Multiplicative relations in number fields

A.J. van der Poorten and J.H. Loxton

Abstract

In this paper, we obtain an explicit form of the currently best known inequality for linear forms in the logarithms of algebraic numbers. The results complete our previous investigations (BuZZ. Austral. Math. Soc. 15 (1976), 33-57) which were conditional on a certain independence condition on the algebraic numbers. The extra work needed to obtain unconditional results centres on the properties of multiplicative relations in number fields. In particular, we show that a set of multiplicatively dependent algebraic numbers always satisfies a relation with relatively small exponents.

1. Introduction

In a previous paper [8], we established certain inequalities satisfied by linear forms in the logarithms of algebraic numbers. These results, however, were conditional on the algebraic numbers satisfying a certain independence condition. In the present paper, we describe a method of eliminating that condition and of establishing unconditional results on the same lines as the theorems of [8]. Central to our proof is a new result on multiplicative relations in algebraic number fields. To state this, we introduce the following notation. If α is an algebraic number and its minimal defining polynomial is

$$
\begin{equation*}
a_{0} x^{d}+a_{1} x^{d-1}+\ldots+a_{d}=a_{0}\left(x-\alpha^{(1)}\right) \ldots\left(x-\alpha^{(d)}\right) \tag{1}
\end{equation*}
$$

Received 7 September 1976.
the a_{j} being relatively prime rational integers, we measure the "size" of α by the quantity

$$
H(\alpha)=\left|a_{0}\right| \prod_{j=1}^{d} \max \left\{1,\left|\alpha^{(j)}\right|\right\}
$$

THEOREM 1. Let $\alpha_{1}, \ldots, \alpha_{m}$ be multiplicatively dependent algebraic numbers in an algebraic number field K of degree D over Q and suppose that $1<H\left(\alpha_{1}\right) \leq \ldots \leq H\left(\alpha_{m}\right)$. Then there are a positive constant $C_{1}=C_{1}(m, D)$ and integers t_{1}, \ldots, t_{m}, not all zero, such that

$$
\alpha_{1}^{t_{1}} \ldots \alpha_{m}^{t_{m}}=1 \quad \text { cand } \max _{1 \leq j \leq m}\left|t_{j}\right| \leq c_{1} \prod_{j=2}^{m} \log H\left(\alpha_{j}\right)
$$

We can take

$$
C_{1}=\left(\frac{3}{2} m D\right)^{m-1}(21 D \log 6 D)^{\min \{m, D+1\}}
$$

This is to say that, if $\alpha_{1}, \ldots, \alpha_{m}$ are known to be multiplicatively dependent, then they already satisfy a relation with relatively small exponents. Similar, though less sharp, results are given as consequences of the lengthy and deep principal arguments of Baker [1] and Stark [11]. In contrast, our result is proved by relatively elementary means. Our proof, in fact, generalises an argument of Stark [11, Lemma 7].

We now turn to the results on linear forms in logarithms. Throughout, $\alpha_{1}, \ldots, \alpha_{n}$ will denote $n(\geq 2)$ non-zero algebraic numbers belonging to an algebraic number field K of degree D over Q and with heights respectively not exceeding $A_{1}, \ldots, A_{n}\left(\right.$ with $\left.\log \log A_{j} \geq 1\right)$. We further suppose that $A_{1} \leq A_{2} \leq \ldots \leq A_{n-1}=A^{\prime} \leq A_{n}=A$ and we set

$$
\Omega^{\prime}=\left(\log A_{1}\right) \ldots\left(\log A_{n-1}\right) \quad \text { and } \quad \Omega=\Omega^{\prime}(\log A)
$$

In [8] we proved inter alia the following result.
Suppose there is a prime q satisfying $13 \leq q \leq 32(n+1) D$ such that $\left[K\left(\alpha_{1}^{1 / q}, \ldots, \alpha_{n}^{1 / q}\right): K\right]=q^{n}$. Let $\delta>0$ and write

$$
C=(32(n+1) D)^{9(n+1)}, \quad T=C \Omega^{\prime} \log \Omega^{\prime}, \text { and } h=\left[\log \left(B^{\prime} \delta^{-1} T\right)\right]
$$

Then, for any δ with $0<\delta<h T$, the inequalities

$$
0<\left|b_{1} \log \alpha_{1}+\ldots+b_{n} \log \alpha_{n}\right|<\min \left\{\exp (-h T \log A), \exp \left(-\delta B / B^{\prime}\right)\right\}
$$ have no solutions in rational integers b_{1}, \ldots, b_{n-1} and $b_{n} \neq 0$ with absolute values at most B and B^{\prime} respectively.

In the present paper, we prove this same result without the initial independence condition on $\alpha_{1}, \ldots, \alpha_{n}$, but with a slightly larger value for the constant C, namely $C^{\prime}=(25(n+1) D)^{10(n+1)}$. As immediate corollaries, we then have the following results.

