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Multiplicative relations

in number fields

A.J. van der Poorten and J.H. Loxton

In this paper, we obtain an explicit form of the currently best

known inequality for linear forms in the logarithms of algebraic

numbers. The results complete our previous investigations (Bull.

Austral. Math. Soa. 15 (1976), 33-57) which were conditional on a

certain independence condition on the algebraic numbers. The

extra work needed to obtain unconditional results centres on the

properties of multiplicative relations in number fields. In

particular, we show that a set of multiplicatively dependent

algebraic numbers always satisfies a relation with relatively

small exponents.

1. Introduction

In a previous paper [S], we established certain inequalities satisfied

by linear forms in the logarithms of algebraic numbers. These results,

however, were conditional on the algebraic numbers satisfying a certain

independence condition. In the present paper, we describe a method of

eliminating that condition and of establishing unconditional results on the

same lines as the theorems of [S]. Central to our proof is a new result on

multiplicative relations in algebraic number fields. To state this, we

introduce the following notation. If a is an algebraic number and its

minimal defining polynomial is

(1) a/ + a/-1 + ... + ad = aQ{x-0L
{1)) ... (x-a(d)) ,
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the a. being relatively prime rational integers, we measure the "size" of
3

a by the quantity

TTfl(a) = \a

J=l

THEOREM 1. Let a , ..., a be multiplicatively dependent algebraia

numbers in an algebraic number field K of degree D over Q and suppose

that 1 < #((*.) 5 ... £ ^(a™) • Then there are a positive constant

C = C^(m, D) and integers t , ..., t , not all zero, such that

*1 * w
a ... a m = 1 and max 11. | £ C T T l oS #(« .) .
-L m T^^f 3 J- -=2 3

3=c-

We can take

log 6,

This is to say that, if a, , ..., a are known to be multiplicatively

dependent, then they already satisfy a relation with relatively small

exponents. Similar, though less sharp, results are given as consequences

of the lengthy and deep principal arguments of Baker [7] and Stark [/7].

In contrast, our result is proved by relatively elementary means. Our

proof, in fact, generalises an argument of Stark [77, Lemma 7 ] .

We now turn to the results on linear forms in logarithms. Throughout,

a,, ..., a will denote n (i 2) non-zero algebraic numbers belonging to
± n

an algebraic number field K of degree D over Q and with heights

respectively not exceeding A., ..., A (with log log A. > 1 ) . We

further suppose that A S A < ... < A = A' £ A = A and we set

ft' = (log i41) ... (log A ) and Q = J2' (log A) .

In [S] we proved inter alia the following result.

Suppose there is a prime q satisfying 13 £ q £ 32(n+l)D such that

r r i ^ 5 *•• ' a n W : n = qK ' Let 6 > ° and wrlte

https://doi.org/10.1017/S0004972700023042 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023042


M u l t i p l i c a t i v e r e l a t i o n s 85

C = (32(n+l)Z?) 9 ( M + l ) , T = Cii' log ft1 , and h = [ logfs ' e " 1 ! 1 ) ] .

TTzen, / o r any 6 w£i/z 0 < 6 < fcT ., iTie inequalities

0 < | i l og c^ + . . . + b log a | < min{exp(-hT log A), exp(-6B/B' )}

Tzaue no solutions in rational integers b , ..., b . and b # 0 with

absolute values at most B and B' respectively.

In the present paper, we prove this same result without the ini t ial

independence condition on ô  , . . . , a , but with a slightly larger value

for the constant C , namely C' = (25(n+l)D) " . As immediate

corollaries, we then have the following results.

THEOREM 2. The inequalities

0 < \b± log a 1 + . . . + bn log a j

< exp(-(25(M+l)£>)10(M+1)ft' log fl' log A log B]

have no solutions in rational integers b . , . . . , b [b f o) with,

absolute values at most B .

THEOREM 3. Write C = (25(«+l)o) 1 0 ( n + 1 ) and T = C'fi1 log fi1 .

