x_ are not
1 i,t-l ll i,t-l ll it

assumed to be strictly exogenous, v simply excludes leads of x .

Instead, Shapiro (1984), Zeldes (1989), and Morduch (1990) linearize

(5.13) and remove time averages to account for the fixed effects. Depending

on the context, either OLS or IV procedures are applied to the demeaned data.

For example, Shapiro (1984) and Zeldes (1989) take log(l + r] ) to the

right hand side and use income as an instrument for (demeaned)

log(l + r .
1

) in IV estimation. This procedure, even ignoring the

linearization, is not consistent unless the innovations implicit in (5.13) do

not help to predict future income. This strict exogeneity assumption on

income is not implied by the theory; whether it is empirically important or

not is another issue. But GMM estimators are available that do not require

linearization or the strict exogeneity assumption.

Estimating and testing Euler equations for multiple assets is carried

out by the straightforward extension of (5.1) and (5.2) suggested in endnote

three

.

6 . Concluding Remarks

The estimators proposed here can be used to estimate dynamic or static

multiplicative unobserved effects models , including Euler equations , under

fairly weak assumptions. The main contributions of the paper are relaxing

the strict exogeneity assumption and allowing for nonlinear transformations

of y that can depend on unknown parameters. No additional distributional

assumptions are imposed. Strict exogeneity is implicit in all of the count

data applications that use fixed or random effects methods, and in all of the

Euler equation examples on individual data, that I am aware of. There are

several examples in the literature where the strict exogeneity assumption can
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at least be questioned. Whether failure of this assumption is empirically

important remains to be seen. At a minimum, the methods in this paper allow

for estimation of nonlinear autoregressive models with unobserved effects.

As far as I know, no other approaches to relaxing the strict exogeneity

assumption have been offered for multiplicative, nonlinear models.

Multiplicative models can be used for count variables, nonnegative

continuously distributed variables, and sometimes binary variables. One

weakness of the GMM estimators discussed in sections 3, 4, and 5 is that they

cannot be expected to be the efficient instrumental variables estimator.

Deriving the semiparametric efficiency bound in such models is an interesting

open question; in fact, it is still an open question in additive, linear

models without the strict exogeneity assumption.
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Endnotes

1. Consistency of the usual random effects estimator relies on

E(^| Xi ,... )Xt ) = E(^)

in addition to the strict exogeneity assumption (1.1). Thus, it is the least

robust of the three estimators. The same ranking holds for the estimators of

the count models studied by HHG (pooled Poisson, fixed effects Poisson, and

random effects Poisson)

.

2. The models covered in this paper can be written with an additive error

rather than a multiplicative error, under the assumption

E(u_ \<f>. ,x... x.J = 0.
it 1 l ll it

Without further restrictions on the errors, the multiplicative and additive

models are observationally equivalent, so I analyze only the more natural

multiplicative form.

3. Extending the model to a vector of transformations is straightforward:

J 'it O r^t-^ it'^o ltj

E(u._|^.,v.J = E(u. . . |^.,v.J = 1, j-1, M.
ltj 1 It l,t-l,j' 1 It J

This allows multiple asset treatment in consumption CAPM-type models. The

details are omitted for brevity.
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