THEOREM 2. The inequalities

$$
\begin{aligned}
& 0<\left|b_{1} \log \alpha_{1}+\ldots+\dot{b}_{n} \log \alpha_{n}\right| \\
&<\exp \left(-(25(n+1) D)^{\left.\operatorname{lo(n+1)} \Omega^{\prime} \log \Omega^{\prime} \log A \log B\right)}\right.
\end{aligned}
$$

have no solutions in rational integers $b_{1}, \ldots, b_{n}\left(b_{n} \neq 0\right)$ with absolute values at most B.

THEOREM 3. Write $C^{\prime}=(25(n+1) D)^{10(n+1)}$ and $T=C^{\prime} \Omega^{\prime} \log \Omega^{\prime}$. If, for some $\delta>0$, there exist rational integers b_{1}, \ldots, b_{n-1} with absolute values at most B such that

$$
0<\left|b_{1} \log \alpha_{1}+\ldots+b_{n-1} \log \alpha_{n-1}-\log \alpha_{n}\right|<e^{-\delta B}
$$

then $B<\delta^{-1} T \log \left(\delta^{-1} T\right) \log A$ or $B<C^{\prime-\frac{1}{2}} T \log \left(C^{\prime-\frac{1}{2}} T\right) \log A$ according as $\delta \leq C^{1-\frac{1}{2}} T$ or $\delta>C^{1-\frac{1}{2}} T$.

As detailed in [8], these results are best possible separately in A and B and best known in the remaining variables.

2. Multiplicative relations

We first prove Theorem 1. For this, we require a number of preliminary observations which we state as a series of lemmas.

In establishing an optimal form of Theorem l, we will find that the quantity $H(\alpha)$ defined above is a more appropriate "size" of α than is
the usual height of α, given by $\max \left|a_{j}\right|$, where the α_{j} are the coefficients of the minimal defining polynomial of α, as in (1). The two measurements are related as follows.

LEMMA 1. If α is an algebraic number with minimal defining polynomial (1), then

$$
H(\alpha) \leq\left\{\sum_{j=0}^{d} a_{j}^{2}\right\}^{\frac{1}{2}} \leq d^{\frac{1}{2}} \max _{0 \leq j \leq d}\left|a_{j}\right|
$$

This inequality seems to have been found by Landau [6], but it has had several rediscoverers. For some documentation and sharpenings, we refer to Ostrowski [7].

The next lemma is a classical result of Kronecker [5].
LEMMA 2. If α is an algebraic integer and $\left|\alpha^{(j)}\right| \leq 1$ for all the conjugates $\alpha^{(j)}$ of α, then $\alpha=0$ or α is a root of unity.

We also require the following refinement of Kronecker's Theorem.
LEMMA 3. Let α be a non-zero algebraic integer of degree d. There is a positive constant $C_{2}=C_{2}(d)$ such that, if $\log \left|\alpha^{(j)}\right| \leq C_{2}$ for all the conjugates $\alpha^{(j)}$ of α, then α is a root of unity. We have the estimates

$$
\left(30 d^{2} \log 6 d\right)^{-1} \leq c_{2} \leq(\log 2) d^{-1}
$$

The existence of such a constant C_{2}, depending only on d, follows at once by a compactness argument. The example $\alpha=2^{1 / d}$ yields the upper bound and the much deeper lower estimate for C_{2} follows from the work of Blanksby and Montgomery [3]. Schinzel and Zassenhaus [10] have conjectured that $C_{2}=c / d$, for some absolute positive constant c.

The next two lemmas are well-known in the geometry of numbers.
LEMMA 4 (Minkowski's convex body theorem). Let S be a convex region of R^{m} which is symmetrical about the origin and has volume greater than 2^{m}. Then S contains a point with integer coordinates other than the origin.
(See, for example, Cassels [4], page 71.)
LEMMA 5 (Minkowski's linear forms theorem). Let $a_{i j}$
$(1 \leq i, j \leq m)$ be real numbers and let $c_{i}(1 \leq i \leq m)$ be positive real numbers with

$$
\begin{equation*}
c_{1} c_{2} \cdots c_{m} \geq\left|\operatorname{det}\left(a_{i j}\right)\right| \tag{2}
\end{equation*}
$$

Then there are integers $x_{j}(1 \leq j \leq m)$, not all zero, such that

$$
\begin{equation*}
\left|\sum_{j=1}^{m} a_{1,} x_{j}\right| \leq c_{1}, \quad\left|\sum_{j=1}^{m} a_{i j_{j}}\right|<c_{i}(2 \leq i \leq m) \tag{3}
\end{equation*}
$$