If, for some 6 > 0%, there exist rational integers b , ..., b with

absolute values at most B such that

0 < 1 ^ log ax + . . . + bn_1 log an_1 - log a j < e~6B ,

then B < S^T log(6"121) log A or B < C'~^T log(c'~*r) log A according

as 6 S C'"^r or 6 > C'~*T .

As detailed in [S], these results are best possible separately in A

and B and best known in the remaining variables.

2. M u l t i p l i c a t i v e r e l a t i o n s

We first prove Theorem 1. For this, we require a number of

preliminary observations which we state as a series of lemmas.

In establishing an optimal form of Theorem 1, we will find that the

quantity H(a) defined above is a more appropriate "size" of a than is

https://doi.org/10.1017/S0004972700023042 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023042
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the usual height of a , given by max|a.| , where the a. are the
0 3

coefficients of the minimal defining polynomial of a , as in (l). The two

measurements are related as follows.

LEMMA 1. If a is an algebraic number with minimal defining

•polynomial (1), then

f I 2\h
S(a) £ •( I a^\ £ ̂  max |aj.|

This inequality seems to have been found by Landau [6], but it has had

several rediscoverers. For some documentation and sharpenings, we refer to

Ostrowski [7].

The next lemma is a classical result of Kronecker [5].

LEMMA 2. If a is an algebraic integer and |a | £ 1 for all the

conjugates a of a , then a = 0 or a is a root of unity.

We also require the following refinement of Kronecker1s Theorem.

LEMMA 3. Let a be a non-zero algebraic integer of degree d .

There is a positive constant Cp = Cj^d) such that, if log|a ̂  | 5 C2

for all the conjugates a of a , then a is a root of unity. Vie have

the estimates

(30d2 log Gd)'1- 5 C2 5 (log 2)d~
1 .

The existence of such a constant C? , depending only on d , follows

at once by a compactness argument. The example a = 2 yields the upper

bound and the much deeper lower estimate for C^ follows from the work of

Blanksby and Montgomery [3]. Schinzel and Zassenhaus [70] have conjectured

that Cp = eld , for some absolute positive constant a .

The next two lemmas are well-known in the geometry of numbers.

LEMMA 4 (Minkowski's convex body theorem). Let S be a convex

region of E^ which is symmetrical about the origin and has volume greater

than 2m . Then S contains a point with integer coordinates other than

the origin.
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(See, for example, Cassels [4], page 71.)

LEMMA 5 (Minkowski's linear forms theorem). Let a..

(l £ i, j £ m) be real numbers and let c. (1 £ i £ m) be positive real

numbers with

Then there are integers x. (l £ j £ m) , not all zero, such that
3

(3)
m

=l 3 3

a. JC .
1-3 3

< a. (2 £ i 5 m) .

We briefly recall the principle of the proof, since we shall need it

again later on. If there is strict inequality in (2), the lemma follows at

once from Lemma h. If, on the other hand, (2) holds with equality, then

the region defined by (3) is bounded. By Lemma h, for each e with

0 < e < 1 , there are integers x, , . x not all zero, such that
ME

m

,7=1

< a + e < c +1 < e. (2 £ i £ m) .
"l

There are only a finite number of possibilities for the x. , and since e

can be chosen arbitrarily small, one of these possibilities must satisfy

(3) as required. For further details, see, for example, Cassels [4],

page 73.

Finally, we need the following technical inequality.

LEMMA 6. Let <J>(m) denote Euler's function. For any positive

integer m , we have m < k<fy(m) log log 6<f>(m) .

The inequality can be checked directly for 1 £ m £ 100 . For

m > 100 , it follows by some easy manipulation from the inequality of

Rosser and Schoenfeld [9], Theorem 15.

Proof of Theorem 1. We may suppose, without loss of generality, that

, a are multiplicatively independent. Thus thereany m - 1 of otn , . ..,
l in

is a unique set of relatively prime integers such that
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(U)
t, t

a,1 ... am
1 m

where ^ is a root of unity, and t, (say) = max|t.| > 0 . We set
3

"k

e .
NK/Qa3 =

where the product is taken over all the rational primes. By Lemma 2, the

relation (k) is equivalent to the system of linear equations

(5)

and

(6)

m

3=1
e .t. = 0 (p prime)
PJ 3

m

I
3=1

.(*) t • = 0 ( l 5 i < D ) ,

where in (5) the index p runs through all rational primes and in (6) the

index i runs through the D distinct embeddings of K into C . The

argument now divides into two cases according to the relative sizes of m

and D .