We briefly recall the principle of the proof, since we shall need it again later on. If there is strict inequality in (2), the lemma follows at once from Lemma 4. If, on the other hand, (2) holds with equality, then the region defined by (3) is bounded. By Lemma 4, for each ε with $0<\varepsilon<1$, there are integers $x_{l \varepsilon}, \ldots, x_{n \varepsilon}$ not all zero, such that

$$
\left|\sum_{j=1}^{m} a_{1 j} x_{j \varepsilon}\right|<c_{1}+\varepsilon<c_{1}+1, \quad\left|\sum_{j=1}^{m} a_{i, j} x_{j \varepsilon}\right|<c_{i} \quad(2 \leq i \leq m)
$$

There are only a finite number of possibilities for the $x_{j \varepsilon}$, and since ε can be chosen arbitrarily small, one of these possibilities must satisfy (3) as required. For further details, see, for example, Cassels [4], page 73 .

Finally, we need the following technical inequality.
LEMMA 6. Let $\phi(m)$ denote Euler's function. For any positive integer m, we have $m<4 \phi(m) \log \log 6 \phi(m)$.

The inequality can be checked directly for $1 \leq m \leq 100$. For $m>100$, it follows by some easy manipulation from the inequality of Rosser and Schoenfeld [9], Theorem 15.

Proof of Theorem 1. We may suppose, without loss of generality, that any $m-1$ of $\alpha_{1}, \ldots, \alpha_{m}$ are multiplicatively independent. Thus there is a unique set of relatively prime integers t_{1}, \ldots, t_{m} such that
(4)

$$
\alpha_{1}^{t_{1}} \ldots \alpha_{m}^{t_{m}}=\zeta
$$

where ζ is a root of unity, and t_{k} (say) $=\max \left|t_{j}\right|>0$. We set

$$
N_{K / Q} \alpha_{j}=\prod_{p} p^{e} p j \quad(1 \leq j \leq m)
$$

where the product is taken over all the rational primes. By Lemma 2, the relation (4) is equivalent to the system of linear equations

$$
\begin{equation*}
\sum_{j=1}^{m} e_{p j} t_{j}=0 \quad(p \text { prime }) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m} \log \left|\alpha_{j}^{(i)}\right|_{j}=0 \quad(1 \leq i \leq D) \tag{6}
\end{equation*}
$$

where in (5) the index p runs through all rational primes and in (6) the index i runs through the D distinct embeddings of K into C. The argument now divides into two cases according to the relative sizes of m and D.

First Case. Suppose that $m<D$. By Lemma 5, we can find integers s_{1}, \ldots, s_{m} not all zero, such that

$$
\begin{equation*}
\left|s_{j}-\frac{t_{j}}{t_{k}} s_{k}\right|<\frac{C_{2}}{m \log H\left(\alpha_{j}\right)} \quad(1 \leq j \leq m) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|s_{k}\right| \leq\left(\frac{m}{c_{2}}\right)^{m-1} \prod_{\substack{j=1 \\ j \neq k}}^{m} \log H\left(\alpha_{j}\right) \tag{8}
\end{equation*}
$$

where $C_{2}=C_{2}(D)$ is the constant defined in Lemma 3. Let

$$
\begin{equation*}
\alpha=\alpha_{1}^{s_{1}} \ldots \alpha_{m}^{s_{m}} \tag{9}
\end{equation*}
$$

By (5) and (7), for each index p, we have

$$
\left|\sum_{j=1}^{m} e_{p j} s_{j}\right| \leq \sum_{j=1}^{m}\left|e_{p j}\right| \cdot\left|s_{j}-\frac{t_{j}}{t_{k}} s_{k}\right|<\sum_{j=1}^{m} \frac{D \log H\left(\alpha_{j}\right)}{\log 2} \frac{C_{2}}{m \log H\left(\alpha_{j}\right)} \leq 1
$$

so the quantity on the left, being a rational integer, must be zero. Thus α is a unit. Similarly, by (6) and (7), for each index i,

$$
\left|\sum_{j=1}^{m} \log \right| \alpha_{j}^{(i)}\left|s_{j}\right| \leq \sum_{j=1}^{m}|\log | \alpha_{j}^{(i)}| | \cdot\left|s_{j}-\frac{t_{j}}{t_{k}} s_{k}\right|<c_{2},
$$

so by Lemma 3, α is a root of unity. Thus the relations (4) and (9) must be the same and, in particular, this shows that t_{k} is bounded by the quantity on the right in (8).

Second Case. Suppose that $m \geq D$. Consider the inequalities

$$
\begin{gather*}
\left|s_{j}-\frac{t_{j}}{t_{k}} s_{k}\right|<\frac{\log 2}{m D \log H\left(\alpha_{j}\right)}(1 \leq j \leq m) \tag{10}\\
\left|\sum_{j=1}^{m} \log \right| \alpha_{j}^{(i)}\left|\left(s_{j}-\frac{t_{j}}{t_{k}} s_{k}\right)\right|<C_{2} \quad(1 \leq i \leq D) \\
\left|s_{k}\right| \leq\left(\frac{m D}{\log 2}\right)^{m-1}\left(\frac{\log 2}{C_{2} D}\right)^{D} \prod_{\substack{j=1 \\
j \neq k}}^{m} \log H\left(\alpha_{j}\right)
\end{gather*}
$$

The region defined by (10) and (11) contains points $\left(s_{1}, \ldots, s_{m}\right)$ of R^{m} with arbitrarily large values of $\left|s_{k}\right|$. Further, (10) implies as in the first case that

$$
\left|\sum_{j=1}^{m} \log \right| \alpha_{j}^{(i)}\left|\left(s_{j}-\frac{t_{j}}{t_{k}} s_{k}\right)\right|<\frac{\log 2}{D} \quad(1 \leq i \leq D)
$$

and so we see that the region defined by (10), (11), and (12) in R^{m} has volume at least 2^{m}. By the sharpening of Minkowski's Theorem (Lemma 4) used in Lemma 5, it follows that we can find integers s_{1}, \ldots, s_{m} not all zero, satisfying (10), (11), and (12). Proceeding as in the first case, we conclude that t_{k} is also bounded by the quantity on the right in (12).

Finally, we observe that the root of unity ζ in (4) has degree at most D, so by Lemma 6 it has order, N say, at most $4 D \log \log 6 D$. We
now have the relation of multiplicative dependence

$$
\alpha_{1}^{t_{1} N} \ldots \alpha_{m}^{t_{m}^{N}}=1
$$

and collecting the various estimates obtained above gives the assertion of the theorem.

3. Linear forms in logarithms

As already indicated in the introduction, we shall deduce Theorems 2 and 3 from the following result.

THEOREM 4. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero algebraic numbers belonging to an algebraic number field K of degree D over Q and with heights respectively not exceeding $A_{1}, \ldots, A_{n}\left(w i t h \log \log A_{j} \geq 1\right)$. Suppose that $A_{1} \leq A_{2} \leq \ldots \leq A_{n-1} \leq A_{n}$ and write

$$
\Omega^{\prime}=\left(\log A_{1}\right) \ldots\left(\log A_{n-1}\right), \quad \Omega=\Omega^{\prime}\left(\log A_{n}\right)
$$

and

$$
C_{n}=(25(n+1) D)^{10(n+1)}, \quad T=C_{n} \Omega^{\prime} \log \Omega^{\prime}, \quad h=\left[\log \left(B^{\prime} \delta^{-1} T\right)\right]
$$

If $0<\delta<\min \left\{h T, C_{n}^{\frac{3}{2}} B^{\prime}\right\}$, then the inequalities

$$
0<\left|b_{1} \log \alpha_{1}+\ldots+b_{n} \log \alpha_{n}\right|<\min \left\{\exp \left(-h T \log A_{n}\right), \exp \left(-\delta B / B^{\prime}\right)\right\}
$$

have no solution in rational integers b_{1}, \ldots, b_{n-1} and $b_{n} \neq 0$ with absolute values at most B and B^{\prime} respectively.

Proof. We commence by supposing that, contrary to the assertion of the theorem, there are rational integers b_{1}, \ldots, b_{n-1} and $b_{n} \neq 0$ with absolute values at most B and B^{\prime} respectively such that

$$
\begin{align*}
0<\mid b_{1} \log \alpha_{1}+\ldots+b_{n} \log \alpha_{n} & \tag{13}\\
& <\min \left\{\exp \left(-h T \log A_{n}\right), \exp \left(-\delta B / B^{\prime}\right)\right\}
\end{align*}
$$

Suppose, in the first place, that $\alpha_{1}, \ldots, \alpha_{n-1}$ are multiplicatively dependent. By Theorem 1 and Lemma l, it follows that we have a relation

$$
\begin{equation*}
\alpha_{1}^{h_{1}} \ldots \alpha_{n-1}^{h_{n-1}}=1 \tag{14}
\end{equation*}
$$

with integers h_{1}, \ldots, h_{n-1} not all zero and having absolute values at most H^{\prime}, say, where

$$
\begin{equation*}
H^{\prime}=\left(60(n-1) D^{3}\right)^{n-1} \Omega^{\prime} \tag{15}
\end{equation*}
$$

If $h_{i} \neq 0$, we can solve (14) for α_{i} and obtain

$$
\left(\begin{array}{ccc}
b_{1} & b_{1} n_{n}^{h_{i}}
\end{array}\right)^{b_{1}^{\prime}}=\alpha_{1}^{1} \ldots a_{n-1}^{b_{n-1}^{\prime} \alpha_{n}^{\prime}}
$$

with integers $b_{r}^{\prime}=h_{i} b_{r}-h_{r} b_{i}(1 \leq r \leq n-1)$ and $b_{n}^{\prime}=h_{i} b_{n}$. In particular, $b_{i}^{\prime}=0$. After a little reorganisation, (13) yields a counterexample to the theorem with $n-1$ logarithms instead of n. The theorem is trivial if $n=1$, so we may suppose it to hold for $n-1$ logarithms, whence if $\alpha_{1}, \ldots, \alpha_{n-1}$ are multiplicatively dependent, the theorem follows by induction on n.