First Case. Suppose that m < D • By Lemma 5> we can find integers

s, , ..., s not all zero, such that
J- tn

t.
S3~

(7)

and

(8)

where C = C.(Z3) is the constant defined in Lemma 3. Let

mlogH [a.)
3

m-1 m

=1

(9) o =

By (5) and (7)> for each index p , we have
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AI e -S,- = £ |e .|.A s -2- s
*' ** k

Ologflfct.) Cn
r7 ^

Iog2

so the quantity on the left, being a rational integer, must be zero. Thus

a is a unit. Similarly, by (6) and (7), for each index i ,

I log
.7=1

a.
(*) m

log a. < C 2 '

so by Lemma 3, oc is a root of unity. Thus the relations (U) and (9) must

be the same and, in particular, this shows that i, is bounded by the

quantity on the right in (8).

Second Case. Suppose that m 2 D . Consider the inequalities

t.
(10)

(11)

(12)

v - tk %
Iog2

I log
0=1

a.
i)

mDlogH [a.)
3

t.

3 tk k

(1 S 3 5 m) ,

(1 5 i 5 D) ,

Iog2 f t l°g B[a.) •
J=l 3

The region defined by (10) and (ll) contains points [s., ..., s ) of K

with arbitrarily large values of \s, \ . Further, (10) implies as in the

first case that

£ i°g
3=1

a.
(i)

3
tL

and so we see that the region defined by (10), (11), and (12) in K has

volume at least 2 . By the sharpening of Minkowski's Theorem (Lemma h)

used in Lemma 5> it follows that we can find integers s , ..., 8 not all

zero, satisfying (10), (ll), and (12). Proceeding as in the first case, we

conclude that t-, is also bounded by the quantity on the right in (12).

Finally, we observe that the root of unity X, in (h) has degree at

most D , so by Lemma 6 it has order, /V say, at most hD log log 60 . We
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now have the relation of multiplicative dependence

*, N t N
a,1 . . . am = 1 ,1 m

and collecting the various estimates obtained above gives the assertion of

the theorem.

3. L inear forms in logar i thms

As already indicated in the introduction, we shall deduce Theorems 2

and 3 from the following result .

THEOREM 4. Let a. , . . . , a be non-zero algebraic numbers belonging

to an algebraic nvirber field K of degree D over Q and with heights

respectively not exceeding A , ..., A [with log log A. > 1 ) . Suppose

that AS AS ... S A X-A
n and write

a' = (log A±) . . . (log An_x) , a = n'(iog An)

and

Cn = (25(n+l)K)10(M+l) , T = CnW log W , h = [log^'a"1?)] .

If 0 < 6 < mlnlhT, C B'\ } then the inequalities

0 < \b log c^ + . . . + b log a | < min{exp(-W log A^\ , exp(-65/3')}

have no solution in rational integers b^, — , b . and b # 0 with

absolute values at most B and B' respectively.

Proof. We commence by supposing that, contrary to the assertion of

the theorem, there are rational integers b , — , b and b ± 0 with

absolute values at most B and B' respectively such that

(13) 0 < \bx log ax + ... + bn log an\

< min{exp(-W log AJ , exp(-6B/5')} .

Suppose, in the f i rs t place, that OL., — , a , are multiplicatively

dependent. By Theorem 1 and Lemma 1, i t follows that we have a relation
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with integers h. h not all zero and having absolute values at

most H' , say, where

(15) H' = (60(«-l)Z>3)"-V .

If h. t 0 , we can solve (ik) for a. and obtain

, b }hi b' b' b'

with integers Z>' = fc.fc - ̂  b. (1 £ r S n-1) and fc' = h.b . In

particular, fc! = 0 . After a little reorganisation, (13) yields a

counterexample to the theorem with n - 1 logarithms instead of n . The

theorem is trivial if n = 1 , so we may suppose it to hold for n - 1

logarithms, whence if a , ..., a are multiplicatively dependent, the

theorem follows by induction on n .