Accordingly, we can suppose that $\alpha_{1}, \ldots, \alpha_{n-1}$ are multiplicatively independent. Let q be a prime with $16 D \leq q \leq 32(n+1) D$. We claim that there are elements $\zeta_{1}, \ldots, \zeta_{n-1}$ in K with heights respectively not exceeding

$$
A_{1},\left(1+A_{2}\right)^{2 D}, \ldots,\left(1+A_{n-1}\right)^{(n-1) D}
$$

such that

$$
\left[K\left(\zeta_{1}^{1 / q}, \ldots, \zeta_{n-1}^{1 / q}\right): K\right]=q^{n-1}
$$

and

$$
\begin{equation*}
a_{1}^{b_{1}} \ldots a_{n-1}^{b_{n-1}}=\zeta_{1}^{b_{1}^{\prime}} \ldots \zeta_{n-1}^{b_{n-1}^{\prime}} \tag{16}
\end{equation*}
$$

where $b_{1}^{\prime}, \ldots, b_{n-1}^{\prime}$ are rational integers of absolute value not exceeding $B H^{\prime 2}$. This assertion will be justified in Section 4 below. Set $K^{\prime}=K\left(\zeta_{1}^{1 / q}, \ldots, \zeta_{n-1}^{1 / q}\right)$. It follows from the work of [8] that our present
theorem is proved if $\left[K^{\prime}\left(\begin{array}{l}\alpha_{n}^{1 / q}\end{array}\right): K^{\prime}\right]=q$. For we can apply Theorem 2 of [8], which we have stated in Section 1, to the algebraic numbers $\zeta_{1}, \cdots, \zeta_{n-1}, \alpha_{n}$ with δ replaced by $\delta / H^{\prime 2}$, to obtain an inequality counter to the basic hypothesis (13). In order to compare these inequalities, we observe that the product of the logarithms of the heights of $\zeta_{1}, \ldots, \zeta_{n-1}$ does not exceed $\left(\beta_{2} n D\right)^{n-1} \Omega$, and that the change in δ changes h to a quantity not exceeding $3 h$. The new inequality clashes with (13) because $C_{n}>3\left(\frac{3}{2} n D\right)^{n-1} C$, where C is the constant appearing in [8].

It therefore remains to treat the possibility $\left[K^{\prime}\left(\alpha_{n}^{1 / q}\right): K^{\prime}\right] \neq q$. If $\log A_{n}>3 n D \Omega^{\prime}$, we assert that we can'find γ in K with height at most $A_{n}^{\frac{3}{2}}$ such that

$$
\begin{equation*}
\zeta_{1}^{b_{1}^{\prime}} \cdots \zeta_{n-1}^{b_{n-1}^{\prime}}{ }_{n}^{b_{n}}=\zeta_{1}^{b_{1}^{\prime \prime}} \cdots \zeta_{n-1}^{b_{1}^{\prime \prime}}{ }_{n-1}^{b_{n}^{\prime}} \tag{17}
\end{equation*}
$$

where the $b_{1}^{\prime \prime}, \ldots, b_{n-1}^{\prime \prime}$ and b_{n}^{\prime} are rational integers of absolute value not exceeding $B H^{\prime 2}+q B^{\prime}$ and $q B^{\prime}$ respectively. This, too, follows from the construction of Section 4, as shown below. If now $\left[K^{\prime}\left(r^{l / q}\right): K^{\prime}\right]=q$, then the proof is completed by applying Theorem 2 of [8], as before. If not, we can repeat the argument and, after at most $2 \log \log A_{n}$ repetitions, we can arrange that $\log A_{n}<3 n D \Omega^{\prime}$. With this bound on A_{n}, we can apply our previous argument to the numbers $\alpha_{1}, \ldots, \alpha_{n}$. To do this, replace the quantity H^{\prime} defined in (15) by $H=H^{\prime}\left(\log A_{n}\right)<H^{\prime 2}$. If $\alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively dependent, the theorem is proved by induction. If, on the other hand, they are multiplicatively independent, then we can find $\zeta_{I}, \ldots, \zeta_{n}$ in K with heights respectively not exceeding

$$
A_{1},\left(1+A_{2}\right)^{2 D}, \ldots,\left(1+A_{n}\right)^{n D}
$$

such that

$$
\left[K\left(\zeta_{l}^{1 / q}, \ldots, \zeta_{n}^{1 / q}\right): K\right]=q^{n}
$$

and

$$
\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}=\zeta_{1}^{b_{1}^{\prime}} \ldots \zeta_{n}^{b_{n}^{\prime}}
$$

where $b_{1}^{\prime}, \ldots, b_{n-1}^{\prime}$ and b_{n}^{\prime} are rational integers with absolute values not exceeding $B H^{2}$ and $B^{\prime} H^{2}$ respectively. Since $\zeta_{1}, \ldots, \zeta_{n}$ satisfy the independence condition, we can apply Theorem 2 of [8]. with δ replaced by δ / H^{2}. As before, the resultant inequality is incompatible with (13); the final step requires $C_{n}>5\left(3_{2} n D\right)^{n} C$.

4. Eliminating the independence condition

We now show how to construct the numbers in equations (16) and (17) and thereby fill in the gaps in the proof of Theorem 4. For this purpose, we require two lemmas of Baker and Stark [2].

LEMMA 7. Let $\alpha_{1}, \ldots, \alpha_{m}$ be non-zero elements of on algebraic number field K and let $\alpha_{1}^{1 / q}, \ldots, \alpha_{m}^{1 / q}$ denote fixed q-th roots for some prime q. Write $K^{\prime}=K\left(\alpha_{1}^{1 / q}, \ldots, \alpha_{m-1}^{1 / q}\right)$. Then either $K^{\prime}\left(\alpha_{m}^{1 / q}\right)$ is an extension of K^{\prime} of degree q, or we have

$$
\alpha_{m}=\alpha_{1}^{j_{1}} \ldots \alpha_{m-1}^{j_{m-1}} \gamma^{q}
$$

for some γ in K and some integers j_{1}, \ldots, j_{m-1} with $0 \leq j_{r}<q$.
(See [2], Lemma 3.)
LEMMA 8. Suppose that α and β are elements of an algebraic number field of degree D and that $\alpha=\beta^{q}$ for some positive integer q. If $a \alpha$ is an algebraic integer for some positive rational integer a and if b is the leading coefficient in the minimal defining polynomial of β, then $b \leq a^{D / q}$.
(See [2], Lemma 4.)
First, we confirm the claim surrounding (16). As above, let $\alpha_{1}, \ldots, \alpha_{n-1}$ be multiplicatively independent and let q be a prime with $16 D \leq q \leq 32(n+1) D$. Choose m minimal such that

$$
\left[K\left(\alpha_{1}^{1 / q}, \ldots, \alpha_{m}^{1 / q}\right): K\right] \neq q^{m}
$$

By Lemma 7,

$$
\begin{equation*}
\alpha_{m}=\alpha_{1}^{j_{1}} \ldots \alpha_{m-1}^{j_{m-1}}{ }^{q} \tag{18}
\end{equation*}
$$

for some γ in K and some integers j_{1}, \ldots, j_{m-1} with $0 \leq j_{r}<q$. Starting with (18), we now construct, as far as possible, a sequence $\gamma_{1}=\gamma, \gamma_{2}, \gamma_{3}, \cdots$ of elements of K such that

$$
\begin{equation*}
\gamma_{Z}=\alpha_{1}^{j_{Z 1}} \ldots \alpha_{m-1}^{j_{Z, m-1}} \gamma_{Z+1}^{q} \quad(\imath=1,2, \ldots) \tag{19}
\end{equation*}
$$

where the integers $j_{\eta_{r}}$ satisfy $0 \leq j_{\eta_{r}}<q \quad(1 \leq r \leq m-1)$. Then we have

$$
\alpha_{m}=\alpha_{1}^{s_{Z 1}} \ldots \alpha_{m-1}^{s} Z, m-1 \gamma_{Z}^{q^{Z}}
$$

and indeed there is a ζ_{m} in K such that

$$
\begin{equation*}
\alpha_{m}=\alpha_{1}^{t_{m 1}} \ldots \alpha_{m-1}^{t} \alpha_{m, m-1} \zeta_{m}^{q} \tag{20}
\end{equation*}
$$

where the integers $t_{m r}$ satisfy $\left|t_{m r}\right|<\frac{1}{2} q^{Z} \quad(1 \leq r \leq m-1)$. From (20), a denominator for $\zeta_{m}^{q^{Z}}$ is bounded by

$$
A_{1}^{\left|t_{m 1}\right|} \ldots A_{m-1}^{\left|t_{m, m-1}\right|_{A_{m}}}
$$

whence by Lerma 8, the leading coefficient of the minimal defining polynomial of ζ_{m} is bounded by