Accordingly, we can suppose that a. a are multiplicatively

independent. Let q be a prime with l6D 5 q 5 32(n+l)Z5 . We claim that

there are elements £ , . . . , £ in X with heights respectively not

exceeding

such that

and

(16) a1 ... a"'1 = Z1 ... Zn~X ,

where bl, •••, b' _ are rational integers of absolute value not exceeding

BH' . This assertion will be justified in Section 4 below. Set

I N

£q, ..., £ ? • It follows from the work of [S] that our present
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theorem is proved if \K' \a '"\ : K' = q . For we can apply Theorem 2 of

[&], which we have stated in Section 1, to the algebraic numbers

£, C, -. ' a with <5 replaced by 6/H' , to obtain an inequality

counter to the basic hypothesis (13). In order to compare these

inequalities, we observe that the product of the logarithms of the heights

of £., — , £ does not exceed (%wO) ~ ft' and that the change in 6

changes h to a quantity not exceeding 3h . The new inequality clashes

with (13) because C > 3(%wZ>) C , where C is the constant appearing in

[8].

It therefore remains to treat the possibility \K' a " : K'\ ± q •

If log A > 3nDQ' , we assert that we can'find y in K with height at
n

most A such that

b\ b ' b b" b" , b'
(IT) r r w ~ 1 n n = r XL n~\ n

K " Cl '•• ?«-l an Cl ••• S-l Y

where the b", , b" . and Z)' are rational integers of absolute value

not exceeding BH' + qB' and qB' respectively. This, too, follows from

the construction of Section 4, as shown below. If now

[K' (y ? ) : K'~\ = q , then the proof is completed by applying Theorem 2 of

[8], as before. If not, we can repeat the argument and, after at most

2 log log A repetitions, we can arrange that log A < 3nIXl' . With this
n n

bound on A , we can apply our previous argument to the numbers
n

a-, > •••> a • To do this, replace the quantity H' defined in (15) by

H = H' flog A 1 < W . If a,, , a are multiplicatively dependent,

the theorem is proved by induction. If, on the other hand, they are

multiplicatively independent, then we can find c, , — , t, in K with

heights respectively not exceeding
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such that

and

fc, b b\ b'

where i>', .... £>' . and i>' are rational integers with absolute values
1 n—J. n

not exceeding Bff and B'H respectively. Since c, , , t, satisfy

the independence condition, we can apply Theorem 2 of [8]. with 6

replaced by 8/H . As before, the resultant inequality is incompatible

with (13); the final step requires C^ > 5(%nD)nC .

4 . E l i m i n a t i n g the independence c o n d i t i o n

We now show how to construct the numbers in equations (16) and (IT)

and thereby f i l l in the gaps in the proof of Theorem h. For this purpose,

we require two lemmas of Baker and Stark [2].

LEMMA 7 . Let a., , a be non-zero elements of an algebraic

number field K and let a. ^ , , a ^ denote fixed q-th roots for

some prime q . Write K' = Kla1;^, . . . , a1/f?] . Then either K'\a1/q\n [ 1 m-lj y m J

is an extension of K' of degree q , or we have

a =a?1 ••• a V ^m 1 m-1 '

for some y in K and some integers j . , — , j . with 0 5 j < q .

(See [ 2 ] , Lemma 3 . )

LEMMA 8. Suppose that a and 3 are elements of an algebraic

number field of degree D and that a = ffl for some positive integer q .

If acx is an algebraic integer for some positive rational integer a and

if b is the leading coefficient in the minimal defining polynomial of

B , then b S a
D/q .
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(See [2], Lemma h.)

First, we confirm the claim surrounding (l6). As above, let

GL , ... , a , be multiplicatively independent and let q be a prime with

X6D £ q 5 32(n+l)D . Choose m minimal such that

By Lemma 7,

for some y in K and some integers j , ..., j .. with 0 £ j < q .