$$
A_{I}^{D / 2} \ldots A_{m-1}^{D / 2} A_{m}^{D / q^{2}}
$$

Moreover, each conjugate of ζ_{m} has absolute value at most

$$
\left(1+A_{1}\right)^{\frac{2}{2}} \ldots\left(1+A_{m-1}\right)^{\frac{3}{2}}\left(1+A_{m}\right)^{1 / q^{2}}
$$

so the height of ζ_{m} is bounded by

$$
\begin{equation*}
\left(1+A_{1}\right)^{D} \ldots\left(1+A_{m-1}\right)^{D}\left(1+A_{m}\right)^{2 D / q^{2}}<\left(1+A_{m}\right)^{m D} \tag{21}
\end{equation*}
$$

if $m=1$, then plainly A_{1} already bounds the height of ζ_{1}.
Now consider the sequence (19). Set

$$
H_{m}=\left(60 D^{3} m\right)^{m}\left(\log A_{1}\right) \ldots,\left(\log A_{m}\right) \cdot m D \log \left(1+A_{m}\right)
$$

If the sequence (19) fails to terminate for some Z with $q^{Z} \leq H_{m}$, then choose ζ_{m} corresponding to some l with $q^{l}>H_{m}$. By Theorem 1, the multiplicatively dependent numbers $\alpha_{1}, \ldots, \alpha_{m}, \zeta_{m}$ satisfy a further non-trivial relation

$$
\begin{equation*}
\alpha_{1}^{h_{1}} \ldots \alpha_{m}^{h_{\zeta}}{ }_{m}^{h_{0}}=1 \tag{22}
\end{equation*}
$$

with integers h_{0}, \ldots, h_{m} not all zero and having absolute values not exceeding H_{m}. On eliminating ζ_{m} from the relations (20) and (22), we obtain a non-trivial relation

$$
\alpha_{1}^{s_{1}} \ldots \alpha_{m}^{s_{m}}=1
$$

where $s_{r}=q^{2} h_{r}-t_{m e} h_{0}(1 \leq r \leq m-1) \quad$ and $\quad s_{m}=q^{Z_{m}} h_{m} h_{0}$. If $m<n$, . this is a contradiction since $\alpha_{1}, \ldots, \alpha_{n-1}$ are multiplicatively independent. Thus, if $m<n$, the sequence (19) terminates at γ_{Z} for some ℓ with $q^{Z}=G_{m}<H_{m}$ and the corresponding ζ_{m} satisfies $\left[K\left(\alpha_{1}^{1 / q}, \ldots, \alpha_{m-1}^{1 / q}, \zeta_{m}^{1 / q}\right): K\right]=q^{m}$. We observe that

$$
\begin{equation*}
\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}=\alpha_{1}^{b_{1}^{\prime}} \ldots \alpha_{m-1}^{b_{m-1}^{\prime}} \zeta_{m}^{b_{m}^{\prime}}{ }_{\alpha_{m+1}}^{b_{m+1}} \ldots \alpha_{n}^{b_{n}} \tag{23}
\end{equation*}
$$

with integers b_{r}^{\prime} given by $b_{r}^{\prime}=b_{r}+b_{m} t_{m r} \quad(1 \leq r \leq m-1)$ and $b_{m}^{\prime}=b_{m} G_{m}$.

We sequentially replace $\alpha_{1}, \ldots, \alpha_{n-1}$ by $\zeta_{1}, \ldots, \zeta_{n-1}$. At each stage, we write the analogue of (20) as

$$
\alpha_{m}=\zeta_{1}^{t_{m 1}} \ldots \zeta_{m-1}^{t_{m, m-1}} \zeta_{m}^{G_{m}}=\alpha_{1}^{t_{m 1}^{\prime} / G_{1}} \ldots \alpha_{m-1}^{t_{m, m-1}^{\prime} / G_{m-1}} \zeta_{m}^{G_{m}}
$$

where the $t_{m e}$ are integers and ζ_{m} is chosen to make $\left|t_{m c}^{\prime}\right|<\frac{1}{2} G_{m}$ and $\left[K\left(\zeta_{l}^{1 / q}, \ldots, \zeta_{m}^{1 / q}\right): K\right]=q^{m}$. This makes $\left|t_{m p}\right|<\frac{1}{4}(m+1) G_{m}$, so, by repeated use of (23), we finally obtain (16) as asserted with the exponents b_{r}^{\prime} satisfying

$$
\left|b_{r}^{\prime}\right| \leq n B\left(G_{r}+G_{r+1}+\ldots+G_{n-1}\right) \leq B H^{\prime 2} \quad(1 \leq r \leq n-1) .
$$

The same construction yields the assertion (17). Indeed, suppose that $\left[K^{\prime}\left(\alpha_{n}^{1 / q}\right): K^{\prime}\right] \neq q$ where, as before, $K^{\prime}=K\left(\zeta_{1}^{1 / q}, \ldots, \zeta_{n-1}^{1 / q}\right)$, and that $\log A_{n}>3 n D \Omega^{\prime}$. We apply the above argument with $m=n$. The equation (18) takes the form

$$
\alpha_{n}=\zeta_{1}^{j_{1}} \ldots \zeta_{n-1}^{j_{n-1} \gamma^{q}}=\alpha_{1}^{t_{1} / G_{1}} \ldots a_{n-1}^{t_{n-1} / G_{n-1}} \gamma^{q}
$$

where the j_{r} are integers and γ is chosen so that $\left|t_{r}\right|<\frac{z_{2}}{2} q$. Proceeding as before, we see that the height of γ is bounded by the expression (21) and this is at most $A_{n}^{\frac{3}{2}}$, as required in (17). Moreover, the substitution (24) leads to the bound asserted for the exponents in (17).

This completes the proof of Theorem 4.

5. Conclusion

Only one further remark is needed to establish Theorems 2 and 3. This
is the following trivial inequality; it is actually best possible in A, but trivial in B.

LEMMA 9. Either $\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}=1$, or

$$
\left|b_{1} \log \alpha_{1}+\ldots+b_{n} \log \alpha_{n}\right|>\exp (-2 n D B \log A),
$$

where b_{1}, \ldots, b_{n} are rational integers with absolute values at most B.
Proof. Let a_{j} be the leading coefficient, supposed positive, of the minimal defining polynomial of α_{j} or α_{j}^{-l}, according as b_{j} is positive or negative. Then

$$
a_{1}^{\left|b_{1}\right|} \ldots \ldots a_{n}^{\left|b_{n}\right|}\left(\begin{array}{lll}
b_{1} & & b_{n} \\
a_{1} & \ldots & a_{n}^{n-1}
\end{array}\right)
$$

is an integer of K and its conjugates are bounded above by $2 A^{n B}(1+A)^{n B}$, whence

$$
\left|\begin{array}{ccc}
b_{1} & & b_{n} \\
\alpha_{1} & \ldots & \alpha_{n}^{n}-1
\end{array}\right|>\exp \left(-\frac{3}{2} n D B \log A\right)
$$

and the assertion follows immediately.
Proofs of Theorems 2 and 3. Define the quantities C_{n} and T as in Theorem 4. If $T>C_{n}^{\frac{1}{2}} B$, Theorem 2 follows from Lemma 9, while if $T \leq C_{n}^{\frac{1}{2}} B$, Theorem 2 follows from Theorem 4 with $B^{\prime}=B$ and $\delta=T$. Again, if $\delta<C_{n}^{\frac{3}{2}}$, Theorem 3 follows at once from Theorem 4 and the assertion of Theorem 2 for $\delta \geq C_{n}^{\frac{3}{2}}$ is actually a weaker claim.

References

[1] A. Baker, "Linear forms in the logarithms of algebraic numbers (IV)", Mathematika 15 (1968), 204-216.
[2] A. Baker and H.M. Stark, "On a fundamental inequality in number theory", Ann. of Math. (2) 94 (1971), 190-199.
[3] P.E. Blanksby and H.L. Montgomery, "Algebraic integers near the unit circle", Acta Arith. 18 (1971), 355-369.
[4] J.W.S. Cassels, An introduction to the geometry of numbers, Second printing, corrected (Die Grundlehren der mathematischen Wissenschaften, 99. Springer-Verlag, Berlin, Heidelberg, New York, 1971).
[5]* L. Kronecker, "Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten", J. reine angew. Math. 53 (1857), 173-175.
[6]* E. Landau, "Sur quelques théorèmes de M. Pétrovitch relatifs aux zéros des fonctions analytiques", Bull. Soc. Math. France 33 (1905), 251-261.
[7] A.M. Ostrowski, "On an inequality of J. Vicente Gonçalves", Univ. Lisboa Revista Fac. Ci. A (2) 8 (1960), 115-119.
[8] A.J. van der Poorten and J.H. Loxton, "Computing the effectively computable bound in Baker's inequality for linear forms in logarithms", Bull. Austral. Math. Soc. 15 (1976), 33-57.
[9] J. Barkley Rosser and Lowell Schoenfeld, "Approximate formulas for some functions of prime numbers", Illinois J. Math. 6 (1962), 64-94.
[10] A. Schinzel and H. Zassenhaus, "A refinement of two theorems of Kronecker", Michigan Math. J. 12 (1965), 81-85.
[11] H.M. Stark, "Further advances in the theory of linear forms in logarithms", Diophantine approximation and its applications, 255-293 (Proc. Conf. Diophantine Approximation and its Applications, Washington, 1972. Academic Press [Harcourt-Brace Jovanovich], New York, London, 1973).

* The authors have not had access to [5] and [6], which are quoted at second hand. Editor.

School' of Mathematics, University of New South Wales, Kensington, New South Wales.