Starting with (l8), we now construct, as far as possible, a sequence

Y, = V. Y2> ̂ v ••' o f e l e m e n t s o f K such that

(-in) Y = „ Zl a Z-.M-l <? (7 = 1 2 )
U9-; Y^ ^ ... a^^ yl+1 u X, ̂ , ...; ,

where the integers j- satisfy 0 £ J, < q> (l 5 r £ m-l) . Then we

have

Z1 l,m-
m 1 m-1

and indeed there is a C, in K such that

where the integers t satisfy |t | < %^ (l 5 r S m-1) . From (20),

I
a denominator for £ is bounded by

A m l A m'm~X A
1 ' ' ' m - 1 m '

whence by Lemma 8, the leading coefficient of the minimal defining

polynomial of t, is bounded by

D/2 A D / l

Al ••• m-lm
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Moreover, each conjugate of X, has absolute value a t most

so the height of C, i s bounded by

if m - 1 , then plainly A already bounds the height of £, .

How consider the sequence (19)- Set

H = (60D m)m(log A ) flog A ] .mD logfl+A ) .

m v
 J \. " 2.J , *• mJ v mJ

If the sequence (19) fails to terminate for some I with q 5 H , then

choose £ corresponding to some I with q > H . By Theorem 1, the

multiplicatively dependent numbers a,, •••> a , C satisfy a further

1 mm
non-trivial relation

h, h hn
(22) a , 1 . . . ^ 0 - 1 '

with integers 7j_, .... h not all zero and having absolute values not
U m

exceeding H • On eliminating r from the relations (20) and (22), we
m m

obtain a non-trivial relation

where s = q h - t hQ (1 5 r S m-l) and s = q h + hQ . If m < n ,

this is a contradiction since a,, — , a , are multiplicatively
X 72—X

independent. Thus, if m < n , the sequence (19) terminates at y? f° r

some Z- with a = G < H and the corresponding c satisfies
^ m m m

: A = q" •We observe tha t
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b'

with integers b' given by b' = b + b t (l £ r £ m-l) and

b' = b G .m mm

We sequentially replace a, , . .., a n by £,,...,£ ., . At each
x n - l 1 n—±

s tage, we write the analogue of (20) as

= *rtL _*m,m-l,Gm _ */a / G l tmtm-1.lGm-\r
Gm

m ^1 • • ' V l gm " "l • • ' V - l Sn '

where the t are integers and t, is chosen to make \t' I < %£ and

^ • This makes I t J < *(mH)Cm , so, by

repeated use of (23), we finally obtain (16) as asserted with the exponents

b' satisfying

The same construction yields the assertion (17). Indeed, suppose that

x' l w ''I : Z*l * q where' as b e f°re, K' = X ?^/c?, ••-, C ^ l , and that
log A > 3«Z?fi' • We apply the above argument with m = n . The equation

(18) takes the form

where the j are integers and y is chosen so that \t \ < hq .

Proceeding as before, we see that the height of y is bounded by the

expression (21) and this is at most A , as required in (17). Moreover,

the substitution {2k) leads to the bound asserted for the exponents in

(17).

This completes the proof of Theorem k.

5. Conclusion

Only one further remark is needed to establish Theorems 2 and 3- This
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is the following trivial inequality; it is actually best possible in A ,

but trivial in B .

b, b
LEMMA 9. Either a, ... a n = 1 , or

In

\b log a + ... + b log a \ > exp(-2nDB log A) ,

where b., ..., b are rational integers with absolute values at most B .

Proof. Let a. be the leading coefficient, supposed positive, of the
3

minimal defining polynomial of a. or a. , according as b. is positive
3 3 3

or negative. Then

|fc, | \b | r fe, b
1 n { 1 n

is an integer of K and its conjugates are bounded above by 2A (l+A)

whence

f- | nDB log i4 j> exp|- ̂  nDB log A \ ,

and the assertion follows immediately.

Proofs of Theorems 2 and 3. Define the quantities C and T as in

Theorem It. If T > C B , Theorem 2 follows from Lemma 9, while if

T 2 C B , Theorem 2 follows from Theorem It with B' = B and 6 = T .

Again, if & < C , Theorem 3 follows at once from Theorem It and the

assertion of Theorem 2 for 5 2 C is actually a weaker claim.
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